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Sometimes hard-to-interpret black-box artificial intelligence models might not induce trust in 
their users, particularly in the healthcare domain. Explainable artificial intelligence has been de-
veloped as a solution to this mistrust so that the specialists of different fields could better under-
stand the processes that have led to the solutions offered them by the artificial intelligence model. 
Explainability is thought to give the specialists chance to evaluate feasibility of the algorithms and 
to encourage them to use AI in the decision-making process.  

Importance of explainability is particularly evident in the healthcare domain where the applica-
tions of artificial intelligence are used for example for treatment decisions of patients and for large-
scale decisions about healthcare infrastructure. These decisions impact not only the health and 
welfare of a single patient but even larger communities. Decisions in healthcare domain require 
preciseness from the tools and responsibility from the decision makers. When the European reg-
ulations about the patients’ rights for explanation about the decisions considering them, it be-
comes clear that explainability is needed from artificial intelligence. 

To promote trust in specialists by using explanations we must be able to evaluate and validate 
the explanations with accurate metrics. At the moment, there are no standardised metrics or 
methods for evaluating explainable artificial intelligence and the field consensus is that rigorous 
study is needed to construct some. This thesis aims to find the state-of-art methods and metrics 
used for evaluating explainable artificial intelligence models, discuss their feasibility for healthcare 
and give basis for further studies to build unified set of metrics that can be used for validating new 
models. Overall, 54 metrics and methods were found and summarised in tables. 
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Perinteiset vaikeasti tulkittavat tekoälymallit eivät aina herätä luottamusta käyttäjissään, var-
sinkaan terveydenhuollon alalla. Ratkaisuksi tähän on kehitetty selitettävä tekoäly, jotta eri alojen 
ammattilaiset voisivat paremmin ymmärtää prosesseja, jotka ovat johtaneet tekoälyn heille tarjo-
amiin ratkaisuihin. Selitettävyyden tarkoitus on antaa tekoälymallien käyttäjille mahdollisuus al-
goritmien ja niiden tuottamien ratkaisujen arviointiin ja niiden oikeellisuuden varmistamiseen roh-
kaisten heitä käyttämään tekoälyä päätöksenteossa. 

Selitettävyyden tärkeys korostuu terveydenhuollossa, sillä tekoälyä hyödyntäviä työkaluja käy-
tetään esimerkiksi potilaiden hoitoa tai yleisesti sosiaali- ja terveydenhuoltoa koskeviin kysymyk-
siin, jolloin tarjotulla ratkaisulla voi olla suuri merkitys niin yksittäisen potilaan kuin kokonaisten 
ihmisryhmien terveyteen ja hyvinvointiin. Terveydenhuollossa päätökset vaativat tarkkuutta työ-
kaluilta sekä vastuuta päättäjiltä, kuten lääkäreiltä. Kun huomioidaan myös Euroopan unionin 
asettama potilaan oikeus selitykseen häntä koskevaan päätökseen johtaneista tekijöistä, on il-
meistä, että terveydenhuollossa käytettävän tekoälyn on oltava selitettävää.  

Jotta luottamusta tekoälyyn voitaisiin tehokkaasti parantaa selitettävyyden avulla, on oltava 
keinoja arvioida selitysten paikkansapitävyyttä ja ymmärrettävyyttä objektiivisesti. Tällä hetkellä 
erilaisia mittareita ja metodeja on paljon, mutta yhtenäisiä käytänteitä tai standardeja selitettävyy-
den arviointiin ei ole. Tässä työssä kerätään yhteen ja esitellään nämä mittarit ja metodit. Arvioin-
timenetelmät myös kerätään tiivistävin taulukoihin jaoteltuna sen mukaan, mitä mittaavat ja niiden 
soveltuvuutta terveydenhuollon työkalujen arviointiin arvioidaan. Tämän työn tarkoituksena on 
koota ajantasainen tieto selitettävän tekoälyn arviointimenetelmistä, jotta myöhemmät tutkimuk-
set voisivat kehittää päteviä selitettävän tekoälyn arviointiprosesseja. Jatkotutkimusten pitäisi olla 
mahdollisia, sillä erilaisia mittareita ja metodeja esitellään 54 kappaletta ja useimmat niistä ovat 
hyvin käyttökelpoisia. 
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1. INTRODUCTION 

Artificial intelligence (AI) is used in various fields of modern society. AI algorithms can 

effectively and accurately provide solutions to many difficult problems and therefore ease 

the life of their users. However, the algorithms are often complex, and user cannot al-

ways tell what the reasoning behind the given solution is. Thus, on fields with high risks 

and need of precision, such as healthcare, AI solutions are yet to be adopted as the 

users are generally not trained in AI and might be reserved towards it. [1] Healthcare 

professionals need to be able to understand and trust the solutions offered to them in 

order to use them in their work but this can be very challenging when it comes to unintu-

itive “black-box” AI models such as those using deep learning. 

Explainable AI (XAI) has been developed to answer the need of understanding the 

opaque AI models. XAI means AI models for which it is possible to generate an ex-

planation about the reasons that have led to its predictions. The explanation is supposed 

to be understandable to the model’s audience, ie. the patient does not have to be able 

to understand the explanation a doctor gets from a decision support system as long as 

the doctor can explain its effects to the patient [1]. Evaluating the received prediction is 

easier due to the explanation and therefore mistakes in the final decisions can be re-

duced, user’s trust in the system can be pro-moted and the applications become easier 

to approach. One of the main goals of XAI is to make AI models more trustworthy. [1], 

[2] This makes use of AI more feasible in situations with high stakes. 

Explainability of artificial intelligence is particularly important in healthcare as the field is 

tightly regulated. For example, the General Data Protection Regulation (GDPR) of the 

European Union (EU) guarantees the patient a right to explanation about the grounds 

leading to the decisions made about her or him. On the other hand, EU’s Ethics Guide-

lines for Trustworthy AI direct the developers to make AI models explainable. [3] Further-

more, the high responsibility medical professionals bear in their work makes it paramount 

that they can trust the system used to support their decision making. Without explaina-

bility, clinical decision support system using highly technical algorithms such as deep 

neural networks  can feel unapproachable as they are very difficult to understand without 

training. [1] 
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Since trustworthiness and facilitating adoption of AI based tools in highly regulated or 

otherwise precision requiring fields are some of the main goals of XAI, it is important that 

the explanations can be evaluated and validated as well. Assessing the validity of the 

explanations can be difficult for an average user and therefore standardised or at least 

generally approved metrics would be an important addition to the field. At the moment 

there is an obvious lack of standardisation and validation of metrics and many studies 

call for standardisation of metrics for evaluating XAI. While there are several methods of 

constructing an explanation, there are even more ways to evaluate them. While re-

searchers hurry to develop as rigorous and credible metrics as possible, there remains 

a need for studies gathering the metrics together and deciding what should be measured 

and how. [1] 

This thesis reviews the state-of-the-art of different methods and metrics used for evalu-

ating explainable AI. The aim of it is to find out if some metrics are especially suitable for 

the purpose and to collect information about the current metrics to support becoming 

studies aiming at validating metrics for evaluating XAI. Introduction continues to give 

background information about XAI after which domain independent metrics and methods 

are addressed followed by those developed particularly for healthcare applications. Fi-

nally, observations, most potential metric and future challenges and prospects are dis-

cussed. 

1.1 Explainable artificial intelligence 

Explainable artificial intelligence means AI models which can produce an explanation 

about the logical process leading to their outcomes [1]. Explainability of artificial intelli-

gence can be implemented in many ways. Although explainability sometimes refers also 

to intrinsically understandable, so-called interpretable AI models, in this thesis explaina-

ble AI refers to black-box AI models for which explainability is implemented post hoc. 

These explanations should reveal the model’s reasoning process and what are the fac-

tors that led to the outcome. 

The need to explain a model varies according to its complexity. While some models are 

intrinsically interpretable thus needing little explanations, opaque models like deep neu-

ral network models might require explanation methods to become explainable to a user 

who is not a specialist in artificial intelligence. [1] Explanation design is heavily dependent 

on the audience as the explanation should be detailed enough to provide the needed 

information, but not include too much information. In short, the users’ needs and ex-

pected knowledge and goals of the model have to be considered in XAI design. [1], [2] 
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Explainable AI in general has many goals which may vary according to the context but 

typically XAI aims to increase users’ trust to AI and make AI based solutions more ac-

cessible, make the models more faithful and fair and ensure the model’s informativeness, 

transferability and causality [1]. Particularly in healthcare users need to be sure that their 

tools fulfil clinical and legal requirements, they are easy enough to use correctly without 

causing too heavy additional workload and that they provide the information the users 

need. This can be achieved by adding explainability to black-box AI models. [4] Further-

more, explainability gives the user chance to evaluate the model’s validity and facilitate 

trust to AI based tools [2]. 

Despite the benefits of explainability, not all AI models are made explainable. This is due 

to a trade-off between explainability and model accuracy. Sometimes it is not essential 

to know the reasoning behind the model’s results as long as they are as accurate as 

possible. These situations could be such where quick decisions have to be made ac-

cording to plenitude of data or when precision is essential, but the explanation would not 

produce relevant extra insights for the users. In these cases, the trade-off between ex-

plainability and accuracy makes it wiser to opt for the accuracy. [1] The need for expla-

nations should be considered in the model’s development phase by developers and us-

ers. 

1.2 Explanation types 

Explainability can be implemented in many different methods and there is no single ex-

plainability method that would suit all AI models [5]. Explainability can be implemented 

in many methods. The explanations can be designed to suit one model or be model 

agnostic methods and they can either explain the whole model (global explanation) or a 

specific prediction (local explanation). [1], [6] For example, Local Interpretable Model-

Agnostic Explanations (LIME), is a model agnostic explainability method that is based 

on simplifying the decision at hand. [1] 

Different algorithm types often require different explainability techniques and methods. 

For instance, models working with images are better explained with saliency maps than 

linguistic explanations and multimodal classification tasks might become clearer through 

simplifying explainability techniques rather than decision trees. Therefore, many different 

techniques have been developed to fit the different needs and to help understand the 

similarities and differences between the explainers, they can be grouped. Categorisation 

of the explainability techniques can be done in many ways and Barredo Arrieta et al. use 

a taxonomy of dividing them first into categories according to the technique used, then 
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the method and finally according to the data used in the intended purpose of the ex-

plainer. For example, techniques can include explanations by simplification, explanations 

by example, visual explanations, linguistic explanations, local explanations and feature 

relevance. and so on. Explanation methods can include for instance sensitivity analysis 

or localisation maps. [1] 

Another way to categorise explainability models is to use the three levels described by 

Sanneman and Shah. They include goals of XAI into the categorisation and divide XAI 

into XAI for perception, ie. those that explain what the system does and what decisions 

it has made, XAI for comprehension, ie. why it made the decisions and how this relates 

to the model’s goals and finally to the third level, XAI for projection, ie. explanations that 

reveal the upcoming decisions, how to model would act in another similar instance or 

what should change to end up in a different decision. [7] 

Despite the group an XAI method falls into, it should be sound, accessible and achieve 

its goals. To ensure this, explainability methods should be rigorously evaluated. [1], [2], 

[6] 
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2. METHOD OF THE LITERATURE REVIEW 

This thesis is primarily a literature review. It is conducted by surveying papers in Science 

Direct with keywords “explainable AI”, “interpretable AI”, “evaluating”, “validating”, medi-

cal” and “healthcare”. The search query used provided approximately 250 results at the 

time of collecting the sources and the abstracts of the results were examined. Papers 

that included aforementioned keywords and seemed to include relevant information were 

chosen to closer review. Some papers were also collected from Google Scholar. In total, 

this phase of the paper collection process, 43 documents were kept for closer review. 

When the selected 43 papers were read more closely, those proposing metrics or meth-

ods were used as reference in this thesis and those referring to metrics or methods from 

other researchers were only kept if they contained relevant background information or 

good points for discussion. This meant keeping 13 papers. The rest of the papers were 

either left completely unused or their references were used to find the articles originally 

introducing metrics or methods for evaluating XAI. The remaining 40 references in this 

thesis were found as described from the references of the original 43 papers. The most 

generic mathematical evaluation methods such as area-under-the-curve were excluded 

from the thesis as they were considered to be common knowledge. 
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3. METRICS FOR EVALUATING EXPLAINABLE 
ARTIFICIAL INTELLIGENCE 

Although the main focus of the thesis is on the healthcare applications of XAI, it is im-

portant to find out what general domain metrics there are as they can be used to evaluate 

healthcare specific XAI models as well. There are some universal aspects of explana-

tions that should be evaluated despite the application as they work as sanity checks for 

the explanation. These include information about how easily the explanation changes 

according when the input changes, how accurately the explanation has recognised the 

most important features, accuracy of the counterfactuals and the model fairness. These 

aspects are evaluated in healthcare applications typically with general domain metrics. 

3.1 Domain independent metrics with human in the loop 

Despite being developed to enhance user experience and trust to artificial intelligence, 

methods and metrics for evaluating explainable AI often do not consider users or domain 

experts. While the vast majority of found metrics evaluate XAI mathematically, there are 

some metrics that do require users in the evaluating process. Probably the most used 

method of them is Likert scale with task specific questions. 

Likert scales are surveys that consist of questions with numerical answer options. Likert 

scale is a very modifiable evaluation method as the amount and contents of the ques-

tions as well as the answer scale can be tailored for the study. For example, Chakraborti 

et al. use five-point scale for their surveys but Hoffman et al. opt for three point scale in 

their questionnaire.[2], [8] Likert scales are a good tool for conducting user studies but 

it is essential to carefully design the questions to measure the desired property and also 

to evaluate the scale validity [2], [7]. Using Likert scale as an evaluation method means 

a large enough user study is needed and researchers should also ensure diversity of the 

survey participants for the results to be worthwhile. Therefore, the method requires re-

sources and is not especially lightweight evaluation method. [9] 

Likert scales are also used in the System Causability Scale (SCS) proposed by Hol-

zinger et al. which is used to evaluate the perceived explainability and ensure that the 

XAI system fits its purpose. The SCS consists of 10 questions: 

1.  “I found that the data included all relevant known causal factors with sufficient 

precision and granularity.”  

2. “I understood the explanations within the context of my work.” 
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3. “I could change the level of detail on demand.”  

4. “I did not need support to understand the explanations.”  

5. “I found the explanations helped me to understand causality.”  

6. “I was able to use the explanations with my knowledge base.”  

7. “I did not find inconsistencies between explanations.”  

8. “I think that most people would learn to understand the explanations very quickly.”  

9. “I did not need more references in the explanations: e.g., medical guidelines, reg-

ulations.”  

10. “I received the explanations in a timely and efficient manner.” 

The users evaluate the XAI systems with a five point scale from strongly disagree to 

strongly agree and the results can be evaluated by summing the ratings of each question 

and dividing this by 50. Holzinger et al. test the SCS with a healthcare application so it 

is implementable in healthcare domain as well and also quite efficient way to conduct a 

user survey. [10] 

Sanneman & Shah introduce the Situation Awareness Framework for Explainable AI 

(SAFE-AI) for evaluating if the explanation provides all the information the user needs. 

Sanneman and Shah divide XAI in three levels as explained in 1.2 and propose means 

for evaluating XAI models in each level and finally exhibit an adapted version of the Sit-

uation Awareness Global Assessment Technique (SAGAT) test introduced by Ends-

ley in [11] to evaluate the information provided by XAI and situation awareness in gen-

eral. The evaluation comprises of questions that are tailored for the type of XAI in ques-

tion. Answers are collected in simulated use cases by stopping the situation momentarily 

to ask question. The SAFE-AI modification of SAGAT is best used in the development 

phase of an XAI model as it reveals what information the users need and if the model 

induces trust. SAGAT is a very user-centric evaluation framework utilising the knowledge 

of human factors throughout. [7] 

Ribeiro et al. evaluate explainability along the same lines as SAGAT with their user 

study of the Anchors explainability method. The user study is aimed to users with some 

understanding of AI and during it the users are asked to predict the AI model’s behaviour 

first with random test cases and then with 10 instances after seeing explanations for the 

previous. The users only make predictions if they are confident that they are correct and 

otherwise refrain from answering. The result is a percentage of correct predictions on 

the round after seeing the explanations. [12] 
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3.2 Domain independent metrics without human in the loop 

Most metrics for evaluating XAI do not include users or field experts in the evaluating 

process. These metrics often focus on measuring easily quantifiable features of the ex-

planation and are often mathematical equations that compare two or more explanations 

given by the explanation method [13]. Not including humans in the evaluation makes the 

process quicker and potentially more objective and requires less resources [14]. 

3.2.1 Metrics for evaluating explanation robustness 
Robustness is a quality of an explanation that describes how well the explanation holds 

when minor changes are made in the input. This is an important property as similar in-

stances logically tend to need similar explanations and in real-life instances, particularly 

in healthcare, the data may be noisy. If an explanation is robust, it is not sensitive to 

noise and is able to detect the underlying reasons for the predictions rather than explain-

ing the noise.  

Sensitivity is a metric that reveals how the explainability method reacts to small changes 

in the input. Sensitivity of an explanation can be considered either a benefit or a defect 

of a model and as Alvarez-Melis and Jaakkola point out, it partly depends on the purpose 

of the explanation. Notwithstanding, Alvarez-Melis and Jaakkola as well as Bhatt et al. 

argue that generally low sensitivity of an explanation is desirable as thus the explanation 

ignores unstable noise producing similar explanations for similar instances making the 

model more stable and robust. [15], [16] Bhatt et al. also expand the concept of sensitivity 

to calculate maximum sensitivity and average sensitivity to give more detailed under-

standing of the explainer. Sensitivity is calculated as the distance between explanations 

for an instance and its perturbations. [16] 

Input invariance by Kindermans et al. further expands the previous sensitivity metrics. 

Input invariance measures what effect noise in the input has on the explanation. Main 

idea is that if noise in input does not affect the AI model’s attributions, it should not affect 

the attributions of the explanation either. As are many of the other metrics, input invar-

iance is developed to be used for saliency maps. Stability is an important aspect of an 

explanation, but Kindermans et al. admit that their implementation depends on the refer-

ence point chosen for the evaluation. Thus, the metric does not always produce compa-

rable results. [17]  

Dasgupta et al. take a slightly different angle to measuring explanation robustness. They 

propose a metric called consistency to evaluate how probably instances with the same 

explanation are given the same prediction. Particularly global consistency ie. con-
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sistency calculated for the entire model is interesting and consistency of a model indi-

cates that explanations are not randomly generated. Consistency is a model agnostic 

metric and can be valuable tool for evaluating method stability. [18] 

Local Lipschitz continuity is a variation of Lipschitz criterion proposed by Alvarez-Melis 

and Jaakkola to further evaluate explanation robustness. It is an improved version to the 

usual and more global Lipschitz continuity as it focuses on the input points closer to the 

reference input rather than all, even significantly different inputs. However, calculating 

local Lipschitz continuity for black-box models and their explainers can be computa-

tionally expensive and challenging. [19] 

Stability as presented by Yuan et al. in their not peer-reviewed article, is once again a 

metric where difference between an explanation for one instance and its perturbation are 

compared. It is important to notice with this and the previous similar metrics that the 

prediction is assumed to be the same in both explanation cases. Stability is intended to 

be used with graph neural networks. [20] 

Final metric for robustness is reiteration similarity by Amparore et al. which tests if the 

explainability method produces same explanation for reiterations of the same instance. 

Reiteration similarity is calculated as Jaccard similarity for the set of explanations for 

an instance. Reiteration similarity is a crucial property of an explainability model to 

ensure that the explanations are valid. [21] 

3.2.2 Explanation faithfulness 
For the explanation to be credible, it is essential that the explanation is faithful, that is 

the right properties are explained and feature importances are correct. Measuring these 

properties is very popular particularly when it comes to saliency maps as explanation but 

with other techniques too. Typically features are removed from the input in relevance 

order derived from the explanation and different calculations are conducted based on 

the output. 

The first metric of this kind is fidelity introduced by Pope et al. in [22]. Pope et al. define 

fidelity as the loss of accuracy of an AI model if features with saliency values higher 

than 0.01 are removed. This produces a fidelity score between 1 and 0, 1 being the 

highest, which means that the saliency map explaining the AI model has selected ex-

tremely relevant features. In graph neural network explainer’s fidelity describes how well 

the explanation corresponds to the function at a node [23]. Despite being originally de-

signed to evaluate graph neural networks, fidelity should be applicable to other models 

as well due to its generalisable nature. [22] 
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Completeness by Sundarajan et al. and summation-to-delta by Shrikumar et al. in 

turn, ensure that the feature importances of an image explanation or a graph network 

are correct by checking that the total attribution in an image explanation corresponds to 

the difference between prediction F at instance x and the determined baseline. This is a 

sanity check for explainers based on feature importance and desirably the value should 

be low. [24], [25] 

Rather similar metrics to fidelity are sensitivity-n, local concordance and continuity. 

These measure the difference in the output accuracy when n features are removed. Sen-

sitivity-n by Ancona et al. and local concordance by Amparore et al. generalise this 

concept by developing metrics that consider only the n most important or otherwise in-

teresting features and calculate the loss in accuracy when obtaining only them [21], [26]. 

Continuity by Montavon et al. on the other hand quantifies how continuous an explana-

tion function is. This is done by calculating the strongest variation over all inputs. [27]  

Focus by Arias-Duart et al. measures faithfulness in a very similar way to for example 

fidelity with the exception that the labelled images are divided into N, typically four, mo-

saics that act as the points of reference to evaluate how well the pixel relevances match 

the reality. [28] 

Non-sensitivity by Nguyen & Martínez on the other hand ensures that zero importance 

is only assigned to features that do not affect the model accuracy [29]. These metrics 

are important in evaluating meaningfulness of an explanation. They prevent the user 

from favouring explanations that fit their own reasoning rather than the model’s actual 

function and therefore are valuable tools in XAI evaluation. Moreover, it can be argued 

that the general metrics like sensitivity-n and local concordance should be favoured 

over the simpler ones as they can be used more versatilely, and they provide more de-

tailed information. [21], [26]. Figure 1 shows an example where local concordance and 

fidelity is calculated. 
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Figure 1: LIME and SHAP explanations for drug abuse likeliness evaluated by reiter-
ation similarity, local concordance, local fidelity and prescriptivity. Figure is created by 
Amparore et al. [21] 

 

Faithfulness, or faithfulness correlation as called in Hedström’s Quantus toolkit, pro-

posed by Arya et al. is very similar to fidelity [5], [30]. However, for faithfulness, only S 

most important features are considered and the correlation of the change of prediction 

accuracy when the features are set to input baseline and number of the features used is 

calculated. This, as the other faithfulness metrics, is an important sanity check of an 

explanation. Even so, it comes with problems as the feature baseline can be defined in 

several ways and it also may be difficult to aggregate overall faithfulness with this metric. 

[5] 

Region perturbation by Samek et al. and Iterative Removal of Features (IROF) pro-

posed in Rieger and Hansel’s not peer-reviewed paper are otherwise same as fidelity 

but work with image segments rather than independent pixels. This is a significant benefit 

in terms of healthcare related classification problems as often the images contain pixels 

that are very dependent on each other. [31], [32] Region perturbation and IROF are 

designed for neural networks but should be generalisable like fidelity. 
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Also Montavon et al. argue for removing segments of an image instead of pixels in their 

paper constructing grounds for a metric that is called selectivity by Hedström et al. in 

their Quantus library, which will be discussed later. [27], [30] Selectivity is much like 

IROF but has been published earlier and is based on a pixel-wise relevance measure-

ment proposed by Bach et al. and often referred to as pixel-flipping [27], [30], [33]. The 

principal logic in both of these is that most relevant pixels or segments of an image are 

selected according to the explanation map and removed by masking them. After this, the 

perturbed image is used as an input and the effect on the prediction function f(x) is plot-

ted. Finally area-under-the-curve is calculated with low result marking a good explana-

tion. [27], [33] Figure 2 gives an example of pixel-flipping. 

 

 

Figure 2: Graph by Montavon et al. to illustrate effect of pixel-flipping on prediction 
accuracy. [27] 

 

Very similar but reverse to the above metrics is faithfulness, proposed by Alvarez-Melis 

and Jaakkola, implemented by Arya et al. in a not peer-reviewed article and referred to 

as faithfulness estimate by Hedström [5], [26], [30]. Faithfulness also measures cor-

rectness of feature importance but instead of removing pixels or features, they opt for 

adding them. After getting the feature importance vector θ and the predictions for the 

iterated inputs p, faithfulness φ is calculated using Pearson’s correlation: 

𝜑 =  −𝜌(𝜃, 𝑝). (1) 

Greater φ is evidence of a faithful explanation. [5]  
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The same principle is followed in monotonicity, which checks that feature importances 

are detected correctly by calculating Spearman’s correlation coefficients for all attribu-

tions that have a relevance value and are added in increasing relevance order. If the 

prediction accuracy increases monotonically, then the feature importances conform 

monotonicity. [5], [29] 

To take feature interactions into consideration, Nguyen and Martínez also propose ef-

fective complexity, which is also calculated for the k most important features but with 

equation 2: 

                              𝑘∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑘∈{1,… ,𝑁}|𝑀𝑘| 𝑠. 𝑡. 𝐸(𝑙(𝑦∗, 𝑓−𝑀𝑘
)|𝑥𝑀𝑘

∗ < ϵ                                     (2) 

where Mk is the set of k most important features, 𝑓−𝑀𝑘
 is restriction function for the less 

important features of model f given the fixed values of the features in Mk  and ϵ is a 

chosen tolerance. This is an improvement to many previous metrics as it does not as-

sume that the different features are independent from each other.[29] 

Other faithfulness measuring metrics are relevance mass accuracy and relevance 

rank accuracy introduced by Arras et al. and pointing game proposed by Zhang et al. 

which determine how well the explanatory saliency map fits to the ground truth. Rele-

vance mass accuracy, as demonstrated in figure 3, and pointing game measure the 

ratio of relevance values at each pixel of the saliency map and relevance values at each 

pixel of the ground truth. [34], [35] Relevance rank accuracy instead measures how 

much of the highest intensity pixels of the saliency map is located at the same site as 

the ground truth. [34] Benefit of fidelity, relevance rank accuracy, relevance mass 

accuracy and pointing game is that they present the ability of the explanatory heatmap 

to pick the most important features of the classifier as a simple value between 0 and 1. 

However, for evaluating instances with large segments of image, the results are less 

useful as the denominator is close to the nominator [35]. 
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Figure 3: Relevance mass accuracy calculated according to explanations created with 
different methods for a CLEVR-XAI prediction. Cropped image from Arras et al. [34] 

Further metric for evaluating relevance of a saliency map is attribution localisation 

proposed by Kohlbrenner et al. Attribution localisation is very similar to relevance 

mass accuracy but weighs the relevance inside the explanation’s bounding box to total 

relevance in image ratio with the size of the bounding box to total image size ratio. As in 

previous metrics, higher attribution score indicates a better explanation as the explana-

tion has succeeded to find the object rather than the background. [36]  

The model agnostic sufficiency metric proposed by Dasgupta et al. and the not peer 

reviewed target class validity for counterfactual explanations by Mahajan et al. are cru-

cial metrics for evaluating how convincing the explanations are. Both of these metrics 

test if an explanation given for a prediction holds in other cases where the feature used 
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in it is present. [18], [37] That is, if a feature x is used to explain prediction π, then other 

instances where feature x is present should get labelled as π to be sufficient, even if 

the instance was explained differently [18].  Similarly, if an explanation says “If you 

smoked, you would have been predicted to be in risk of a lung cancer”, target class 

validity is achieved if the prediction would change to being in risk of lung cancer if the 

parameters given for the model were the same except for smoking. Target class validity 

of a model is calculated as a percentage of counterfactuals that were classified into the 

target class. [37] These metrics ensure that the explanations are faithful and that the 

features used as explanations are actually relevant. At least sufficiency can also be 

verified by humans [18]. 

3.2.3 Metrics for evaluating understandability 
Understandability of an explanation is an integral part of explainability. Even if the expla-

nation was faithful and robust, it cannot be explainable if the user is uncapable of under-

standing it. Although understandability is often measured with users in the loop, there 

are some metrics that can be used to evaluate understandability without involving users. 

Continuous proximity and categorical proximity proposed by Mothilal et al. are met-

rics designed to evaluate understandability of counterfactual explanations. They are 

based on the assumption that counterfactual that are similar but not identical to the orig-

inal instance would be the most useful to the user and make the explanation most un-

derstandable. They are calculated as the negative vector distance between the instance 

and its counterfactual’s features. The only difference between these two is the method 

of calculating the distance. [38] Continuous proximity is calculated for continuous fea-

tures as average distance and median absolute deviation can be calculated as well. Cat-

egorical proximity however, is calculated as the mismatch of the categorical values 

between the instances and the counterfactuals. [37], [38] 

Complexity is a metric introduced by Bhatt et al. to check how many features of the 

input are included in the explanation. Although including all the features would result in 

a more accurate explanation, Bhatt et al. argue that it would make the explanation more 

difficult to understand. [16] 

3.2.4 Miscellaneous metrics 
One of the metrics not having humans in the loop but still measuring explainability is 

Degree of Explainability (DoX) introduced by Sovrano and Vitali. To evaluate the DoX, 

first different “explanation archetypes” must be defined. These are derived from social 

sciences and they are questions such as who, where why, what next, what if and so on. 
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When the archetypal questions for a model are defined, the DoX can be calculated ac-

cording to equation 3. 

𝐷𝑜𝑋 =
Σ𝑞∈𝑄 𝑅𝐷,𝑞,𝐴

|𝑄|
 (3) 

where q is an archetype question to an aspect a of all aspects A, Q is the set of all 

possible archetypes q, and 𝑅𝐷,𝑞,𝐴 is the explanatory illocution per archetype which DoX 

is an average of over the set Q. The DoX does require some resources from the evalu-

ators and due to the different possible archetypes, meaningful comparison of DoX is 

difficult between XAI models. [14] 

Another widely agreed aspect of a good explanation is that explanations for different 

instances or even in different classes should not be the same. Contrastivity by Pope et 

al. and not peer reviewed separability by Honegger et al. both propose their own imple-

mentations of this. Separability does not make a difference between the outcomes of 

the prediction unlike contrastivity, which requires binarized saliency maps. Separabil-

ity and contrastivity are also designed for different explanation methods separability 

comparing feature importances and contrastivity heat maps. [22], [39] Even so, the 

principle can be applied for other explanation methods as well. Contrastivity is calcu-

lated as: 

𝑑𝐻(𝑚0, 𝑚1)

𝑚0 ∨ 𝑚1
, (4) 

where dH is the Hamming distance between saliency maps m0 and m1 and is normalized 

by the total amount of atoms in the saliency maps. Again, higher contrastivity and sep-

arability indicate better explanation. [22] 

Sparsity by Pope et al. describes how the explanation covers the graph. Sparsity is 

calculated by dividing the amount of nodes considered in at least other of the maps m0 

and m1 by the total amount of nodes in the graph |𝑉0| and subtracting this from one: 

1 −
𝑚0 ∨ 𝑚1

|𝑉0|
. (5) 

High sparsity is important if the graph to be explained is very large as a very local ex-

planation might miss some important aspects of the classifier. Then again, as complex-

ity points out, too comprehensive explanation is not good either. [22] 

Amparore et al. propose prescriptivity to evaluate how well a local linear explainer re-

veals the least change required in the input that would change the prediction. This is an 

interesting explainability metric as local linear explainers are not always expressive with 
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this aspect unlike for example counterfactual explanation. Prescriptivity is calculated 

as 

𝑙 (
1

𝐶
⋅ |𝑓(𝑥′) − 𝑔(𝑥′)|) (6) 

where 𝑙(⋅) is a hinge loss function, 𝐶 = max (y′, 1 − y′), y’ is a boundary, often 
1

2
 but could 

be any, f(x) is the prediction function and g(x) is the explanation function. [21] 

Model parameter randomisation test proposed by Adebayo et al. evaluates how much 

an explanation method using saliency maps depends on the AI model’s parameters. This 

is done by measuring the difference between outputs of the explanation method when 

same instance is given for a properly trained AI model and to an untrained AI model of 

which parameters are picked randomly. If the explanation method is sensitive to the 

model parameters, the output saliency maps will have significant differences. [40] 

The data randomisation test proposed by Adebayo et al. is a method to reveal if the 

explanation depends on instances and their labels. In data randomisation test the dif-

ference between explanations produced for same instance and created for a model 

trained with random labels and a model trained with real labels is calculated. If the ex-

planations are similar, it can be assumed that the explanation method does not base its 

output on the relationship of the instance and label. In other words, if we want an expla-

nation about the reasons leading to the prediction, an explanation should be affected by 

randomisation of labels. [40]  

Fairness and bias are some of the most common concerns connected to AI and while 

explainability in itself should tackle the problem at some level, it is important to be able 

to measure this as well. Statistical parity is a metric introduced by Dwork et al. and it is 

originally used to measure group fairness of AI algorithms. Statistical parity is calcu-

lated by finding Earthmover distance for µ of two different groups and if the distance is 

lower than a selected threshold, the model conforms statistical parity. Statistical parity 

exposes bias against different groups in algorithms by showing how the outcomes vary 

according to demographic group of test subjects. This is an important metric as AI mod-

els are prone to bias as the training sets often fail to depict the whole population therefore 

producing less accurate outcomes for some demographic groups. This is especially true 

in the field of healthcare and thus it is essential to consider statistical parity in model 

development. [41] Although statistical parity is originally developed to be used for AI al-

gorithms instead of explanations, it can be applied to evaluate explainability as well [23], 

[41] 
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3.3 Frameworks for evaluating XAI 

In addition to several metrics for evaluating explainable AI, there are also frameworks 

combining the different metrics and methods into one evaluation process. Frameworks 

are a useful addition to the field, as their developers have collected the most important 

metrics and established convincing means of utilising them. However, anyone desiring 

to evaluate XAI models with a particular framework needs to make sure that it measures 

the desired property of XAI. As with metrics, there are frameworks for different purposes, 

for example measuring usability like Dieber and Kirrane, reliability with multiple quantita-

tive metrics like Agarwal et al. or for rigorous testing with Quantus of Hedström et al.  

[23], [30], [42]. 

One domain independent XAI evaluation method is Model Usability Evaluation (MUsE) 

proposed by Dieber and Kirrane. MUsE evaluates usability of explanation methods with 

user interviews of which questions are based on usability standard ISO 9241-11:2018 

and related guidelines. The system was tested with LIME graphs and the users were 

academics with at least some understanding about AI. The evaluation questions are 

grouped into three subsets measuring the explanations effectivity of achieving interpret-

ability, the resources required to reach interpretability and if the explanation method is 

satisfactory in the given context.  The subquestions are open questions and the frame-

work does not in itself provide clear instructions on how to evaluate them, but different 

metrics described in this thesis could be used for some. MUsE is developed to evaluate 

usability of XAI models used on tabular data and the output is natural text. Hence, it 

might not be the most effective evaluation method for all purposes but provides valuable 

information about usability in certain applications. While Dieber and Kirrane admit that 

MUsE is not enough for rigorously evaluating and validating XAI models, it is a useful 

tool for evaluating user experience which is an important aspect of XAI. MUsE is origi-

nally designed to evaluate LIME explanations but is model agnostic and can be used for 

other explainability methods as well.  [42]  

Agarwal et al. combine four metrics to evaluate an explanation reliability and faithfulness 

for graph neural networks [23]. First, faithfulness is calculated as fidelity by Pope et al. 

ie. determining the loss of accuracy when only most important features are preserved 

[22], [23]. The second metric derived from previous studies is stability from Yuan et al. 

measuring the distance between two similar explanations [20]. Final metric from other 

studies is group fairness preservation defined by Dwork et al. as statistical parity and 

tweaked to apply to graph neural network explainers. This is done by calculating statis-

tical parity of a node and its perturbations in a neural network and subtracting the sta-

tistical parity of their explanations. The smaller the absolute value of the subtraction is, 
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the better the explanation preserves group fairness. [23], [41] Finally, counterfactual 

fairness preservation is calculated. 

Counterfactual fairness preservation is a metric introduced by Agarwal et al. to eval-

uate how well the explanation tolerates minor perturbations in the input. The main prin-

ciple is familiar from many previous metrics: if the changes in input do not affect the AI 

model, they should not affect the explanation either. [23] 

The combination of metrics Agarwal et al. use is effective in evaluating an explanation 

quantitatively. It is a useful framework for evaluating explanations as it covers many of 

the important aspects of a good explanation: fidelity, robustness, sensitivity and fairness. 

The framework should also be applicable beyond graph neural networks as the metrics, 

although here designed for graph neural networks, are general and mostly derived from 

completely model agnostic sources. On the other hand, Agarwal et al. do not consider 

the user aspect of the explanation thus failing to make the framework fully comprehen-

sive in terms of evaluating explainability. [23] Adding an expert-involving metric to the 

framework could make it quite effective. 

Another framework for evaluating explainability of AI has been proposed by the High-

Level Expert Group on Artificial Intelligence (AI HLEG) established by the European 

Commission. This framework is a transparency subsection of the Assessment List for 

Trustworthy Artificial Intelligence (ALTAI) consisting of two questions. Explainability 

is assessed according to ALTAI framework by evaluating following questions: 

1. “Did you explain the decision(s) of the AI system to the users?” 

2. “Did you continuously survey the users if they understand the decision(s) of 

the system?” 

This is certainly a general domain framework containing also many evaluation tools for 

other aspects of trustworthy AI even though explainability is left quite incomprehensive. 

[43] 

Z-inspection by Zicari et al. is a rigorous framework for evaluating trustworthy AI and it 

has been proven to work also in healthcare domain. As explainability is one key aspect 

of trustworthy AI, it is also included in the Z-Inspection framework, but it can be evalu-

ated with any metrics or methods that the evaluators feel suitable for the purpose. The 

Z-Inspection is a qualitative analysis and could well be utilised in evaluation process of 

any AI system that is intended to be trustworthy and explainable. [44] 

Finally, although not being a framework as such, it is worth to mention Quantus toolkit 

by Hedström et al. Quantus is a Python library where many of the metrics discussed in 
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this thesis are implemented and ready to be used for evaluating XAI. Quantus has 

grouped the metrics according to what they measure and the metrics are shortly de-

scribed in the initial comments of the implementation. [30] This should be a useful toolkit 

for XAI developers to evaluate their models but does not replace the need of expert-in-

the-loop metrics. 
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4. METHODS AND METRICS FOR EVALUATING 
EXPLAINABLE ARTIFICIAL INTELLIGENCE IN 
HEALTHCARE DOMAIN 

Many metrics and methods that were not originally developed for evaluating XAI in 

healthcare suit well for medical domain. However, sometimes it is important to evaluate 

the XAI model in a more domain specific manner, particularly because medical experts 

have valuable specialist information about the use cases that computer scientists might 

lack. Thus, involving healthcare professionals at least in the evaluation process can lead 

to better results. [45] This section introduces evaluation methods particularly intended to 

be used in healthcare applications of XAI. 

4.1 Methods to evaluate XAI for healthcare applications with 
expert in the loop 

As in general domain, user interviews about a model’s explainability are a valid option 

for explainability evaluation in medical domain. Involving users or field experts in the 

evaluation process gives the developers hands-on feedback on the performance of the 

explainability method [13]. One example of expert surveys is one conducted by 

Schoonderwoerd et al. in [4]. The DoReMi method of Schoonderwoerd et al. is intended 

to be used throughout the development process and it includes several surveys to as-

sess how well the users understand a clinical decision support system and what should 

be improved. This survey consists of mainly Likert scales with which usability and under-

standability of explanations are evaluated. DoReMi is developed to be used for clinical 

decision support systems but is likely to be applicable in other domains as well. Figure 4 

depicts the steps of the method. [4]  

 

Figure 4: Steps of the DoReMi user survey method. Figure is created by Schoonder-
woerd et al. [4] 
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Another metric suitable for healthcare XAI validation is Trustworthy Explainability Ac-

ceptance introduced by Kaur et al in [3]. Trustworthy Explainability Acceptance in-

cludes a group of experts in the evaluation process. Trustworthy Explainability Ac-

ceptance is calculated by first evaluating the Euclidean distances between explanations 

provided by an expert Xi and the explainability model Yi. When the distance, which is in 

range [0,1], is calculated, explainability acceptance Ae of the system can be calculated 

as 

𝐴𝑒 = 1 − 𝑑𝑋𝑌 (7) 

Ae is also a number in range [0,1], 1 being the best acceptance and 0 the worst. The 

experts also rate their trust Te to the explanation to weigh the explainability acceptance. 

The Trustworthy Explainability Acceptance is calculated as an average of each ex-

perts' trust multiplied by explainability acceptance. Finally, Kaur et al. propose to calcu-

late confidence of the Trustworthy Explainability Acceptance 𝑐𝑇𝑤𝐴
 as   

 

𝑆𝐸𝑇𝑤𝑎
=

√Σ𝑒(𝑇𝑤𝐴𝑇𝑒)2

𝑛
 (8) 

 

𝑐𝑇𝑤𝐴
= 1 − 2(𝑆𝐸𝑇𝑤𝐴

). (9) 

Trustworthy explainability is a tuple of trustworthy explainability acceptance and 

its confidence. [3] 

Modality-Specific Feature Importance (MSFI) introduced by Jin et al. is a metric de-

veloped for XAI models that use saliency maps as explanation method and that are used 

in clinical context. It measures explanation plausibility and faithfulness. Prior to calculat-

ing the MSFI, a user study is required to find the clinical requirements for the case and 

to prioritise the modalities present in the classification problem. Shapley values are cal-

culated for each modality according to their importance. Secondly, the section of the 

saliency map that overlaps the ground truth mask is calculated for all modalities and this 

ratios are weighted by their corresponding modality importance values. The output is a 

number in range [0,1], one being the ideal situation. MSFI is robust metric as it is not 

sensitive to the size of the ground truth mask or signal strength of the saliency map. [46] 

Clinical Explainability Failure and Explainability Failure Ratio are good examples of 

model agnostic metrics with experts in the loop. These metrics introduced by Venugopal 

et al. are developed for saliency maps in healthcare applications but are applicable to 

other fields as well. Clinical Explainability Failure is detected with a two-step test. First 

a model’s output is compared to ground truth to see if it recognises the correct features. 
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If the bounding box inserted on the saliency map does not match the ground truth and 

an expert fails to understand why, the model is deemed to have made a Clinical Ex-

plainability Failure. Explainability Failure Ratio is then calculated as the amount of 

Explainability Failures divided by the total amount of explanations. [47] 

4.2 Metrics to evaluate XAI for healthcare applications without 
expert in the loop 

Insertion and deletion by Hu et al. are metrics designed specifically for medical x-ray 

imaging although arguably they could be used for saliency maps created for other pur-

poses as well. Insertion and deletion are metrics that measure the explanation’s sen-

sitivity to changes in the input images combining pixel-flipping and fidelity like metrics 

producing a similarity score as an output. For insertion new pixels are added to a 

masked out input image and for deletion they are masked by standard grey. The pixels 

are added or removed in relevance order that is got from the original explanatory saliency 

map. Similarity score s is calculated as 

𝑠(𝑓𝑞,𝑓�̂�) = max (
𝒇𝒒 ∙ 𝒇�̂�

|𝒇𝒒||𝒇�̂�|
) , (10) 

 

where 𝒇𝒒 is the feature vector of the original query image and 𝒇�̂� the feature vector for 

the perturbed images. Finally, area-under-the-curve is calculated for the perturbation 

sets and higher results are desired from insertion and lower from deletion as these show 

that the explanation has located the most relevant features. Insertion and deletion are 

relevant metrics and unlike most metrics designed for healthcare applications of XAI, 

they do not require a lot of human resources. [48] 
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5.  DISCUSSION 

One of the main findings of this thesis is that there are many different metrics and meth-

ods for evaluating XAI and most of them suit assessing healthcare applications very well 

too. To help quick review of the metrics they are collected in alphabetical order and 

grouped and summarised in tables. 

5.1 Summary tables of the metrics and methods 

Table 1 contains all general domain expert-in-the-loop methods for evaluating XAI that 

were found. Most of the methods are very general and therefore suit any field including 

healthcare but to highlight one, Likert scales could be discussed in more detail. They 

are very modifiable and easy to fill, and overall Likert scales are good for measuring 

confidence and trust in the system if the questions are formed well. It is hard to quantify 

user trust without involving them in the evaluation and therefore methods like Likert 

scales are needed. Benefit of Likert scales is that it is a quantitative metric thus making 

it easier to compare results of different systems. 

Table 2 summarises metrics for evaluating the explanation’s resistance to small perturb-

ances. This measure is based on the widely accepted axiom that similar explanations 

should be given to similar instances with the same prediction. Robustness is an essential 

aspect of an explanation as very different explanations for very similar instances can 

degrade users’ trust in the system and also indicates that the explanations might not be 

accurate. [15], [16] This is the one of the metric groups that is so popular that many 

scientists have developed their own metrics while agreeing that this is something worth 

to measure from XAI models. As robustness can be measured quite reliably with general 

domain metrics for any field of application, some of these metrics are certainly useful for 

healthcare applications as well. For example, input invariance could be a valuable met-

ric to be included in evaluating XAI saliency maps for healthcare. 

Explanation faithfulness is evaluated with even more metrics than robustness. Table 3 

contains those found for this thesis and most of them are essentially the same. The most 

common logic within these metrics is that most relevant features of an explanation are 

set in relevance order, after which they are either removed or inserted iteratively and the 

effect of removal or insertion in the prediction accuracy is calculated. These are good 

metrics to evaluate credibility and faithfulness of the explanation, especially when it is 

based on feature importances as with saliency maps or decision trees. However, many 
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of these metrics do not take in account that the actual object to be detected may take up 

quite large portion of the whole image, making the results of simpler metrics less useful. 

This problem is taken into account in attribution localisation which makes it stand out 

slightly. Even so, in especially in medical image analysis, investigating segments instead 

of separate pixels likely produces better results and for example IROF is a metric that 

both works with segments and is tested with XAI systems in medical context [31]. 

Rather smaller group of metrics is one for those assessing understandability of explana-

tions. As the proximities and complexity are for different types of explanations they are 

slightly difficult to compare. Understandability of an explanation is a key requirement to 

achieve explainability and therefore it should be measured when evaluating XAI. In 

healthcare domain this is particularly important as the decisions to be made have im-

portance to patients’ health and therefore the AI systems should be properly understood. 

These metrics are summarised in table 4. 

Not only are there many grouping options for metrics but also many metrics that do not 

obviously belong to any larger group. These metrics are summarised in table 5. Some 

important metrics are found from these too. For example, contrastivity and separability 

are relevant to establish reliability of the explanation and should also be considered in 

healthcare applications too.  

Fairness is another less measured quality of an explanation despite arguably being an 

important one. Interestingly no metrics were found that would have been particularly tar-

geted for healthcare use. Even so, the general domain metrics can be used in detection 

of bias even in healthcare applications. As only one metric, statistical parity, explicitly 

measures explanation fairness, it is included in table 5. 

Possibly the most useful tools for someone desiring to evaluate XAI – be it in healthcare 

domain or in another context – are frameworks. Frameworks establish a process that 

ensures proper evaluation of an XAI model and eliminates the need of every developer 

to come up with valid and rigorous evaluation processes. There are existing frameworks 

and guidelines for evaluating different aspects or combinations of aspects of metrics. 

These aim to evaluate explanations more rigorously than single metrics and often include 

experts in the evaluation process as well. Tables identified in this thesis are listed in table 

6. 

Table 7 shows the metrics designed for evaluating healthcare XAI with expert in-the-

loop. When evaluation methods tailored for healthcare applications of XAI are developed, 

experts are often involved in the evaluation processes. This is sensible not only because 

explainability is most surely achieved when it is verified that the users understand the 
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explanations but also since healthcare applications of XAI may have specialities that can 

be better identified by experts. All the methods described can be valuable in assessing 

healthcare XAI. While the need to choose suitable methods for the intended problem, 

the MSFI and clinical explainability are good for evaluating faithfulness of saliency 

methods and DoReMi and Trustworthy explainability acceptance are model agnostic 

methods to evaluate expert perspective and trust. 

Only few metrics without experts in the loop were tailored particularly for healthcare use, 

probably because many general domain metrics suit well healthcare applications and 

vice-versa. The identified metrics in this category are summarised in table 9. Deletion 

and insertion are good faithfulness metrics for healthcare, but as they only consider 

individual pixels in the evaluation process, a metric deleting or inserting segments could 

turn out more useful for this purpose [31].  

With a good combination of different methods and metrics evaluation of XAI can be made 

rigorous and worthwhile. Thorough evaluation is essential to ascertain validity of the ex-

plainability model and that the end users truly understand the explanations. The existing  

frameworks and guidelines combined with these metrics could be utilised in the validation 

processes and even harmonised into standards.
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Table 1: General domain metrics and methods with expert in the loop 

Metric Input 

datatype 

Inputs Logic Output Benefits and chal-

lenges 

Explainability 

method 

Source 

Anchor user 

study 

Text Generated ex-
planations, 
users’ predicti-
ons 

 

Users are asked to predict 
the function of a model 
based on previous expla-
nations. They are asked to 
only answer if they're con-
fident, otherwise "I don't 
know". High percentages 
indicate goodness. 

 

Percentage of ac-
curate predictions 

 

+ Actual users’ under-
standing is measured 
- Laborous 
- Users need experience 
on machine learning 

 

Model agnostic Ribeiro et al. 
[12] 

Likert scales Integer Users’ an-

swers on a 

numerical 

scale to 

question tai-

lored for the 

study. 

User fills a questionnaire 
with options on a numeri-
cal scale. Questions can 
be tailored for the study. 

 

N answers to the 

survey question, 

typically on scale 

1-5. 

+ Easy to modify 

+ Tailormade questions 

+ User friendly 

- Requires lot of re-

sources and answerers 

- Data quality depends 

on the question and 

sample 

Model agnostic Many, eg. 

Antoniadi et 

al. [9], 

Chakraborti 

et al. [8], 

Hoffman et 

al. [2], Hol-

zinger et al. 

[10] and 

Sanneman 
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and Shah. 

[7] 

SAFE-AI 

modification 

of the 

SAGAT test 

Text Users an-

swers in a 

frozen simu-

lation situa-

tion 

Users are surveyed to find 
out their informational 
needs to enhance explain-
ability 

Information on 

how well an ex-

plainability 

method conforms 

users’ needs for 

information 

+ User centric 

- Large-scale studies 

require a lot of re-

sources  

Model agnostic Sanneman & 

Shah, Ends-

ley [7], [11] 

System Cau-

sality scales 

Integer 

on scale 

1-5 

Users an-

swers to the 

question on 

five-point 

scale 

Evaluates system causal-
ity with specified Likert 
scale 

 

A number in 

range [0,1]. The 

closer to 1, the 

better the sys-

tem. 

+ Applicable for 

healthcare 

Model agnostic 

but aimed for 

healthcare ap-

plications 

Holzinger et 

al. [10] 
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Table 2: Metrics for evaluating robustness 

 

Metric Input 

datatype 

Inputs Logic Output Benefits and 

challenges 

Explainability 

method 

Source 

Consistency Not speci-

fied 

Predictions of similar 

instances that pro-

duce same explana-

tions 

instances with 
same (good) ex-
planation should 
have same pre-
diction 
 

Probability distri-
bution 
 

Not specified in 

the document 

Model agnostic Dasgupta et. al 

[18] 

Input invariance Image Explanations with and 
without added noise 
so that the noise has 
not affected the mod-
el's attributions 
 

Explanation 

should not be af-

fected by noise if 

the outcome has 

not been affected 

either. 

Distance be-

tween the input 

explanations. 

+ Effective way to 
measure robust-
ness, takes sen-
sitivity further 
- Chosen refer-
ence point affects 
the result making 
comparability dif-
ficult 
 

Saliency meth-

ods (model spe-

cific) 

Kindermans et al. 

[17] 

Local Lipschitz 

continuity 

Number, 

prediction 

function 

Explanations close to 

local point x0 

Lipschitz criterion 

but implemented 

only locally 

Local Lipschitz 

value 

Not specified in 

the document 

Model agnostic Alvarez-Melis & 

Jaakkola [19] 

Reiteration simi-

larity 

Not defined Explanations for an in-

stance x 

Calculates the 

Jaccard similarity 

for all explana-

A number in 

range [0,1] 

+ Very important 

sanity check  

Model agnostic Amparore et al. 

[21] 
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tions for an in-

stance. The more 

similar the expla-

nations, the more 

robust method. 

Sensitivity explanation 

function, 

prediction 

function 

Explanations of 

slightly different in-

stances that are clas-

sified in the same 

group 

 

If an explainer 

has low sensitiv-

ity, explanation is 

not significantly 

affected by noise 

or other small 

perturbations 

 

Distance be-

tween an expla-

nation and its 

perturbations. 

- Requires that 

the model works 

similarly in both 

instances used in 

evaluation 

 

Neural networks 

(model specific) 

Bhatt et al. [16], 

Alvarez-Melis & 

Jaakkola [15] 

Stability Graph Node and its perturba-

tion and their corre-

sponding explanations 

 

Count distance 

between expla-

nations of similar 

instances.  

 

Distance be-

tween explana-

tions 

 

+ Tells if pertur-

bations that do 

not affect the 

model outcome 

affect the expla-

nation 

 

Graph Neural 

Networks (model 

specific) 

Yuan et al. [20] 
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Table 3: Metrics for evaluating XAI faithfulness 

Metric Input 

datatype 

Input Logic Output Benefits and 

challenges 

Explainability 

method 

Source 

Attribution lo-

calisation 

Image Relevance inside 

the bounding box, 

relevance in the im-

age, size of image 

and the size of the 

bounding box. 

 

Relevance inside the 

bounding box to total 

relevance is calcu-

lated and then multi-

plied by size of im-

age to size of bound-

ing box ratio. 

 

A number, no 

range but higher is 

desirable. 

+ Useful even 

when ground truth 

is large compared 

to the total image 

Saliency methods 

(model specific) 

Kohlbrenner et 

al. [36] 

Completeness Number Attribution for out-

put F and a base-

line 

Checks that amount 

of attributions in a 

heatmap is valid 

 

Optimally 0 but es-

sentially the differ-

ence between at-

tributions to output 

F at instance x to a 

baseline x’. 

Not specified in 

the document 

Deep neural net-

works (model spe-

cific) 

Sundarajan et 

al. [24] 

Continuity Image Explanations for all 

inputs 

Maximum variation 

of the explanation 

function is calculated 

over the input do-

main 

Strongest variation - Only applies if 

prediction function 

is continuous. 

 

Deep neural net-

works (model spe-

cific) 

Montavon et 

al. [27] 
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Effective com-

plexity 

Number 

 

Features, their im-

portance and a tol-

erance 

Similar to other faith-

fulness metrics but 

the equation takes 

into account feature 

interactions 

A number describ-

ing effective com-

plexity. The lower 

the better. 

+ Not affected too 

much by feature 

interactions. 

Model agnostic Nguyen and 

Martínez [29] 

Faithfulness / 

faithfulness es-

timate 

Number 

 

 

Prediction accura-

cies when most im-

portant features 

are added. 

Faithfulness is calcu-

lated as Pearson’s 

correlation of predic-

tion accuracy and 

addition of most im-

portant features. 

High correlation is an 

indicative of a good 

explanation 

Pearson’s correla-

tion of amount of 

the most important 

features used and 

the prediction accu-

racy. 

Not specified in 

the document 

Feature importance 

methods (model 

specific) 

Alvarez-Melis 

and Jaakkola, 

Arya et al. [5], 

[19] 

Faithfulness / 

faithfulness cor-

relation 

Number Prediction accu-

racy with decreas-

ing amount of fea-

tures 

Higher correlation of 

drop in prediction ac-

curacy and reduction 

of features indicates 

a better explanation 

Correlation score - Baseline can be 

defined in many 

ways 

- Difficult to aggre-

gate 

Feature importance 

methods (model 

specific) 

Bhatt et al. [16] 
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Fidelity Number Accuracy before 

and after removing 

most important fea-

tures. 

 

The higher the differ-

ence in accuracy the 

higher the fidelity 

 

A number in range 

[0,1] 

+ Reveals easily if 

the explanation 

can recognise 

most important 

features 

Feature importance 

methods (model 

specific) 

Pope et al. [22] 

Focus Image Most important fea-

tures in mosaics 

Works as fidelity but 

image is replaced 

with mosaics 

number in range 

[0,1] 

+ No need for 

pixel-wise label-

ling due to image 

division into mosa-

ics.  

Saliency methods 

(model specific) 

Arias-Duart et 

al. [28] 

Iterative Re-

moval of Fea-

tures (IROF) 

Image Accuracy before 

and after removing 

most important im-

age segments. 

 

Works as fidelity but 

image segments are 

removed instead. 

A number in range 

[0,1] 

+ Avoids the prob-

lems caused by 

related pixels 

through image 

segmentation. 

- Segments have 

to be selected 

separately. 

Saliency methods 

(model specific) 

Rieger & Han-

sen [31] 

Local concord-

ance 

Number Approximation g of 

a model and a con-

ciseness con-

straint. 

Like fidelity but only 

features with im-

portance higher than 

A number in range 

[0,1] 

 

Not specified in 

the document 

 

Local linear meth-

ods (model specific) 

Amparore et 

al. [21] 
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the conciseness re-

straint are consid-

ered. 

Monotonicity Number Spearman’s corre-

lation coefficients 

for all features and 

prediction accura-

cies when features 

are added in in-

creasing relevance 

order. 

Features are added 

in an increasing rele-

vance order. If pre-

diction accuracy in-

creases monoton-

ically, the explana-

tion is sound. 

Boolean value, 

where true means 

monotonic expla-

nation. 

+  Relevant sanity 

check. 

- Only applicable 

for individual fea-

tures. 

Feature importance 

methods (model 

specific) 

Nguyen & Mar-

tínez [29] 

Non-sensitivity Number Features with zero 

importance and 

features that the 

model’s functioning 

is not dependent 

of. 

Symmetric differ-

ence between the in-

put sets is calcu-

lated.  

Only features that do 

not affect the predic-

tion should be given 

relevance value 0. 

Symmetric differ-

ence, preferably 

low. 

- Only applicable 

for individual fea-

tures 

Feature importance 

methods (model 

specific) 

Nguyen & Mar-

tínez [29] 
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Pixel-flipping Image Prediction accura-

cies when most im-

portant pixels are 

masked.  

Works like fidelity but 

single pixels are 

masked and area un-

der the prediction ac-

curacy curve is cal-

culated. 

Area under the 

curve 

- Not very useful if 

pixel importances 

depend on sur-

rounding pixels 

Saliency methods 

(model specific) 

Bach et al. [33] 

Pointing game Image Amount of expla-

nation’s pixels in-

side ground truth, 

total amount of pix-

els. 

The ratio of pixels in-

side the ground truth 

bounding box and to-

tal pixels is calcu-

lated. High scores 

tell that explanation 

is sound. 

A number in range 

[0, 1] 

- Trivial when 

ground truth’s 

bounding box is 

large. 

Saliency methods 

(model specific) 

Zhang et al. 

[35] 

Region pertur-

bation 

Image Accuracy before 

and after removing 

most important im-

age segments. 

 

Works as fidelity but 

image segments are 

removed instead. 

A number in range 

[0,1] 

+ Avoids the prob-

lems caused by 

related pixels 

through image 

segmentation. 

- Segments have 

to be selected 

separately. 

Saliency methods 

(model specific) 

Samek et al. 

[32] 
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Relevance 

mass accuracy 

Image Relevance value at 

pixels, set of pixels 

within the ground 

truth mask, number  

of pixels inside it 

and the total num-

ber of pixels. 

 

Explanation mass 

within ground truth 

over the total mass. 

 

A number in range 

[0, 1] 

 

Not specified in 

the document 

Saliency methods 

(model specific) 

Arras et al. [34] 

Relevance rank 

accuracy 

Image Pixels of a saliency 

map and ground-

truth bounding pix-

els 

Ratio of pixels of a 

saliency map that lie 

inside the ground 

truth. 

A number in range 

[0, 1] 

 

Not specified in 

the document 

Saliency methods 

(model specific) 

Arras et al. [34] 

Sensitivity-n Image Explanations of 

slightly different in-

stances that are 

classified in the 

same group. 

 

If an explainer has 

low sensitivity, expla-

nation is not signifi-

cantly affected by 

noise or other small 

perturbations 

Drop in prediction 

accuracy in range 

[0,1] 

+ Only most im-

portant features 

are considered 

Gradient-based at-

tribution methos 

(model specific) 

Ancona et al. 

[26] 

Selectivity Image Prediction accura-

cies when most im-

portant image seg-

ments are masked.  

Works like fidelity but 

image segments are 

masked and area un-

Area under the 

curve 

+ Better for 

healthcare-like sit-

uations where 

Saliency methods 

(model specific) 

Montavon et 

al. [27] 
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der the prediction ac-

curacy curve is cal-

culated. 

pixes’ impor-

tances depend on 

the surroundings.  

Sufficiency Text Property pi of an 

explanation, in-

stance x for which 

pi is included in its 

explanation, in-

stance x' which 

also includes prop-

erty pi and their 

predicted classes. 

 

If a property is used 

to explain a predic-

tion for instance x, 

then instance x' with 

the same feature 

should be classified 

similarly even if the 

explanations were 

different. 

 

Probability distribu-

tion. 

+ Important sanity-

check for counter-

factual image ex-

planations. 

Counterfactual 

methods (model 

specific) 

Dasgupta et al. 

[18] 

Summation-to-

delta 

Image Attribution for out-

put F and a base-

line 

Checks that amount 

of attributions in a 

heatmap is valid 

 

Optimally 0 but es-

sentially the differ-

ence between at-

tributions to output 

F at instance x to a 

baseline x’. 

Not specified in 

the document 

Saliency methods 

(model specific) 

Sundarajan et 

al. [24] 
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Target class va-

lidity 

Text Target classes and 

predicted classes 

of counterfactuals. 

 

Calculates the per-

centage of counter-

factuals which are 

predicted to belong 

to the targeted class. 

 

Percentage of valid 

counterfactuals 

 

+ Important sanity-

check 

Counterfactual 

methods (model 

specific) 

Mahajan et al. 

[37] 
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Table 4: Metrics for evaluating understandability 

Metric Input datatype Input  Logic Output Benefits and 

challenges 

Explainability 

method 

Source 

Categorical prox-

imity 

Number Categorical val-

ues of instance 

and their counter-

factuals. 

Counterfactuals 
alike the instance 
should be easier 
to understand 

Mismatch be-

tween the inputs 

Not specified in 

the document 

Counterfactual 

methods (model 

specific) 

Mothilal et al. [38] 

Complexity Number Number of fea-

tures covered in 

explanation, total 

amount of fea-

tures 

Including all fea-
tures in the ex-
planation makes 
it too difficult to 
understand 

Ratio of used fea-

tures and total 

features 

- Determining 

how much is too 

much may be dif-

ficult 

Feature im-

portance meth-

ods (model spe-

cific) 

Bhatt et al. [16] 

Continuous Prox-

imity 

Text Average distance 

and median ab-

solute deviation 

of the continuous 

features 

Counterfactuals 
alike the instance 
should be easier 
to understand 

A number, no 

range 

Not specified in 

the document 

Counterfactual 

methods (Model 

specific) 

Mothilal et al. [38] 
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Table 5: Miscellaneous metrics 

Metric Input datatype Inputs Logic Output Benefits and 

challenges 

Explainability 

method 

Source 

Contrastivity Image Binarised sali-

ency maps of 

same instance 

and the number 

of atoms in the 

maps in total 

Different in-

stances should 

not get similar 

explanations 

which is checked 

by calculating 

distance be-

tween maps for 

different classes. 

Hamming dis-

tance between 

the input maps 

divided by the 

amount of atoms. 

Not specified in 

the document 

Saliency meth-

ods (model spe-

cific) 

Pope et al. [22] 

Data randomisa-

tion test 

Image Explanations for 

a model trained 

with randomised 

data labels and a 

model trained 

with the original 

data 

Explanation 

should be sensi-

tive to the rela-

tionship between 

an instance and 

its label. 

Similarity of the 

explanations, 

preferably low. 

Not specified in 

the document 

Saliency meth-

ods (model spe-

cific) 

Adebayo et al. 

[40] 
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Degree of ex-

plainability 

Text, number Set of explanan-

dum aspects, ar-

chetypes, details 

of support mate-

rial, method to 

define the details 

for each aspect 

and the function 

to calculate a de-

tail’s relevance to 

an archetypal 

question about 

an aspect 

DoX score for 

each archetype 

A number de-

scribing the de-

gree of explaina-

bility for each ar-

chetype. 

- Complex  

- Requires rela-

tively lot of re-

sources 

- Does not pro-

duce comparable 

results due to dif-

ferent archetypes 

Model agnostic Sovrano & Vitali 

[14] 

Model parameter 

randomization 

test 

Image Explanation for 

model with ran-

domised param-

eters and expla-

nation for the 

original model 

Explanation cre-

ated by a sali-

ency method 

should be differ-

ent for a trained 

model and an un-

trained model. 

Similarity of the 

explanations, 

preferably low. 

Not specified in 

the document 

Saliency meth-

ods (model spe-

cific) 

Adebayo et al. 

[40] 
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Prescriptivity Number, expla-

nation function, 

prediction func-

tion 

Boundary y’, ex-

planation func-

tion, prediction 

function,  

Hinge loss func-

tion evaluates 

the change re-

quired. 

Ability of a local 

linear explainer 

to explain the 

smallest change 

required to alter 

the prediction 

class. 

Not specified in 

the document 

Local linear ex-

plainers (model 

specific) 

Amparore et al. 

[21] 

Separability Image Distance be-

tween instances 

and distance be-

tween the expla-

nations. 

Different in-

stances should 

not get similar 

explanations. 

Boolean, where 

truth means sep-

arable explana-

tion and false in-

separable. 

Not specified in 

the document 

Saliency meth-

ods (model spe-

cific) 

Honegger et al. 

[39] 

Sparsity Graph Amount of nodes 

covered by the 

explanation, total 

amount of nodes 

in a graph 

Tests how widely 

over the graph an 

explanation is 

scattered. If an 

explanation is 

sparse, it is eas-

ier to understand 

the whole sys-

tem. 

Ratio of non-cov-

ered nodes in 

range [0,1] 

Not specified in 

the document 

Graph neural 

networks (model 

specific) 

Pope et al. [22] 
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Statistical parity Not specified µs for different 
groups 
 

Distance be-

tween outcomes 

of similar in-

stances in differ-

ent (demo-

graphic) groups. 

Distance be-
tween outcomes 
of similar in-
stances of differ-
ent groups 
 

+ Can point out 
algorithm bias to-
wards groups 
- Not exhaustive - 

Not originally in-

tended for evalu-

ating explainabil-

ity 

Model agnostic Dwork et al. [41] 
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Table 6: Frameworks for evaluating XAI 

Framework Inputs How it works Output Benefits and 

challenges 

Explainability 

method 

Source 

ALTAI Developers an-

swers to two ques-

tions 

AI trustworthiness 

and explainability as 

subsection of two 

questions. 

Linguistic answers + It is a framework 

introduced by an of-

ficial committee un-

der European com-

mission thus likely 

to be considered in 

future legislation. 

- Very narrow in 

evaluating explaina-

bility. 

Model agnostic High-Level Expert 

Group on Artificial 

Intelligence [43] 

Counterfactual fair-

ness preservation 

A node, its sensitive 
perturbation and 
their explanations 
and subgraphs 

Distance between 
outcomes of differ-
ent explanations 
 

A number indicating 

counterfactual fair-

ness mismatch 

Not specified in the 

document 

Graph neural net-

works (model spe-

cific) 

Agarwal et al. [23] 

MUsE Explanation and us-
ers’ answers to in-
terview question 

Different questions 
about usability are 
answered by users. 

Natural language. + Based on stand-

ards 

- Laborious 

Model agnostic Dieber & Kirrane 

[42] 
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Quantus Not applicable Python library for 

evaluating XAI 

Not applicable + Contains many 

XAI evaluation met-

rics readily imple-

mented. 

Model agnostic Hedström et al. [30] 

Z-Inspection Not applicable Framework to eval-

uate trustworthy AI. 

Explainability is 

measured with a 

metric chosen 

freely. 

Not applicable + Can be tuned for 

each case 

Model agnostic Zicari et al. [45] 
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Table 7: Expert in the loop methods for healthcare XAI evaluation 

Framework Input 

datatype 

Inputs Logic Output Benefits and chal-

lenges 

Explainability 

method 

Source 

Clinical Explain-

ability Failure 

and clinical ex-

plainability fail-

ure ratio 

Image Ground truth 

bounding boxes, 

explanation 

bounding boxes, 

expert’s opinion 

If the ground truth and 

explanation do not 

overlap, a clinician 

checks the prediction 

and if there is no clear 

reason for the differ-

ence, the situation is 

considered to be clini-

cal explainability fail-

ure. Finally all CEFs 

are divided by the to-

tal amount of tests. 

Ratio be-

tween [0,1] 

where low 

number is 

desirable. 

+ Evaluates faithfulness 

but includes an expert to 

also consider possible 

"acceptable” mistakes.

  

Saliency meth-

ods (model spe-

cific) 

Venugopal et al. 

[47] 

DoReMi Integer Users’ answers 

to specified Likert 

scales 

Rigorous user experi-

ence evaluation is 

used throughout de-

velopment of a clinical 

decision support sys-

tem to ensure usabil-

ity and explainability. 

Numerical 

results for 

the Likert 

scale. 

+ Questions tailored for 

assessing a clinical deci-

sion support system’s 

different aspects. 

General (model 

agnostic) 

Schoonderwoerd 

et al. [4] 
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Modality Spe-

cific Feature Im-

portance 

Image Ground truth 

maps, modality 

importance and 

saliency maps 

Shapley value of the 

share of the saliency 

map overlapping the 

ground truth of each 

modality is weighted 

by modality im-

portance. 

A number in 

range [0,1] 

+ Experts are used to de-

termine importance of 

different modalities 

therefore making the 

output value more rele-

vant. 

Saliency meth-

ods (model spe-

cific) 

Jin et al. [46] 

Trustworthy Ex-

plainability Ac-

ceptance 

Number, 

explana-

tion 

Explanations by 

AI and expert and 

experts’ trust rat-

ings. 

Checks if the distance 

between explanations 

given by the computer 

and expert is not long 

and experts’ trust in 

the system is high. 

Tuple of 

trustworthi-

ness of an 

explanation 

and ex-

perts’ confi-

dence in 

the system. 

+ Quantitative method to 

evaluate trust, suits 

healthcare applications 

too. 

+ Designed for 

healthcare 

- Requires some work. 

Model agnostic Kaur et al. [3] 
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Table 8: No-expert metrics for XAI evaluation 

Metric Input 

datatype  

Inputs Logic Outputs Benefits and 

challenges 

Domain Source 

Deletion Image Importances for pixels 

of a saliency map, pre-

diction accuracies 

when pixels are 

masked out in rele-

vance 

Pixels of input image 

are masked in decreas-

ing relevance order 

and drop in prediction 

accuracy is measured 

Similarity score + Made for 

healthcare XAI  

Saliency methods 

(model specific) 

Hu et al. [48] 

Insertion Image Importances for pixels 

of a saliency map, pre-

diction accuracies 

when pixels are un-

masked in relevance 

Pixels of input image 

are unmasked in de-

creasing relevance or-

der and rise in predic-

tion accuracy is meas-

ured 

Similarity score + Made for 

healthcare XAI 

Saliency methods 

(model specific) 

Hu et al. [48] 
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5.2 From a jungle of metrics to valid frameworks 

According to the studies reviewed for this thesis, medical domain XAI models mostly rely 

on general domain metrics without expert in the loop for evaluating them. Even so, it can 

be argued that particularly in evaluating XAI for healthcare, involvement of experts or 

even patients is important to achieve trust and satisfactory user experience [45]. Further-

more, to create explanations that support clinical decision making in real life situations 

and match the user group’s conception of a sufficient explanation, having clinicians in 

the development process and uncovering their mental models is essential [2], [45]. By 

including interdisciplinary experts in the development and evaluation process of an XAI 

model, the needs of all stakeholders are more likely to be satisfied, side-effects are more 

probably revealed and the field specialties considered [4], [7], [45]. Thus, it would be 

advisable use at least some metrics with experts in the loop to credibly evaluate XAI for 

healthcare. 

Apart from inducing trust in medical decision makers, XAI for healthcare should also be 

understandable for them, enable them to evaluate accuracy of the system and to provide 

relevant information about the decision at hand [4]. This should be achieved without 

causing too heavy a workload that would discourage the experts from using the XAI tools 

and the clinical requirements should be considered as well [7], [46]. By conforming these 

user requirements adoption of XAI in healthcare should be more feasible. 

Furthermore, XAI needs to conform the many regulations and standards of the field. 

Probably one of the most important regulations to conform in the EU is the Medical De-

vice regulation under which XAI for healthcare is likely to be classified as a medical de-

vice thus forcing the developers to conform the regulations set by it and the GDPR. While 

explainability is not necessarily required by either, explainability makes it easier to con-

form at least GDPR when it comes to black-box models [49]. Furthermore, guidelines 

proposed by AI-HLEG imply that regulation in the EU might be going to the direction of 

preferring explainability in AI use cases with high risks [50].  

One less frequently thought about aspect of explainability is information security. Both 

Zicari et al. and Suffian et al. point out that XAI is not without the risk of information 

security breaches and that this is a matter that should be considered and evaluated as 

well. [45], [51] While no metrics found in this literature review particularly assessed infor-

mation security of explanations, methods for validating XAI in this sense would be valu-

able too. Information security and data privacy are essential particularly in medical field 
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as the information collected is typically classified as sensitive and therefore under tighter 

regulations than insensitive data. Furthermore, for example in the EU the GDPR requires 

the patient’s consent for using AI in his or her care [49]. Therefore, credibly data-security-

wise audited XAI models are essential for feasibility of the application. [45] 

Due to this variety of requirements and needs on the XAI and healthcare fields, there is 

a clear need for officially approved validation processes for XAI. Despite the amount of 

different evaluation metrics and methods and opinions on what actually should be meas-

ured, most researchers seem to agree that external and official validation, even stand-

ardisation is needed for the field. [51]–[53] It is clear that interdisciplinary cooperation 

and determination is needed to create clear and thorough standards or other validation 

methods to evaluate explainable artificial intelligence used in the complex world of 

healthcare. 

5.3 Limitations of the review 

Despite the high effort put in the thesis, the work has limitations. While most of the papers 

included in the review were clear and expressive, some papers would have required 

more background knowledge from the reader to be completely understandable. 

There is such a variety of metrics and methods for evaluating XAI that certainly some 

have been accidentally missed out. This means that the tables may not be fully compre-

hensive. Furthermore, most metrics did not appear as results for the search query but 

were found from references of other papers and therefore some metrics are almost cer-

tainly left undetected. 
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6. CONCLUSION 

In this thesis, different metrics, methods and frameworks for evaluating explainable arti-

ficial intelligence in healthcare domain are identified, discussed and finally summarised 

in tables. Metrics are categorised in the tables according to what they measure and their 

inputs, logic, outputs and benefits and challenges are also listed in the tables. Metrics 

are also divided in those that are developed particularly for healthcare domain and those 

that are not. This was done to achieve clarity, although general domain metrics are often 

used in evaluating healthcare XAI as well. 

Overall, 54 metrics and methods were found for evaluating explainable artificial intelli-

gence. Out of these only 6 were particularly tailored for healthcare applications of XAI 

but many general domain metrics were found suitable for healthcare as well. The most 

popular aspect of explainability that has been evaluated is faithfulness of an explanation 

and 22 metrics were found to assess this. 

All in all, there is a wide variety of metrics, particularly those for measuring faithfulness 

of an explanation. Many metrics are similar to each other and particularly those measur-

ing faithfulness of an explanation often significantly resemble each other. To help devel-

opers choose the best metrics to use, a set of metrics could be developed and standard-

ised. This set should include metrics for different types of explainability and different as-

pects of an explanation ie. faithfulness, robustness and so on.  

Involvement of experts in the evaluation loop varies greatly between studies. However, 

including experts in evaluating healthcare XAI is often encouraged although the available 

resources must be considered as well as not to conduct too wide user questionnaires. 

Healthcare is a field where experts have such insight into the use cases that computer 

scientists should regard it. Furthermore, it would be meaningful to test explainability with 

the audience that the explainability is implemented for. 

All in all, there is a clear need for standardisation of XAI evaluation particularly in 

healthcare domain. Standardised evaluation processes that include instructions on what 

to evaluate and with which methods and metrics would ensure sufficiency and credibility 

of XAI evaluation. Furthermore, official guidelines on when to have experts in the loop 

would be valuable and harmonise different evaluating paradigms. 
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