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Memory-Based FFT Architecture with Optimized
Number of Multiplexers and Memory Usage

Zeynep Kaya, Mario Garrido, Senior Member, IEEE and Jarmo Takala, Senior Member, IEEE

Abstract—This brief presents a new P -parallel radix-2
memory-based fast Fourier transform (FFT) architecture. The
aim of this work is to reduce the number of multiplexers
and achieve an efficient memory usage. One advantage of the
proposed architecture is that it only needs permutation circuits
after the memories, which reduces the multiplexer usage to only
one multiplexer per parallel branch. Another advantage is that
the architecture calculates the same permutation based on the
perfect shuffle at each iteration. Thus, the shuffling circuits
do not need to be configured for different iterations. In fact,
all the memories require the same read and write addresses,
which simplifies the control even further and allows to merge
the memories. Along with the hardware efficiency, conflict-free
memory access is fulfilled by a circular counter. The FFT has been
implemented on a field programmable gate array. Compared
to previous approaches, the proposed architecture has the least
number of multiplexers and achieves very low area usage.

Index Terms—Memory-based FFT, perfect shuffle, radix-2.

I. INTRODUCTION

THE fast Fourier transform (FFT) is one of the most
prominent algorithms in signal processing applications.

In some digital systems, the FFT has to be calculated at very
high speed. In this case, pipelined FFT architectures [1] are
preferred, as they offer continuous flow processing of one or
several parallel data. In other systems, instead of speed, the
goal is to reduce the area and hardware resources occupied
by the architecture. In this case, memory-based FFTs [2]–[15]
are good candidates, as they provide a more compact design.

Memory-based FFTs consist of a group of memories and
one or several processing elements (PEs) that calculate the
butterflies and rotations of the FFT algorithm. The memories
and PEs are interconnected by multiplexers, and the FFT
algorithm is calculated by loading data from the memories
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Fig. 1. General structure of a memory-based FFT.

into the PEs and storing the result again in the memories.
This process is iterated until the complete FFT is computed.
The reuse of the PEs for different stages reduces the number
of butterflies and, therefore, the area of the circuit.

Researchers are trying to improve memory-based FFT ar-
chitectures by suggesting new memory addressing schemes
and decreasing resource requirements such as memory, chip
area, etc. [6]–[10]. For an N -point FFT, some approaches use
memories of size 2N or larger in order to avoid memory
conflicts [12]–[15]. However, it is possible to reduce memory
requirements even further. This results in approaches with the
theoretical minimum memory size of N [5], [6], [16].

Apart from memory, butterflies and rotators, memory-based
FFTs include permutation circuits with multiplexers [2]–[7],
[12], [14], [16]. These circuits are used for shuffling data
between the memory and the PEs. In general, two sets of
multiplexers are used as permutation circuits, one before and
the other one after the memories [6], [7]. Fig. 1 shows the
general structure of these approaches for a P -parallel memory-
based FFT, where memories are labeled as Mi. For parallel
memory-based FFTs, the number of multiplexers increases
significantly with the parallelization, which requires a large
amount of hardware resources.

This work presents a memory-based FFT that uses per-
mutation circuits only after memories, which reduces the
multiplexer usage significantly. In the proposed architecture,
conflict-free memory access is achieved by taking advantage of
the perfect shuffle permutation [17]. Using the perfect shuffle
has the advantage that the architecture calculates the same
permutation at all the iterations of the memory-based FFT.
This results in simpler hardware, because the architecture does
not need to be reconfigured at each iteration. Furthermore,
the control of the architecture is simple, as a simple circular
counter is used to generate the memory addresses and control
the multiplexers.

Another advantage of the proposed architecture is the fact
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that the read and write addresses are the same for all the
memories in the architecture. This not only simplifies the
control, but also allows for merging the memories. Further-
more, the proposed architecture uses the radix-2 decimation-
in-frequency (DIF) FFT algorithm, and the proposed approach
is generalized to any number of parallel branches, P , and any
power-of-two FFT size, N = 2n.

We have structured the rest of the brief as follows: In
Section II, we introduce the permutations in FFT architectures,
including the perfect shuffle. In Section III, we present the
proposed memory-based FFT architecture. In Section IV, we
compare the proposed FFT to the previous state-of-the-art
memory-based FFTs. In Section V, we provide implementa-
tion details and experimental results. Finally, in Section VI,
we summarize the main conclusion of this brief.

II. BACKGROUND: BIT-DIMENSION PERMUTATIONS

There is need to reorder data at each FFT stage and bit-
dimension permutations are well suited for this [18]. Bit-
dimension permutations define a reorder of N = 2n data based
on a permutation of n bits. The position of each datum is
calculated as

P =

n−1∑
i=0

xi2
i, (1)

where xn−1, xn−2, . . . , x0 are dimensions, xn−1 being the
most significant one and x0 the least significant one. These
dimensions define the data flow. For a data flow of P -parallel
data, there exist p = log2 P parallel dimensions, which define
the parallel branches, and n− p serial dimensions that define
data arriving in consecutive clock cycles.

The position in (1) can also be expressed as

P ≡ xn−1, xn−2, . . . , x0, (2)

where (≡) is used to relate the decimal and the binary
representations of a number. Note the difference between the
number of parallel data, P , and the position, P .

In this context, a bit-dimension permutation σ of u =
un−1, un−2, . . . , u0 can be defined as

σ(u) = σ(un−1, un−2, . . . , u0) = u′
n−1, u

′
n−2, . . . , u

′
0 = u′,

(3)
where u′ is the permuted form of u according to σ. For exam-
ple, σ(u2, u1, u0) = u1, u2, u0 is a bit-dimension permutation
of the bits in dimensions x2 and x1.

A. Perfect Shuffle, Composition and Inverse

The perfect shuffle [17] is a permutation that calculates a
circular rotation of the bits according to

σ(un−1un−2 . . . u0) = un−2 . . . u0un−1. (4)

When several bit-dimension permutations are calculated in
sequence, the resulting permutation is the composition of the
permutations. For instance, if σa(u2, u1, u0) = u1, u2, u0 and
σb(u2, u1, u0) = u0, u2, u1, then calculating σb after σa results
in σ = σb(σ1) = σb ◦ σa, being

σ(u2u1u0) = σb ◦ σa(u2, u1, u0) = u0, u1, u2. (5)
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Fig. 2. Proposed basic memory-based FFT architecture for P = 4.

If σ(u) = u, then σ is the identity function, i.e., σ = Id.
Finally, the inverse permutation σ−1 of a permutation σ is

the permutation that fulfills

(σ−1 ◦ σ)(u) = (σ ◦ σ−1)(u) = u. (6)

Therefore, if σ(u) = u′, then σ−1(u′) = u, and σ ◦σ−1 = Id.

III. PROPOSED APPROACH

A. Basic Architecture
The basic architecture of the proposed memory-based FFT

is shown in Fig. 2 for P = 4 data in parallel. It consists of a
memory bank with memories Mi that store data and calculate
the permutation σ1, a permutation circuit that calculates σ2, a
permutation circuit that calculates σ3 and consists of registers
and multiplexers, and PEs. Each PE consists of a butterfly
(R2), which includes one adder and one subtractor, followed
by a complex rotator (⊗).

The memory bank consists of P memories in parallel. This
allows for simultaneous read and write operations from all the
memories in parallel at each clock cycle. Each memory has
N/P addresses, which leads to a total of N memory addresses.
These memories not only serve to store the FFT data, but
also to permute them according to the permutation σ1. The
calculation of the permutations σ1, σ2 and σ3 leads to σ =
σ3 ◦ σ2 ◦ σ1, which is a perfect shuffle permutation that is
calculated at each iteration of the FFT. The permutations σ,
σ1, σ2 and σ3 are discussed later in Section III-B.

After the permutation σ, data are processed in the PEs
and, then, the results are placed again in the memories. These
values are stored in the memory locations that were emptied in
the previous reading, which guarantees a conflict-free access.

Once all the iterations of the memory-based FFT are carried
out, the results of the last PE calculation are provided as the
output of the architecture.

B. Conflict-Free Access
Initially, samples are stored in natural order, i.e., each

memory Mq , q = 0, . . . , P − 1, stores data with indices
q, P+q, 2 ·P+q, . . . , (N/P−1) ·P+q. As a result, the initial
position in memories of each index I ≡ bn−1, bn−2, . . . , b0 is

P0 ≡ bn−1, bn−2, . . . , bp︸ ︷︷ ︸
serial (address)

| bp−1, . . . , b0︸ ︷︷ ︸
parallel (memory)

, (7)
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where p = log2 P , bits bn−1, bn−2, . . . , bp correspond to ad-
dresses, and bits bp−1, . . . , b0 determine the memories where
data are stored.

Butterflies in an FFT architecture operate on pairs of data
whose indexes differ in the bit bn−s. Therefore, at each stage
of the FFT, the data position must change. This is achieved
with the perfect shuffle permutation

σ(un−1, . . . , up|up−1, . . . , u0) =

un−2, . . . , up−1|up−2, . . . , u0, un−1.
(8)

Thus, the initial position P0 is transformed into

P1 ≡ bn−2, bn−3, . . . , bp−1︸ ︷︷ ︸
serial

| bp−2, . . . , b0, bn−1︸ ︷︷ ︸
parallel

, (9)

which is the data order at the input of the butterflies at the
first stage of the FFT. Note that bn−1 is placed in the lowest
parallel dimension, which corresponds to the pairs of data that
are input to the PEs.

The permutation σ is applied at each iteration of the FFT to
provide the correct data into the PE. It is carried out in three
steps according to

σ = σ3 ◦ σ2 ◦ σ1. (10)

The first permutation is

σ1(un−1, . . . , up|up−1, . . . , u0) =

un−2, . . . , up, un−1|up−1, . . . , u0.
(11)

This permutation rotates the serial dimensions according to a
perfect shuffle permutation. Note that parallel dimensions do
not change, so σ1 only affects the content of the memories.
Thus, we can remove the parallel part from (11) to obtain
the following permutation, which is related to the memory
addresses:

σmem(un−p−1, un−p−2, . . . , u0) =

un−p−2, . . . , u0, un−p−1.
(12)

As this permutation is the same for all the memories, the read
and write addresses are also the same for all the memories.

The inverse permutation σ−1
mem is the perfect unshuffle

σ−1
mem(un−p−1, un−p−2, . . . , u0) =

u0, un−p−1, un−p−2, . . . , u1.
(13)

It can be proved that σmem ◦ σ−1
mem = Id.

To calculate the permutation σmem with memories, it must
be fulfilled that [19]

σmem = σ−1
R ◦ σW , (14)

where σR and σW are permutations on the control counter to
obtain the read and write addresses, respectively. For the i-th
iteration of the FFT, these permutations are obtained as

σRi
= σWi

◦ σ−1
mem, (15)

σWi
= σRi

◦ σmem = σRi−1
. (16)

It is worth noting that σWi = σRi−1 . This implies that at any
iteration data are written in the addresses that are emptied in
the previous iteration, which guarantees a conflict-free access

to the memory. As input data are written in natural order, then
the initial writing address is σW1 = Id, and (14) results in

σR1
= σ−1

mem. (17)

The reading and writing addresses are calculated by a
permutation of the bits of the circular counter [19], i.e.,

RA = σRA
(cn−p−1, . . . , c0), (18)

WA = σWA
(cn−p−1, . . . , c0). (19)

As σW1
= Id, the initial write address, WA1

, is chosen to be
equal to the the circular counter, i.e., WA1 = cn−p−1, . . . , c0.
Likewise, the initial write address is calculated from (17) as
RA1

= c0, cn−p−1, . . . , c1. Then, WA2
is obtained from (16).

As a result, the sequential read and write addresses for n data
and P parallel memory are given as

WA1
= RAn−p

= cn−p−1, cn−p−2, . . . , c0,
WA2

= RA1
= c0, cn−p−1, cn−p−2, . . . , c1,

WA3 = RA2 = c1, c0, cn−p−1, . . . , c2,
...

WAn−p
= RAn−p−1

= cn−p−2, . . . , c0, cn−p−1.

(20)

The second permutation, σ2, is calculated after the memo-
ries according to

σ2(un−1, . . . , up|up−1, up−2, . . . , u0) =

un−1, . . . , up|up−2, . . . , u0, up−1.
(21)

This permutation rotates the parallel dimensions and is a
permutation of the type parallel-parallel (pp) [18]. Thus, it
only changes the parallel branches where data flow. For a
P -parallel architecture with p = log2 P parallel dimensions,
data from branch up−1, up−2, . . . , u0 is moved to branch
up−2, . . . , u0, up−1. As this permutation only shuffles the
parallel branches, it does not require any hardware.

The third permutation, σ3, is calculated before the butterflies
and corresponds to

σ3(un−1, . . . , up|up−1, . . . , u0) =

un−1, . . . , up+1, u0|up−1, . . . , u1, up,
(22)

which is a a permutation of the type serial-parallel (sp) [18]
and rotates both serial and parallel dimensions. This permuta-
tion is accomplished with a hardware circuit that consists of
P register and P multiplexer.

The calculation of the permutations σ1, σ2 and σ3 creates
the perfect shuffle permutation represented by σ.

Fig. 3 presents the data management for an FFT with N =
16 points and P = 4 parallel data. The data orders at various
stages of the design are shown in the upper part of the figure.
Also, the figure shows the contents of the memories M0 - M3.

Initially, the data are loaded into the memories as natural
order in accordance with the writing address WA1

as given
in (20). To fulfill the first iteration, these data are read from
the memories according to RA1 , which is equal to a circular
bit rotation of WA1 . Note that the read and write operations
on the memories calculate σ1 permutation. σ2 exchanges the
two intermediate branches. Finally, σ3, the sp permutation,
provides the necessary order at the input of the butterfly for
the second iteration.
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Fig. 3. Data management example for a 16-point memory-based FFT using the proposed approach.

TABLE I
COMPARISON OF MEMORY-BASED FFT ARCHITECTURES.

Approach Radix Data Mem. Mem. Mux. Complex Iterations Cycles Processing Data
Size Banks Mult. per It. Time Type

[11] 4 2N 2P 9P 3P/4 (log2 N)/2− 1 N/P N(log2 N)/ 2P -N/P complex
[7] 4 N P 60P 3P/4 (log2 N)/2 N/P N(log2 N)/2P complex
[6] 4 N P 4P 3P/4 (log2 N)/2 N/P N(log2 N)/2P complex

[14] 2/4 2N 2P 4P 3P/4 (log2 N)/2 N/P N(log2 N)/2P complex
[13] 2 2N + 5P/2 2P 9P P/4 log2 N N/P N(log2 N − 0.5)/P + 1 real
[5] 2 N P 4P P/4 log2 N N/P N(log2 N − 1)/P + 1 real

Proposed 2 N + P P P P/2 log2 N N/P N(log2 N)/P complex

IV. COMPARISON

In Table I, we compare the proposed architecture to previous
ones as a function of N and P . Radix-4 architectures are
placed at the top of the table and radix-2 ones at the bottom.

The table shows that some approaches require a memory
with a size in the range of 2N addresses [11]–[14], whereas
other approaches, including the proposed one, only require
memory with size in the range of N addresses. The advantage
of the proposed approach is that the read and write addresses
are the same for all the memory banks. This allows to merge
the banks and, as a consequence, have a very simple control.

The reported numbers of multiplexers are calculated as the
equivalent 2-input multiplexers in the permutation circuits.
The proposed approach reduces drastically this number with
respect to previous approaches, by 75% or more. Likewise,
the number of complex multipliers is reduced with respect to
previous radix-4 approaches, and is equivalent to that in [5],
[13], considering that these works process real-valued inputs.

Finally, for the same N and P , the processing time in
radix-4 architectures is approximately half the processing time
in radix-2 ones. Even when P is doubled in the proposed
architecture to achieve the same processing time as in radix-4
ones, our approach will still have the advantage of a efficient
memory usage and a smaller number of multiplexers.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The proposed architecture has been implemented on a
Virtex-7 XC7VX330T -1 FFG1157 FPGA. The memories M0

to M3 are implemented using block RAMs (BRAMs). Each
memory has 1024 addresses of 16+16 bits for the real and
imaginary parts, leading to 32Kb per memory. Thus, each
memory fits in a 36 Kb BRAM [20] and 4 BRAMs are enough
for storing the data. The read and write address of the data
memories are generated with a circular counter as in [19].

The sp permutation includes 4 delay registers and 4 multi-
plexers controlled by the LSB of a simple counter.

After the sp permutation, the PEs calculate the radix-2
butterfly and the rotations. The rotations of the FFT are
carried out by two complex multipliers, one for each PE. Each
complex multiplier is implemented by using 4 DSP slices,
leading to a total of 8 DSP slices in the architecture.

The sine and cosine rotation coefficients are stored in a
64-bit 512-address ROM. In the first stage, each rotator reads
different sine and cosine values. Thus, the 64-bit words include
two sine and two cosine coefficients, each of 16-bit. For the
rest of stages, the coefficients are the same for both rotators.

Table II provides the experimental results of the proposed
approach in terms of performance, area, and power consump-
tion, and compares them to previous approaches. The proposed
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TABLE II
EXPERIMENTAL RESULTS OF 4096-POINT 4-PARALLEL MEMORY-BASED

FFTS ON A VIRTEX-7 FPGA (V7).

Parameter [5] [6]⋆ Proposed

N 4096 4096 4096
P 4 4 4
Radix 2 4 2
Iterations 11 6 12
Word length (WL) (bits) - 24 16
FPGA V7 V7 V7
Latency (cyc.) 11265 30720 13312
Latency (µs) 27 148 39
Throughput (FFTs/s) 37k 6k 25k
Slices - 236 210
Slice LUTs 2863 468 465
Slice FFs 2992 585 641
DSP slices 24 26 8
BRAMs 8 11 6
Power (mW) - 156 208

@ 208 MHz @ 342 MHz

Area normalized to 16 bits
Slices @ 16 bits - 157 210
Slice LUTs @ 16 bits - 312 465
Slice FFs @ 16 bits - 390 641
DSP slices @ 16 bits - 17 8
BRAMs @ 16 bits - 7 6

Energy per FFT normalized to 16 bits
Energy/FFT (µJ) @ 16 bits - 15.4 6.0
⋆: Updated results from [6] for a single 4096-point FFT on a V7 FPGA.
-: Not available.

architecture works at 342 MHz, its latency is 39 µs, and the
power consumption is 208 mW. It uses a total of 8 DSP slices,
4 for each complex multipliers, and 6 BRAMs, four of them
for data and two of them for rotation coefficients.

Compared to [5], the proposed approach uses significantly
less hardware resources at the cost of lower clock frequency
and higher latency. To compare to [6], the lower part of the
table includes area results normalized to 16 bits and energy per
FFT normalized to 16 bits. The proposed approach requires
more slices, but less DSPs slices and BRAMs, being the area
of both of them similar. However, the proposed approach
achieves higher clock frequency, higher throughput, and the
energy consumption per FFT is less than half.

VI. CONCLUSIONS

In this brief, we have proposed a radix-2 parallel memory-
based FFT architecture based on the perfect shuffle permuta-
tion and a novel conflict-free access scheme, which is valid for
any FFT size and parallelization. This approach reduces the
number of multiplexers and allows for merging the memory
banks, which leads to a compact design. Experimental results
show that the proposed architecture is hardware-efficient as it
achieves high clock frequency, low latency, small area, and
low energy per FFT.
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