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ABSTRACT
Direction of arrival (DOA) methods are found in many applica-
tions, and in the case of the Internet of Things (IoT), it is used
for indoor localization. However, the implementation of DOA in
IoT devices poses a real challenge, since they are computationally
expensive complex numerical methods that could easily lead to
resource starvation, unacceptable execution time, and rapid deple-
tion of batteries of small constrained embedded systems typically
found in IoT networks. This paper contributes to alleviating that
problem, it presents a fast low-power optimized version of a DOA
method called Unitary TLS ESPRIT. The optimization exploits the
radio communication system design to avoid two time-consuming
executions of eigendecomposition, and instead, it applies two sim-
ple Power Method algorithms. The result is a lightweight version
of ESPRIT that can attain sub-millisecond execution time. To prove
the solution’s viability, we carried out experiments on energy con-
sumption, memory footprint, accuracy, and execution time for three
floating-point formats in a commercial constrained embedded IoT
device series without any operating system and software layers.
Experiments show the solution satisfies the hardware requirements
and the floating-point precision fully operated by the Floating-Point
Unit is found to be the best option.

CCS CONCEPTS
• Hardware→ Digital signal processing; • Computer systems
organization→ Firmware; Embedded software.
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1 INTRODUCTION
Direction of arrival (DOA) methods are found in many applications,
such as medical appliances, radar, navigation, military devices, and
indoor localization systems in the case of the Internet of Things
(IoT) [8]. It has gained popularity in the IoT industry since 2019
with the advent of Bluetooth Low Energy (BLE) Direction Find-
ing technology that unlocked the capability of estimating DOA

from BLE devices possibly achieving centimeter-level location ac-
curacy [23, 32]. That is a significant achievement since RSSI-based
BLE solutions typically have an accuracy of a few meters [2]. IoT
networks are composed of many nodes that are typically low-cost
battery-powered constrained embedded devices. For DOA purposes,
some of them are equippedwith an array of antennas (anchor nodes)
that receive signals from tags. It is possible to estimate DOA from
those signals, thereafter, computing the location of tags. Due to
the intrinsic complexity of DOA methods, a reasonable approach
consists in executing them in the cloud. That is impractical in some
network topologies such as mesh IoT networks [27].

To be specific, anchor nodes would need to constantly transfer
big chunks of data (signals) from one node to another until reaching
the destination (cloud), rapidly depleting their batteries. The size
of such chunks depends on the number of samples and antennas,
but it can easily exceed more than one kilobyte. Another possibility
involves deploying internet cables to anchor nodes, however, that
would require an increment in expenses. A low-cost and low-power
solution consists of executing a DOA method in anchor nodes as
depicted in Figure 1. So, nodes would transfer only few bytes (de-
pending on the floating-point precision) instead of kilobytes. How-
ever, the implementation of DOA algorithms in IoT devices poses
a real challenge, since such devices are typically battery-powered
constrained embedded systems with very limited computational
resources, in contrast, DOA methods are composed of resource-
hungry and time-consuming complex numerical algorithms that
could easily lead to rapid depletion of batteries, unacceptable execu-
tion time and resource starvation. On top of that, IoT devices usually
execute some small tasks concurrently, such as collecting data from
sensors to compute physical phenomena and communicating with
other devices. In such a multi-threaded scenario, running DOA
methods could be even more difficult, and management of compu-
tational resources needs to be thought carefully.

Papers about real-world implementations of DOA methods are
quite uncommon. In [26] and [25], researchers implemented single-
sourceMUSIC and TLS ESPRIT in LabViewNI hardware using a real
uniform linear array of antennas. Therewere some implementations
of different versions of MUSIC and ESPRIT in FPGA [3, 16, 33]
as well. A development of MUSIC based on parallel computing
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Figure 1: Overview of low-cost solution for mesh IoT net-
works.

was successfully devised for a Digital Signal Processor (DSP) [17].
Additionally, an implementation of two-source MUSIC for Software
Defined Radio platforms was accomplished [12] as well as a one-
source MUSIC for constrained embedded devices [27].

To alleviate the cited computational burden, this research takes
a novel approach and propose an optimized implementation of a
DOAmethod called ESPRIT tailor-made for commercial constrained
IoT devices written in the C99 programming language without
requiring any external libraries besides ones from C99 Standard
Library. The implemented solution was tested with 6000 DOAs
generated by a Clustered Delay Line E (CDL-E) channel model with
Additive white Gaussian noise (AWGN).

However, the implemented solution estimates a single DOA.
DOA methods such as ESPRIT can estimate multiple DOAs during
their execution, so radar applications sending sounding signals
and measuring when their own signal is received from different
reflections can take full advantage of that capability by identifying
multiple copies of their own reflected signal. However, in IoT radio
communication systems where anchors are employed to locate
multiple tags, this is not possible in practice with low-cost single
receiver anchor nodes operating at a single RF channel at a given
time such as in Bluetooth receivers [19]. That is, if more than one
tag sends a signal to an anchor node, at the same time and frequency
resources, the signal to interference and noise ratiowould be too low
for that radio receiver to detect transmission reliably. For example,
a receiver could not be able to decode both transmitter IDs of the
transmitters reliably as each transmission would interfere with the
other. Therefore, in this scenario, DOA methods can only estimate
a single DOA only.

Seeing that the implemented solution is composed of numerical
methods, it is imperative to find a suitable floating-point precision.
Ideally, the precision should be as small as possible to attain a
minimummemory footprint while maintaining acceptable accuracy,

and the lowest energy consumption with the fastest execution time.
Unfortunately, that does not match the reality. Thus, the aim of
the experiments consisted in investigating empirically the impact
of different floating-point precision on accuracy, memory usage,
execution time, and energy consumption. And additionally, to check
the viability of the solution on commercial constrained embedded
systems. The experiments intended to find answers to the following
questions:

(1) Does the implemented solution satisfy the memory require-
ments for commercial constrained IoT devices?

(2) Is the solution battery operable for low battery capacity?
(3) Does the decrease of floating-point precision deteriorate

accuracy? For how much? Does that deterioration (if any)
make up for the presumed lower execution time, energy,
and memory consumption?

(4) Conversely, does the increase of floating-point precision
improve accuracy? For how much? Does that improvement
(if any) make up for the presumed higher execution time,
energy, and memory consumption?

(5) What is the most time-consuming function?

2 STANDARD ESPRIT
This paper does not go over all the intricate mathematical details
that prove how ESPRIT works under the hood, but rather it gives
an algorithmic level overview of the implemented solution of the
research. Reference [5] provides detailed mathematical analysis of
ESPRIT algorithm. Let’s consider an uniform linear array of an-
tennas (ULA) with 𝑀 elements receiving 𝑑 signals from far-field
sources i.e. tags impinging the array at angles 𝜃1, 𝜃2, . . . , 𝜃𝑑 . Let’s as-
sume they are narrowband signals propagated in an AWGN channel
with linear and isotropic transmission medium. In the mathematical
model [6], the IQ sample for each source at a timestamp 𝑡 is

x(𝑡) = As(𝑡) + n(𝑡), (1)

where s(𝑡) ∈ C𝑑×1 is a vector of signals of 𝑑 sources, n(𝑡) ∈ C𝑑×1
is a zero-mean spatially correlated additive noise and A ∈ C𝑀×𝑑 is
the steering matrix, that is,

A =
[
a(𝜃1) a(𝜃2) . . . a(𝜃𝑑 ),

]
(2)

where

a(𝜃𝑖 )𝑇 =

[
1 𝑒 𝑗𝜇𝜃𝑖 𝑒 𝑗2𝜇𝜃𝑖 . . . 𝑒 𝑗 (𝑀−1)𝜇𝜃𝑖

]
, (3)

is the steering vector where 𝜇𝜃𝑖 = −
2𝜋 𝑓𝑐
𝑐 Δ sin𝜃𝑖 , 𝑐 is the speed of

light, 𝑓𝑐 is the carrier frequency, and Δ is the distance between two
adjacent antennas.

ESPRIT is a popular method that was devised after MUSIC. It
takes advantage of the shift-invariance propriety of subarrays in
the ULA in such a way that it eliminates the search for peaks in
the spectrum which is a time-consuming operation, doing so, it
could be faster than MUSIC. The ESPRIT method divides the ULA
into two subarrays. In the implemented solution, the two subarrays
are composed of 𝑚 = 𝑀 − 1 consecutive antennas, and 𝑀 − 2
overlapping ones as shown in the Figure 2. It is possible to create
those subarrays by multiplying the steering matrix A by

J1 = [I𝑚 0𝑚] ∈ R𝑚×𝑀 ,

J2 = [0𝑚 I𝑚] ∈ R𝑚×𝑀 ,
(4)
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Figure 2: The implemented ESPRIT divides the ULA into two
subarray of size𝑚 = 𝑀 − 1 with𝑀 − 2 overlapping antennas.

where I𝑚 is the identity matrix and 0𝑚 is a column vector of zeroes,
both with size𝑚. It can be shown that the shift-invariance propriety
of the 𝑑 steering vectors (a(𝜃𝑖 )) is expressed as J1AΦ = J2A, in
which Φ = diag[𝑒 𝑗𝜇𝜃1 , 𝑒 𝑗𝜇𝜃2 , . . . , 𝑒 𝑗𝜇𝜃𝑑 ] ∈ C𝑑×𝑑 . However, instead
of computing Φ, ESPRIT takes another approach and it estimates
the subspace rotational operation Ψ from the signal subspace (U𝑠 )
as shown in

J1U𝑠Ψ ≈ J2U𝑠 , (5)

which also has information about DOAs. Note that the equality
does not hold in the shift-invariance equation 5. Because the signal
subspace is estimated from the covariance matrix which is also
an estimation. As a result, equation 5 may not have an exact solu-
tion, therefore, ESPRIT estimates Ψ via least squares (LS) or total
least squares (TLS). The Algorithm 1 gives an overview of how the
Standard ESPRIT works.

Algorithm 1: Standard ESPRIT
Input: The IQ values matrix X.
Output: The estimated DOAs: 𝜃1, . . . , 𝜃𝑑 .
1. Collect 𝑁 IQ samples x(𝑡𝑛) ∈ C𝑀×1 for timestamp
𝑡1, 𝑡2, . . . , 𝑡𝑁 and estimate the covariance matrix

R𝑥𝑥 ≈ R̂𝑥𝑥 = ( 1
𝑁
)XX𝐻 ,

where X =
[
x(𝑡1) x(𝑡2) . . . x(𝑡𝑁 )

]
∈ C𝑀×𝑁 .

2. Apply the eigendecomposition (EVD) in R̂𝑥𝑥 to find the
signal subspace U𝑠 .

3. Create the matrices J1 and J2 as defined in equation 4 and
solve the shift invariance equation below by applying LS
or TLS to estimate Ψ.

J1U𝑠Ψ ≈ J2U𝑠 .

4. The eigenvalues of Ψ contain the DOAs. So, compute the
eigenvalues of Ψ which is Φ = diag[𝜙1, 𝜙2, . . . , 𝜙𝑑 ] to
estimate the DOAs

𝜇𝑖 = arg(𝜙𝑖 ), 𝜃𝑖 = arcsin(− 𝜆𝜇𝑖
2𝜋Δ
),

1 ≤ 𝑖 ≤ 𝑑.

3 UNITARY TLS ESPRIT WITH ROW
WEIGHTING

The implemented solution of this research is the Unitary TLS ES-
PRIT with row weighting in C99 programming language tailor-
made for embedded systems which is a variation of the Standard
ESPRIT. TLS stands for Total Least Squares [18], Unitary means
that all matrices are converted into real ones by applying a unitary
transformation for Centro-Hermitian matrices, and row weighting
is an operation that is a mathematically proven way to improve the
accuracy of ESPRIT [29]. The advantage of this variation over the
standard ESPRIT is to avoid complex matrices that require more
memory footprint and computations than real ones. Also, in gen-
eral, numerical methods are usually designed taking into account
real numbers instead of complex values. Although those methods
may also work for complex matrices, they could require more com-
putations which translates into more execution time. Furthermore,
TLS has a better estimation than LS [5, 22, 28] which consequently
improves the accuracy which is defined as the difference between
the estimated angle and the actual angle.

Let Π𝑝 ∈ C𝑝×𝑝 be any anti-diagonal identity matrix, that is,

Π𝑝 =


0 0 . . . 0 1
0 0 . . . 1 0
. . . . . . . . . . . . . . .

0 1 . . . 0 0
1 0 . . . 0 0


,

and Q𝑛 ∈ C𝑛×𝑛 be an unitary transform matrix defined as

Q2𝑛 =
1
√
2
=

[
I𝑛 𝑗I𝑛
Π𝑛 − 𝑗Π𝑛

]
or

Q2𝑛+1 =
1
√
2
=


I𝑛 0 𝑗I𝑛
0𝑇𝑛

√
2 0𝑇𝑛

Π𝑛 0 − 𝑗Π𝑛

 ,
depending if its size is even or odd. The algorithm is outlined below.

(1) Collect𝑁 IQ samples x(𝑡𝑛) ∈ C𝑀×1 for timestamp 𝑡1, 𝑡2, . . . , 𝑡𝑁
and estimate the covariance matrix

R𝑥𝑥 ≈ R̂𝑥𝑥 = ( 1
𝑁
)XX𝐻 , (6)

where X =
[
x(𝑡1) x(𝑡2) . . . x(𝑡𝑁 )

]
∈ C𝑀×𝑁 . Con-

vert the complex covariance matrix into a real one, that is,
C = Re{Q𝐻

𝑀
R̂𝑥𝑥 Q𝑀 } ∈ R𝑀×𝑀 .

(2) Apply eigendecomposition (EVD) to find the signal sub-
space U𝑠 of the real covariance matrix C. The signal sub-
space is composed of eigenvectors corresponding to the 𝑑
largest eigenvalues.

(3) Let’s define J̃2 = [0𝑚 W] ∈ R𝑚×𝑀 . The matrix W =

diag
[
1,
√
2,
√
3, . . . ,

√
𝑤,
√
𝑤,
√
𝑤, . . . ,

√
3,
√
2, 1

]
are compo-

sed of the weights, in which 𝑤 = min{𝑚𝑠 , 𝑀 −𝑚𝑠 + 1}
determines where the increase in weighting stops and𝑚𝑠 ∈
R>0 is defined such that𝑚𝑠 ≤ 𝑀 [29].

(4) Thereafter, let’s define K1 ≜ 2 Re{Q𝐻
𝑚 J̃2 Q𝑀 } and K2 ≜

2 Im{Q𝐻
𝑚 J̃2 Q𝑀 } as unitary transformation of J̃1 and J̃2,

respectively.
(5) Estimate the matrix Υ ∈ R𝑑×𝑑 from the equation below

K1U𝑠Υ ≈ K2U𝑠 , (7)
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by means of TLS. To do that, first compute the matrix

E =

[
(K1U𝑠 )𝑇
(K2U𝑠 )𝑇

] [
(K1U𝑠 ) (K2U𝑠 )

]
.

Since E ∈ R2𝑑×2𝑑 is a real symmetric matrix, then it is
diagonalizable [13], thus we can apply EVD resulting in
E = VΣV𝑇 . In which Σ = diag[𝜎1, 𝜎2, . . . , 𝜎2𝑑 ] is the matrix
of its eigenvalues in such a way that 𝜎1 ≥ 𝜎2 ≥ · · · ≥ 𝜎2𝑑 .
Let’s partition these two matrices into four ones

V =

[
V11 V12
V21 V22

]
and Σ =

[
Σ1 0
0 Σ2

]
,

thus the right sub-matrix
[
V12 V22

]𝑇 are made up of
eigenvectors associated with the 𝑑 smallest eigenvalues. If
V22 is non-singular, then Υ = −V12V−122 . Otherwise, there is
no solution for the TLS [18].

(6) The eigenvalues of Υ contain information about direction
of arrivals. So, the next step is to compute them which are
Ω = diag[𝜔1, 𝜔2, . . . , 𝜔𝑑 ] and therefore extract the DOAs
by the following operations

𝜇𝑖 = 2 arctan(𝜔𝑖 ), 𝜃𝑖 = arcsin(− 𝜆𝜇𝑖
2𝜋Δ
),

1 ≤ 𝑖 ≤ 𝑑,
(8)

where 𝜆 is the wavelength.

4 OPTIMIZED ESPRIT
The implemented solution optimizes Unitary TLS ESPRIT by ex-
ploiting the radio communication design where only a single tag
transmits a signal at a time as discussed in Section 1. It means that
the signal subspace (U𝑠 ) and the right sub-matrix (

[
V12 V22

]𝑇 )
of step 2 and 5 of Section 3 respectively, become vectors. As a
result, the implemented solution can avoid calculating the time-
consuming eigendecompositions (EVD), and instead, it applies the
simple Power Method and Inverse Power Method. In doing so, the
execution time of ESPRIT is drastically reduced, since these two
methods compute only the eigenvector that is of interest from the
solution point of view while EVD computes all eigenvectors and
eigenvalues. And computing all of them requires a very complicated
and time-consuming algorithm. Notably, the complexity of the QR
Algorithm, a typical method for EVD, is 6𝑛3 +𝑂 (𝑛2) per iteration
[31], not to mention the Hessenberg decomposition that must be
done before the QR Algorithm, and an algorithm of𝑂 (𝑛) to find the
eigenvector with the highest or lowest eigenvalue. While the Power
Method and Inverse Power Method have a complexity of𝑂 (𝑛2) and
𝑂 (𝑛3) per iteration respectively, they already calculate the desired
eigenvector, require very simple computations, and experimentally
we found they converge mostly in 4 iterations only in our solution.

The objective of the optimization is to reduce the memory con-
sumption and execution time of ESPRIT to attain satisfactory porta-
bility to run in constrained embedded systems. Thus, all the al-
gorithms were implemented from scratch in C99 programming
language, except the inverse of sine, the inverse of tangent, and
squared root which are functions from math.h. The tailor-made
numerical methods include Power Method, Inverse Power Method,
Total Least Squares, and small under-the-hood algorithms. Since
one of the objectives of the implemented solution is to attain a

minimal memory footprint as much as possible, it does not use com-
plex.h library from C programming language. Instead, it has a data
structure for complex numbers with two variables representing
the real and imaginary parts, and functions for complex multiplica-
tion, addition, and conjugation. Notably, the implemented ESPRIT
only employs math.h and stdint.h libraries reassuring its minimal
computational resources consumption goal and portability.

The first and simpler optimization concerns the equation 6. As
discussed in (hidden reference), the matrix X is big since it contains
the IQ samples that are complex numbers. If 𝑁 = 200 and 𝑀 = 6,
the matrix X would occupy 9.375KB of RAM, considering single-
precision floating-point, that would be a big memory consumption
for constrained embedded devices. By estimating the covariance
matrix (eq. 6), the code may have to store temporary matrix X𝐻

as well, which would double the RAM usage. The implemented
solution does not store X𝐻 . The standard way to multiply two
matrices, R̂𝑥𝑥 = XY, is

𝑟𝑥𝑥 (𝑖, 𝑗) = (
1
𝑁
)

𝑁∑︁
𝑘=1

𝑥 (𝑖, 𝑘) ∗ 𝑦 (𝑘, 𝑗),∀𝑖, 𝑗 = 1, . . . , 𝑀. (9)

Since Y = X𝐻 , then 𝑦 (𝑘, 𝑗) = 𝑥 ( 𝑗, 𝑘), therefore eq.(9) could be
written as

𝑟𝑥𝑥 (𝑖, 𝑗) = (
1
𝑁
)

𝑁∑︁
𝑘=1

𝑥 (𝑖, 𝑘) ∗ 𝑥 ( 𝑗, 𝑘),∀𝑖, 𝑗 = 1, . . . , 𝑀. (10)

Moreover, since R̂𝑥𝑥 is Hermitian, whichmeans 𝑟𝑥𝑥 ( 𝑗, 𝑖) = 𝑟𝑥𝑥 (𝑖, 𝑗),
thus the solution applies matrix multiplication only on its upper
triangular part, therefore the equation 10 becomes

𝑟𝑥𝑥 (𝑖, 𝑗) = (
1
𝑁
)

𝑁∑︁
𝑘=1

𝑥 (𝑖, 𝑘) ∗ 𝑥 ( 𝑗, 𝑘),

𝑟𝑥𝑥 ( 𝑗, 𝑖) = 𝑟𝑥𝑥 (𝑖, 𝑗),
∀𝑖, 𝑗 = 𝑖, . . . , 𝑀.

(11)

From equation 11, the implemented solution estimates the covari-
ance matrix using the same matrix X twice by applying element-
wise conjugate transpose operation, thus it does not need to store
X𝐻 . Furthermore, it only computes the upper triangular part of
R̂𝑥𝑥 . To sum up, that approach saves execution time by half and
RAM usage in the order of𝑀𝑁 . That is an important improvement,
since calculating the covariance matrix is the most time-consuming
function, as shown in the next section.

Since there is only one tag transmitting at a time (𝑑 = 1), it is
unnecessary to apply the complicated and time-consuming EVD in
step 2 of Section 3 to get all eigenvectors and eigenvalues, as the
signal subspace (U𝑠 ) contains only one eigenvector. Instead of EVD,
the solution applies Power Method. It is a simple algorithm that
only computes the eigenvalue with the greatest absolute value [11]
and its corresponding eigenvector, which is the signal subspace
as demonstrated in next paragraph. By doing so, the implemented
solution saves execution time and memory footprint.

To Power Method guarantee to converge, the matrix must be di-
agonalizable, there must exist only one eigenvalue with the greatest
absolute value and it must be a real number [9]. For example, con-
sidering 𝜆𝑖 ∈ R, 𝑖 = 1, . . . , 𝑀 to be eigenvalues of a diagonalizable
matrix, if |𝜆1 | > |𝜆2 | ≥ · · · ≥ |𝜆𝑀 | then the cited matrix satisfies
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the convergence requirements. The matrix C is a real covariance
matrix, thus it is symmetric [24], therefore it is diagonalizable and
its all eigenvalues are real numbers [10]. Moreover since C is a real
covariance matrix, it is positive semi-definite [24], which means all
eigenvalues are non-negative. The line-of-sight (LOS) component
of the received signal that constitutes the eigenvalue of the signal
subspace is greater than eigenvalues of the noise subspace [4], and
since they are all non-negative, it is not possible to have eigenvalues
of the noise subspace equal to or greater than one of signal subspace
in magnitude. Therefore, the eigenvalue of the signal subspace is
the greatest in magnitude.

The implemented PowerMethod (Algorithm 2) does not compute
the eigenvalue since the solution only needs the eigenvector. We
considered 𝐾 = 30 and 𝑡𝑜𝑙 = 10−6. We carried out thousands of
experiments and we verified that in most cases the Algorithm 2
takes 4 to 5 iterations to converge, and 30 iterations are much more
than enough in all experimental instances, hence for 𝑘 > 30 we
assume the algorithm fails to compute the signal subspace.

Algorithm 2: Power Method
Input: covariance matrix C.
Output: signal subspace U𝑠 .
Define v1 = [1, 1, . . . , 1]𝑇 ∈ R𝑀 , v0 = 0𝑀 , 𝑘 = 1,
𝑡𝑜𝑙 ≪ 1 ∈ R>0, and 𝐾 ∈ Z>0.

while 𝑘 ≤ 𝐾 and ∥v𝑘 − v𝑘−1∥2 > 𝑡𝑜𝑙 do
v𝑘+1 ← Cv𝑘
v𝑘+1 ←

v𝑘+1
∥v𝑘+1∥

𝑘 ← 𝑘 + 1
end
if 𝑘 > 𝐾 then

/* Convergence failed */
return 𝑁𝑈𝐿𝐿

end
else

/* Convergence succeeded */
return v𝑘

end

In TLS, the matrix E has a size of 2×2, since𝑑 = 1. As a result, the
right sub-matrix of its eigenvector matrix (V), that is,

[
V12 V22

]𝑇
is a vector of size 2. Since these elements are scalars, we redefine
the sub-matrix to

[
𝑣12 𝑣22

]𝑇 . Similarly, to the previous optimiza-
tion, instead of applying the EVD which is a complicated numeri-
cal method, the solution applies the Inverse Power Method. This
method only computes the smallest eigenvalue in magnitude and
its corresponding eigenvector [9], which is the vector

[
𝑣12 𝑣22

]𝑇 .
To the Inverse Power Method works, matrix E must be non-singular
and it must have only one smallest real eigenvalue in modulus. For
example, |𝜆1 | > |𝜆2 |, for 𝑑 = 1 and 𝜆1, 𝜆2 ∈ R. Since E is a real
covariance matrix, therefore it is a real symmetric matrix having
real eigenvalues, more specifically it is positive semi-definite. It
could be positive definite if the vectors K1U𝑠 and K2U𝑠 are lin-
ear independent [24], in that case, the matrix E is non-singular.
However, if K1U𝑠 ≈ K2U𝑠 , the matrix E could be “almost singular"
(ill-conditioned). To make sure it is always non-singular, a method

should turn it into a positive definite matrix. Taking advantage of
its positive semi-definiteness characteristic, a well-known simple
method consists in a small perturbation, that is, E ≈ E + 𝛼I2𝑑 [15].

In which 𝛼 should be a small positive number to make the per-
turbed matrix close to the non-perturbed one. Assuming matrix
E, after the perturbation, to have only one smallest eigenvalue, it
is possible to apply the Inverse Power Method, Algorithm 3. The
implemented algorithm only computes the eigenvector since its
eigenvalue is not used. Moreover, we defined 𝛼 = 10−5, 𝑡𝑜𝑙 = 10−6
and 𝐾 = 30. Again, these values were found empirically. Further-
more, the implemented Inverse Power Method does not apply LU
decomposition to find the solution of linear equations repeatedly
as recommend. Consider the linear system Ev𝑘+1 = v𝑘 to have the
elements shown in equation 12, since E has a size of 2 × 2, we can
easily find the solution of linear equations analytically as[

𝑎11 𝑎12
𝑎21 𝑎22

] [
𝑥1
𝑥2

]
=

[
𝑎

𝑏

]
, (12)


𝑥1 =

𝑎22𝑎 − 𝑎12𝑏
𝑎11𝑎22 − 𝑎12𝑎21

𝑥2 =
𝑎11𝑏 − 𝑎21𝑎

𝑎11𝑎22 − 𝑎12𝑎21

. (13)

Algorithm 3: Inverse Power Method
Input: covariance matrix E.
Output: vector

[
𝑣12 𝑣22

]𝑇 ∈ R2.
Define v1 = [1, 1, . . . , 1]𝑇 ∈ R𝑀 , v0 = 0𝑀 , 𝑘 = 1,
𝑡𝑜𝑙 ≪ 1 ∈ R>0, 𝛼 ∈ R>0, and 𝐾 ∈ Z>0.

/* Apply a small perturbation */
E = E + 𝛼I2𝑑
while 𝑘 ≤ 𝐾 and ∥v𝑘 − v𝑘−1∥2 > 𝑡𝑜𝑙 do

/* Solve Ev𝑘+1 = v𝑘 (equation 13) */
v𝑘+1 ← 𝑠𝑜𝑙𝑣𝑒 (E, v𝑘 )
v𝑘+1 ←

v𝑘+1
∥v𝑘+1∥

𝑘 ← 𝑘 + 1
end
if 𝑘 > 𝐾 then

/* Convergence failed */
return 𝑁𝑈𝐿𝐿

end
else

/* Convergence succeeded */
return v𝑘

end

Notably, it is also possible to apply the PowerMethod in E instead
of the Inverse Power Method. Since E is a 2 × 2 real symmetric
matrix with distinct eigenvalue assumption, its two eigenvectors
are orthogonal to each other [10]. Thus, applying the PowerMethod
in E, results in a vector v ∈ R2. Any vector orthogonal to v can be
the eigenvector corresponding to the smallest eigenvalue. However,
the execution time, accuracy, and memory consumption of the
ESPRIT using this small variation are almost the same as one with
the Inverse Power Method. So, to make this paper concise enough
we did not go over it. Additionally, in step 5 of section 3, since 𝑑 = 1
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the matrix Υ is scalar. So, it can be computed as follow Υ = −𝑣12/𝑣22,
and its eigenvalues calculation is not applicable.

5 EXPERIMENTS
The experiments considered three floating-point formats under
IEEE 754-2008 specification, so there were three versions of the
implemented solution all with 𝑁 = 50 (number of IQ samples),
𝑀 = 6 (number of antennas) and 𝑚𝑠 = 4 (weighting stop num-
ber). These numbers are highly dependent on hardware and indoor
environments, so there is no rule of thump. However, 6 antennas
are small enough for embedded systems operating in IoT networks
and 50 samples fit in the constrained memory of such devices.
Moreover, we found that this configuration provided sufficiently
good accuracy in our simulation considering the CDL-E channel
model with AGWN. Additionally, the three floating-point formats
are abbreviated as follows:

• FP16: half-precision floating-point.
• FP32: single-precision floating-point.
• FP64: double-precision floating-point.

The first version of the solution used FP32. The second version
employed FP16 to reduce the big memory consumption of the IQ
matrix (X) only, the other matrices remained in FP32 since there
are small. The third version operated completely in FP64. We chose
those formats since Arm Cortex-M4 processors can operate in FP16
and FP32, and the C compiler of Arm processors can compute or
emulate FP64.

5.1 Experimental setup
Firstly, all the measurements consider 𝑁 = 50, 𝑀 = 6 and𝑚𝑠 = 4
as explained previously. To measure the memory footprint (RAM
and ROM), execution time, and energy consumption as shown in
Table 2, we employed a PCA10056 development kit that comes with
an nRF52840 System-on-Chip (SoC) having an Arm Cortex-M4 of
64MHz with Floating-Point Unit (FPU). No operating system and
software layers were used. The hardware floating-point instruc-
tions and hardware floating-point linkage (-mfloat-abi=hard) were
activated. All devices of the nRF52 series have support for BLE,
although nRF52840 does not have Bluetooth Direction Finding ca-
pability, it is almost identical to other nRF52 and nRF53 devices
that do have it. Additionally, we measured the stack memory con-
sumption of main functions for FP32 as shown in Table 3. There is
no dynamic memory usage. Furthermore, we measured the relative
execution time for primary functions as presented in Table 3. The
relative execution time is defined as the running time of a function
relative to the total execution time of the implemented method in
percentage. Note that the inverse_power_method has a ‘-‘, due to its
execution time is included in the TLS function since the latter calls
the former. We did not consider the running time of runESPRIT as
well, since it calls all other functions, so its execution time is the
same as the implemented solution.

Notably, to measure the energy consumption, we employed a
power measurement tool as pictured in Figure 3b. However, for
debugging reasons we needed to activate a general-purpose in-
put/output (GPIO) port. Thus, the energy usage is slightly overesti-
mated. To measure the execution time, we utilized a logic analyzer
as shown in Figure 3a. In both scenarios, the implemented solution

ran in an infinity loop, a GPIO was set high and low before and after
the execution of the algorithm. So, we could check when themethod
started and finished to properly carry out the two measurements.

(a) (b)

Figure 3: Figure (a) shows a logic analyzer (right) that was
used to measure the execution of the solution run in a
PCA10056 (left). Figure (b) shows a power measurement tool
(left) that was used to measure the energy of the solution run
in a PCA10056 (right).

Moreover, we calculated the method’s Mean Squared Error (MSE)
of the accuracy considering 500 DOAs for each floating-point pre-
cision × SNR pair as shown in Table 1. In total, we analyzed 6000
different DOAs. In mathematical terms, the MSE of the accuracy is

𝑀𝑆𝐸 =
1
𝐿

𝐿∑︁
𝑖=1
(𝛼𝑖 − 𝛼𝑖 )2, (14)

where 𝐿 = 500 is the number of estimated DOAs, 𝛼𝑖 and 𝛼𝑖 is
actual DOA and its estimation in degrees, respectively. We gener-
ated the IQ values using the CDL-E channel model with AGWN
provided by MATLAB Communication Toolbox. The defined ULA
was composed of isotropic antennas with frequencies 2 to 3 GHz.
The execution time, energy consumption, and memory footprint
were done in a PCA1005. However, if we used the PCA1005 in MSE
of the DOA’s accuracy, we would have to execute manually 6000
executions. So, to automate the MSE of the DOA’s accuracy we
employed a Raspberry Pi Model B. It has also an Arm processor
capable of operating in FP16, FP32, and FP64.

MSE (in degrees)

Precision
SNR [dB] 0 10 20 30

FP16 1.9210 1.0787 1.0042 0.9983
FP32 1.9205 1.0788 1.0049 0.9982
FP64 1.9205 1.0788 1.0049 0.9982

Table 1: The MSE of the accuracy (eq. 14) of 500 DOAs for
each precision × SNR pair (𝑁 = 50 and𝑀 = 6).

5.2 Results and Discussion
Before answering the questions raised in Section 1, a short explana-
tion should be highlighted to understand the values of Table 2. The
FPU of Arm Cortex-M4 does have support for FP32 only. The FP16
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RAM
Usage

ROM
Usage

Execution
Time

Energy
Consumption

FP16 3.12kB 8.33kB 1.318ms 6.92nWh
FP32 4.90kB 9.80kB 0.855ms 4.77nWh
FP64 8.68kB 18.17kB 18.317ms 97.5nWh

Table 2: Memory footprint, execution time and energy con-
sumption of each floating-point format (𝑁 = 50 and𝑀 = 6)

is used as a storage format only. When operating in FP16, the pro-
cessor promotes FP16 into FP32 before and demotes it after every
calculation [1]. Those operations create a small overhead that could
increase the ROM consumption and the execution time. A slower
execution time may translate into more energy consumption. As
a result, we can see that the two previously mentioned measure-
ments of FP16 are higher than those of FP32. Moreover, the FPU of
Arm Cortex-M4 does not have support for FP64 at all. Thus, the C
compiler emulates FP64 calculations [14, 34], that emulation creates
an excess of computations culminating in a substantial increment
of execution time and ROM usage. In fact, the execution time of
FP64 is about 20 times slower than FP32.

Considering the memory usages shown in Table 2 and 3, we can
answer the first question.We verified that the implemented solution
of the three precision floating-points satisfied the requirements for
commercial constrained IoT devices, such as all devices of nRF52
series [20, 21] and all with Direction Finding capability by the time
this paper was written. These devices have 192kB to 512kB of flash
memory and 24kB to 128kB of RAM. Additionally, we can clearly
see in Table 3 that the most time-consuming function relates to the
calculation of the covariance matrix (calculate_covmat) which an-
swers the fifth question. Since the IQ matrix (X) is large compared
to other matrices, it requires a substantial time to do such computa-
tion. Thanks to the optimization described in the previous section,
the computation to get eigenvectors, functions power_method, and
inverse_power_method, takes a relatively short execution time.

In view of the explanation in the first paragraph of this subsec-
tion and the experiment results shown in Table 2, a decrease in
floating-point precision does not necessarily decrease execution
time and energy consumption, which contradicts what some may
expect. Moreover, changing floating-point formats does not affect
the accuracy. Thus, answering the third question, although FP16
archives the minimum memory footprint, it is small compared to
FP32, but it spends about 64% more execution time and consumes
more energy than FP32. So, unless the system requires a very strict
memory consumption, FP32 is the best option. The same conclusion
applies to the fourth question. That is, FP64 does not only consume
about twice of memory, it also spends about 20 times more energy
with an execution time 20 times slower than FP32 in exchange for
nothing, since it has the same accuracy.

Coin batteries are used for small electronic devices [30], which
includes constrained IoT ones. We found that the capacity of such
batteries ranges from 1mAh to 2000mAh [7] in a well-established
global distributor of semiconductors and electronic components.
That means, considering the version FP32 of the method as the
only source of energy consumption, the IoT devices can run it from
209643 to 4 × 108 times. Thus, the implemented solution can be
used for battery-powered small embedded devices, which answers
the second question.

Function Stack Memory
Consumption

Relative
Execution Time

calculate_covmat 96B 83.05%
power_method 88B 9.32%

inverse_power_method 48B -
TLS 88B 7.62%

runESPRIT 80B -
Table 3: Stack memory and relative execution time values
for FP32 (𝑁 = 50 and𝑀 = 6).

6 CONCLUSIONS
This paper presented a fast optimized version of Unitary TLS ES-
PRIT implemented in C99 programming language for low-cost
constrained IoT devices where only a single tag transmits a signal
at a time due to radio communication system design. To evaluate
the viability of the solution, we measured its memory footprint,
energy consumption, execution time, and accuracy of three floating-
point formats for 6000 DOAs generated by CDL-E channel model
with AWGN. The experiments showed the solution fits in commer-
cial embedded devices analyzed by us, notably, Nordic nRF52 and
nRF53 series. It was found to be energy-efficient and could attain a
sub-millisecond execution time. Additionally, the change of three
floating-point precision does not impact its accuracy. Thus, it is
possible to employ a small-size floating point precision, however,
smaller representations do not necessarily translate into lower exe-
cution time, energy consumption, and memory footprint. In fact,
precision fully operated by the Floating-Point Unit of the target
embedded processors is possibly the best option despite not being
the lowest format. In future works, we will use embedded devices
equipped with a ULA to get IQ values from real-world scenarios
and deal with non-idealities of real antenna arrays.
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