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With the rapid deployment of 5G wireless networks across the globe, precise positioning has
become essential for many vertical industries reliant on 5G. The predominantly non-line-of-sight
(NLOS) propagation instigated by the obstacles in the surrounding environment, especially in
metro city areas, has made it particularly difficult to achieve high estimation accuracy for
positioning algorithms that necessitate direct line-of-sight (LOS) transmission. In this scenario,
correctly identifying the line-of-sight condition has become extremely crucial in precise
positioning algorithms based on 5G. Even though numerous scientific studies have been
conducted on LOS identification in the existing literature, most of these research works are
based on either ultra-wideband or Wi-Fi networks. Therefore, this thesis focuses on this hitherto
less investigated area of line-of-sight detection for 5G wireless channels.

This thesis examines the feasibility of LOS detection using three widely used channel
models, the Tapped Delay Line (TDL), the Clustered Delay Line (CDL), and the Winner II
channel models. The 5G-based simulation environment was constructed with standard
parameters based on 3GPP specifications using MATLAB computational platform for the
research. LOS and NLOS channels were defined to transmit random signal samples for each
channel model where the received signal was subjected to Additive White Gaussian Noise
(AWGN), imitating the authentic propagation environment. Variable channel conditions were
simulated by randomly alternating the signal-to-noise ratio (SNR) of the received signal.

The research mainly focuses on machine learning (ML) based LOS classification.
Additionally, the threshold-based hypothesis was also deployed for the same scenarios as a
benchmark. The main objectives of the thesis were to find the statistical features or the
combination of statistical features of the channel impulse response (CIR) of the received signal,
which provide the best results and to identify the most effective machine learning method for
LOS/NLOS classification. Furthermore, the results were verified through actual measurement
samples obtained during the NewSense project [1].

The results indicate that the time-correlation feature of the channel impulse response used in
isolation would be effective in LOS identification for 5G wireless channels. Additional derived
features of the CIR do not significantly increase the classification accuracy. Positioning
Reference Signals (PRS) were found to be more appropriate than Sounding Reference Signals
(SRS) for LOS/NLOS classification. The study reinforced the significance of selecting the most
suitable machine learning algorithm and kernel function as relevant for the task of obtaining the
best results. The medium Gaussian support vector machines ML algorithm provided the overall
highest precision in LOS classification for simulated data with up to 98% accuracy for the
Winner II channel model with PRS. The machine learning algorithms proved to be considerably
more effective than conventional threshold-based detection for both simulated and real
measurement data. Additionally, the Winner II model with the richest features presented the
best results compared with CDL and TDL channel models.

Keywords: 5G wireless communications, Line of Sight, Non-Line of Sight, Classification, 
Machine Learning, Threshold-based detection, Signal-to-noise ratio, Positioning Reference 
Signals, Sounding Reference Signals.
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1. INTRODUCTION

1.1 Background

It is anticipated that the advanced capabilities offered by 5G will lead to a new

revolution in a wide range of industries encompassing a variety of areas inclusive of

both the manufacturing and service segments. These innovative capabilities of 5G

networks, together with network slicing, will provide the necessary customization and

flexibility to meet the diverse needs of different vertical segments [2]. 5G will enable

advancements to many vertical segments, including Industry 4.0, the automotive

industry, the energy sector, the healthcare sector, and the infotainment industry [2].

In the manufacturing industry, 5G will enable Industry 4.0 by providing the low latency

and high reliability required for real-time machine-to-machine (M2M) communication

and control [3]. This will lead to increased automation and improved efficiency in the

production process. The automotive industry will benefit from new services and

applications, such as connected and autonomous vehicles, which call for high

bandwidth and low latency [4]. The energy sector will be enhanced by implementing

smart grid technologies, enabling real-time monitoring and control of the energy

distribution network [5]. In the healthcare sector, 5G will facilitate telemedicine services

and remote health monitoring, which also need high bandwidth and low latency [2].

Consumers will be benefitted from the new services and applications, such as

augmented and virtual reality, which require high speed and low delay offered by the

5G-aided infotainment industry [2]. In general, the combination of advanced capabilities

of 5G, inclusive of network slicing, will permit the creation of tailored solutions for each

vertical segment, ensuring that the necessary performance dimensions, such as

maximized throughput, minimized latency, and maximized reliability, are met [2].

Additionally, the capability of highly accurate positioning has emerged as a critical

requirement for the success of many of the present and future 5G verticals [2]. Many

applications such as autonomous vehicles, factory automation, industrial robots,

logistics and vehicle tracking, and extended reality (XR) necessitate precise positioning

with high availability and reliability. In autonomous vehicles, precise positioning is

essential for accurate navigation and decision-making [2, 6]. The position and direction

of navigation of the vehicle must be accurately determined in real-time to ensure safe
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and efficient operation [2, 4]. For factory automation, industrial robots, and logistics,

exact location details are compulsory for efficient and effective functioning [2, 3].

Robots and automated systems need to know their location and orientation to perform

their tasks and coordinate with other systems accurately [2, 3]. In extended reality,

precise positioning is mandatory to provide an immersive and seamless experience for

the users. XR applications need specific tracking of the user's location and movements

to afford a plausible and coherent virtual environment. As a whole, highly accurate

positioning has become a critical prerequisite for many 5G verticals, and it is essential

to ensure that the required precision, availability, and reliability are provided to support

these applications [2].

In real 5G wireless propagation environments, the signal transmission from the base

station to the user equipment (UE) is frequently obstructed by numerous objects,

including geographical features, buildings, and trees, leading to Non-Line of Sight

(NLOS) reception. In Line of Sight (LOS) situations, the signal travels in a straight path

from the transmit antenna to the receiver, making it possible to accurately determine

the distance between the two points using the time of flight (TOF) method. In NLOS

conditions, the signal undergoes multiple reflections and diffractions, which can cause

multipath fading and delay, resulting in decreased strength, accuracy and reliability of

the received signal. Therefore, accurately determining the existence of LOS conditions

and compensating for NLOS reception is crucial for achieving high accuracy and

reliability in precise positioning for 5G wireless networks [7].

Existing scientific studies on LOS/NLOS classification are predominantly focused on

Ultra-Wideband (UWB) [8, 9, 10, 11, 12, 13] and Wi-Fi [15, 16] signals. One challenge

with 5G signals is that they operate at much higher frequencies (up to 100 GHz) than

UWB and Wi-Fi, resulting in significant signal attenuation due to obstacles such as

buildings and trees. This can make it more challenging to distinguish LOS conditions,

as the signal may be attenuated even in the absence of obstacles. While there is still

relatively little research on LOS detection with 5G signals compared to UWB and Wi-Fi,

this is likely to become an increasingly important area of research as 5G networks

continue to be deployed and new applications emerge [7].

1.2 Objectives

The primary objective of the thesis was to identify the most suitable combination of

features and the machine learning algorithm for effective LOS/NLOS detection of 5G

wireless channels under various channel conditions considering both simulation-based

and actual measurement data.
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The LOS condition can be distinguished by analyzing the characteristics of the various

features extracted from the channel impulse response (CIR) of the received signal. The

selection of the best combination of features is crucial for achieving high accuracy in

LOS/NLOS detection. Moreover, selecting the most appropriate machine learning

algorithm is critical for the discovery of LOS/NLOS conditions. Different algorithms

have specific strengths and weaknesses and may perform differently under diverse

channel conditions. The best algorithm will be governed by the specific preconditions of

the application and the characteristics of the data being analyzed.

By evaluating a range of criteria, the research aimed to identify the combination of

features and the machine learning algorithm that provides the best LOS/NLOS

classification accuracy in 5G wireless channels. It is expected that the results of this

research can help increase the precision and reliability of accurate positioning in 5G

networks and hence support the development of innovative applications and services.

1.3 Methodology

This thesis was conducted by using channel models and machine learning methods

available in the MATLAB computational platform. The simulation tool includes 5G base

stations created to imitate an urban city environment, a fading multipath channel

model, and an Additive White Gaussian Noise (AWGN) channel to model the effects of

noise in the communication medium. For the project, Tapped Delay Line (TDL),

Clustered Delay Line (CDL), and Winner II channel models were used for the

simulations.

The effectiveness of various statistical feature combinations, different machine learning

algorithms and kernel functions that can be used for LOS/NLOS classification was

verified under fluctuating channel conditions, represented by the varying signal-to-noise

ratio (SNR) levels. A detailed description of the simulation environment is included in

chapter 3.

The simulated research results were substantiated by conducting in-lab measurements

using 5G signals transmitted by a setup with National Instruments Universal Software

Radio Peripheral (USRP), Yagi and 3D-vector antenna, which were deployed as part of

the NewSense initiative. A comprehensive outline of the equipment configuration

utilized during the in-lab assessments is detailed in section 3.3.
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1.4 Research Questions

The research questions mentioned below were expected to be addressed during the

project, and the accomplished solutions are described in the remaining sections of the

thesis.

 What are the statistical features commonly used for detecting LOS/NLOS

conditions in the scientific literature?

 What machine learning algorithms are proposed for LOS detection in scientific

studies?

 Which channel model out of TDL, CDL, and Winner II channels produces the

best LOS/NLOS classification results?

 What is the most effective combination of statistical features for effective

LOS/NLOS detection of 5G wireless channels under various channel

conditions, as per the research outcome?

 What is the best machine learning algorithm for LOS/NLOS identification in 5G

wireless networks when tested under a range of criteria for both simulated

random samples and real measurement data?

 How effective is uplink Sounding Reference Signals (SRS) for LOS detection

compared to downlink Positioning Reference Signals (PRS)?

 What is the most effective method for LOS/NLOS detection, threshold detection

using an individual feature, a combination of features or deploying machine

learning methods?

 How well are the simulation-based results fitting the measurement-based

results?
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1.5 Author's contributions

During the course of the research, the following contributions have been made by the

author.

 Conducting a thorough examination and critical evaluation of statistical feature

combinations and machine learning approaches utilized in previous scientific

studies for identifying LOS/NLOS.

 Reviewing and summarizing LOS/NLOS identification algorithms that have

been implemented in scientific literature.

 Studying 5G reference signals utilized for positioning, as well as channel

models that have been proposed by 3GPP for wireless transmission in 5G.

 Developing a simulation environment to facilitate measurements of 5G wireless

channels in order to detect LOS conditions using three distinct channel models

(TDL, CDL, and Winner II).

 Simulating various feature combinations and applying different machine

learning techniques for each channel type, analyzing the outcomes to

determine the most effective combination.

 Critically analyzing and comparing the outcomes of both the simulation results

and real measurements for each scenario.

 Presenting the outcomes, along with conclusions drawn from the research,

emphasizing potential applications and future advancements in the field.

Parts of the results of this thesis have been published as a main author in: P. A. D. N.

Jayawardana, H. Obaid, T. Yesilyurt, B. Tan, and E. S. Lohan, “Machine-learning-

based LOS detection for 5G signals with applications in airport environments,”

Sensors, vol. 23, no. 3, p. 1470, 2023 [7], proposing novel machine-learning based

LOS detections methodology with 5G wireless signals, focusing on airport

environments.

Moreover, contributions have been made to the EU-funded NewSense project, as

referenced in [18].
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1.6 Challenges

For the completion of the thesis, MATLAB computational platform was used for all the

simulations and the analysis. Therefore, in this thesis, the 5G wireless channel models

and machine learning methods used for computations and analysis were narrowed to

the algorithms available in MATLAB. However, since MATLAB computational platform

offers a comprehensive set of machine-learning approaches and is widely used in

scientific simulations, it is expected that the achieved results would not have been

affected by any limitations in the platform.

The higher complexity of the Winner II channels model resulted in a considerable delay

in producing simulation outcomes, posing a significant challenge in assessing the

feasibility of multiple feature combinations.

1.7 Organization of the thesis

The subsequent chapters of the thesis are presented as follows. Chapter 2 is devoted

to explaining the theoretical background behind the research. At the outset, a literature

review of the line-of-sight detection methods employed in existing scientific research

and the statistical features hitherto used for this purpose are described. After that, the

chapter includes a review of the concepts behind the machine learning methods

employed for LOS/NLOS detection in the thesis. An introduction to 5G reference

signals and the fundamentals of the 5G wireless channel models utilized for the

simulations are explained next in chapter 2.

Chapter 3 is dedicated to the detailed explanation of the methodology used for data

analysis and the mechanisms deployed for LOS/NLOS identification throughout the

thesis for both simulated data and real measurement data. The main focus is given to

recounting the simulation tools and environment, simulation parameters and the

various combinations of features used for the testing phase and the final simulations.

This chapter also elaborates on the methodologies used for threshold-based and

machine-learning-based classification methods.

Chapter 4 presents the results achieved for various LOS/NLOS detection scenarios

employed in the thesis and emphasizes the statistical conclusions derived based on

the comparisons of these results. Chapter 5 underlines the overall conclusions, which

were determined based on the research and possible ideas for future research.

Chapter 6 mentions the list of references used for the thesis.
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2. LINE-OF-SIGHT DETECTION ALGORITHMS

Accurately estimating the position of user equipment in a cellular network is a crucial

prerequisite for many practical applications. Non-line-of-sight transmission due to

reflections and diffractions from objects encountered in the propagation environment

can complicate the estimation of the position of the UE. Determining the existence of a

direct line-of-sight path from the base station through to the UE is a significant

precondition in many positioning-based studies [7, 20].

This information can provide important insights into the propagation characteristics of

the subjective environment and can be used to develop more accurate positioning

algorithms [7]. For example, if a direct LOS path is present, the estimated position of

the UE could be derived considering the angle-of-arrival (AOA) or time-of-arrival (TOA)

measurements [20]. However, if a direct LOS path is not present, the position can be

estimated using supplementary procedures, inclusive of received signal strength (RSS)

or time-difference-of-arrival (TDOA) based methods [20]. Nevertheless, the obtainable

accuracy of such procedures with NLOS would be much inferior to what can be

achieved through LOS-based algorithms [7, 20].

In essence, determining the LOS path is a fundamental requirement for numerous

positioning-based areas of research conducted in the existing literature, and it plays a

crucial role in increasing the precision of UE position estimation in a cellular network

[7]. In existing scientific research, many methodologies have been devised to ascertain

LOS and NLOS propagation paths correctly. One of the main approaches currently

used is key parameter thresholding by using one or more of the statistical features of

the CIR of the received signal [22, 23, 24, 26]. The other key approach is the usage of

a combination of feature statistics obtained from the channel measurement data for

feeding machine learning-oriented algorithms to ascertain LOS and NLOS conditions

[15, 16, 27, 29].
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2.1 Statistical approach with threshold detection

The threshold-based approach uses one or more statistical features of the CIR of the

received signal, for example, the time-correlation output, the root mean square (RMS)

delay spread or extracted statistics like kurtosis and skewness. This scenario is

fundamentally a binary hypothesis testing problem, such that if the value ᵄÀ of the

selected feature goes beyond a certain threshold ᵯÀ, it is considered NLOS ( 0ᵃ° );

otherwise, it is regarded as LOS ( 1ᵃ° ).

0ᵄ`ᵅ ᵅ�ᵅ ᵅ�ᵆ�ᵃ° : ᵃÀᵅ0ᵄÀ ≥ᵯÀ,

(1)

1ᵄ`ᵅ ᵅ�ᵅ ᵅ�ᵆ�ᵃ° : ᵃÀᵅ0ᵄÀ <ᵯÀ,

(2)

The threshold-based approach is suitable for real-time applications since it is more

convenient to design and does not necessitate a large expanse of computation

resources. However, it has the disadvantage of being limited in its ability to

comprehend complex relationships between the channel measurement samples and

the LOS/NLOS conditions, and it may not be as accurate as other methods in certain

scenarios.

2.2 Data driven approach with machine learning

On the contrary, the machine learning-based methodology uses a combination of

features obtained from the channel measurement data to train a classifier that can

accurately determine the LOS and NLOS conditions. The machine learning algorithms

can be supervised or unsupervised, depending on the availability of the labeled data. In

a supervised machine learning approach employed in this thesis, the classifier was

trained using labeled data, where the LOS/NLOS situations are known. The classifier

was then used to make predictions for new, unseen data.

Even though this method has the disadvantage of being more complex and

computationally intensive compared to the threshold-based approach, it can produce

more accurate results when the correct algorithms are selected, which suits the

classification problem. The availability of sufficient sample data is also a prerequisite to

achieving higher rates of precision through this approach. The machine learning-based

approach has the advantage of being able to encapsulate complex relationships linking

the extracted channel measurements and the LOS/NLOS conditions, and it can adapt

to changing environments, as it can learn from new data [15, 16, 27, 29].



9

2.3 Commonly used machine learning algorithms

Brief descriptions of the most suitable ML methods for classifying input data are given

below.

Neural networks: The design of an artificial neural network imitates the human brain

consisting of interconnected nodes called neurons arranged in a layered architecture

[31]. These algorithms could handle complex, non-linear classification tasks through

pattern recognition between the predictors and the response variables [31].

Connections between individual neurons are defined through weights which would be

optimized during the training phase as per the specified learning rule until the best

possible precision is achieved [31].

K-nearest neighbors (KNN): This simple method categorizes input samples based on

the class of the nearest other classified data points in the training data set known as

the nearest neighbors [32]. Therefore, the decision will be founded on a majority vote

which considers the respective classes of the specified number of nearest neighbors

[32]. Euclidean distance or Manhattan distance could be used as the method of

recognizing the nearest neighbors. In essence, this method does not have an actual

training phase [32]. However, it needs to keep the entire training dataset stored in

memory for a new calculation [32].

Decision trees: A decision tree has a hierarchical structure that starts with a single

node known as the root node and branches out into multiple internal nodes as the

algorithm makes decisions based on the input features [33]. Every node represents a

decision established based on a feature value, and each branch points to a possible

outcome of that decision [33]. The decision tree algorithm recursively splits the data

into branches in a manner that increases information gain with the aim of improving

classification accuracy [33]. The leaf nodes of the tree specify the final classification

decision [33]. The final objective is to create the smallest possible decision tree

structure that accurately classifies the input data [33].

Ensemble methods: These are composite techniques built based on multiple

classifiers such as bagging, random forests, and gradient boosting to enhance the

precision of the overall model [32].

The choice of the appropriate algorithm rests on the characteristics of the sample

classification data, the available features, and the desired accuracy. Detailed

descriptions of the three machine learning algorithms selected for the final simulations

after analyzing the results from all the options are presented in subsections 2.3.1 to

2.3.3.
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2.3.1 Fitcensemble with AdaBoostM1 aggregation (XGBoost)

Fitcensemble is a gradient-boosting ML procedure that is a powerful tool for solving

complex classification problems. It is often used in various scientific simulations to

achieve high accuracy in the results [35]. An ensemble of learners can be generated by

the fitcensemble algorithm for classification scenarios [35]. The following syntax is used

by fitencemble [36].

ᵅ ᵅ°ᵆ�=ᵅ0ᵅ`ᵆ�ᵅ�ᵅ ᵅ°ᵆ�ᵅ ᵅ ᵄðᵅ�ᵅ (ᵄ°,ᵄÀ,ᵄ�ᵄàᵅ ᵅ ,ᵄ�ᵄàᵅ�ᵆ ᵅ ) ,

(3)

Where ᵄ° is the input matrix containing the predictor data, with each row consisting of

one observation and each column containing one predictor variable, ᵄÀ is the categorical

vector containing the responses or the class names of the classifiers (LOS and NLOS in this

scenario), which are mapped to the same observations included in the rows of matrix ᵄ°

[36]. ᵄ�ᵄàᵅ ᵅ  and ᵄ�ᵄàᵅ�ᵆ ᵅ  are additional optional arguments [36].

Figure 1. Fitcensemble classifier [36].

The AdaBoostM1 aggregation method used in the project in combination with the

fitcensemble classifier is an algorithm widely used for binary classification problems,

where the goal is to separate data into two classes. This method works by combining

multiple weak classifiers to create a strong classifier. AdaBoostM1 is an adaptive

binary classification method that trains learners sequentially [35]. When an arbitrary

iteration is considered, it computes the weighted classification error for every learner

index (t) [35].

ᵆ�ᵰ� = (ᵆ�)
ᵅ°ᵅ�∑

ᵄ�

ᵅ°=1

ᵔ� ( ᵅ°ᵆ` ≠ ᵆ�ℎ ( ᵅ°ᵆP )) ,

(4)
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Where ᵅ°ᵆP is a vector containing predictor values for the nth observation, ᵔ� is the indicator

function, ᵅ°ᵆ` is the actual class label, ᵆ�ℎ is the prediction attained for the learner with

index ᵆ� , and (ᵆ�)
ᵅ°ᵅ� is the weight of observation n at the learner iteration index ᵆ� [35].

During the next iteration (ᵆ� + 1), AdaBoostM1 upscales the weights of the inaccurately

classified observations on the learning instance t and decreases the weights for

observations that were appropriately classified [35]. This process would continue until

the best possible precision is reached by the boosted classifier comprising the modified

weights, which were decided upon after a sequence of iterations [35]. This technique

helps to increase the overall precision of the classifier by combining the strengths of

multiple learners in the meantime, reducing the impact of the weaknesses of any

individual learner [35].

2.3.2 Fitensemble with Bag aggregation (Random Forest)

The "bag" aggregation method used in fitensemble function of MATLAB is a variant of

bagging, which stands for bootstrap aggregating. It is similar to the Random Forest

classifier, a bagged ensemble method commonly used for classifications [39].

Figure 2. Fitensemble with Bag aggregation (Random Forest) [39].
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As the first step in the bagging process, bootstrap replication involves a random

selection of samples and creation of multiple bootstrap replicas with replacements from

extracts of the original dataset [39]. The size of each bootstrap replica is usually equal

to the dimensions of the original data feed. In the context of feature selection, a

common approach in MATLAB is to randomly select a number of predictors for each

bootstrap replica equivalent to the square root of the total number of predictors

available for classification [39]. This approach has been shown to work well in practice

and is a reasonable starting point for feature selection in bagging [39].

The random sampling process used to create the bootstrap replicas ensures that each

base classifier in the ensemble is trained on a different subset of the data, which helps

to increase the diversity of the base classifiers capturing the underlying patterns in the

data and generalizing better to unseen data [39]. The random selection of predictors

and observations also helps to prevent over-fitting and reduces the dependence of the

results on a single decision tree [39]. The final classification decision is made by

aggregating the predictions of all the decision trees in the ensemble, further reducing

the risk of over-fitting and helping to obtain more accurate results [39].

2.3.3 Support Vector Machines (SVM):

Support vector machine classifiers aim to identify the hyperplane with the most

significant margin to separate the classes, resulting in a classifier that can generalize

well to unseen data [40]. SVM is known to provide high precision for classification of

data.

An example of support vector machine classification with two categories that use a

linear kernel is depicted in Figure 3 [40]. The SVM algorithm selects the hyperplane

that maximizes the boundary separating the two sample spaces [40]. This margin

represents the block parallel to the optimum hyperplane, which does not contain any

data samples in between. For most practical classification scenarios, finding a perfect

region without any interior data points would be difficult, and only a few linearly

separable data classes may facilitate such an occurrence [40]. Therefore, the SVM

algorithm decides on the maximum possible margin for the demarcation of the classes

while permitting a small aggregate of misclassifications [40].
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Figure 3. Support Vector Machines [40].

The most similar observations from each class that form the boundary between the

considered classes are known as the support vectors [40]. In this case, discovering the

LOS availability of 5G wireless transmission equates to a binary classification scenario,

as it involves classifying the received signaling links as either LOS or NLOS [40]. The

fitcsvm algorithm in MATLAB is preferred for such binary classifications. This algorithm

aims to identify the most effective hyperplanes that separate the sample points into the

defined classes, using the most similar observations (support vectors) from each

category [40]. The training process involves finding the most suitable support vectors to

produce the most optimal hyperplane with the maximum margin [40].

In SVM classifications, multi-class problems are often solved by transforming them into

a series of binary classification problems [40]. SVMs can deal with non-linearly

separable data by transforming the input data into a higher-dimensional feature space

using a kernel function [40]. The polynomial kernels (quadratic, cubic) and the

Gaussian kernels (fine, medium, coarse) are commonly used for data categorization

[40]. The radial basis function employed by the Gaussian kernel and the polynomial

functions utilized by the polynomial kernel both enable the mapping of data into a high

dimensional feature space [40]. By carefully selecting the kernel function, SVM can be

leveraged to tackle non-linear classification problems effectively [40]. The kernel

function achieves this by transforming the data into a higher dimensional space, which



14

has the potential to simplify complex non-linear problems by segmenting them linearly

in the mapped high dimensional space [40].

The kernel function, ᵃà ( ᵅ`ᵆP , ᵅpᵆP ) , of the commonly used linear, polynomial, and Gaussian

kernels are mentioned in the equations below [40].

Linear kernel,

ᵃà ( ᵅ`ᵆP , ᵅpᵆP ) = ᵄp
ᵅ`ᵆP ᵅpᵆP ,

(5)

Where ᵅ`ᵆP  and ᵅpᵆP  are the input feature vectors.

Polynomial kernel,

ᵃà ( ᵅ`ᵆP , ᵅpᵆP ) =(
ᵅ°ᵄp

ᵅ`ᵆP ᵅpᵆP +1) ,

(6)

Where ᵅ° is the degree of the polynomial.

Gaussian kernel,

ᵃà ( ᵅ`ᵆP , ᵅpᵆP ) = -(

2‖ ᵅ`ᵆP - ᵅpᵆP ‖
2 2ᵰà

)ᵅ = -(ᵅð 2‖ ᵅ`ᵆP - ᵅpᵆP ‖ )ᵅ ,

(7)

The Kernel width is represented by ᵰà or ᵅð and controls the smoothness of the resulting

density estimate. The parameter ᵅð is known as the kernel scale in the Gaussian SVM

representation of MATLAB. If ᵰà is larger than the optimal value, this could lead to under-

fitting of the SVM model, and the resulting model would not be optimal for the

classification. If ᵰà is closer to zero or less than the optimal value, this could lead to over-

fitting of the SVM model. In this scenario, the resulting predictions for the test data

could be inaccurate even when the results obtained for the training data are

satisfactory [41].

The choice of a suitable kernel function and its parameters, such as the kernel scale, is

crucial to the effectiveness of an SVM algorithm. The characteristics of the sample data

and the proportion of predictors are highly relevant for determining the appropriate

kernel function and its parameters. For example, the Gaussian kernel function is

commonly used in SVM, and its kernel scale parameter specifies the influence of

individual training samples. A smaller kernel scale will result in a tighter fit to the

training data, while a larger kernel scale will result in a smoother fit with lower variance.

Generally, starting with a moderate kernel scale and then adjusting it based on the

results obtained from cross-validation is recommended.
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Similarly, the degree of a polynomial kernel function governs the mapping of the data

into a higher dimensional space. A higher degree will result in a more intricate

assessment boundary, but it can also result in over-fitting if the degree is too high.

Therefore, it is essential to choose the kernel function and its parameters carefully. The

recommended guidelines for selecting the suitable kernel scale for the Gaussian SVM

kernel as a function of the predictors p are mentioned in Table 1 [40].

Table 1: Guidelines for selecting the Gaussian SVM kernel scale [42].

Kernel function
Guidelines kernel 
scale selection

Functional description

Fine Gaussian ᵅð =
ᵅÐ

4
Enables detailed differentiation. Prone to over-
fitting.

Medium 
Gaussian

ᵅð = ᵅÐ Medium level distinctions between the classes.

Coarse Gaussian ᵅð = 4 * ᵅÐ
Only enables coarse differentiation. Prone to 
under-fitting.

Where the variable p denotes the number of predictors used for the classification

scenario.

2.4 Features used in the scientific literature for LOS

identification

Numerous studies have focused on leveraging different types of input data to

distinguish between LOS and NLOS scenarios, including UWB channel impulse

response [8, 9, 10, 11, 12, 13] and Wi-Fi received signal strength [15, 16]. A significant

proportion of these studies have utilized machine learning algorithms for classification

purposes, including support vector machines, neural networks, and random forests.

In addition to using raw input data [8, 44, 45], many studies have focused on extracting

various statistical features from the CIR or RSS data and using these features for

LOS/NLOS classification. Some features commonly used in these studies include

kurtosis, skewness, hyper-skewness, Rician K-factor, the entropy of CIR, RMS-delay

spread, maximum excess delay, the spread of departure/arrival and angular difference.

Both statistical approaches with threshold detection and machine learning-based

classification methods were employed to classify LOS/NLOS based on these features.

As mentioned above, most of the studies on LOS detection have focused on UWB [8]

[9, 10, 11, 12, 13] and Wi-Fi [15, 16] signals, rather than 5G signals. Some of these
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approaches used in the existing scientific literature are described in the subsections

given below.

2.4.1 Raw input features

Some scientific studies have used the method of directly feeding raw input data into ML

algorithms without extracting statistical features.

Raw channel impulse response: Research mentioned in [8], which focuses on

computationally restricted devices utilize convolutional neural networks (CNN) for

enhancing indoor localization. This study uses the approach of feeding accumulated

raw CIR data directly into a machine learning interface using a CNN-based algorithm

for LOS/NLOS detection. According to the findings presented in [8], the utilization of

raw CIR data for LOS/NLOS classification yielded better performance compared to

existing methods that relied on derived input signal features. The experiment involved

the use of an Impulse Radio Ultra-Wide Band (IR-UWB) transmitter and receiver to

collect samples in an indoor setting.

Entropy of the CIR: Another study conducted by researchers at Khalifa University in

UAE used the entropy of the channel impulse response as a metric for determining

LOS availability in wireless propagation channels [44]. They claimed that this metric is

more accurate for systems with lower system bandwidths than individual statistical

properties of the CIR, like the kurtosis and the RMS (Root Mean Square) delay spread

[44].

The researchers employed an autoregressive (AR) modeling method to estimate the

entropy of the CIR. In this study, the probability density function (PDF) of the CIR was

estimated by the AR model, which was then used to calculate the entropy of the CIR

[44]. In the context of wireless transmission, the entropy of the CIR can provide

information about the degree of multipath scattering in the channel, which can aid in

separating LOS and NLOS channels. NLOS channels can exhibit a higher density

spread in their PDF, meaning that the energy of the multipath components are more

spread out [44].

Kalman filtering-based approach: In [47], a technique is proposed for the application

of Kalman filtering to integrate information about the distance, velocity, and heading of

the mobile device with the received signal characteristics to increase the LOS/NLOS

identification accuracy. The Kalman filter estimates the location, velocity, and heading

of the mobile device based on its movement and sensor measurements, which are

used to calculate the expected signal characteristics for both LOS and NLOS paths
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[47]. The received signal characteristics are then compared with the expected values,

and a likelihood ratio is computed for each path type [47]. The likelihood ratios are

used to update the probabilities of the LOS\NLOS paths through a recursive framework

[47].

2.4.2 Individual features of CIR

Extracting individual statistical features of the received signal and using either

threshold-based or ML-based classification to identify LOS was used in some research

projects.

Kurtosis-based detection: Some research articles have put forth the idea of

exploiting kurtosis ᵅ� to identify LOS conditions. Kurtosis is a statistical measure

obtained by dividing the th4 -order moment of the data by the square of the nd2 -order

moment [22]. The method proposed in [22] involves examining the kurtosis of the

logarithmically scaled CIR amplitude distribution to differentiate between LOS/NLOS

channels. A high kurtosis value indicates a peaked distribution, which is likely to be

associated with a LOS channel. In contrast, a low kurtosis value indicates a flatter

distribution, which is expected to be associated with an NLOS channel [22]. The

equation for kurtosis ᵅ� is given below.

ᵅ�=
ᵃ� [ 4(ᵄ°- ᵆPᵰp ) ]

2
ᵃ� [ 2(ᵄ°- ᵆPᵰp ) ]

=
ᵃ� [ 4(ᵄ°- ᵆPᵰp ) ]

4
ᵆPᵰà

,

(8)

Where the input random variable ᵄ° is defined as the CIR amplitude of the samples in

logarithmic scale, which is given by ᵄ°=20 10ᵅ�ᵅÀᵅ@ (|ℎ (ᵆ�)|) [22]. Here, ᵆPᵰp denotes the mean

of ᵄ°, and ᵆPᵰà denotes the standard deviation of  ᵄ° [22]. It is assumed that the kurtosis ᵅ�

would have a higher value than a pre-defined threshold in the case of LOS and would

be lower than the threshold in the case of NLOS [22]. The use of a logarithmic scale for

the CIR amplitude in the calculation of kurtosis helps to make the technique less

sensitive to system parameters, making it possible to identify a general threshold for

LOS/NLOS detection [22].

Rician factor-based detection: Several investigations were conducted to validate the

effectiveness of Rician factor estimation to detect the LOS\NLOS [24, 48]. This

approach involves representing the received signal as a combination of a complex

exponential, corresponding to the LOS component, and a narrowband Gaussian

process, signifying the scattered portion of the signal [24]. The Rician factor ᵃà
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quantifies the power of the LOS component with respect to the diffuse component. If

the LOS component is more substantial, the value of ᵃà would be higher [50].

Equation (9) shows the received signal ᵆP (ᵆ�) of a LOS channel written as the

summation of a complex exponential, depicting the LOS component and the diffusive

portion of the signal [24],

ᵆP (ᵆ�) =
ᵯ ᵃà

(ᵃà+1)
-ᵅp(2ᵰ° ᵃpᵅ0 ᵅ�ᵅÀᵆ� ( 0ᵮ� ) ᵆ�+ 0ᵲ� )ᵅ +

ᵯ 

(ᵃà+1)
ℎ (ᵆ�) ,

(9)

Where ᵃà≥0 is the Rician factor, ᵃpᵅ0 is the maximum Doppler frequency, 0Θ is the angle of

arrival, 0ᵲ� is the phase of the LOS component and ℎ(ᵆ�) is the diffuse component

consisting of a large number of multipath constituents and Ω=E[ 2|x (t)| ].

The estimation of the Rician factor involves utilizing the second and fourth-order

moments of the marginal probability density function of the envelope of the received

signal, denoted as ᵄP (ᵆ�) = |ᵆP (ᵆ�) | [24]. The marginal PDF of the received signal

envelope takes the shape of a Rice distribution for LOS channels and a Rayleigh

distribution for NLOS channels. The second moment of the Rice distribution pertains to

the power of the LOS component, whereas the fourth moment is linked to the strength

of the diffuse component [24].

The equation (10) was used to derive an estimate of the Rician factor ᵃà [24, 50]:

2,4ᵃ̂à =
-2 2

2ᵰ̂p + 4ᵰ̂p - 2ᵰ̂p 2 2
2ᵰ̂p - 4ᵰ̂p

2
2ᵰ̂p - 4ᵰ̂p

,

(10)

Where ᵅ°ᵰ̂p  is the nth moment of the Rician distribution defined as,

ᵅ°ᵰ̂p =
1

ᵄ�
ᵅ�ᵄP (ᵅ` ᵆ�ᵄp )∑

ᵄ�-1

ᵅ`=0

,

(11)

With ᵄ� as the available amount of samples and ᵆ�ᵄp being the sampling period. ᵅ�ᵄP refers

to the ᵆ�ℎᵅ�  sample of the received signal envelope.

If 2,4ᵃ̂à >1, a Rician distribution was assumed with LOS propagation from the transmitter

to the receiver and if 2,4ᵃ̂à ≤1, a Rayleigh distribution was assumed, corresponding to

NLOS propagation [24].
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Energy detection: The research approach in [12] relies on the fact that in LOS

conditions, the UWB channel exhibits a high degree of temporal concentration, leading

to a burst-like energy profile, whereas in NLOS conditions, the energy is spread out

over a longer time duration due to the presence of multiple scattering and reflections.

The LOS channels tend to have more concentrated energy in a shorter time interval.

The ratio of energy between the pulse with maximum energy and the total integrated

energy was used as the test metric to distinguish between LOS and NLOS channels

[12]. Another similar research based on IEEE 802.15.3c channel models operating in

60 GHz frequency range is mentioned in [51].

Cross polarization discrimination (XPD): In [26] combination of received power and

XPD was used for discovering LOS in an indoor setting through threshold-based

detection.

ᵄ°ᵄ0ᵃp=
[ᵅÐᵅðᵅ`ᵅ°ᵅ�ᵅ`ᵅÐᵄàᵅ�ᵅÐᵅÀᵅ�ᵄàᵅðᵅ`ᵆpᵄàᵆ�ᵅ`ᵅÀᵅ°ᵅ ᵅ�ᵅ ᵅ�ᵆ�ᵅðᵅ`ᵅ�ᵅÐᵅÀᵆ@ᵅ ᵅð]

[ᵅ�ᵅðᵅÀᵆ�ᵆ�ᵅÐᵅÀᵅ�ᵄàᵅðᵅ`ᵆpᵄàᵆ�ᵅ`ᵅÀᵅ°ᵅ ᵅ�ᵅ ᵅ�ᵆ�ᵅðᵅ`ᵅ�ᵅÐᵅÀᵆ@ᵅ ᵅð]
,

(12)

The XPD is a metric that shows the mutual leakage of the main and cross-polarized

waves, and it can be used to distinguish between different polarization states. In a

direct wave scenario, the polarization of the signal would remain the same, and there

would be little to no cross-polarization [26]. However, in the case of a reflected or

diffracted wave, the polarization of the signal could be changed, which would induce a

cross-polarization component. This study found that using XPD alone for LOS/NLOS

identification had an accuracy of around 60% [26]. However, when a hybrid

identification method was used, with received power-based categorization as the first

step and XPD-based classification as the second step, the accuracy was improved to

around 80% [26]. Therefore, the researchers suggest that a combination of received

power and XPD can be an effective approach for identifying LOS/NLOS conditions in

indoor environments [26].

Time-space-frequency channel correlation: Several studies have suggested utilizing

algorithms based on time-space-frequency channel correlation features in Multiple-

Input Multiple-Output (MIMO) antenna systems for the purpose of identifying

LOS/NLOS channels [52, 53]. The correlation of the channel response in Orthogonal

Frequency Division Multiplexing (OFDM) systems can be evaluated across antennas,

subcarriers, and time instances. Hence, time-space-frequency channel correlation

constitutes a statistical measurement of the correlation between the wireless channel

response across the time, space, and frequency (subcarrier) domains [52, 53].
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In a MIMO system, the channel response between each transmit and receive antenna

pair can be expressed as a matrix, referred to as the channel matrix. The channel

matrix can be analyzed across time, space, and frequency domains to determine the

correlation between different components of the channel response. This identification

technique is based on the observation that the correlation of the NLOS components

reduces as the space and time separation between the antennas increases [52, 53]. In

contrast, the correlation of the LOS component remains consistent over any separation

in space and time [52, 53]. This research has also used a hypothesis-driven threshold-

based detection method [52, 53].

Beam reference signal received power (BRSRP): A study conducted at Linkoping

University, Sweden, used a machine learning approach for 5G positioning and

employed the Generalized Likelihood Ratio Test (GLRT) detector to differentiate the

LOS conditions from the NLOS conditions based on the 5G data [23]. The GLRT

detector is a statistical tool used to compare two hypotheses, in this scenario one that

assumes the presence of a specific signal (LOS) and the other that assumes the

presence of a different signal (NLOS). The GLRT detector computes a test statistic and

compares it with a threshold to make a decision in favor of the LOS or NLOS condition

of the signal [23].

This research utilized the GLRT detector with two criteria to identify NLOS conditions

[23]. The first criterion was established based on the mean variation in the BRSRP

between the beam with the highest BRSRP and the nine consecutive beams [23]. The

second criterion was based on the mean difference in the Direction of Departure (DOD)

between the beam with the highest BRSRP and the nine consecutive beams [23]. The

results revealed that the first criterion, utilizing the signal differences in BRSRP, was

more suitable for detecting LOS/NLOS conditions, resulting in a high probability of

detection ( ᵃpᵄ0 ) of 88% with a low false alarm probability ( ᵃ�ᵃ@ᵄ0 ) of 5% [23]. The

researchers suggested that the variation in BRSRP between beams serves as a

dependable indicator of the presence of NLOS conditions [23].

Teager-Kaiser function: The Teager-Kaiser (TK) operator was initially developed to

quantify the existent physical energy of a system [56, 57]. It is recognized as a valuable

mechanism for various signal-processing applications, including tracking instantaneous

spatial modulation patterns. The TK operator computes the energy difference between

adjacent signal samples, which effectively removes the direct current (DC) and low-

frequency components [56, 57]. This method allows for a more accurate measurement

of the instantaneous energy variations of the signal [56, 57].
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In [58, 59], researchers have recommended a technique that employs the TK function

to detect the line-of-sight component in wideband CDMA (WCDMA) networks. When

dealing with closely positioned multipath signals, where the successive paths are

separated by no more than a single chip, accurately estimating the delay becomes

notably challenging [58, 59]. This is because the delay difference between the paths is

minimal, which can cause them to overlap and interfere with each other [58, 59]. This

can make it challenging to recognize LOS components.

As a result, researchers in [58, 59] have concentrated their efforts on the situation

involving closely spaced multipath signals. They have proposed an adaptable,

threshold-based algorithm that uses the Teager-Kaiser function to estimate the LOS

component in the presence of overlapping multipath components [58, 59]. The

algorithm uses the TK-based delay estimation to design the LOS identification

threshold based on the evaluation of the noise plus interference level [58, 59]. The

researchers have concluded that this approach performs well in realistic WCDMA

environments [58, 59].

Time history of range measurements: In [60], researchers use a statistical approach

to analyze the received range measurements of a UE and determine whether these

values are consistent with a LOS or NLOS channel compared to its historical range

measurements by using a hypothesis testing mechanism.

The carrier-to-noise ratio of the left-hand circular polarized (LHCP) reception to

the right-hand circular polarized (RHCP) reception (ᵆ  / 0ᵇP _ᵇ�_ᵇ0  ᵉ0ᵈ ᵉPᵈ ᵉ�) in GNSS:

In [63], researchers utilized a decision tree-based classifier to differentiate between

LOS and NLOS GNSS signals by analyzing the elevation of the satellite and the ᵃ` / 0ᵄ� _ᵄP_ᵃð 

ratio. Their system included two antennas, one RHCP and one LHCP, which were

installed at the same elevation [63]. Since the original satellite signal is transmitted as

right-hand circular polarized, the LOS reception must also be RHCP [63]. In contrast, a

reflected signal with an odd reflection number results in a left-hand circular polarized

signal [63].

2.4.3 Multiple features of CIR

Another approach is to extract several statistical features of the received signal and

feed these as a vectorized input to ML algorithms to determine the LOS/NLOS

condition of the received channel.

In [27], researchers suggest a technique that utilizes machine learning to distinguish

between the LOS and NLOS pathways in a multiple-input multiple-output wireless
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c o m m u ni c ati o n s et u p, s p e cifi c all y f or v e hi cl e-t o- v e hi cl e ( V 2 V) n et w or k tr a n s mi s si o n s.

T h e pr o p o s e d a p pr o a c h i n v ol v e s t h e e xtr a cti o n of st ati c a n d ti m e- v ar yi n g f e at ur e s fr o m

t h e CI R  t o cl a s sif y t h e p at h a s eit h er L O S or N L O S  [ 2 7].

 M a xi m u m r e c ei v e d p o w er o v er d el a y s a m pl e s ( ᵅ  ᵄà ᵆP  ( 2|ℎ ( ᵆ� ) | ) . T hi s r e pr e s e nt s

t h e m a xi m u m p o w er of a r e c ei v e d si g n al o v er a p arti c ul ar d ur ati o n. T h e li n e- of-

si g ht m ulti p at h c o m p o n e nt i s u s u all y str o n g er w h e n c o m p ar e d wit h t h e p o w er of

t h e N L O S m ulti p at h c o m p o n e nt s [ 2 7]. T h er ef or e, a n al y zi n g t h e p e a k r e c ei v e d

p o w er  of e v er y  s n a p s h ot m a k e s it  p o s si bl e t o d et e ct t h e pr e s e n c e of L O S [ 2 7].

 K urt o si s ᵅ� ( ᵆ� )  of t h e r e c ei v e d si g n al s a m pl e s.

 S k e w n e s s ᵄ` ( ᵆ� ) of t h e r e c ei v e d si g n al s a m pl e s . S k e w n e s s q u a ntifi e s t h e l e v el of

a s y m m etr y of a pr o b a bilit y di stri b uti o n. T h e s k e w n e s s of t h e r e c ei v e d p o w er ᵄ` ( ᵆ� )

i s t y pi c all y hi g h er f or a R a yl ei g h di stri b uti o n c o nt ai ni n g N L O S d at a s a m pl e s

t h a n a Ri ci a n  di stri b uti o n c o nt ai ni n g L O S d at a s a m pl e s [ 2 7].

ᵄ` ( ᵆ� ) =
ᵃ� [ 3( |ℎ ( ᵆ� ) | - ᵆPᵰp ) ]

3
ᵆPᵰà

,

(1 3 )

W h er e ℎ ( ᵆ� ) i s t h e c o m pl e x e n v el o p e of t h e r e c ei v e d si g n al ᵆP ( ᵆ� ) , ᵆP ᵰp i s t h e

m e a n , a n d ᵆPᵰà  i s t h e st a n d ar d d e vi ati o n of ᵆP ( ᵆ� ) .

 Ri si n g ti m e ∆  ᵰð ( ᵆ� ) . T hi s i s a m etri c f or e v al u ati n g t h e ti m e d el a y s pr e a d of a n

i n c o mi n g si g n al. It i s m e a s ur e d a s t h e ti m e d e vi ati o n b et w e e n t h e e arli e st

arri vi n g m ulti p at h c o m p o n e nt a n d t h e arri v al of t h e str o n g e st m ulti p at h

c o m p o n e nt [ 2 7].

∆ ᵰð ( ᵆ� ) = ᵰðᵄà ᵅð ᵅ@ ᵅ  ᵄà ᵆP |ℎ ( ᵆ� ) | -ᵅ ᵅ` ᵅ°  ( ᵅ�ᵰð )

(1 4 )

w h er e ᵅ� d e n ot e s t h e arri v al i n d e x of t h e m ulti p at h c o n stit u e nt s . I n n o n-li n e- of-

si g ht c o n diti o n s, t h e fir st m ulti p at h c o m p o n e nt s m a y b e w e a k e n e d b y virt u e of

o b str u cti o n or diffr a cti o n c a u s e d b y o b st a cl e s [ 2 7]. T hi s att e n u ati o n s pr e a d s t h e

si g n al e n er g y o v er a l o n g er ti m e d ur ati o n , r e s ulti n g i n a m or e e xt e n si v e ri si n g

ti m e c o m p ar e d t o L O S c o n diti o n s  [ 2 7].

 R o ot m e a n s q u ar e- d el a y s pr e a d ᵅð ᵅ  ᵆ�ᵰð ( ᵆ� ) . T h e R M S d el a y s pr e a d i s t h e m e a s ur e

of t h e di s p er si o n of ti m e d el a y s a m o n g all t h e m ulti p at h c o m p o n e nt s wit hi n a

gi v e n ti m e i nt er v al [ 2 7]. It i s c al c ul at e d a s t h e w ei g ht e d st a n d ar d d e vi ati o n of

t h e ti m e d el a y s, w h er e t h e w ei g ht c orr e s p o n d s t o t h e p o w er of e a c h m ulti p at h
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component in the snapshot [27]. In NLOS conditions, the received signal travel

over multiple paths of different lengths and delays [27]. In contrast, the LOS

signal component usually exhibits the strongest power and the shortest delay

among all the multipath components in a wireless communication system [27].

ᵅðᵅ ᵆ�ᵰð (ᵆ�)=

2( ᵅ�ᵰð (ᵆ�)- ᵅ ᵰð (ᵆ�))∑
ᵃð

ᵅ�=1

2| ᵅ�ℎ (ᵆ�)|

2| ᵅ�ℎ (ᵆ�)|∑
ᵃð

ᵅ�=1

,

(15)

Where the mean excess delay ᵅ ᵰð (ᵆ�) is defined as [27]:

ᵅ ᵰð (ᵆ�) =

ᵅ�ᵰð (ᵆ�)∑
ᵃð

ᵅ�=1

2| ᵅ�ℎ (ᵆ�)|

2| ᵅ�ℎ (ᵆ�)|∑
ᵃð

ᵅ�=1

,

(16)

 Rician K-factor ᵅðᵃà (ᵆ�).

 Angular difference  ∆ ᵅ�ᵰ` (ᵆ�). This quantifies the disparity between the angle of

departure 1ᵲ� and the angle of arrival 2ᵲ� of the strongest multipath constituent ᵅ�

in the ᵆ� th snapshot [27],

∆ ᵅ�ᵰ` (ᵆ�) = |ᵅ ᵆPᵅÐ (ᵅ` 1,ᵅ�,ᵅ ᵄàᵆPᵲ� (ᵆ�)) - ᵅ ᵆPᵅÐ (ᵅ` 2,ᵅ�,ᵅ ᵄàᵆPᵲ� (ᵆ�))| ,

(17)

 Angular spread of departure/arrival ᵃ@ᵄ`ᵃp ᵰ` (ᵆ�) / ᵃ@ᵄ`ᵃ@ᵰ` (ᵆ�). The angular spread of

departure (ASD) and arrival (ASA) are metrics used to quantify the dispersion of

the transmitted signal at the transmitter and receiver, respectively [27]. The

angular spread of arrival and departure is generally lesser in LOS situations

compared to NLOS scenarios [27].

ᵃ@ᵄ`ᵃp/ᵃ@ᵄ`ᵃ@ᵰ` (ᵆ�)=

2

|ᵅ ᵆPᵅÐ (ᵅ` 1/2,ᵅ�ᵲ� (ᵆ�)) - 
1/2ᵲ�ᵰp (ᵆ�)|∑

ᵃð

ᵅ�=1

2| ᵅ�ℎ (ᵆ�)|

2| ᵅ�ℎ (ᵆ�)|∑
ᵃð

ᵅ�=1

,

(18)



2 4

W h er e
1 / 2ᵅ ᵄà ( ᵆP ) i s t h e m e a n dir e cti o n of t h e p o w er a n g ul ar s p e ctr u m d efi n e d a s

[ 2 7]:

1 / 2ᵆ�ᵅ� ( ᵆ� ) =

ᵄ` ᵆ� ᵄ` ( ᵆ� 1 / 2, ᵄ`ᵆ� ( ᵃ� ) )∑
ᵆ�

ᵆP= 1

2| ᵰpℎ ( ᵆP ) |

2| ᵰàℎ ( ᵆ� ) |∑
ᵆP

ᵆ�= 1

,

(1 9 )

 A n g ul ar v ari a nt of d e p art ur e/ arri v al  ᵆP 1ᵰpᵆP ( ᵰà ) / ᵆP 2ᵆ�ᵰð ( ᵆ� ) . T h e d e p art ur e a n d

arri v al of si g n al s c a n e x hi bit v ari a bilit y i n t h eir a n gl e s, w hi c h i s q u a ntifi e d u si n g

t h e a n g ul ar d e p art ur e a n d arri v al m etri c s [ 2 7]. T h e s e m e a s ur e m e nt s d et er mi n e

t h e d e gr e e of d e vi ati o n of t h e A O D a n d A O A of t h e pri m ar y si g n al p at h wit hi n a

s p e cifi c ti m e i nt er v al  [ 2 7].

M a c hi n e l e ar ni n g cl a s sifi c ati o n al g orit h m s w er e a p pli e d t o th e v e ct or c o m pri si n g all t h e

af or e m e nti o n e d st ati sti c al f e at ur e s t o i d e ntif y t h e L O S a v ail a bilit y of t h e a p pli e d

c h a n n el [ 2 7]. M or e o v er, t h e r e s e ar c h er s e x pl or e d t h e eff e cti v e n e s s of diff er e nt f e at ur e

c o m bi n ati o n s i n d et e cti n g t h e L O S a n d N L O S cir c u m st a n c e s [ 2 7]. T h e y a c hi e v e d t hi s

b y i n s p e cti n g v ari o u s c o m bi n ati o n s of t h e f e at ur e v e ct or t o d et er mi n e t h e o pti m al

f e at ur e s et f or a c c ur at e cl a s sifi c ati o n of t h e pr o p a g ati o n p at h [ 2 7]. ℎᵰð ( ᵆ� ) r e p r e s e nt s t h e

f e at ur e v e ct or of t h e ᵰð ℎᵄà  s n a p s h ot [ 2 7].

ℎᵅð ( ᵅ@ ) = {ᵅ  ᵄà ᵆP ( 2|ℎ ( ᵆ� ) | ) , ᵅ  ( ᵅ` ) ,ᵅ° ( ᵅ� ) ,∆ ᵰð ( ᵅ� ) , ᵅð ᵅ  ᵆ�ᵰð ( ᵆ� ) , ᵅðᵃà ( ᵆ� ) ,∆ ᵅ�ᵰ` ( ᵆ� ) , ᵃ@ ᵄ` ᵃpᵰ` ( ᵆ� ) , ᵃ@ ᵄ` ᵃ@ᵰ` ( ᵆ� ) ,ᵮP 1ᵲ�
ᵱ0 ( ᵆ� ) ,ᵮP 2ᵲ�

ᵱ0 ( ᵆ� ) } ,

(2 0 )

M a n y ot h er st u di e s h a v e utili z e d t h e m et h o d of a s s e m bli n g a n d e x a mi ni n g a s eri e s of

st ati sti c al f e at ur e s o bt ai n e d fr o m s u c c e s si v e m e a s ur e m e nt s of t h e r e c ei v ed si g n al. O n e

Wi- Fi- c e ntr e d st u d y c o n si d er s k urt o si s , s k e w n e s s , st a n d ar d d e vi ati o n , p e a k pr o b a bilit y ᵄ0 ̂

 a n d h y p er- s k e w n e s s  ᵃ° ᵄ` ( ᵆ� )  [ 1 5].

ᵃ° ᵄ` ( ᵆ� ) =
ᵃ� [ 5( |ℎ ( ᵆ� ) | - ᵆPᵰp ) ]

5
ᵆPᵰà

,

(2 1 )

T h e p e a k pr o b a bilit y m e a s ur e s t h e li k eli h o o d t h at t h e hi g h e st R S SI v al u e will o c c ur

wit hi n a c ert ai n ti m e wi n d o w.

ᵄ0 ̂ = ᵄ0 ᵅð { ᵅ`ᵆP ᵾ [ ᵅ`ᵅ  ᵄà ᵆP ᵅ0 ( ᵅ`ᵆP ) -ᵰ� , ᵅ`ᵅ  ᵄà ᵆP ᵅ0 ( ᵅ`ᵆP ) + ᵰ� ]} ,

(2 2 )
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Where ᵅ0 (.) is a function that extracts the RSSI value at the location ᵅ`ᵆP and ᵰ� is an

adequately small non-negative quantity. When ᵰ� = 0, the estimated peak probability ᵄ̂0

is equivalent to the relative frequency at which the mode occurs within the observed

vector ᵆP [15]. The researchers conclude that while a threshold-based detection with

peak probability alone can give satisfactory results, a Neural-Network-based classifier

provided the best results [15].

In the study mentioned in [16], RSS samples collected from a receiver placed in an

indoor environment were used to identify LOS/NLOS for a network of Wi-Fi access

points (APs). Multiple features related to RSS were extracted for the analysis, and

three different methods were used for LOS/NLOS determination: a Gaussian

processes classifier (GPC), a least square support vector machine classifier (LS-

SVMC), and a classifier with hypothesis testing [16]. The LS-SVMC technique is a type

of supervised learning algorithm that strives to determine the most optimal hyperplane

for partitioning the data points into distinct categories [16]. Conversely, the GPC

approach is a classification methodology based on probability, which characterizes the

data distribution and gauges the posterior probabilities of each class [16]. The

researchers state that using Rician K-factor, mean, and skewness separately could

bring about an identification accuracy of around 70%. When these features are fused

together, their method reaches a precision of 95% [16].

A research focused on vehicle-to-vehicle measurement samples collected on urban

intersections and expressways implies that peak-to-average ratio, kurtosis, and

skewness are more appropriate for LOS classification in such surroundings compared

to the Rician-K factor and RMS delay spread [64]. As per the researchers, the RMS

delay spread directly correlated with the nature of the environment [64].

In another study, the effectiveness of various kernel functions of SVM for LOS

identification was evaluated using V2V channel data. Due to its excellent performance,

SVM is a popular choice for classification tasks [29]. The researchers used various

channel characteristics, such as Kurtosis, Skewness, maximum received power over

delay samples, maximum excess delay, Rician K-factor, RMS-delay spread, Angular

difference, and Angular spread of departure/arrival to construct the input vector for the

SVM [29]. They then tested the vitality of the SVM algorithm for different kernel

functions, including linear, polynomial, Gaussian, and Sigmoid [29]. The experiment

outcomes showed that the Gaussian kernel was the most effective SVM kernel function

for LOS/NLOS classification [29]. This research highlights the importance of choosing

an appropriate kernel function for ML-based classification tasks.
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While analyzing the existing scientific literature, it is apparent that these studies have

focused more on LOS/NLOS identification in UWB or Wi-Fi-based environments.

Conversely, no definitive studies have been conducted concentrating on 5G wireless

communication scenarios. This thesis and the study mentioned in [7] completed during

the NewSense project [1] try to bridge this gap.

2.5 Introduction to 5G reference signals

5G technology makes use of a diverse range of reference signals that are essential for

different aspects of communication, such as synchronization, channel estimation,

feedback, demodulation, and beamforming. These reference signals are crucial in

enabling reliable and efficient communication between the user equipment and the

base station. Unlike in Long-Term Evolution (LTE) based communication systems in

5G, the reference signals are transmitted only when required. The reference signals

commonly used in 5G New Radio (NR) include the demodulation reference signal

(DMRS), channel-state information reference signal (CSI-RS), phase-tracking

reference signal (PTRS), positioning reference signal and sounding reference signal

[65].

Demodulation reference signal: DMRS is a UE-specific reference signal which is

used for the purpose of estimating the radio channel for demodulation [65]. It is

transmitted in both downlink (DL) and uplink (UL) directions. In 5G, DMRS occupies

specific locations within the resource grid and can be beamformed [65]. Several

orthogonal DMRS ports, with each layer allocated one port, can be scheduled to

provision multiple-layer MIMO signals [65]. DMRS is used by the UE to estimate the

channel characteristics, demodulate the received signal, and decode the transmitted

data [65].

Channel-state information reference signal: CSI-RS is a DL-only reference signal

used by the UE to estimate the channel state information (CSI) of the wireless channel

[66]. Based on the received CSI information sent by the UE, the base station can

schedule resources as per the channel quality [66].

Phase-tracking reference signal: PTRS is a UE-specific reference signal introduced

in the 5G standard to compensate for the oscillator phase noise, which tends to

increase with higher carrier frequencies, such as those used in mmWave

communications [65]. One common issue caused by phase noise is Common Phase

Error (CPE), where all the subcarriers experience the same phase rotation [65]. To
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mitigate this issue, PTRS is designed with a low-frequency density and high time-

domain density [65]. This is because CPE produces identical phase rotation for all

subcarriers within an OFDM symbol, but there is a low correlation of phase noise

across OFDM symbols [65]. Better estimation of the phase offset and compensation for

the CPE can be supported by having a PTRS signal with a higher time-domain density

[65].

Positioning reference signal: PRS is the primary reference signal which facilitates

downlink-based positioning methods [67]. It was explicitly designed to support the

maximum permissible levels of precision and coverage and to avoid and minimize

possible interference [67]. One of the key considerations in its design is the need to

accommodate for a significant delay spread range, as it must be detectable from

neighboring base stations situated at considerable distances away for accurate position

estimation [67]. This requirement is met by spreading the PRS signal over the entire

NR bandwidth and transmitting it over multiple symbols that can be aggregated to

increase signal strength [67]. Resource elements in the resource grid are allocated to

the PRS in such a way as to permit simultaneous transmission by several base stations

without mutual interference [67].

Sounding reference signal: SRS is the primary signal for positioning in the uplink

direction. It is transmitted periodically by the UE and contains information about its

position and channel conditions [67]. The base station uses this information to

determine the optimal beamforming direction and beamforming coefficients to improve

the signal quality and reduce interference [67]. The SRS signal is also used for

advanced features such as uplink/downlink channel reciprocity calibration, which is

essential for accurate channel estimation and feedback [67, 68]. Due to the need for

measurements from multiple neighboring base stations to estimate position accurately,

the SRS signal is designed with an extended range to reach beyond the serving base

station [67]. It also covers the entire bandwidth, with resource elements distributed

across multiple symbols to encompass all subcarriers [67, 68].

The PRS signals in the downlink, and SRS signals in the uplink were specifically

designed in the 5G standard to facilitate more accurate positioning measurements

when compared with the previous standards, such as 4G LTE. Consequently, these

signals were chosen for the simulations in this thesis, with the explicit goal of

accurately identifying the LOS.
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2.6 5G channel models

The subsequent subsections will present brief descriptions of the 5G wireless channel

models utilized in the thesis. The LOS and NLOS propagation characteristics of these

models have been analyzed previously in the scientific literature in a 5G MIMO setting

without explicitly specifying the classification mechanisms. The performance metrics of

TDL NLOS channels, such as the downlink throughput and bit error rate (BER), have

been investigated in [69]. The CDL model was used in a 5G millimeter wave scenario

in [70], and Winner II model-based research was conducted for multipath propagation

modeling in [71].

2.6.1 Tapped Delay Line model

The TDL channel model represents the multipath propagation by modeling the channel

as a linear filter with discrete delays, called taps, with each tap having a certain

attenuation and phase shift [72, 73, 74]. This model assumes that the propagation

medium is static over time. The amplitude of each tap represents the strength of a

specific signal path, whereas the duration it takes for the signal to traverse that path is

described by the delay [72, 73, 74].

Equation (23) states the general equation that characterizes the TDL channel model

[72]:

ℎ(ᵆ�)= ᵅ`ᵯÀ *ᵯð (ᵆ�- ᵅ`ᵰð ) ,∑
ᵄ�

ᵅ`=0

(23)

Where ℎ(ᵆ�) denotes the impulse response of the channel at time ᵆ�, ᵄ� is the number of

configured taps, ᵅ`ᵰð is the delay of the ᵆ�ℎᵅ` channel tap relative to the delay of the first tap, ᵅ`ᵯÀ

denotes the complex gain of the ᵆ�ℎᵅ` channel tap, and ᵯð (ᵆ�) represents the Dirac delta

function [72].

Figure 4 presents a simplified schematic diagram of the TDL channel model, wherein

the input and output signals of the system are designated as ᵅ`ᵅ°ᵄ` (ᵆ�) and ᵅÀᵆ ᵆ�ᵄ` (ᵆ�) ,

respectively. The AWGN is denoted as ᵆ@(ᵆ�) in the Figure [72].
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Figure 4. Simplified block diagram of the TDL channel model [72].

2.6.2 Clustered Delay Line model

The foundation of the CDL channel model is centered on the notion of clusters, which

are groups of signal paths that reach the receiver with similar angles of arrival and

delays [73, 74, 75]. Within each cluster, there are several sub-paths, which represent

the individual multipath components within the cluster [73, 74, 75].

The CDL model considers the different characteristics of the LOS and NLOS

components, which have dissimilar delay spreads, power delay profiles, and angles of

arrival [73, 74, 75]. The power delay profile conveys how the signal strength attenuates

as a function of time delay, while the delay spread signifies the range of time delays

observed in the received signal [73, 74, 75]. Additionally, the angle of arrival specifies

the orientation of the incoming signal in relation to the receiver, as reported in [73, 74,

75]. The CDL model is a more advanced model than the TDL model, which assumes a

simple delay line structure without considering the clustering of multipath components

[73, 74, 75].

Equation (24) states the general equation that characterizes the CDL channel model

[73, 75]:

ℎ(ᵆ�)=
ᵅ`,ᵅpᵯÀ *ᵯð(ᵆ�- ᵅ`,ᵅpᵰð )∑

ᵄ�

ᵅp=0

* -ᵅp2ᵰ°ᵅ0ᵃ`ᵆ�ᵅ ,∑
ᵄ�

ᵅ`=0

(24)

Where ℎ(ᵆ�) denotes the impulse response of the channel at time ᵆ�, ᵄ� represents the

amount of configured clusters,  ᵄ� specifies the number of paths in the ᵆ�ℎᵅ` cluster ᵅ` , ᵅpᵯÀ is

the complex gain of the ᵆ�ℎᵅp path in the ᵆ�ℎᵅ` cluster which represents the attenuation and
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phase shift caused by reflections and scattering in the channel, f represents the carrier

frequency, ᵅ` , ᵅpᵰð denotes the delay of the ᵆ�ℎᵅp path in the ᵆ�ℎᵅ` cluster, and ᵯð (ᵆ�) is the Dirac

delta function [73, 75].

2.6.3 Winner II model

This model is designed to operate in frequencies up to 6 GHz and can simulate the

propagation of radio waves from urban to rural environments, including intermediate

mixtures of these environmental domains [76, 77]. Winner II belongs to the category of

Geometry-based Stochastic Channel Models (GSCM) [76, 77]. The GSCM approach is

based on extensive measurements of radio wave propagation in different

environments. The measurements extract statistical parameters that describe the

spatial distribution and characteristics of the multipath clusters and components [76],

[77]. After extracting relevant parameters like the angle of departure, angle of arrival,

time delay, and received power, a stochastic channel model can be constructed. This

model can then be utilized to simulate the propagation of radio waves in similar

environments [76]. The GSCM approach is particularly well-suited for modeling

complex environments with many objects and structures, such as high-rise buildings

and low-rise buildings mixed with open spaces [76].

The Winner II channel model is constructed as a collection of multipath clusters that

could effectively account for the impacts of multipath transmission [76]. With 12 distinct

propagation scenarios available, this model can accurately represent a diverse array of

indoor and outdoor environments [78]. These scenarios include indoor hotspot, indoor

office, urban macro-cell, urban micro-cell, rural macro-cell, and suburban macro-cell,

among others [78]. Each scenario is distinguished by a unique set of parameters,

including the number and spatial distribution of clusters, cluster power, and power and

delay characteristics of the multipath components within each constituent cluster [76]

[78]. The propagation scenario of urban macro-cell (C2) was chosen for this thesis

based on its applicability to a city area [79].
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3. METHODOLOGY USED FOR DATA

ANALYSIS AND LOS/NLOS DETECTION

3.1 Simulation environment

The simulation environment developed for the measurements and analysis is described

in this section. The following figure depicts the overall flow chart highlighting the

specific segments of the simulation environment.

Figure 5. The simulation environment [7].

5G base stations were configured according to the parameters specified under section

3.2, which conforms to the 3GPP specifications. A fading multipath channel model was

designed to simulate with either 3GPP channel models (TDL or CDL) or the Winner II

channel model with AWGN added to these channels. TDL-A, TDL-B and TDL-C are

non-line-of-sight channels, while TDL-D and TDL-E are line-of-sight channels.

Similarly, CDL-A, CDL-B and CDL-C are NLOS channels, while CDL-D and CDL-E are
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LOS channels. Five base stations were configured to transmit each of these channel

types for the simulations. For the Winner II model, two base stations with one channel

apiece were configured with LOS and NLOS conditions. Randomly varying levels of

SNR between 0 dB and -20dB designated the channel conditions. The composite

received signal was used to extract the statistical features of the channel impulse

response considered for the measurements.

This thesis employs a generic 5G MIMO system model. Equation (25) signifies the

received signal 2ᵄà
ᵄÀ (ᵆ�) at the ᵆ�ℎ

2ᵄà element of the MIMO antenna receiver, where ᵆ�ᵆPᵄ�

antenna elements are present at the transmitter side, and ᵅðᵆPᵄ� denotes the number of

receiver antenna elements. The signal 2ᵄà
ᵄÀ (ᵆ�) is modeled as a sum of contributions from

all the subcarriers and all the OFDM symbols transmitted from different antennas.

2ᵄà
ᵄÀ (ᵆ�) =∑

ᵄ�-1

ᵅ�=0

∑
ᵆ�ᵅ�ᵄ� -1

ᵅ�=0

2ᵅ�,ᵅ�, 1ᵄà ᵄàᵆP∑
ᵆ�ᵆPᵄ� -1

1ᵄà =1

ᵅp2ᵰ°ᵅ�ᵆ�

ᵄpᵅ ᵅ@ (ᵆ�-ᵅ� ᵆ�ᵄp ) *
21ᵄà ,ᵄàℎ (ᵆ�) +ᵆ@ (ᵆ�) ,

(25)

Where ᵄ� specifies the number of OFDM symbols considered for the simulations, ᵆ�ᵅ�ᵄ�

denotes the sub-carrier count,
2

ᵅ� , ᵆ� , 1ᵄà ᵄàᵆP is the ᵆ�ℎᵅ� modulated symbol of to the ᵆ�ℎᵅ�

subcarrier that is transmitted by the ᵆ�ℎ
1ᵄà antenna, and received by the ᵆ�ℎ

2ᵄà antenna, ᵅ@ (ᵆ� − ᵅ� ᵆ�ᵄp )
is the transmitter pulse shape,

21ᵄà , ᵄàℎ (ᵆ�) is the channel impulse response from the ᵆ�ℎ
1ᵄà

transmit antenna to the ᵆ�ℎ
2ᵄà receive antenna, ᵆ@ (ᵆ�) denotes AWGN, T is the symbol

interval derived from the sub-carrier spacing of ᵆ�ᵅ�Δᵅ0 , and ᵆ�T is the symbol duration with

the Guard Interval. Equation (25) characterizes the mathematical model of the received

signal in a MIMO-OFDM system, taking into account the effects of channel

propagation, noise, and spectral characteristics of the transmitted signal.

The base stations were configured to transmit the downlink PRS, which serves as the

primary reference signal for supporting downlink-based positioning techniques. The

effectiveness of uplink SRS for LOS detection was also tested. The received signal

was correlated with the reference positioning signal to identify the LOS condition. If

there is a high correlation with a prominent peak, the signal has most probably traveled

through a direct LOS channel. Conversely, a low correlation value indicates NLOS

propagation. Figure 6 and Figure 7 display examples of the correlation output achieved

from the utilized channel models for LOS and NLOS, respectively.
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Figure 6. Correlation output comparison of LOS and NLOS TDL channels; several
realizations per channel.
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Figure 7. Correlation output comparison of LOS and NLOS Winner II channels;
several realizations per channel.
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As explained in section 2.3, most of the prominent machine learning techniques for

classification scenarios were used for the initial testing, whereas, for the final analysis,

three distinct methods were selected to illustrate the outcomes.

3.2 Simulation parameters

The specific parameters used for the simulations were chosen to align with the 3GPP

specifications, and a typical urban macro-cell propagation scenario was assumed for

the research.

Table 2: Parameter configuration for final MATLAB simulations.

Simulation parameter Value used for simulations

Channel models TDL, CDL, Winner II

TDL channel types
TDL-A, TDL-B and TDL-C (NLOS)
TDL-D and TDL-E (LOS)

CDL channel types
CDL-A, CDL-B and CDL-C (NLOS)
CDL-D and CDL-E (LOS)

Winner II channel types 11 C2 (Urban macro-cell) LOS and NLOS

Reference signal Downlink PRS or uplink SRS.

Range of SNR Randomly distributed between 0 dB and −20 dB.

Carrier frequency (fc) 3.5 GHz

Sampling rate (sc) 130 MHz

Number of subcarriers 8192

Subcarrier spacing (∆ f ∗ sc) 15 kHz

Amount of resource blocks (NRB) 52

Amount of subcarriers per resource
block (Nscprb)

12

Bandwidth (BW) 9.36 MHz

Number of 10 ms frames processed
during each iteration

1

Time-correlation window length 100 samples

ULA array length of the BS 8

ULA array length of the UE 4

Maximum TX-RX distance 3500 m

Number of samples per channel
1000 random iterations per channel type were
used for the final simulations.
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3.3 Setup for actual measurements (NewSense Project)

The equipment setup used to extract real measurement samples with the National

Instruments USRP is detailed in [7, 80]. These measurements were mainly intended for

the EU-funded NewSense project but were also used for the thesis to analyze the

effect of real measurement data compared to simulated data samples [1].

To establish the setup, three USRPs were employed, namely two NI USRP-2954R and

one NI USRP-2953R [7, 80]. These USRPs were synchronized using an OctoClock

CDA-2990, and one USRP was set as the transmitter (TX), while the other two were

designated as receiver channels (RXs) [7, 80]. The USRPs are software-defined radios

that can send and receive signals across a wide range of frequencies [7, 80]. The

USRPs were designed to transmit and receive signals in the 2.1 GHz band [7, 80].

LabVIEW 2021 was the software used to interact with the National Instruments USRPs

and facilitated a graphical user interface for regulating the system and extracting data

from the USRPs [7, 80].

In the transmitter, a Yagi antenna was employed, which has a gain of 5 dBi and

operates within a frequency range of 700 MHz to 6 GHz [7, 80]. Meanwhile, a 3-

Dimensional Vector Antenna (3DVA) with eight ports was utilized as the receiving

antenna [7, 80]. However, only four of these ports were connected to the two receiver

USRPs, as this was deemed adequate for the research [7, 80]. Five SRS signals with

specific configurations were configured for both LOS and NLOS conditions [7, 80]. Four

ports of the 3DVA were used to extract the I/Q data for each SRS 5G signal under both

LOS and NLOS conditions [7, 80].

3.4 Various combinations of features used for testing

The following statistical features of the CIR were considered for the analysis. The

selection of these features was decided according to insights from scientific literature

during previous experiments conducted on LOS/NLOS detection, as explained in

section 2.4.

• Time Correlation

• FFT Correlation

• Complex Teager Kaiser

• Kurtosis

• Skewness
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The feasibility of correctly predicting LOS/NLOS channels under different SNR levels

were tested for various combinations of the above statistical features of the CIR. Table

3 highlights the combinations of features used for the measurements.

Table 3: Various combinations of features used for the analysis.

Number of
features used in
combination

Time
Correlation

FFT
Correlation

Kurtosis Skewness
Teager
Kaiser

For individual 
features

         

         

         

         

         

Combinations of 2
features each

         

         

         

         

         

         

         

         

         

         

Combinations of 3
features each

         

         

         

         

         

         

         

         

         

         

Combinations of 4
features each

         

         

         

         

         

All 5 features          
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3.5 Machine learning algorithms and kernel functions used for

testing

As pointed out in section 2.3, the most suitable classes of machine learning methods

for classification scenarios were selected for the initial testing phase.

 Support Vector Machine classifiers

 Decision Tree type classifiers

 Nearest Neighbour classifiers

 Neural Network classifiers

 Ensemble classifiers

 Gradient boosting based classifiers (XGBoost)

 Bagging type classifiers (Random Forest)

Each of these classes contains several different machine learning algorithms with

several kernel functions encompassing varied complexity measured by the kernel

scale, which would be suitable for specific scenarios. One objective of the project was

to ascertain which machine learning methods are the most suitable candidate for

discovering line-of-sight conditions in 5G wireless channels while subjected to a

diverse range of channel conditions.
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3.6 Analysis of simulated data

Several plots comparing the outputs for each of the selected statistical features of the

CIR at two different levels of the SNR are shown below.

 

Figure 8. Plot of Time Correlation for CDL channels at SNR of 0 dB and -10 dB.

 At SNR of -10 dB

 At SNR of 0 dB
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Figure 9. Plot of FFT Correlation for CDL channels at SNR of 0 dB and -10 dB.

 At SNR of 0 dB

 At SNR of -10 dB
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Figure 10. Plot of Kurtosis for CDL channels at SNR of 0 dB and -10 dB.

 At SNR of 0 dB

 At SNR of -10 dB
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Figure 11. Plot of Skewness for CDL channels at SNR of 0 dB and -10 dB.

 At SNR of 0 dB

 At SNR of -10 dB
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Figure 12. Plot of Complex Teager Kaiser feature for CDL channels at SNR of 0 dB
and -10 dB.

 At SNR of 0 dB

 At SNR of -10 dB
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The challenge of correctly differentiating the channels using conventional threshold-

based detection methods with a single feature or a combination of statistical features at

poor channel conditions is clearly visible from the plots above. At an SNR of 0 dB, it is

possible to determine a somewhat clear threshold for the LOS/NLOS hypothesis for

threshold detection. However, at the lower SNR level of -10 dB, it is nearly impossible

to distinguish the channels to determine a viable detection threshold. This fact is clearly

evident when the plots of kurtosis and skewness are analyzed where it is possible to

distinguish a clear hypothesis to differentiate LOS channels (CDL-D and CDL-E) and

NLOS channels (CDL-A, CDL-B and CDL-C) at the SNR of 0 dB. Conversely, the plots

are somewhat merged at the SNR of 10 dB (with the exception of CDL-B), making it

harder to identify a distinct threshold. An alternative approach is to deploy machine

learning methods for LOS/NLOS classification and channel type detection.

3.7 Conventional threshold-based detection for benchmarking

A conventional threshold-based detection algorithm was adopted as a point of

reference to compare the results achieved through the ML-based methodology used in

the thesis. For both LOS and NLOS channels, the threshold value was determined

based on the ratio between the maximum peak and the next highest point outside the

primary lobe of the time correlation. The threshold value was selected to achieve the

highest level of accuracy possible for each dataset.

By determining the best possible threshold value, the conventional threshold-based

detection algorithm could achieve the highest detection accuracy possible for each

scenario. The machine learning approach still resulted in better accuracy compared to

the conventional method, even when the traditional approach was optimized with the

best possible threshold value.

3.8 Normalizing the results

With the intention of ascertaining the impact of the randomness of the generated signal

space, multiple iterations were conducted for each case, and it was found that there

can be around a 2% variation in the detection accuracy as a result of the random

selection of samples. For the final results, normalized values over ten iterations were

used to iron out the effects of randomness.

Along with verification of the results at fixed levels of SNR, the real-life situation of 5G

wireless channels was modeled using a random SNR generation algorithm which

created random signal samples with an SNR which altered between 0 dB to -20 dB
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representing the fluctuating channel conditions. Figure 13 depicts an example plot of

the randomly varying SNR within the range from 0 dB to -20 dB.

Figure 13. Plot of randomly varying SNR within the range from 0 dB to -20 dB.

Table 4 shows the effects of averaging the results while using simulations with variable

SNR for TDL channels as an illustration of the procedure followed.

Table 4: LOS/NLOS classification accuracy with variable SNR for TDL channels.

Chan
nel 
type

ML algorithm
Iteration index Final

classification
accuracy %1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

TDL 
with 
PRS

Fitcensemble 
(XGBoost)

79% 81%81% 78% 79% 80% 80% 80% 80% 80% 80%

Fitensemble
(Random 
Forest)

78% 78%80% 78% 77% 80% 80% 81% 80% 79% 79%

Medium 
Gaussian 
SVM

82% 82%84% 81% 80% 83% 82% 84% 82% 82% 82%

TDL 
with 
SRS

Fitcensemble 
(XGBoost)

78% 78%77% 79% 77% 77% 79% 78% 80% 77% 78%

Fitensemble
(Random 
Forest)

77% 77%77% 77% 77% 75% 81% 78% 81% 77% 78%

Medium 
Gaussian 
SVM

78% 78%79% 80% 80% 78% 81% 82% 81% 80% 80%

The simulations were conducted for ten separate iterations with randomly generated

samples as per the tested condition, and the averaged value was regarded as the final

result, as exemplified in Table 4.
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3.9 Effect of the sample count

The impact of the random sample count on the detection accuracy was also tested.

Simulations were conducted using 100, 500, 1000, 2000, 5000 and 10000 samples

from each base station to identify the optimum number of samples.

Table 5: Effect of the sample count on LOS/NLOS classification accuracy.

Channel 
conditio
n (SNR)

Machine 
learning 
algorithm

LOS/NLOS classification accuracy

500 
samples

2500 
samples

5000 
samples

10000 
samples

25000 
samples

50000 
samples

Sample
s from 
each BS
= 100

Sample
s from 
each BS
= 500

Sample
s from 
each BS
= 1000

Sample
s from 
each BS
= 2000

Sample
s from 
each BS
= 5000

Sample
s from 
each BS
= 10000

SNR = -
10 dB

Medium 
Gaussian 
SVM

80% 87% 89% 89% 91% 91%

Fitcensembl
e (XGBoost) 83% 90% 89% 89% 90% 90%

Fitensemble
(Random 
Forest)

83% 87% 88% 87% 89% 88%

Variable 
SNR 
range
from 0 
dB to -20
dB

Medium 
Gaussian 
SVM

78% 80% 82% 82% 83% 83%

Fitcensembl
e (XGBoost) 78% 80% 80% 79% 79% 79%

Fitensemble
(Random 
Forest)

75% 76% 79% 79% 79% 79%

The results show that the percentage of detection accuracy fully stabilizes at 10000

samples (2000 samples from each base station). For the final analysis, 5000 samples

were selected (1000 samples from each base station) based on the level of accuracy

and the time taken for execution. Therefore, in total, 5000 samples each were used for

the TDL and CDL models, while for the Winner II model, 2000 random samples were

used with each LOS\NLOS channel configured with 1000 random samples.

The boldface font is used in Table 5 to highlight the classification accuracy for the most

prudent scenarios with the 1000 and 2000 random samples, as explained above.
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4. SIMULATION AND MEASUREMENT BASED

RESULTS AND ANALYSIS

4.1 Performance comparison for various combinations of

features

The feasibility of correctly predicting LOS/NLOS channels was tested for various

combinations of statistical features of the CIR of the signal under different SNR levels.

Table 6 shows the percentage of accuracy achieved for all the possible combinations

of the five statistical features used in the project under different ranges of SNR for TDL

channels. The results obtained for CDL channels are included in Appendix 7.3.

Table 6: LOS/NLOS classification accuracy of various combinations of features for TDL
channels with PRS signals.

Number of
features 
used in 
combinati
on

Combination of features

LOS/NLOS detection accuracy

SNR
= 0
dB

SNR
= -10
dB

SNR
= -20
dB

Variabl
e SNR
from 0
dB to -
20 dB

All 5 
features

Time Correlation + FFT Correlation + Kurtosis
+ Skewness + Teager Kaiser

100% 87% 54% 83%

Combinati
ons of 4 
features 
each

Time Correlation + FFT Correlation + Kurtosis
+ Skewness

100% 88% 52% 83%

Time Correlation + FFT Correlation + Kurtosis
+ Teager Kaiser

100% 87% 54% 83%

Time Correlation + FFT Correlation +
Skewness + Teager Kaiser

100% 87% 54% 83%

Time Correlation + Kurtosis + Skewness +
Teager Kaiser

100% 88% 55% 83%

FFT Correlation + Kurtosis + Skewness +
Teager Kaiser

100% 82% 56% 80%

Combinati
ons of 3
features
each

Time Correlation + FFT Correlation + Kurtosis 100% 88% 52% 83%

Time Correlation + FFT Correlation +
Skewness

100% 88% 52% 83%

Time Correlation + FFT Correlation + Teager
Kaiser

100% 87% 54% 83%

Time Correlation + Kurtosis + Skewness 100% 90% 51% 84%

Time Correlation + Kurtosis + Teager Kaiser 100% 88% 55% 83%

Time Correlation + Skewness + Teager
Kaiser

100% 88% 55% 83%

FFT Correlation + Kurtosis + Skewness 100% 81% 53% 79%

FFT Correlation + Kurtosis + Teager Kaiser 100% 82% 56% 80%
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FFT Correlation + Skewness + Teager Kaiser 100% 81% 56% 80%

Kurtosis + Skewness + Teager Kaiser 100% 80% 55% 79%

Combinati
ons of 2
features
each

Time Correlation + FFT Correlation 100% 88% 53% 83%

Time Correlation + Kurtosis 100% 90% 51% 84%

Time Correlation + Skewness 100% 90% 52% 84%

Time Correlation + Teager Kaiser 100% 88% 55% 83%

FFT Correlation + Kurtosis 100% 81% 53% 78%

FFT Correlation + Skewness 100% 80% 53% 78%

FFT Correlation + Teager Kaiser 100% 80% 55% 79%

Kurtosis + Skewness 99% 79% 52% 79%

Kurtosis + Teager Kaiser 100% 80% 55% 79%

Skewness + Teager Kaiser 100% 79% 55% 79%

For
individual
features

Time Correlation 100% 90% 51% 84%

FFT Correlation 100% 77% 53% 77%

Kurtosis 99% 65% 53% 69%

Skewness 97% 65% 42% 68%

Teager Kaiser 100% 79% 55% 78%

The boldface font is used in Table 6 and the rest of the proceeding tables to highlight

the maximum classification accuracy achieved for each listed scenario.

According to the results, the respective rank of the statistical features used for the LOS

detection in terms of the percentage of accuracy is listed below.

1. Time Correlation

2. FFT Correlation

3. Complex Teager Kaiser

4. Kurtosis

5. Skewness

It was deduced that the “Time Correlation” used alone would present the same

precision of detection as per the combination of all the features taken together for both

TDL and CDL channels under diverse channel conditions. This observation would

mean the additional features would not increase the classification accuracy. Since

other features result in considerably lower accuracy when applied individually, it can be

argued that the addition of these features could even have a detrimental effect. This

observation is especially apparent for kurtosis and skewness.
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4.2 LOS detection accuracy of different machine learning

methods

As explained in the previous sections, simulations were conducted for a

comprehensive list of classification-oriented ML algorithms to ascertain the viability of

LOS detection. The detailed results of the experiment are included in Appendix 7.1.

The top 5 best-performing machine learning algorithms and the realized precision as

per the obtained results in the research are tabulated below.

The results obtained for TDL channels configured with PRS signals are updated in

Table 7.

Table 7: LOS/NLOS classification accuracy of top 5 ML algorithms for TDL channels.

Machine Learning 
method

TDL channels – PRS signals

SNR of
0 dB

SNR of
-5 dB

SNR of
-10 dB

SNR of
-15 dB

SNR of
-20 dB

Random SNR 
from 0 dB to -20

dB

Medium Gaussian SVM 100% 100% 91% 60% 52% 83%

Coarse Gaussian SVM 100% 99% 89% 58% 49% 83%

Cubic SVM 100% 100% 88% 60% 53% 81%

Quadratic SVM 100% 99% 90% 58% 51% 82%

Subspace Discriminant 100% 99% 90% 59% 48% 81%

The results obtained for CDL channels configured with PRS signals are given in Table

8.

Table 8: LOS/NLOS classification accuracy of top 5 ML algorithms for CDL channels.

Machine Learning 
method

CDL channels – PRS signals

SNR of
0 dB

SNR of
-5 dB

SNR of
-10 dB

SNR of
-15 dB

SNR of
-20 dB

Random SNR 
from 0 dB to -20

dB

Medium Gaussian SVM 100% 100% 95% 79% 59% 88%

Cubic SVM 100% 100% 96% 79% 56% 87%

Bagged Trees 100% 98% 95% 81% 52% 88%

Quadratic SVM 100% 100% 95% 78% 57% 88%

Medium Tree 100% 99% 95% 80% 53% 86%
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According to the results presented in Table 7 and Table 8, it is possible to obtain

around 100% accuracy at an SNR of 0 dB using these machine learning algorithms.

Additionally, it can be deduced that SVM algorithms are the most suitable for

classification scenarios. Specifically, Medium Gaussian SVM produced the overall

highest percentage of accuracy when all the simulation conditions were considered. 

In addition to the designated classification algorithms in MATLAB, XGBoost and

Random Forest, which are frequently used classification algorithms, were also

implemented in MATLAB for the investigation. For this purpose, the “fitcensemble"

kernel function in MATLAB, which is similar to XGBoost in Python and “fitensemble”

kernel function, which is identical to Random Forest in Python, was used. The results

were compared with the Medium Gaussian SVM algorithm, which provided the best

results out of the designated classification algorithms in MATLAB.

 Medium Gaussian SVM

 Fitcensemble (XGBoost)

 Fitensemble (Random Forest)

The following table depicts the results obtained using above mentioned ML algorithms.

Table 9: Comparison of LOS/NLOS classification accuracy for XGBoost, Random Forest
and Medium Gaussian SVM.

Detection 
Accuracy %

TDL 
channels 
with PRS

TDL 
channels 
with SRS

CDL 
channels 
with PRS

CDL 
channels 
with SRS

Winner II
channels 
with PRS

Winner II
channels 
with SRS

Fitcensemble 
(XGBoost) 80% 78% 88% 86% 98% 97%

Fitensemble
(Random 
Forest)

79% 78% 87% 85% 98% 96%

Medium 
Gaussian 
SVM

82% 80% 89% 86% 98% 96%

As interpreted from the outcomes, the Medium Gaussian SVM algorithm still showed

marginally better classification accuracy. Therefore, for the remainder of the thesis,

Medium Gaussian SVM was elected as the main LOS detection algorithm. 
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Following confusion charts display the results of selected sample individual iterations.

Confusion charts were used to visualize the accuracy of each classification scenario,

and they present valuable insight into which scenarios are being commonly

misclassified and how frequently this occurs.

Figure 14. Confusion chart for LOS/NLOS classification at SNR of 0 dB for TDL
channels.

Figure 15. Confusion chart for LOS/NLOS classification at SNR of 10 dB for TDL

channels.
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Figure 16. Confusion chart for LOS/NLOS classification with random SNR from 0
dB to -20 dB for TDL channels.

Figure 17. Confusion chart for LOS/NLOS classification with random SNR ranging 
from 0 dB to -20 dB for CDL channels.

The higher percentage of misclassification for the LOS scenario in the above confusion

charts confirms that the accurate identification of LOS channels is relatively more

demanding than NLOS channels. Additionally, the sequence of figures visualizes the

difficulty of correct classification at poorer channel conditions.
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4.3 Effect of kernel functions

It was observed that the LOS classification accuracy depends not only on the choice of

the machine learning algorithm but also on selecting the most suitable kernel function.

The following figure shows the variation in the archived classification accuracy for

several kernel functions of three different ML methods. Choosing the appropriate kernel

function and scale is crucial to prevent both the over-fitting and under-fitting of the

calibrated model. Over-fitting arises when the model adheres too closely to the training

data, resulting in suboptimal performance on novel data. Conversely, under-fitting

arises when the model is overly simplistic to grasp the underlying patterns in the data,

leading to reduced performance on both the training and testing data.

Figure 18. Comparison of LOS classification accuracy for different kernel functions.

After conducting simulations with different configurations, it was determined that the

SVM algorithm using a medium Gaussian kernel yielded the most optimal outcomes.
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4.4 Performance comparison at different levels of SNR

The table below presents the efficacy of machine learning algorithms when subjected

to diverse channel conditions, as indicated by the signal-to-noise ratio.

Table 10: Comparison of LOS/NLOS classification accuracy variation with channel
conditions.

Channel
Model

Machine learning 
algorithm

Precision of LOS/NLOS detection

SNR 
of 0 
dB

SNR 
of -5 
dB

SNR 
of -10 
dB

SNR 
of -15 
dB

SNR 
of -20 
dB

Random 
SNR from
0 dB to -
20 dB

CDL 
with 
PRS

Medium Gaussian 
SVM

100% 100% 96% 83% 61% 90%

Fitcensemble 
(XGBoost)

100% 99% 97% 82% 58% 89%

Fitensemble
(Random Forest)

100% 100% 96% 82% 60% 87%

TDL 
with 
PRS

Medium Gaussian 
SVM

100% 99% 89% 60% 52% 82%

Fitcensemble 
(XGBoost)

100% 99% 89% 58% 54% 80%

Fitensemble
(Random Forest)

100% 99% 88% 60% 56% 79%

CDL 
with 
SRS

Medium Gaussian 
SVM

100% 100% 94% 76% 55% 82%

Fitcensemble 
(XGBoost)

99% 100% 96% 74% 55% 84%

Fitensemble
(Random Forest)

100% 100% 96% 76% 56% 83%

TDL 
with 
SRS

Medium Gaussian 
SVM

100% 99% 88% 57% 53% 79%

Fitcensemble 
(XGBoost)

99% 99% 88% 56% 54% 77%

Fitensemble
(Random Forest)

100% 100% 88% 58% 55% 77%

At an SNR level of 0 dB, it was possible to realize a classification accuracy of 100% for

almost all the formulations. Very good LOS/NLOS classification accuracy was

ascertained for up to a low SNR level of -10 dB for both TDL and CDL channels with a

positive detection capability until an SNR of around -15 dB. Achieving good LOS/NLOS

detection accuracy was possible for CDL channels even at -15 dB. Since there are only

two possible outcomes, it can be concluded that the machine learning algorithms

cannot determine LOS conditions accurately when the channel conditions have further

deteriorated to an SNR level of -20 dB. At this level, the precision of identification

converges to around 50%, equating to a random probability.

However, the machine learning algorithms demonstrated greater performance in

detection even at very low levels of SNR compared to threshold-based detection

methods used in the scientific literature for detecting LOS for 5G wireless channels.
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4.5 PRS vs. SRS signals

The following graphs visually compare the LOS classification accuracy for PRS and

SRS signals under variable channel conditions. It is clearly discernible that the PRS

signals present a distinct advantage over SRS signals for both TDL and CDL channels.

Figure 19. Comparison of PRS and SRS signals with CDL channels.

Figure 20. Comparison of PRS and SRS signals with TDL channels.
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4.6 Channel type identification

The feasibility of identifying the correct channel type was also tested under various

conditions, and the observed classification accuracy is mentioned in Table 11. This

offered a useful insight into the finer details of the LOS identification procedure. Even

though the following table summarizes only the channel type identification accuracies

of the three ML algorithms selected for the final analysis, the complete results are

available for reference in Appendix 7.2.

Table 11: Channel type identification accuracy for TDL and CDL channels.

Channel
Model

Machine learning 
algorithm

Precision of channel type identification

SNR of
0 dB

SNR of
-5 dB

SNR of
-10 dB

SNR of
-15 dB

SNR of
-20 dB

Random
SNR
from 0
dB to -
20 dB

CDL

Medium Gaussian 
SVM

100% 100% 92% 69% 28% 79%

Fitcensemble 
(XGBoost)

100% 99% 93% 71% 25% 78%

Fitensemble
(Random Forest)

99% 98% 89% 64% 27% 77%

TDL

Medium Gaussian 
SVM

100% 99% 83% 41% 19% 65%

Fitcensemble 
(XGBoost)

100% 98% 83% 38% 20% 64%

Fitensemble
(Random Forest)

97% 94% 65% 32% 21% 45%

It was possible to obtain very good prediction accuracy for up to an SNR level of -10 dB

and positive detection up to an SNR level of -15 dB. Similar to LOS/NLOS detection,

better results were obtained for CDL channels when compared with TDL channels. The

confusion charts demonstrating the results obtained for some of the test cases are

shown below.
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Figure 21. Confusion chart for channel type identification at SNR of 0 dB for TDL
channels.

Figure 22. Confusion chart for channel type identification at SNR of 10 dB for TDL
channels.
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Figure 23. Confusion chart for Channel type detection with random SNR from 0 dB
to -20 dB for CDL channels.

Figure 24. Confusion chart for Channel type detection with random SNR between 0
dB and -20 dB for TDL channels.
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The detailed analyses of the confusion charts above imply that the detection error is

more likely to happen between channels with similar propagation characteristics. For

example, it is more likely to detect a CDL-E/TDL-E channel as a CDL-D/TDL-D, which

are both line-of-sight channels. Similarly, confusion is also more likely to happen

between CDL-A, CDL-B and CDL-C, all of which are NLOS channels in the case of

clustered delay line type of channels and between TDL-A, TDL-B and TDL-C, all of

which are NLOS channels in the case of tapped delay line type of channels. It was

realized that correctly identifying line-of-sight channels is more challenging, especially

at lower levels of SNR. This fact can be derived from the results in Figure 25, which

shows the lowest precision for TDL-D (64.5%) and TDL-E (48.5%).

4.7 Comparison of results for TDL, CDL and Winner II channel

models

It was observed that the channel model with the highest complexity, Winner II,

achieves the best results for LOS classification. This could be due to the richness of

features of this channel model, which would aid in distinguishing between LOS and

NLOS circumstances. Similarly, the effectiveness of CDL and TDL channels is again

related to the richness of features, as the more complex CDL model showed better

results. The following figure visualizes the comparison in performance of the three

channel models.

Figure 25. Comparison of LOS classification accuracy for the different channel
models.

.
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4.8 Threshold-based detection vs. use of machine learning

algorithms

As explained in section 3.7, the ratio between the highest peak and the next highest

point beyond the primary lobe of the time correlation was selected as the hypothesis for

threshold-based detection. The threshold value of 2.3 resulted in the highest detection

accuracy for the simulated data. However, it must be noted that this threshold value

could vary based on the generated sample data. This means that the optimal threshold

value may differ for different datasets or scenarios and must be determined

experimentally for each case.

The following figure shows a sample of the calculated values used to deduce the

optimum threshold concerning the TDL model with two LOS channels and three NLOS

channels.

Figure 26. Plot of the ratio between the highest peak and the next highest point
beyond the primary lobe of the time correlation for TDL channels.
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Table 12 displays the final results for the LOS and NLOS classification precision using

the time correlation feature at variable SNR levels.

Table 12: LOS/NLOS classification results for simulated data with variable SNR - Time
Correlation – Machine Learning vs. Threshold Based Detection.

Detection 
Accuracy %

TDL 
channels 
with PRS

TDL 
channels 
with SRS

CDL 
channels 
with PRS

CDL 
channels 
with SRS

Winner II
channels 
with PRS

Winner II
channels 
with SRS

Fitcensemble 
(XGBoost)

80% 78% 88% 86% 98% 97%

Fitensemble
(Random 
Forest)

79% 78% 87% 85% 98% 96%

Medium 
Gaussian 
SVM

82% 80% 89% 86% 98% 96%

Threshold 
based
detection

67% 63% 66% 61% 75% 72%

From the obtained results, it is apparent that the machine learning-based detection

outperformed the conventional threshold detection algorithm that was optimized

through empirical testing for each scenario. The machine learning approach was able

to achieve better detection accuracy for all channel types and was robust across a

range of SNR levels.

4.9 Results for real measurement data

The threshold-based detection algorithm achieved the highest precision for the actual

measurement data when the threshold was set to 10.5. It must be noted that this

optimal threshold value may differ for different datasets or scenarios and may need to

be determined experimentally for each case.

Figure 27 shows a sample of the calculated values used to deduce the optimum

threshold for real measurement data.
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Figure 27. Plot of the ratio between the highest peak and the next highest point
beyond the primary lobe of the time correlation for real measurement data.

Table 13 displays the results for the precision of detection of LOS channels achieved

using machine learning algorithms for actual measurement data collected during the

NewSense project for various sub-divisions of training and testing data [1].

Table 13: LOS/NLOS classification results for real measurement data.

Classification Accuracy %
Training 
80% – 
testing 20%

Training 
50% – 
testing 50%

Training 
20% – 
testing 80%

Training 
10% – 
testing 90%

Medium Gaussian SVM 96% 92% 92% 91%

Fine Gaussian SVM 100% 100% 98% 90%

Fitensemble (Random 
Forest)

100% 95% 65% 55%

Fitcensemble (XGBoost) 99% 99% 97% 94%

The maximum accuracy obtained for the threshold-based method was 72%. In

comparison, the machine learning algorithms used in the thesis, including XGBoost

and Gaussian SVM classifiers, could achieve superior results consistently, even with a

very low percentage of training data. These results demonstrate that ML algorithms can

still achieve high levels of accuracy even with limited training data (training 10% –

testing 90%). This is an important finding because it suggests that ML algorithms would

be a practical and effective solution for channel classification tasks in real-world 5G

network scenarios where training data could be limited.
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5. CONCLUSION AND FUTURE WORK

The primary emphasis of the thesis was to examine and critically analyze machine

learning-based LOS/NLOS identification methodologies focused on 5G wireless

communications under various propagation environments modeled by different channel

types (TDL, CDL, and Winner II) and channel conditions simulated by the signal-to-

noise ratio. The study uses statistical features of the channel impulse response in

conjunction with diverse machine learning algorithms to accurately detect LOS/NLOS

conditions.

Which channel model out of TDL, CDL, and Winner II channels produces the best

LOS/NLOS classification results? The simulations in the study were based on three

renowned channel models for 5G signals, namely TDL, CDL, and Winner II channels.

These channel models are widely used in the literature to model the 5G wireless

channel under different propagation conditions and scenarios. Compared to the CDL

and Winner II models, the TDL channel model is considered to be the most

straightforward one. This is because it has fewer features when it comes to channel

propagation, antenna-array characteristics, and clustering profiles. The study shows

that the Winner II type channel models result in the best LOS detection accuracy,

followed by CDL, while TDL channels are comparatively more difficult to detect. This

suggests that the richness of features in the channel model improves the detection

accuracy, as the additional features capture more information about the channel

characteristics, resulting in more accurate detection of the LOS/NLOS conditions.

What is the most effective combination of statistical features for effective LOS/NLOS

detection of 5G wireless channels under various channel conditions, as per the

research outcome? One of the key findings of the study is that high detection accuracy

can be achieved by using time-correlation alone, and additional derived features of the

CIR do not increase the classification accuracy significantly. The study shows that the

time-correlation feature of the CIR is highly correlated with the LOS/NLOS conditions

and is sufficient for achieving high detection accuracy, and the use of additional

features is not necessary.

What is the best machine learning algorithm for LOS/NLOS identification in 5G wireless

networks when tested under a range of criteria for both simulated random samples and
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real measurement data? The selection of the most suitable machine learning algorithm

and kernel function is critical in obtaining the best results for LOS/NLOS classification

in 5G wireless networks. The thesis evaluates several machine learning procedures,

which include XGBoost, Random Forest and SVM. The study finds that Medium

Gaussian SVM provides the highest precision in LOS classification in most of the

investigated scenarios. The findings also illustrate that the efficacy of the machine

learning approaches is subject to variability based on the signal type and channel

model. Thus, it underscores the significance of choosing the optimal algorithm and

kernel function tailored to the specific scenario.

How effective is uplink Sounding Reference Signals for LOS detection compared to

downlink Positioning Reference Signals? The results of the thesis show that PRS is

more suitable than SRS for LOS/NLOS detection in 5G wireless networks.

What is the most effective method for LOS/NLOS detection, threshold detection using

an individual feature, a combination of features or deploying machine learning

methods? The classification accuracies based on machine learning using simulated

data were as high as 98% for Winner II channels with PRS, whereas the lowest

accuracy of 80% was observed for TDL channels with SRS. However, these accuracy

values were significantly higher than the results obtained through threshold-based

detection for each corresponding scenario. Moreover, it was possible to achieve a

precision of 100% for measurement data with the machine learning-based approach,

which considerably outperformed the results obtained via threshold-based methods

which had a maximum accuracy of 72%. The results indicated that utilizing the time-

correlation feature solely in conjunction with a machine learning-based detection

approach would ensure the most optimal outcomes.

How well are the simulation-based results fitting the measurement-based results? It

was noted that the accuracy of the measurement-based data was superior to that of

the simulation-based data. This is due to the higher SNR present in the measurement

data, which is usually above 10 dB owing to calibration and measurement conditions.

In contrast, the simulation-based outcomes represent mean values across a range of

SNRs, varying between 0 dB and -20 dB.

The outcomes of the thesis demonstrate that machine learning algorithms could

provide significantly higher accuracy compared to conventional threshold-based

detection for both simulated data samples and actual measurement data. The results

based on real measurement data demonstrated that ML algorithms can still achieve

high levels of accuracy even with limited training data. The ability of a machine learning
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algorithm to generalize from restricted training data is an important factor in developing

accurate and reliable classification algorithms, as collecting large amounts of data for

training could be time-consuming and expensive. Therefore, the outcomes presented in

the thesis suggest that machine learning algorithms, such as XGBoost and Gaussian

SVM classifiers, would be a promising approach for the development of accurate and

reliable detection algorithms for 5G wireless communication systems.

5.1 Future work

In terms of future research, it is possible to replicate the analyzed scenarios for a more

comprehensive and varied dataset containing a diverse range of real 5G wireless

network measurements. For this purpose, it is imperative to obtain and scrutinize actual

5G wireless network measurements from an assortment of sources. This may entail

gathering data from a diverse range of network architectures and configurations,

different types of applications, and various topographical conditions. Simulations with a

more extensive and more varied dataset can help to understand better the behavior of

5G networks in different scenarios and under various conditions. It can also help to

identify potential issues and areas for improvement.
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7. APPENDICES

7.1 LOS/NLOS identification accuracy of different machine

learning methods

The detailed results obtained for the precision of LOS/NLOS classification using TDL

channels with PRS signals for different types of ML methods are presented in Table 14.

Table 14: LOS/NLOS detection accuracy of TDL channels with different ML methods.

Class of 
machine 
learning 
algorithm

Machine Learning 
Algorithm

LOS/NLOS detection accuracy

SNR 
of 0 
dB

SNR 
of -5 
dB

SNR 
of -
10 
dB

SNR 
of -
15 
dB

SNR
of -
20 
dB

Random 
SNR from
0 dB to -
20 dB

Support 
Vector 
Machine 
classifiers

Fine Gaussian SVM 60% 60% 60% 60% 60% 60%

Medium Gaussian SVM 100% 100% 91% 60% 52% 82%

Coarse Gaussian SVM 100% 99% 89% 58% 49% 81%

Linear SVM 100% 99% 89% 58% 49% 80%

Quadratic SVM 100% 99% 90% 58% 51% 81%

Cubic SVM 100% 100% 88% 60% 53% 80%

Neural 
Network 
classifiers

Narrow Neural Network 100% 99% 87% 59% 55% 78%

Medium Neural Network 100% 99% 89% 56% 52% 80%

Wide Neural Network 100% 99% 88% 59% 53% 78%

Bilayered Neural Network 100% 99% 89% 54% 52% 78%

Trilayered Neural Network 100% 99% 88% 57% 51% 78%

Nearest 
Neighbour
classifiers

Fine Nearest Neighbour 100% 96% 69% 53% 49% 73%

Medium Nearest 
Neighbour

100% 98% 74% 48% 46% 76%

Coarse Nearest Neighbour 100% 99% 80% 47% 49% 77%

Cosine Nearest Neighbour 100% 98% 82% 50% 46% 78%

Cubic Nearest Neighbour 100% 98% 73% 48% 47% 75%

Weighted Nearest 
Neighbour

100% 99% 76% 50% 49% 77%

Decision 
Tree type 
classifiers

Fine Tree 100% 95% 82% 53% 45% 75%

Medium Tree 100% 95% 83% 55% 44% 79%

Coarse Tree 99% 93% 83% 62% 44% 74%

Ensemble 
classifiers

Boosted Trees 60% 99% 89% 59% 50% 81%

Bagged Trees 100% 97% 87% 59% 53% 80%

RUSBoosted Trees 99% 96% 85% 59% 50% 79%

Subspace Discriminant 100% 99% 90% 59% 48% 80%
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The detailed results obtained for the precision of LOS/NLOS classification using CDL

channels with PRS signals for different types of ML methods are presented in Table 15.

Table 15: LOS/NLOS detection accuracy of CDL channels with different ML methods.

Class of 
machine 
learning 
algorithm

Machine Learning 
Algorithm

LOS/NLOS detection accuracy

SNR 
of 0 
dB

SNR 
of -5 
dB

SNR 
of -
10 
dB

SNR 
of -
15 
dB

SNR 
of -20
dB

Random 
SNR 
from 0 
dB to -20 
dB

Support 
Vector 
Machine 
classifiers

Fine Gaussian SVM 60% 60% 60% 60% 60% 60%

Medium Gaussian SVM 100% 100% 95% 79% 59% 88%

Coarse Gaussian SVM 100% 99% 93% 76% 56% 86%

Linear SVM 100% 99% 94% 77% 55% 88%

Quadratic SVM 100% 100% 95% 78% 57% 88%

Cubic SVM 100% 100% 96% 79% 56% 87%

Neural 
Network 
classifiers

Narrow Neural Network 100% 100% 96% 73% 54% 85%

Medium Neural Network 100% 100% 96% 74% 55% 85%

Wide Neural Network 100% 99% 96% 77% 56% 86%

Bilayered Neural Network 100% 100% 95% 75% 52% 85%

Trilayered Neural Network 100% 100% 96% 73% 52% 85%

Nearest 
Neighbou
r
classifiers

Fine Nearest Neighbour 100% 97% 82% 60% 51% 78%

Medium Nearest 
Neighbour

100% 100% 88% 55% 47% 81%

Coarse Nearest 
Neighbour

100% 100% 90% 56% 47% 84%

Cosine Nearest Neighbour 100% 99% 89% 70% 48% 85%

Cubic Nearest Neighbour 100% 99% 86% 56% 46% 81%

Weighted Nearest 
Neighbour

100% 99% 90% 58% 49% 82%

Decision 
Tree type 
classifiers

Fine Tree 100% 99% 95% 77% 52% 85%

Medium Tree 100% 99% 95% 80% 53% 86%

Coarse Tree 100% 99% 92% 78% 61% 85%

Ensemble
classifiers

Boosted Trees 60% 60% 96% 82% 54% 89%

Bagged Trees 100% 98% 95% 81% 52% 88%

RUSBoosted Trees 60% 99% 95% 80% 58% 87%

Subspace Discriminant 100% 99% 93% 76% 55% 87%
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7.2 Channel type identification accuracy of different machine

learning algorithms

The precision of channel type identification using TDL channels with PRS signals for

different types of machine learning algorithms are shown in Table 16.

Table 16: Channel type identification accuracy of ML algorithms for TDL channels.

Class of 
machine 
learning 
algorithm

Machine Learning 
Algorithm

LOS/NLOS detection accuracy

SNR 
of 0 
dB

SNR 
of -5 
dB

SNR 
of -
10 
dB

SNR 
of -
15 
dB

SNR 
of -20
dB

Random 
SNR 
from 0 
dB to -20
dB

Support 
Vector 
Machine 
classifiers

Fine Gaussian SVM 37% 41% 33% 22% 20% 38%

Medium Gaussian SVM 100% 99% 84% 37% 20% 64%

Coarse Gaussian SVM 100% 99% 83% 39% 18% 62%

Linear SVM 100% 99% 85% 38% 19% 63%

Quadratic SVM 100% 99% 85% 38% 19% 63%

Cubic SVM 100% 99% 85% 38% 19% 63%

Neural 
Network 
classifiers

Narrow Neural Network 100% 99% 78% 32% 20% 60%

Medium Neural Network 100% 98% 78% 27% 20% 58%

Wide Neural Network 100% 98% 81% 33% 18% 60%

Bilayered Neural 
Network 

100% 98% 78% 30% 21% 59%

Trilayered Neural 
Network 

100% 98% 77% 30% 18% 59%

Nearest 
Neighbour
classifiers

Fine Nearest Neighbour 99% 93% 56% 27% 21% 53%

Medium Nearest 
Neighbour

99% 94% 67% 28% 21% 57%

Coarse Nearest 
Neighbour

99% 94% 65% 28% 20% 59%

Cosine Nearest 
Neighbour

97% 93% 69% 31% 22% 57%

Cubic Nearest Neighbour 98% 94% 65% 27% 21% 57%

Weighted Nearest 
Neighbour

99% 95% 67% 28% 22% 58%

Decision 
Tree type 
classifiers

Fine Tree 100% 96% 76% 28% 21% 58%

Medium Tree 100% 96% 75% 32% 22% 58%

Coarse Tree 99% 78% 70% 31% 20% 55%

Ensemble 
classifiers

Boosted Trees 20% 97% 79% 33% 21% 60%

Bagged Trees 100% 97% 83% 34% 20% 62%

RUSBoosted Trees 20% 96% 75% 32% 22% 58%

Subspace Discriminant 100% 99% 85% 39% 19% 64%
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The precision of channel type identification using CDL channels with PRS signals for

different types of machine learning algorithms are shown in Table 17.

Table 17: Channel type identification accuracy of ML algorithms for CDL channels.

Class of 
machine 
learning 
algorithm

Machine Learning 
Algorithm

LOS/NLOS detection accuracy

SNR 
of 0 
dB

SNR 
of -5 
dB

SNR 
of -
10 
dB

SNR 
of -
15 
dB

SNR 
of -20
dB

Random 
SNR 
from 0 
dB to -20
dB

Support 
Vector 
Machine 
classifiers

Fine Gaussian SVM 39% 41% 45% 31% 28% 38%

Medium Gaussian SVM 100% 99% 92% 67% 21% 79%

Coarse Gaussian SVM 100% 99% 91% 65% 29% 77%

Linear SVM 100% 99% 92% 67% 28% 79%

Quadratic SVM 100% 99% 92% 67% 28% 79%

Cubic SVM 100% 99% 92% 67% 28% 79%

Neural 
Network 
classifiers

Narrow Neural Network 100% 99% 90% 56% 26% 72%

Medium Neural Network 100% 99% 91% 58% 23% 74%

Wide Neural Network 100% 99% 91% 60% 22% 74%

Bilayered Neural 
Network 

100% 99% 91% 54% 23% 74%

Trilayered Neural 
Network 

100% 99% 90% 58% 19% 72%

Nearest 
Neighbour
classifiers

Fine Nearest Neighbour 100% 94% 69% 34% 19% 63%

Medium Nearest 
Neighbour

100% 98% 81% 43% 21% 70%

Coarse Nearest 
Neighbour

100% 98% 82% 44% 23% 74%

Cosine Nearest 
Neighbour

100% 94% 80% 55% 22% 69%

Cubic Nearest 
Neighbour

100% 97% 77% 41% 22% 70%

Weighted Nearest 
Neighbour

100% 98% 80% 41% 22% 69%

Decision 
Tree type 
classifiers

Fine Tree 100% 98% 87% 62% 28% 76%

Medium Tree 100% 98% 89% 62% 29% 77%

Coarse Tree 100% 80% 76% 57% 27% 67%

Ensemble 
classifiers

Boosted Trees 20% 99% 91% 68% 28% 79%

Bagged Trees 100% 99% 92% 67% 26% 79%

RUSBoosted Trees 20% 98% 89% 62% 29% 77%

Subspace Discriminant 100% 100% 92% 68% 29% 79%
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7.3 LOS/NLOS detection accuracy for various combinations of

features

The detailed results obtained for the precision of LOS/NLOS classification for CDL

channels with PRS signals are presented in Table 18.

Table 18: LOS/NLOS identification accuracy of various feature combinations for CDL
channels with PRS signals.

Number of 
features used
in 
combination

Combination of features

LOS/NLOS 
detection accuracy 
for randomly 
varying SNR from 0
dB to -20 dB

All 5 features
Time Correlation + FFT Correlation + Kurtosis +
Skewness + Teager Kaiser

81%

Combinations
of 4 features
each

Time Correlation + FFT Correlation + Kurtosis +
Skewness

80%

Time Correlation + FFT Correlation + Kurtosis +
Teager Kaiser

81%

Time Correlation + FFT Correlation + Skewness +
Teager Kaiser

81%

Time Correlation + Kurtosis + Skewness + Teager
Kaiser

82%

FFT Correlation + Kurtosis + Skewness + Teager
Kaiser

79%

Combinations
of 3 features
each

Time Correlation + FFT Correlation + Kurtosis 80%

Time Correlation + FFT Correlation + Skewness 80%

Time Correlation + FFT Correlation + Teager Kaiser 81%

Time Correlation + Kurtosis + Skewness 82%

Time Correlation + Kurtosis + Teager Kaiser 82%

Time Correlation + Skewness + Teager Kaiser 82%

FFT Correlation + Kurtosis + Skewness 78%

FFT Correlation + Kurtosis + Teager Kaiser 79%

FFT Correlation + Skewness + Teager Kaiser 79%

Kurtosis + Skewness + Teager Kaiser 79%

Combinations
of 2 features
each

Time Correlation + FFT Correlation 80%

Time Correlation + Kurtosis 82%

Time Correlation + Skewness 82%

Time Correlation + Teager Kaiser 82%

FFT Correlation + Kurtosis 78%

FFT Correlation + Skewness 77%

FFT Correlation + Teager Kaiser 78%

Kurtosis + Skewness 78%

Kurtosis + Teager Kaiser 79%

Skewness + Teager Kaiser 79%

For individual
features

Time Correlation 82%

FFT Correlation 76%

Kurtosis 69%

Skewness 67%

Teager Kaiser 78%




