

Farhan Akram

DESIGN AND DEVELOPMENT OF
DATA COLLECTION FRAMEWORK

FOR SHOP FLOOR DATA

Master of Science Thesis
Faculty of Engineering and

Natural Sciences
Examiners: Prof. Jose Martinez

Lastra and Luis Gonzalez
Moctezuma
March 2023

i

ABSTRACT

Farhan Akram: Design and Development of Data Collection Framework for Shop Floor Data

Master of Science Thesis

Tampere University

Master's programme in Automation Engineering, Factory Automation and Robotics

March 2023

The rapid pace of technological advancements in the industrial world has transformed the
traditional factory floor into a smart, digitalized environment. The advent of advanced and inno-
vative manufacturing techniques, coupled with the Internet of Things (IoT), has made shop floor
data an essential source of information for industries to monitor and optimize their operations.
The ability to collect, process, and analyse shop floor data has become critical to facilitating the
digitalization of factories, which can ultimately improve the competitiveness of industries in the
global market.

To address this need, the SHOP4CF project aims to develop a comprehensive platform that

can facilitate the digitalization of factories. A key module of this project is the Data Collection
Framework (DCF), which collects data from various shop floor devices and sensors, analyses,
and process data streams, stores the Event Processing in a database and posts the context data
to the FIWARE context broker.

In line with this, the proposed master's thesis seeks to design and develop a data collection

framework that can effectively collect and process shop floor data and can facilitate the digitali-
zation of factories, which has become essential for industries to monitor and optimize their pro-
cesses in the era of Industry 4.0. This framework is scalable, flexible, and modular, accommodat-
ing various manufacturing processes’ requirements and integrating with different devices and
sensors used on the shop floor. Additionally, the framework is equipped with real-time data anal-
ysis capabilities, allowing manufacturing managers and engineers to monitor event processing
information and optimize them in real-time as well as handle large volumes of data generated by
shop floor devices and store it in a centralized database for further analysis.

The thesis aims to contribute to the development of Industry 4.0 and improve the competitive-
ness of industries in the global market. To achieve this, it proposes research questions to identify
the suitable architecture for collecting real-time shop floor data, how the data collection framework
and event processing can be utilized to create real-time alerts for a safe shop floor environment,
and which industrial communication protocols have been tested for accomplishing data acquisi-
tion for industrial shop floors.

Structured into six chapters, this thesis provides a comprehensive analysis of the proposed

data collection framework's design, implementation, and testing. The literature review and theo-
retical background in Chapter two provide an in-depth analysis of vital concepts, such as auto-
mation pyramid, ISA-95, communication protocols, MQTT, OPC UA, FIWARE, and MongoDB.
The thesis's innovative framework is presented in Chapter three, and Chapter four discusses its
implementation. Chapter five examines the testing process and the results obtained from the pro-
posed data collection framework, while Chapter six concludes the thesis and proposes future
work to improve the framework.

Keywords: Automation Pyramid, IoT, ISA-95, MQTT, OPC UA, FIWARE, Context Data

Management, Industry 4.0, Event Processing

The originality of this thesis has been checked using the Turnitin Originality Check service.

ii

PREFACE

Firstly, I am very thankful to the Almighty for providing me with the strength, persever-

ance, and motivation to successfully complete my thesis in time.

Secondly, I would like to express my sincere gratitude to Professor Jose Martinez Lastra

for providing me the opportunity to work in his research lab, FAST-Lab, and for guiding

me with his extensive knowledge and expertise. I am truly grateful for the chance to have

been a part of his team and for the invaluable experience. I would like to thank Luis

Gonzalez Moctezuma for teaching me the automation courses and concepts in the best

possible way and for supervising my thesis. Special thanks to Anne Korhonen and

Seyedamir Ahmadi for the guidance during the design phase and providing helpful feed-

back on my work.

Lastly, I want to express my heartfelt gratitude to my parents and siblings for their unwa-

vering love, prayers, and support throughout my thesis journey. Their constant encour-

agement and interest in my progress have been instrumental in keeping me motivated

and focused. I am truly blessed to have such a wonderful and supportive family, and I

will always be grateful for their presence in my life.

Tampere, 19.03.2023

Farhan Akram

iii

CONTENTS

1. INTRODUCTION .. 1

1.1 Thesis Background .. 1

1.2 Objectives and Research Questions .. 1

1.3 Thesis Structure ... 2

2. THEORETICAL BACKGROUND... 3

2.1 Automation Pyramid ... 3

2.2 ISA-95 .. 4

2.3 Communication Protocols .. 6

2.4 MQTT .. 6

2.5 OPC UA ... 8

2.6 FIWARE ... 14

3. DESIGN .. 20

3.1 Requirements... 20

3.2 Framework Architecture ... 20

3.3 Components .. 21

3.4 Event Processing ... 22

3.5 Data Modelling ... 22

4. IMPLEMENTATION .. 24

4.1 YAML Configuration file ... 24

4.2 MQTT Data Adapter ... 25

4.3 OPC UA Adapter .. 26

4.4 Event Processing ... 27

4.5 Context data to FIWARE Context Broker ... 28

4.6 Containerization ... 29

5. TESTING & RESULTS .. 30

5.1 OPC UA Adapter .. 30

5.2 MQTT Adapter ... 35

6. CONCLUSIONS .. 38

6.1 Future Work ... 38

REFERENCES... 40

iv

LIST OF FIGURES

 Automation Pyramid according to ISA 95 model [1]. 3
 The levels of control as defined in Part 1 of the ISA-95 standard [2] 5
 MQTT Publish / Subscribe Architecture [4] ... 7
 Software layers of OPC UA [7] ... 10
 Nodes and References between Nodes [8] .. 11
 Base Reference Type hierarchy [8] .. 12
 The Data Types hierarchy [8] ... 13
 Transforming a class designed with object-oriented principles into

an ObjectType [8] .. 14
 FIWARE Components [9] ... 15

 FIWARE Core Context Management [11] ... 16
 FIWARE IoT Agents [12] .. 16
 NGSI interactions by IoT Agent with Context Broker [14] 18
 Data Collection Framework Architecture .. 21
 SHOP4CF Alert Data model [17] .. 23
 Some attributes of YAML configuration file for the data adapters 24
 YAML attributes to Python variables .. 25
 Some functions of the MQTT data adapter ... 26
 OPC UA adapter connecting to the OPC UA server and retrieving

the node information. ... 26
 A snapshop of Event Processing ... 27
 An Example of posting the Context data to FIWARE Context

Broker .. 28
 Docker file for the MQTT Data Adapter .. 29
 Docker file for the OPC UA Adapter ... 29
 OPC UA server .. 30
 Dummy Temperature and Pressure values on the OPC UA server 31
 Output of the OPC UA server ... 31
 Output of the OPC UA data adapter ... 32
 Testing with Prosys OPC UA server: Prosys OPC UA Server (Left

side), OPC UA Data Adapter (Right side) ... 32
 MongoDB Database for the recorded events 33
 Context Data in FIWARE Context Broker ... 34
 MQTT Adapter Output .. 35
 Testing with HiveMQ MQTT Broker .. 35
 Temperature Values being displayed through MQTT data adapter 35
 A Snapshot of event Processing .. 36
 Event Alert stored in MongoDB. ... 36
 Retrieving Context Data in FIWARE Context Broker 37

v

LIST OF SYMBOLS AND ABBREVIATIONS

DCF Data Collection Framework
ERP Enterprise Resource Planning
FAST-Lab Future Automation Systems and Technologies laboratory
HTTP Hypertext Transport Protocol
IoT Internet of Things
JSON JavaScript Object Notation
M2M Machine-to-machine
OPC UA Open Platform Communications United Architecture
MQTT Message Queuing Telemetry Transport
REST Representational State Transfer
SDK Software Development Kit
SHOP4CF Smart Human Oriented Platform for Connected Factories
SOA Service Oriented Architecture
TCP/IP Transmission Control Protocol/Internet Protocol
URL Uniform Resource Locator
SHOP4CF Smart Human Oriented Platform for Connected Factories

1

1. INTRODUCTION

1.1 Thesis Background

Digitalization has become a catchword in today's industrial world, and it is transforming

the way factories operate. With the advent of advanced and innovative manufacturing

techniques and the Internet of Things (IoT), shop floor data has become an essential

source of information for industries to monitor and optimize their operations. Shop floor

data refers to the data generated by different manufacturing processes, such as machine

performance, quality metrics, and production output.

To facilitate the digitalization of factories, it is essential to develop a data collection frame-

work that can collect, process, and analyse shop floor data. The SHOP4CF project aims

to develop a comprehensive platform that can facilitate the digitalization of factories. One

of the critical modules of this project is the Data Collection Framework (DCF), which

collects data from different shop floor devices and sensors. Further, the DFC homoge-

nizes and analyses process and data streams using Event Processing.

This thesis proposes the design and development of a data collection framework that

can collect and process shop floor data effectively. The framework should be scalable,

flexible, and modular, allowing it to accommodate various manufacturing processes' re-

quirements. It should also be able to integrate with different devices and sensors used

on the shop floor.

The developed framework should collect real-time data analysis capabilities, allowing

manufacturing managers to monitor the production processes and optimize them in real-

time. Real-time data analysis can help industries to reduce downtime, improve product

quality, and increase productivity. Also, the framework should be able to handle large

volumes of data generated by the shop floor devices and store it in a centralized data-

base for further analysis.

1.2 Objectives and Research Questions

The objective of this thesis is to develop a data collection framework that can facilitate

the digitalization of factories and help industries to monitor and optimize their operations.

2

By achieving this objective, this thesis can contribute to the development of Industry 4.0

and improve the competitiveness of industries in the global market. The proposed frame-

work can also serve as a foundation for further research in the field of shop floor data

collection and analysis. This thesis addresses following research questions:

• What is the suitable architecture for collecting real-time shop floor data?

• How will the data collection framework and event processing be utilized for cre-

ating real-time alerts to provide a safe shop floor environment?

• Which industrial communication protocols have been tested for accomplishing

data acquisition for industrial shop floor?

1.3 Thesis Structure

The thesis is structured into six chapters. Chapter 1 introduces the thesis background,

objectives, research questions, and the significance of the study. The purpose and con-

tribution of each chapter are outlined.

Chapter 2 presents a theoretical background by providing a detailed literature review and

incorporates important concepts in the field, such as the automation pyramid, ISA-95,

communication protocols, MQTT, OPC UA, FIWARE, and MongoDB.

Chapter 3 focuses on the design of the proposed data collection framework, which was

developed based on the identified requirements. The chapter discusses the framework

architecture, components, event processing, and data modelling.

Chapter 4 focuses on the implementation of the proposed data collection framework.

Specifically, the chapter discusses the implementation of MQTT data adapter and OPC

UA adapter to transmit data from shop floor devices to the web-based data storage.

Chapter 5 details the testing process and the results obtained from the proposed data

collection framework. The chapter shows testing data collection from both MQTT data

adapter and OPC UA data adapter.

Chapter 6 concludes the thesis and highlights future work that can be done to improve

the framework.

3

2. THEORETICAL BACKGROUND

2.1 Automation Pyramid

The Industrial Automation Pyramid is a framework that describes the levels of control in

industrial automation systems.

 Automation Pyramid according to ISA 95 model [1].

At the bottom of the pyramid, Level 0, are the sensors and actuators. These devices are

in charge for measuring process variables, such as temperature, pressure, or flow rate,

and controlling the process, such as opening or closing valves or turning on or off motors.

Sensors and actuators can be analog or digital and are typically connected to a program-

mable logic controller (PLC) or a distributed control system (DCS) [2].

Level 1 of the pyramid is where control systems are located. These systems receive

input from sensors and use that data to control actuators in order to adjust the process.

Control systems can be either centralized or distributed, depending on the complexity of

the process being controlled. For example, in a simple process, a single control system

may be sufficient to control all the actuators. In a more complex process, multiple control

systems may be used, each controlling a specific part of the process.

4

Level 2 of the pyramid is where the supervisory control and data acquisition (SCADA)

systems are located. These systems collect data from multiple control systems and pro-

vide operators with a graphical interface to monitor and control the process. SCADA

systems typically include features such as alarms, data logging, and trending, and can

be used for both local and remote monitoring and control.

Level 3 of the pyramid is where manufacturing execution systems (MES) are located.

These systems manage the production process and provide data to support decision-

making. MES systems typically include features such as quality management, and ma-

terial management. MES systems can be integrated with other enterprise systems, such

as enterprise resource planning (ERP) systems.

Finally, at the top of the pyramid, Level 4, are the enterprise resource planning (ERP)

systems. These systems manage business operations, including production planning,

inventory management, and accounting. ERP systems can be integrated with other en-

terprise systems, such as customer relationship management (CRM) systems or supply

chain management (SCM) systems.

The Industrial Automation Pyramid is a useful framework for understanding the different

levels of control in industrial automation systems. It helps to identify the types of systems

and technologies that are required at each level, as well as the data flows between them.

This understanding is helpful in designing, building, and maintaining industrial automa-

tion systems.

2.2 ISA-95

ANSI/ISA 95 is a set of standards developed by the International Society of Automation

(ISA) that provides a framework for integrating enterprise and manufacturing systems.

The ISA-95 aims to facilitate the integration of business logistics systems, such as En-

terprise Resource Planning (ERP) systems, with manufacturing systems, such as Su-

pervisory Control and Data Acquisition (SCADA) systems, to improve efficiency, reduce

costs, and increase productivity [2].

ISA-95 is primarily concerned with the integration of the business logistics systems at

levels 3 and 4 of the automation pyramid, which include manufacturing operations man-

agement and enterprise management. Other ISA standards support the integration of

levels 0, 1, and 2, which include sensors, actuators, and control systems.

5

 The levels of control as defined in Part 1 of the ISA-95 standard [2]

ISA-95 consists of six parts that provide models and terminology for describing the infor-

mation exchange and activities that occur within and between manufacturing operations

systems and enterprise management systems [2]. These parts include:

• Enterprise control system integration: This part presents conventional language

and object designs that rely on the Purdue Reference Model. It can be employed

to identify what data ought to be transmitted between enterprise management

systems and manufacturing operational systems.

• Object model attributes: This section delineates the characteristics pertaining to

every object outlined in the first section. The attributes describe the properties of

each object and how they are used in the manufacturing process.

• Activity models of manufacturing operations management: This section furnishes

models of manufacturing operations management's activity, detailing reference

frameworks for delineating production, quality, maintenance, and inventory activ-

ities executed on the factory floor. It helps to ensure that all manufacturing oper-

ations are coordinated and that the manufacturing process is optimized.

• Object and attributes for manufacturing operations management integration: This

specification delineates the data transmitted among diverse categories and ac-

tivities in manufacturing operations management. This ensures that all necessary

6

information is communicated between systems to optimize manufacturing oper-

ations.

• Business to manufacturing transactions: This section outlines transactions that

determine the procedure for amassing, recovering, transferring, and conserving

object data for enterprise-control system fusion. It ensures that all necessary data

is collected and shared between the systems involved in manufacturing opera-

tions.

• Messaging service model: This section delineates the transaction concerning

part five, which is a part of a collection of messaging services. It ensures that

messages between systems are properly formatted, and that data is transmitted

accurately and efficiently.

Together, these parts provide a standardized framework for integrating enterprise and

manufacturing systems, enabling greater efficiency and productivity in manufacturing op-

erations.

2.3 Communication Protocols

The industrial communication protocols are based on the paradigm of communication

such as REST or Pub/Sub. REST is the acronym for Representational State Transfer

and is based on the client-server communication model. The servers comprise of dis-

tinctively identifiable resources and the client sends the request to the server to retrieve

or manipulate the state/values of these resources then the server responds with the re-

sponse. Each resource is identified using Uniform Resource Identifier.

2.4 MQTT

MQTT (Message Queue Telemetry Transport) is a M2M (machine-to-machine) commu-

nication protocol used in IoT (Internet of Things) systems. The MQTT protocol works on

a publish/subscribe mechanism, and is designed to be lightweight, scalable, reliable, and

secure, making it ideal for IoT devices, which typically have resource-constrained net-

works with low bandwidth [3].

MQTT Components:

The main components of MQTT are clients and brokers. Clients in MQTT are responsible

for publishing data to brokers, which then distribute the data to other interested clients.

The communication between clients and brokers is based on the publish/subscribe pat-

tern, where clients publish data to topics and brokers distribute the data to subscribers

7

for that topic. This allows for efficient communication, as clients only receive data they

have subscribed to, and brokers only need to distribute data to interested clients.

Both the message publisher and the message subscriber are referred to as MQTT cli-

ents. An MQTT client can be any device, from a small microcontroller with limited re-

sources to a full-fledged server, that runs an MQTT library and connects to an MQTT

broker over a network. The client implementation of the MQTT protocol is simple and

streamlined, making it ideal for use in small devices.

The MQTT broker serves as the central hub for all messages. It receives messages from

all clients, filters them, determines which clients are subscribed to each message, and

sends the messages to the subscribed clients. The broker also stores session data for

clients with persistent sessions, handles client authentication and authorization, and is

integratable with backend systems.

 MQTT Publish / Subscribe Architecture [4]

The key feature of this pattern is the separation or "decoupling" between the publisher

and the subscribers [5]. This decoupling has three main aspects:

• Space decoupling: The publisher and subscriber do not need to know anything

about each other. They do not need to exchange information such as IP ad-

dresses or port numbers, and they can communicate through a common channel

known as a topic.

• Time decoupling: The publisher and subscriber do not need to be running at the

same time. The publisher can send messages even when there are no subscrib-

ers, and subscribers can receive messages even if the publisher is not running.

• Synchronization decoupling: The publishing and receiving of messages does not

affect the normal operation of the publisher and subscriber. They can continue to

perform their tasks without being interrupted.

MQTT Topics

8

In MQTT, topics play a vital role in the communication between clients and brokers. A

topic is a string in UTF-8 format that the broker uses to filter messages and send them

to the appropriate clients [6]. Topics can have one or more levels, separated by a forward

slash ("/"). FastLab/groundfloor/orangeroom/humidity

It's important to note that topics are case-sensitive, meaning that "sensor/temperature"

and "sensor/Temperature" are treated as two distinct topics.

MQTT clients can subscribe to specific topics or utilize wildcards to receive messages

from multiple topics. Wildcards are symbols that allow clients to subscribe to a range of

topics. There are two types of wildcards: single-level and multi-level. Single-level wild-

cards, represented by the "+" symbol, replace a single topic level in the subscription.

FastLab/groundfloor/+/temperature

Meanwhile, multi-level wildcards, represented by the "#" symbol, cover multiple topic

levels. The multi-level wildcard must be placed at the end of the topic, preceded by a

forward slash, for the broker to determine which topics match. FastLab/groundfloor/#

It's important to note that wildcards can only be used for subscribing to topics, not for

publishing messages.

2.5 OPC UA

Open Platform Communications Unified Architecture (OPC UA) is a software architec-

ture and communication standard based on Service Oriented Architecture (SOA) for in-

dustrial automation. It provides a common platform for communication between various

control devices, such as programmable logic controllers (PLCs), human-machine inter-

faces (HMIs), and other industrial automation devices [7]. Some of the key features and

benefits of OPC UA include:

• Platform independence: OPC UA can run on a wide range of operating systems,

including Windows, Linux, and macOS, making it easy to integrate into existing

automation systems.

• Interoperability: OPC UA provides a common communication protocol that allows

different control devices from different vendors to communicate with each other,

regardless of the underlying hardware or software.

• Security: OPC UA provides a secure communication mechanism that includes

encryption, authentication, and access control, which helps prevent unauthorized

access to sensitive data.

9

• Scalability: OPC UA can be used in small, single-device systems or in large,

multi-device systems, making it suitable for a wide range of industrial automation

applications.

• Data modelling: OPC UA provides a data modelling capability that allows for the

creation of custom data models, which can be used to represent the structure

and behaviour of automation devices.

• Publish/Subscribe: OPC UA provides a publish/subscribe mechanism, which al-

lows for real-time communication between control devices, making it well suited

for fast-changing industrial automation applications.

• Real-time Communication: OPC UA supports real-time communication for time-

sensitive applications, such as process control and monitoring.

• Historical Data Access: OPC UA supplies retrieval of historical data and allows

clients to retrieve this data for analysis and reporting.

• International Standards: OPC UA is based on international standards, such as

IEC 62541, and has been standardized by the OPC Foundation.

OPC UA is extensively used in industrial automation applications, such as manufactur-

ing, process control, and building automation. It is also used in other industries, such as

energy, transportation, and healthcare.

OPC UA software Layers

OPC UA, like Classic OPC, employs a model of client-server communication, where pro-

grams can either function as UA clients or as UA servers, exposing their own information

to other apps. Three software layers make up an OPC UA application, which may be

developed using a variety of programming languages, including C/C++, .NET, or Java.

10

 Software layers of OPC UA [7]

An OPC UA Application refers to a software package that includes both an OPC UA

stack and a software development kit (SDK) designed to map the specific functions of

an application to OPC UA. The application's specific functionality is mapped by the SDK

while common OPC UA functionality is implemented by the OPC UA client or server

SDK. Additionally, various transport mappings of OPC UA are implemented by an OPC

UA stack.

The OPC UA Stack consists of three layers: the message encoding layer, the message

security layer, and the message transport layer. The message security layer describes

how the messages must be protected using the Web Service security standards or a UA

binary version of the Web Service standards, while the message encoding layer provides

the Service parameters are serialized into binary and XML formats. The message

transport layer stipulates the network protocol that is used, such as UA TCP or HTTP

and SOAP for Web Services. [7].

For UA client and UA server applications, the UA Stacks offer language-dependent APIs,

although all Services provided in OPC UA have parameters that are based on a common

abstract Service. This means that the parameters used in these Services are equivalent

in structure and functionality. With implementations in different programming languages,

the OPC Foundation created and maintains UA Stacks, which provide coverage for the

primary development environments. Overall, OPC UA software layers facilitate faster

interoperability and reduce development effort for OPC UA applications.

Nodes and References

11

Nodes and the references between them are the fundamental modelling ideas in OPC

UA. Depending on their intended use, nodes can have various node classes. Instances,

types, and more may all be represented using nodes. Nodes are described through at-

tributes, and the attributes that a node may have are determined by its node class. The

node class of a node determines its characteristics and functionality, and thus the attrib-

utes that it can possess. The most crucial notion for referencing and transferring infor-

mation in the Services is the Node Id, which distinctively associates the Node within the

server. While exploring or searching the Address Space, the server returns Node Ids,

which clients use to address Nodes in Service calls. There can be alternative Node Ids

that may be used to address a Node. Even if the node was accessed by a different node

id, the canonical node id may be found by reading the node id attribute. Node Ids con-

tain a Namespace that enables them to be specifically defined by various naming au-

thority. These naming authorities may be systems, vendors, or organisations. [8].

 Nodes and References between Nodes [8]

Reference Types

In OPC UA, a Reference connects two Nodes, but it cannot be accessed directly or have

attributes or properties. Instead, the semantic of a Reference is defined by a Reference

Type, which is used to expose how Nodes are connected. The OPC UA specification

specifies a set of Reference Types, which can be extended by an OPC UA server to

reveal specific semantics for References. Reference Types are arranged hierarchically

and are characterized as Nodes within the Address Space. The Browse Name and Dis-

play Name of a Reference Type define its semantic and must be unique and localized.

Information regarding the References used by an OPC UA server can be obtained by

OPC UA clients by accessing specific Nodes within the Address Space. Reference

Types can be specialized with more specialized types in a Reference Type hierarchy [8].

12

 Base Reference Type hierarchy [8]

Built-in and Simple Data Types

The built-in Data Types of OPC UA have a defined hierarchy, and their handling is spec-

ified in the OPC UA specification. The Address Space does not require further infor-

mation on these Data Types. The behaviour of simple Data Types is governed by their

supertypes. The following figure illustrates the data type structure for various basic data

types as well as built-in data types.

13

 The Data Types hierarchy [8]

In object-oriented programming languages, a class is a construct that allows for the cre-

ation of named entities that can be accessed and manipulated by their given names, is

analogous to a complex Object Type with Instance Declarations in OPC UA. For in-

stance, the Employee class includes two methods, Increase_salary and Salary_af-

ter_tax, as well as three public variables: Name, Salary, and Address. Similar to this, the

Address class includes two public variables called Street and City. The Employee class

is mapped to an Object Type named Employee Type in OPC UA, whereas the Address

class is assigned to an Object Type called Address Type. Additionally, The Salary and

Name attributes of the Employee Type are accompanied by a distinct Address Type in-

stance that encapsulates the Address information. [8].

One key difference between OPC UA ObjectTypes and typical object-oriented program-

ming languages is that there is no universal method for exposing an OPC UA Method's

implementation. However, OPC UA is more versatile since it enables the addition of

components to instances without regard to type specification, such as adding a Variable

called Award to an Employee instance. It is possible to accomplish this without changing

the Object Type or making a subclass of it. A Zip Code Variable might also be added by

14

the Employee Type underneath the Address Object on InstanceDeclarations. To put in-

formation in that location, one would normally need to subtype Address in an object-

oriented programming language.

 Transforming a class designed with object-oriented principles into an
ObjectType [8]

2.6 FIWARE

FIWARE is an open-source platform that provides a set of standardized APIs and com-

ponents for building and deploying smart applications and services for the Internet of

Things (IoT), big data, and cloud computing. It offers a common framework that enables

the integration of different systems and data sources, and the development of interoper-

able and scalable solutions.

The FIWARE platform consists of various software components and APIs that provide

developers with a standardized way to access and integrate various technologies, such

as data management, cloud computing, IoT devices, and analytics tools. This allows

developers to build scalable and interoperable smart applications and services.

FIWARE has an open architecture i.e., it can be used with a variety of programming

languages and platforms. It also supports both cloud and on-premises deployment,

providing flexibility to developers and organizations.

15

The following figure illustrates the core components of FIWARE:

 FIWARE Components [9]

Core Context Management (Context Broker)

The Core Context Management component, also known as the Context Broker, is the

core of the FIWARE platform. It is responsible for managing and storing context infor-

mation, including data from IoT devices, sensors, and other sources. The Context Broker

provides a standardized interface for querying and updating context data, and it uses a

publish-subscribe model to distribute context data in real-time. Context information com-

prises of entities (e.g., a robot) and their attributes (e.g. the speed or location of the robot)

[10].

16

 FIWARE Core Context Management [11]

Interface with IoT, Robots and Third-Party Systems

The Interface with IoT, Robots, and Third-Party Systems component, also known as the

IoT Agent, provides a standardized interface (a bridge) for connecting to and communi-

cating with IoT devices, robots, and other third-party systems. The IoT Agent supports

various protocols, including MQTT, CoAP, OPC UA, and HTTP, and it provides a frame-

work for developing custom adapters to support other protocols.

 FIWARE IoT Agents [12]

17

Context Processing, Analysis and Visualization

The Context Processing, Analysis, and Visualization component provides tools for pro-

cessing, analysing, and visualizing context data. It includes tools for real-time stream

processing, batch processing, and machine learning. The component also provides a

variety of visualization tools, including dashboards, charts, and maps.

Context Data/API Management, Publication and Monetization

The Context Data/API Management, Publication, and Monetization component provides

tools for managing and publishing context data and APIs. It includes a data marketplace

for buying and selling context data, and it provides a framework for monetizing context

data and APIs.

Deployment Tools

The Deployment Tools component provides tools for deploying and managing FIWARE

instances. It includes tools for configuring and scaling FIWARE instances, and it provides

a framework for managing deployments in a cloud environment. Majority of the FIWARE

components are available as Docker Images [13].

Device To NGSI Mapping

The Device to NGSI Mapping is a mechanism that maps IoT devices to entities in the

NGSI (Next Generation Service Interface) system. This mapping assigns each device as

an entity associated with a context provider. The ID of the device is associated with the

ID of the entity, and the type of the entity is chosen depending on the protocol utilized.

Users can configure the entity name and type either through device pre-provisioning or

type configuration [14].

Measurements obtained from the device are mapped to different attributes, with their

names and types configurable by the user either globally or on a per-device basis. Three

different behaviours can be exhibited by device measures:

Active attributes refer to the measurements that are gathered by a device and transferred

to an IoT agent. These measurements are then transmitted to the Context Broker as

updateContext requests.

In contrast, lazy attributes refer to sensors that do not actively collect data but instead

wait for the IoT agent to request it. In this case, the IoT agent enrols itself as a Context

Provider for every passive attribute of the device.

Commands involve modifying an attribute in the entity of the device, for which the IoT

Agent is registered as a Context Provider. When a command is received, the IoT agent

18

promptly replies to the Context Broker and assumes the responsibility of communicating

with the device, updating its status and information attributes as it obtains information

about the progress of the command.

 NGSI interactions by IoT Agent with Context Broker [14]

Registration

When a device is registered to the system, the IoT Agent obtains information about its

attributes and registers itself as a Context Provider for any lazy attributes. The registra-

tion ID is then kept in the IoT Agent's device registry together with other device infor-

mation.

Upon the removal of a device from the IoT Agent, its registration becomes deactivated

by setting its expiration date to 1 second, as context registrations cannot be removed in

NGSI9.

Commands

19

Commands in the IoT Agent are treated as updates over a lazy attribute, similar to the

way lazy attributes are handled. When a command is received, it is forwarded by the

Context Broker to the IoT Agent, which then interacts with the device to carry out the

requested action. The command value includes parameters for the command and

metadata, and in the case of an NGSI-LD command, a datasetId may also be provided.

There are two distinct kinds of commands: push commands and poll commands. Push

commands are immediately forwarded to the device by the IoT Agent, while poll com-

mands are stored by the IoT Agent for devices that cannot be online all the time. The IoT

Agent offers functions to manage command storage and retrieval for devices marked as

"polling devices". To enable push commands, devices should be furnished with a suitable

protocol endpoint that can be accessed by the IoT agent. [14].

20

3. DESIGN

This chapter explains the framework design of the Data Collection Framework (DCF).

3.1 Requirements

The DCF is a critical component of the factory shop floor and enterprise resources, as it

plays a central role in enabling the collection and organization of data from these

sources. The functional requirement of the DCF is to provide a systematic and efficient

method for gathering data from the factory shop floor and enterprise resources and or-

ganizing it in a way that is useful for analysis and decision-making [15]. This includes

identifying the types of data that need to be collected, defining the methods for collecting

and storing data, and developing processes for ensuring the accuracy and integrity of

the collected data. Additionally, the DCF is also designed to be flexible and adaptable,

so that it can be easily modified to meet changing data collection needs over time.

3.2 Framework Architecture

The DCF has been specifically designed to provide a scalable and easy-to-use solution

for shop floor data and alert management. The DCF is intended to be a flexible and

adaptable tool that can be easily configured to meet the specific needs of different shop

floors and processes. One of the key requirements of the project was to ensure that the

DCF could effectively handle context data, which is data that provides context or back-

ground information about a particular process or event. In order to meet this requirement,

the DCF was designed with robust data management and analysis capabilities, including

an Event Processing that is capable of identifying patterns and correlations in real-time.

Overall, the goal of the DCF is to provide a reliable and easy-to-use solution for shop

floor data and alert management, enabling organizations to make more informed deci-

sions and optimize their operations.

21

 Data Collection Framework Architecture

The DCF enables the collection of shop floor data from a variety of sources, including

MQTT brokers and OPC UA servers. MQTT is a publish-subscribe messaging protocol

that is widely used in the Internet of Things (IoT) and machine-to-machine (M2M) com-

munications. It allows devices to communicate with each other and with centralized serv-

ers, enabling the collection of data from a large number of different sources. OPC UA is

a standardized communication protocol that is designed for secure and reliable data ex-

change in industrial automation and other systems. It allows different devices and sys-

tems to interoperate and exchange data, enabling the collection of data from a wide

range of industrial equipment and systems. By using MQTT and OPC UA, the DCF is

able to gather data from a diverse range of shop floor sources, providing a comprehen-

sive view of shop floor operations.

3.3 Components

The DCF consists of two main components for the collection of shop floor data and four

plugins for the collection of ERP data. The MQTT Data Adapter and OPC UA Data

Adapter are responsible for gathering real-time data from MQTT brokers and OPC UA

servers. The four plugins for ERP data are responsible for gathering data from enterprise

22

resource planning (ERP) systems, e.g., task information and restrains, which are used

to manage and optimize various processes.

3.4 Event Processing

The DCF is designed to support real-time processing of events for shop floor data. This

feature allows the DCF to monitor physical characteristics such as time, pressure, and

temperature in real-time, and to trigger certain actions or alerts if the values of these

characteristics exceed pre-defined thresholds. For example, if the temperature on the

shop floor exceeds a certain value, the DCF will trigger an alert and save the timestamp

in the database. This real-time processing capability is an important aspect of the DCF,

as it enables organizations to respond quickly to changes on the shop floor and to pre-

vent problems from escalating.

3.5 Data Modelling

The SHOP4CF data models are used as the foundation for the data modelling. These

models provide a standardized way of representing information about products, services,

and other entities within the context of the IoT. The SHOP4CF models are based on the

FIWARE NGSI-LD specification [16], which is a standard for representing and exchang-

ing data in the IoT using the Linked Data format. The use of these standards allows for

interoperability between different systems and enables the integration of data from mul-

tiple sources. The data modelling for the DCF has been designed to align with the

SHOP4CF models and the FIWARE NGSI-LD specification, ensuring compatibility with

other systems that use these standards.

23

 SHOP4CF Alert Data model [17]

24

4. IMPLEMENTATION

Most of the implementation work is done in Python language. Python language has been

chosen to implement the DCF since it is widely applicable and is easier to understand

and to use. It has a large and active community of users, as well as a collection of librar-

ies and frameworks. Additionally, Python has a simple and readable syntax, which

makes it a great language for beginners and experienced programmers alike.

4.1 YAML Configuration file

Firstly, the program reads a configuration file. The configuration file is in YAML file and

includes the key information for MQTT server broker address, OPC UA server address,

MongoDB, FIWARE context broker and others parameter set by user for event pro-

cessing.

 Some attributes of YAML configuration file for the data adapters

25

4.2 MQTT Data Adapter

The YAML configuration attributes are imported to Python and are stored in the mean-

ingful parameters. This allows the DCF to access and use the data from the configuration

file in a structured and organized way. The process of importing the YAML data into

Python involves parsing the file and converting it into a data structure that can be used

by the program. In the following figure MongoDB details for the database, FIWARE URL

and MQTT broker information is being used to connect respectively.

 YAML attributes to Python variables

After the configuration file is converted to meaningful data, the MQTT data adapter con-

nects with the MQTT broker and the data can be fetched. Certain functions have been

implemented that acknowledge after successful connection and subscription to MQTT

Broker.

26

 Some functions of the MQTT data adapter

4.3 OPC UA Adapter

The configuration parameters are also read for OPC UA Adapter in the YAML format and

are imported in Python variables.

The OPC UA adapter is connected to the OPC UA Server using the python library

“opcua”, and the sever URL. The node information is then retrieved and processed.

 OPC UA adapter connecting to the OPC UA server and retrieving
the node information.

27

4.4 Event Processing

The event processing has also been implemented for both data adapters. Live values of

e.g. time, temperature and pressure will be processed from OPC UA servers and MQTT

brokers and if the values are exceeding than defined, then the event will be stored in the

database.

 A snapshop of Event Processing

28

4.5 Context data to FIWARE Context Broker

The data is also transformed in the context data and posted to FIWARE context broker

for other FIWARE entities.

 An Example of posting the Context data to FIWARE Context Bro-
ker

29

4.6 Containerization

Containerization is a process of packaging and deploying software applications in a self-

contained environment, known as a container. Containers provide a way to package and

distribute an application and its dependencies, such as libraries and runtime, in a single

unit, which can be easily deployed and run on any host with the necessary containeriza-

tion software. Docker was used as a containerization platform for the data adapters.

 Docker file for the MQTT Data Adapter

 Docker file for the OPC UA Adapter

30

5. TESTING & RESULTS

For the shop floor data, the testing of the OPC UA and the MQTT data adapters have

been tested with various OPC UA servers and MQTT brokers.

5.1 OPC UA Adapter

Firstly, a local OPC UA server was developed or the testing purpose.

The OPC UA server is developed using the “opcua” python library.

 OPC UA server

31

The OPC UA server was used to publish the dummy temperature and pressure values.

 Dummy Temperature and Pressure values on the OPC UA server

 Output of the OPC UA server

32

The OPC UA data adapter is connected to the OPC UA server.

 Output of the OPC UA data adapter

After the local OPC UA server testing, the testing of OPC UA data adapter was also done

for Prosys OPC UA Server.

 Testing with Prosys OPC UA server: Prosys OPC UA Server (Left
side), OPC UA Data Adapter (Right side)

33

If the Temperature or Pressure is more or less than the predefined range, it is recorded

as an event is and is stored in the database.

 MongoDB Database for the recorded events

34

Context data being published to FIWARE context broker.

 Context Data in FIWARE Context Broker

35

5.2 MQTT Adapter

The MQTT adapter output first displays the success message on connecting success-

fully with the MQTT broker.

 MQTT Adapter Output

The MQTT adapter displays the real-time messages and data of the subscribed topic.

Since several different topics can be subscribed simultaneously, the adapter displays the

topic name and the message. As an example, the dummy temperature values were

posted to the broker and the adapter was fetching, processing, and displaying the tem-

perature values.

The testing of MQTT data adapter was done through HiveMQ MQTT broker.

 Testing with HiveMQ MQTT Broker

Temperature values were being displayed on MQTT data Adapter.

 Temperature Values being displayed through MQTT data adapter

36

 A Snapshot of event Processing

Event being stored in the MongoDB database.

 Event Alert stored in MongoDB.

37

Context data being published to FIWARE context broker.

 Retrieving Context Data in FIWARE Context Broker

38

6. CONCLUSIONS

This thesis has successfully addressed the research questions and presented a design

and development of a data collection framework for shop floor data, which facilitates the

digitalization of factories. The proposed framework's architecture has been carefully de-

signed to ensure real-time data collection and transmission, while also being scalable

and efficient.

The implementation of the proposed framework involved the use of MQTT data adapter

and OPC UA adapter to transmit data from shop floor devices to the web-based data

storage. The framework's containerization ensured its portability and scalability.

The framework's event processing capability has been utilized to create real-time alerts,

ensuring a safe shop floor environment for workers. The alerts generated by the frame-

work are saved and stored and supervisors can view these alerts and prepare for the

potential hazards.

The results have shown that the proposed framework is effective in acquiring data from

the shop floor and can be integrated with various communication protocols.

Overall, this thesis has contributed to the field of digitalization of factories by providing a

comprehensive and practical solution for data collection on the shop floor. The proposed

framework's implementation, testing, and results have shown its potential to facilitate the

digital transformation of factories, enhance their competitiveness, and improve their per-

formance and efficiency, while also ensuring a safe shop floor environment for workers.

6.1 Future Work

Although this thesis has presented a comprehensive and practical solution for data col-

lection on the shop floor, there are still opportunities for future work to further improve

the proposed framework's performance and functionality. Some potential areas of future

work include:

• Integration with advanced analytics and machine learning techniques: The pro-

posed framework can be integrated with advanced analytics and machine learn-

ing techniques to provide real-time insights and predictions. This integration can

enable factory managers and engineers to make informed decisions based on

real-time data, resulting in improved factory performance and efficiency.

39

• Improvement of the user interface (UI): While the proposed framework's UI pro-

vides essential functionalities, there is still room for improvement. The UI can be

designed to be more intuitive and user-friendly, making it easier for supervisors

and managers to access and analyse data. The framework can be enhanced with

charts and graphs. This enhancement can help identify trends and patterns, high-

lighting areas for improvement and refinement.

• Deployment of the framework in real-world scenarios: Although the proposed

framework has been tested in a simulated environment, its deployment in real-

world scenarios can provide valuable insights into its performance and function-

ality. The deployment of the framework can also highlight potential areas for im-

provement and refinement.

40

REFERENCES

[1] E.M. Martinez, P. Ponce, I. Macias, A. Molina, "Automation Pyramid as Con-
structor for a Complete Digital Twin, Case Study: A Didactic Manufacturing Sys-
tem." Sensors 2021, 21, 4656. https://doi.org/10.3390/s21144656

[2] C. Verdouw, R. Robbemond, J.W. Kruize, "Integration of Production Control and
Enterprise Management Systems in Horticulture.", HAICTA 2015 7th Interna-
tional Conference on Information and Communication Technologies in Agricul-
ture, Food and Environment, Greece, 2015

[3] MQTT Version 3.1.1 Plus Errata 01. Edited by Andrew Banks and Rahul Gupta.
10 December 2015. OASIS Standard Incorporating Approved Errata 01,
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

[4] MQTT: The Standard for IoT Messaging, https://mqtt.org/

[5] Publish & Subscribe - MQTT Essentials, https://www.hivemq.com/blog/mqtt-es-
sentials-part2-publish-subscribe/

[6] MQTT Topics, https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-
best-practices/

[7] W. Mahnke, S. H. Leitner, M. Damm, “Introduction”, in OPC Unified Architec-
ture, 1st ed, Germany: Springer Berlin, Heidelberg, 2009.

[8] W. Mahnke, S. H. Leitner, M. Damm, “Information Modelling: Concepts”, in OPC
Unified Architecture, 1st ed, Germany: Springer Berlin, Heidelberg, 2009.

[9] FIWARE Catalogue, https://www.fiware.org/catalogue/

[10] Orion Context Broker, https://github.com/telefonicaid/fiware-orion/

[11] Core Context Management, https://fiwaretourguide.readthedocs.io/en/lat-
est/core/introduction/

[12] FIWARE IoT Agents, https://fiwaretourguide.readthedocs.io/en/latest/iot-
agents/introduction/

[13] FIWARE Catalogue, https://github.com/FIWARE/Catalogue/

[14] FIWARE IoT Agent, https://iotagent-node-lib.readthedocs.io/en/latest/architec-
ture.html

[15] SHOP4CF - SHOP4CF, https://shop4cf.eu/

[16] FIWARE Data Models, https://fiware-datamodels.readthedocs.io/en/stable/ngsi-
ld_howto/index.html

[17] SHOP4CF Data Models, Documentation of FIWARE data models used in
SHOP4CF, https://shop4cf.github.io/data-models/alert.html

https://doi.org/10.3390/s21144656
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://mqtt.org/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/
https://www.fiware.org/catalogue/
https://github.com/telefonicaid/fiware-orion/
https://fiwaretourguide.readthedocs.io/en/latest/core/introduction/
https://fiwaretourguide.readthedocs.io/en/latest/core/introduction/
https://fiwaretourguide.readthedocs.io/en/latest/iot-agents/introduction/
https://fiwaretourguide.readthedocs.io/en/latest/iot-agents/introduction/
https://github.com/FIWARE/Catalogue/
https://iotagent-node-lib.readthedocs.io/en/latest/architecture.html
https://iotagent-node-lib.readthedocs.io/en/latest/architecture.html
https://shop4cf.eu/
https://fiware-datamodels.readthedocs.io/en/stable/ngsi-ld_howto/index.html
https://fiware-datamodels.readthedocs.io/en/stable/ngsi-ld_howto/index.html
https://shop4cf.github.io/data-models/alert.html

41

AI-based application, ChatGPT, has been used to produce structurally fluent text for the

thesis.

