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Developing and operating machine learning systems is associated with uncertainties incompara-

ble to traditional software engineering. Managing and mitigating these uncertainties is critical es-

pecially when creating machine learning systems for clinical healthcare use. By incorporating 

processes and tools to develop and deploy machine learning systems in a controlled, automated, 

and monitored manner, machine learning operations aims to ensure quality and reliability in ma-

chine learning systems. 

This study provides an examination of machine learning operations in the context of healthcare 

and big data. First, a study project was conducted to design a machine learning operations archi-

tecture for building a machine learning based NLP solution to be integrated into an existing clinical 

healthcare software application. Two separate model deployment and inference architectures 

were designed. To test the applicability of these architectures in the context of big data, an em-

pirical study was conducted. The results showed the batch inference architecture using Spark 

NLP had better performance compared to a Docker container based online inference architecture. 

In conclusion, the study project involving the design of a machine learning operations archi-

tecture, as well as the empirical comparison of batch inference and online inference, offer insights 

into the field of machine learning operations. The proposed model and the results of the compar-

ison can be used to develop machine learning systems and make informed decisions on the 

selection of an inference architecture. 

Key words and terms: machine learning, machine learning operations, MLOps, natural language 

processing, NLP, big data, healthcare 
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Koneoppimiseen pohjaavien tietojärjestelmien kehittäminen ja operointi sisältää 

epävarmuustekijöitä, jotka eivät ole verrattavissa perinteiseen ohjelmistotuotantoon. Näiden 

epävarmuuksien hallinta ja lieventäminen on tärkeää etenkin luotaessa koneoppimisjärjestelmiä 

terveydenhuollon kliiniseen käyttöön. Koneoppimisen tuotanto (engl. Machine Learning Opera-

tions, MLOps) on joukko prosesseja ja työkaluja, joilla pyritään varmistamaan koneoppimisjärjest-

elmien laatu ja luotettavuus lisäämällä niiden kehitykseen ja tuotantoon automaatiota ja val-

vontaa. 

Tämä tutkielma tarkastelee koneoppimisen tuotantoa terveydenhuollon massadatan 

kontekstissa. Ensin kuvataan tutkimusprojekti, jossa kehitettiin koneoppimisen tuotantoarkkiteh-

tuuri NLP-sovelluksen (engl. Natural Language Processing) toteuttamiseksi. NLP-sovellus suun-

niteltiin integroitavaksi terveydenhuollon kliinisessä työssä käytettävään ohjelmistosovellukseen. 

Projektissa kuvattiin kaksi erilaista inferenssiarkkitehtuuria, joiden soveltuvuutta projektin 

kontekstissa testattiin empiirisellä tutkimuksella. Tulokset osoittivat Spark NLP -kirjastoon pohjau-

tuvan eräajoinferenssin olevan tehokkaampi verrattaessa Docker-kontteihin perustuvaan reaali-

aikainferenssiin. 

Tutkimusprojektissa kehitetty arkkitehtuuri ja prosessimalli tarjoavat esimerkin koneoppimisen 

tuotantoarkkitehtuurista hyödynnettäväksi koneoppimisjärjestelmien kehityksessä ja tuotan-

nossa. Inferenssin suorituskykyä vertailevan empiirisen tutkimuksen tuloksia voidaan hyödyntää 

valittaessa inferenssiarkkitehtuuria tietoon pohjautuen. 

Avainsanat: koneoppiminen, koneoppimisen tuotanto, MLOps, luonnollisen kielen käsittely, NLP, 

massadata, terveydenhuolto 
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1 Introduction 

In recent decades, healthcare practice has moved from documenting patient records and 

clinical notes on paper to using healthcare information systems (HIS) storing data in elec-

tronic health records (EHR). This development has led to the accumulation of digital 

healthcare data. It has also brought the need, and possibility, for using machine help to 

organise, search, and develop novel ways of using data to support clinical and adminis-

trative work in the healthcare domain. 

Significant portion of healthcare data is in the form of natural language in medical 

reports written by healthcare professionals. To make this unstructured data machine read-

able, we need to transform unstructured natural language to some structured data format. 

Even though modern healthcare information systems are moving towards providing tools 

for clinicians to make reports in structured format, it will not help dealing with legacy 

data created with legacy software. For this reason, creating solutions to process and ana-

lyse both historical and new data is key in getting insights from the vast amounts of 

healthcare data. 

To enable machines to work with unstructured natural language, we need natural lan-

guage processing (NLP). Combined with machine learning (ML) methods, NLP has 

proven capable of processing and transforming vast amounts of data into structured for-

mats usable for analysis use cases. Named entity recognition (NER) is one of these meth-

ods. In practice, NER consists of an ML model that is trained to recognise valuable enti-

ties from natural language. The context of this thesis is to study the life cycle processes 

of implementing such ML solution in the context of healthcare big data. 

At the end of the ML life cycle is a productised ML solution. Reaching a functional, 

reliable, and efficient ML solution that is integrated to existing information systems, is 

not trivial. Despite the great advancements in ML research in recent decades, ML produc-

tisation has proven to be a difficult task not least in the healthcare domain. Compared to 

traditional software, ML systems bring a new realm of uncertainties not manageable with 

traditional software development methodology. One proposed solution to ease the process 

of ML life cycle management and ML system productisation is machine learning opera-

tions (MLOps). The ambition behind MLOps is to breach the gap between data scientist 

work in developing ML models and a functioning ML solution by bringing automation 

and transparency to the various phases of ML system development. 
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The goal of this master’s thesis is to do a case study in MLOps in the context of 

productising an ML powered NLP solution in healthcare big data context. To address the 

challenges and opportunities in this domain, two research questions have been formu-

lated, as presented in Table 1. 

Research question 1 (R1) seeks to identify the MLOps architecture and processes 

required for an ML NLP product. This question is framed with the case study project 

described in Chapter 3. By examining the specific needs and demands of ML NLP prod-

ucts, the thesis aims to propose a comprehensive model for the MLOps processes and 

tooling architecture. 

Research question 2 (R2) investigates the optimal cloud computation architecture for 

executing inference with a deep learning ML NLP model in the healthcare big data con-

text. To address this question, the thesis proposes two distinct architectural solutions, each 

offering unique advantages and capabilities. To test the applicability of the proposed so-

lutions, an empirical study was conducted by executing the inference with various com-

putation resources within environments created according to the proposed inference ar-

chitectures. 

R1 What type of MLOps architecture and processes an ML NLP product requires? 

R2 What type of cloud computation architecture is optimal for executing inference 

with a deep learning ML NLP model in healthcare big data context? 

Table 1. Research questions. 

Next, in Chapter 2, the necessary background information is provided, beginning with 

an overview of machine learning and its applications in healthcare. The challenges in 

developing machine learning systems are discussed, followed by an exploration of the 

need for machine learning operations and a definition of the machine learning operations 

process. 

In Chapter 3, a detailed MLOps case study is presented, which includes the project 

description, requirements, and preconditions. A comprehensive plan for the MLOps pro-

cess and architecture is proposed. The chapter ends with describing the empirical study 

to test and compare the performance of the proposed inference architectures for batch and 

online inference. 
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Chapter 4 focuses on the analysis of the inference performance study results, discuss-

ing the findings from the online and batch inference tests, and comparing these results to 

evaluate the effectiveness of the proposed solutions. 

Chapter 5 presents the conclusions derived from the primary findings of this thesis. 

Following that, in Chapter 6, the implications of the research are assessed, along with the 

exploration of possible future directions for research in this domain.  
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2 Background 

In this chapter, a brief introduction to research touching on this thesis subject is given. 

Section 2.1 gives a general view on ML. Section 2.2 describes the advances of ML re-

search in the field of healthcare. Section 2.3 is about the challenges of developing modern 

ML systems. Section 2.4 goes further in describing the need for MLOps in solving the 

challenges described in Section 2.3. Finally, Section 2.5 gives an introduction to studies 

defining the MLOps process. 

2.1 What is machine learning? 

In the era of big data, getting insights from the vast amount of data gathered in information 

systems requires machine help. Machine learning, a part of artificial intelligence (AI), is 

defined as the means for automatically detecting patterns in data and using this gained 

knowledge to predict the future or to make decisions under uncertainty [Murphy, p. 1, 

2012]. The “knowledge” is engineered, or “trained”, into a system by creating a program 

that fits the given data by learning the patterns and characteristics in the data. The process 

of “learning” happens when a learning algorithm is adjusting modifiable parameters in a 

system template, i.e., an ML model, based on the data passed through the algorithm 

[Alpaydin, p. 24-25, 2016]. By learning the patterns in vast amounts of data, the ML 

model can be used to predict the probability of a given sample having certain character-

istics. For example, this can be classifying a sample image by determining the probability 

of it containing a certain object, e.g., a dog. It can be said the ML model has then learned 

to recognise the “dogness” of images. The amount of “dogness” can then be used to infer 

if the image contains a dog and with what probability. 

There are three main types of ML: supervised learning, unsupervised learning, and 

reinforcement learning [Murphy, p. 2, 2012]. This thesis focuses on the usage of most 

common of them, supervised learning, more precisely, deep learning. A deep learning 

architecture consists of a multilayer stack of modules capable of transforming the input 

to an output with increased invariance and selectivity [LeCun et al., 2015]. A key part in 

these architectures is the individual nodes in each module that are often described as neu-

rons. When we combine these layers of nodes, or neurons as we say, we form an artificial 

neural network. The usage of big data and increasing computing power has enabled build-

ing and increasing the complexity of these deep neural networks. 

LeCun et al. [2015], in their review, describe how deep learning has significantly 

advanced the field of ML in the past years. For decades, ML was limited by the ability of 
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data scientists to extract and transform the domain specific features of the given data into 

such format that was usable for ML algorithms commonly (linear) classifiers. Deep learn-

ing and its capability to recognise patterns in multi-dimensional data has been breaking 

records in various ML domains from speech recognition to gene mutation predicting. 

Compared to “shallow” linear classifiers, which require extensive engineering work and 

domain expertise on feature extraction, deep learning enables learning intrinsic features 

automatically from multi-dimensional input data. The jump from linear classifiers to 

multi-dimensional classifying with neural deep learning has broadened the capabilities of 

ML and accelerated its development. 

2.2 Machine learning in healthcare 

AI and ML has been researched within healthcare context since the 1970s [Patel et al., 

2007]. From the initial promise, or threat some might say, of AI and ML systems once 

being able to replace human clinicians in their work, the progress of incorporating AI into 

clinical work has been slow. Patel et al. [2007] gave a view on the history of artificial 

intelligence in medicine (AIM). They point out that the barriers for AI breaking into clin-

ical use has not only been technical, but also political, fiscal, and cultural. Yet, the re-

search of AIM has made progress in the past decades and is comparable to the overall 

advancement of AI and ML. From the traditional ML methods, where the domain exper-

tise of statistical modelling and feature extraction was key, focus has shifted to deep learn-

ing and its opportunities of building systems capable of learning key features and patterns 

automatically from vast amounts of data [Beam and Kohane, 2018]. For example, using 

deep learning models to build diagnostic tools has been proven capable of detecting ref-

erable diabetic retinopathy with accuracy comparable or greater than human clinicians 

[Gulshan et al., 2016]. 

In their review, Jiang et al. [2017] dove into used data types and mechanisms, and the 

disease types in AIM research. The data sources used in AIM can be divided into struc-

tured and unstructured data. Structured data includes diagnosis imaging, genetic testing 

and electrodiagnosis. These data sources are researched especially in the diagnosis stage. 

Jiang et al. listed clinical laboratory results and physical examination notes as the main 

unstructured data sources under research. These data types require some mechanism of 

transforming the data from unstructured form, such as human written text, into a machine-

understandable form. 
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Natural language processing is an AI mechanism that can be used for transforming 

natural language into structured form. After this transformation the created structured data 

can be used with various ML methods. Jian et al. noted that with structured data, research-

ers have aimed at clustering patient traits or inferring disease outcomes using various ML 

techniques. The three main disease categories researched were identified as cancer, neu-

rology, and cardiology. All three are among the leading causes of death and thus improv-

ing diagnostic tools and treatment outcome prediction with AIM could benefit numerous 

patients. 

While HISs are moving towards structured formats and standardisation of data mod-

els used to store EHRs, vast amount of data is still aggregated and archived in free-text 

format, e.g., in medical narratives. Transforming this data into machine readable format 

requires medical NLP. One of the main goals for medical NLP is to build tools for clinical 

decision support [Demner-Fushman et al., 2009]. In clinical decision support, medical 

NLP could extract information from EHRs containing free-text data. This extracted data 

transformed into machine readable format could then be used to build various kinds of 

clinical decision support systems. The use of machine learning NLP, especially deep 

learning models, has already been demonstrated capable of medical adverse event detec-

tion [Borjali et al., 2021], adverse drug event detection [Chen et al., 2019], and predictive 

diagnosis of venous thromboembolism using semantic and sentimental analysis [Sabra et 

al., 2018]. 

As AIM keeps advancing and more and more use cases open for AI tools to be incor-

porated into clinical practices and HIS, it is clear we need standardised ways of building 

trustworthy AI. In healthcare, a highly legislated and controlled field, this is even more 

essential, e.g., to ensure patient security. Thus, there is a clear need for systematic meth-

ods for developing AI and ML systems to enable taking ideas and researched methods 

into production. 

2.3 Challenges in developing machine learning systems 

The development, deployment, and operation of machine learning systems is a process 

that holds unique characteristics compared to traditional software engineering (SE) [Ku-

meno, 2019; Amershi et al., 2019]. The phases of an ML system project, i.e., ML work-

flow [Lwakatare et. al, 2020], can be distilled down to context understanding, data cura-

tion, data modelling, and production and monitoring [Wan et al., 2021]. 
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The first step in an ML project is context understanding. This phase requires the ML 

engineering team to interact with the customer to discover and specify the possibilities of 

ML applications. The data curation process consists of collecting and pre-processing the 

data. This includes manually labelling a ground truth dataset to be used for training or 

validating the model. Data modelling is the process of training and evaluating the model 

using the features extracted from the data. The final step of data modelling is evaluating 

the accuracy of the model output. In the production phase, the model is deployed to be 

used as a service integrated into existing information systems. The model performance is 

then tracked by monitoring changes in the input data and the correctness of the model 

output. [Wan et al., 2021] 

As described above, data plays a key role in ML application development phases. It 

has been said [Arpteg et al., 2018] that data replaces parts of code in an ML system com-

pared to traditional software systems. Data is used to train an ML model for the system 

to be able to automatically recognise patterns. In traditional SE, behaviour of a system is 

implemented with hard-coded rules [Arpteg et al., 2018]. Recognising patterns from the 

data using a model produced in the training phase by learning algorithms imposes uncer-

tainty to ML systems. Compared to the hard-coded, strictly defined rules in a traditional 

software, ML models only give an approximation of the relationship between the model 

input and the inferred output [Kläs and Volmer, 2018]. Despite this inaccurate nature of 

ML systems, in various cases approximation is the only viable solution. When the behav-

iour of a system cannot be expressed in traditional software logic, e.g., recognising an 

object from an image, there is a need for ML [Sculley et al., 2015]. In these cases, con-

structing an ML model to approximate the behaviour can produce results good enough 

for real-life use. 

Some level of uncertainty in the behaviour of an ML system is inevitable. Training 

models from data introduces an empirical aspect and the behaviour of an ML system is 

always linked to the data available. There is no guarantee of the real-world correctness of 

an ML system [Kläs and Volmer, 2018]. In addition to data related issues, uncertainty 

and incorrectness of ML systems is also driven by technical debt incurred by multiple 

aspects of the ML system lifecycle [Sculley et al., 2015]. Sculley et al. list boundary 

erosion, entanglement, hidden feedback loops, undeclared consumers, data dependen-

cies, configuration issues, changes in the external world, and a variety of system-level 

anti-patterns as main causes for technical debt. In traditional software development, 

building modular decoupled systems mitigates technical debt by making systems and 
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their codebase more maintainable and easier to update. An example of this is the rise of 

microservice architecture where decoupled software components implement a subset of 

wider business logic. These components can be developed, deployed, and maintained in 

isolation. On the other hand, in ML systems signals are entangled and boundaries between 

modules erode. For example, features used to train an ML model are hard to develop in 

isolation since they influence the results of the ML model in conjunction. Changing the 

distribution of a single feature could affect the performance of the model in a negative 

way. Sculley et al. call it the CACE principle: Changing Anything Changes Everything. 

Though traditional SE methodologies and practices have contributed to ML lifecycle pro-

cesses, they fit poorly because of the fundamental differences in traditional software and 

ML systems [Kumeno, 2019]. 

Kumeno [2019] divides the ML lifecycle into requirements analysis, data-oriented 

works, model-oriented works, and DevOps works. Requirement analysis consists of ana-

lysing the system requirements and data. Data-oriented works involve data collection, 

data cleaning, data labelling and feature extraction. Model-oriented works consist of 

model training, model evaluation, model optimisation and model design and construction. 

DevOps works include model deployment, monitoring the system performance and pos-

sible retraining iterations. These phases create a feedback loop where any of the steps can 

loop back to the previous stages if the expected outcome is not achieved. Compared to 

traditional SE, it is hard to predict success of each phase of the ML lifecycle thus making 

it difficult to estimate the full cost and duration of an ML project. The feedback loop 

might need multiple iterations before the ML solution reaches a level of acceptable accu-

racy. With the uncertainty related to the data available, it is also a possible, that a goal 

accuracy level is impossible to achieve without going back to the initial phases of require-

ment analysis followed by data exploration, gathering, and pre-processing. 

To minimise the uncertainty in ML projects, automating and improving the ML 

lifecycle processes have been proposed as a solution. Zhou et al. [2020] recognize this 

need for efficacy and reliability in building and maintaining ML systems. The complexity 

and the iterative nature of ML lifecycle described by Kumeno [2019] and Amershi et al. 

[2019] call for automation to reduce uncertainty and the possibility of human error in the 

ML development processes. 
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2.4 Why we need machine learning operations? 

The traditional view of ML development has been described as a process of data scientists 

performing scientific experiments in isolation [Valohai, 2022]. This data science work 

revolves around notebook interfaces allowing agile data manipulation and prototyping of 

ML models but lacking in tools and processes to take these prototypes into production-

ready ML solutions [Borg, 2021]. On the other hand, in modern software development, 

operations are tightly linked to development processes [Lwakatare et al., 2020] adhering 

to DevOps principles [Karamitos et al., 2020]. The DevOps workflow creates a fast and 

automated feedback loop where agile software updates are continuously integrated and 

deployed to end-environments. As of late, this process was not well defined in ML work-

flow [Lwakatare et al., 2020]. 

The development of ML solutions has been traditionally conducted by data scientists 

using ML workflow practices. These new type of software professionals are often lacking 

in training and experience in traditional software development methods [Borg, 2021]. 

This issue is highlighted by the fact of ML workflow missing the processes required by 

modern software development, e.g., continuous development and delivery practices 

[Lwakatare et al., 2020]. As building ML tools becomes more and more prevalent in the 

software industry, the need for improving ML software development practices increases. 

This need is also gaining recognition in the field of ML software professionals [Mäkinen, 

2021]. 

Machine learning operations (MLOps) does not include only the DevOps process for 

building ML systems. There is also an architectural angle to MLOps. As more and more 

AI and ML tools reach production phase, the need for integrating ML systems to tradi-

tional software systems increases. Designing such integration services that can run effi-

ciently and reliably complex neural network models, is not trivial. The process or “run-

ning” an ML model is called inference. In this process a single sample or a batch of sam-

ples are fed into the model and the model outputs, i.e., the inference results, are served 

back in machine readable format. The samples are passed to this process via some sort of 

application programming interface (API). Setting up the API requires deploying the 

model into the API service. 

The model API service is often implemented using a representational state transfer 

(REST) architecture. A deployed ML model is then served as a RESTful API and the 

inference occurs behind the Hypertext Transfer Protocol (HTTP) API. The API receives 

a single item or a batch of items as the body of a HTTP request. The submitted entries are 
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processed with the ML model to receive the designed output to be served back via the 

HTTP response. Designing such service architecture that fits this process well, is not well 

established. In this thesis, part of the MLOps process is to design the inference architec-

ture to solve this problem in a healthcare big data context. 

2.5 Defining the machine learning operations process 

Previously described challenges in developing and operating ML solutions led to research 

in closing the gap between these two processes. Lwakatare et al. [2020] describe the in-

tegration of ML workflow and the DevOps process. Even though they are not referring 

this integration as MLOps, this can be viewed as a description of it. Their goal was to 

describe a process that enables “fast, iterative and continuous development, deployment 

and operation of AI-based software systems in production”. In their view, the ML system 

lifecycle can be described in four distinguishable processes where DevOps should be in-

tegrated into ML workflow activities: data management, ML modelling, software devel-

opment, and system operation. From this point on, the term MLOps is used to describe 

this integration. 

In the data management process, MLOps include creating and using standardised ac-

tivities and systems for data collection, selection and augmentation, and feature extrac-

tion. The code, tools and systems created for data management should be reproducible 

and support continuous integration and delivery methods. Security is also a key factor 

when dealing with the data, and MLOps should take secure data access into account. 

[Lwakatare et al., 2020] 

Within data modelling, MLOps should allow for backwards traceability from devel-

oped models to training experiments, used data sets and version-controlled code used in 

training processes. In simple terms, each produced artifact should be stored with related 

metadata including a name, version, registration date and dependency information. The 

storage for successfully trained and accepted models and their metadata is called a model 

registry. A registry should contain such information of stored artifacts that it enables re-

producing an artifact using the registered dependencies. [Lwakatare et al., 2020] 

ML components need to be integrated into traditional software. MLOps provide tools 

and processes for this. The registered models should be integrated via automatic build 

systems with verification and integration testing in place. The testing should ensure that 

the traditional software components work with the ML system using large enough test 

data. This process can be automated on a level that enables automatic retraining of the 
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model and integration of new model versions into the existing software. The continuous 

integration system can then be used to rollback to previous model versions to identify 

bugs and errors surfaced after model updates. [Lwakatare et al., 2020] 

In the operational phase of ML system lifecycle, the running system should be con-

tinuously monitored for issues. The system should perform consistently over time regard-

ing the model performance (e.g., the prediction accuracy) and execution latency (i.e., in-

ference execution time). Operational stage can include manual, semi-automated or auto-

mated process of (re)deploying the ML components to the system. Version deployments 

and the new component versions should be tested in preproduction environments. [Lwa-

katare et al., 2020] 

Karamitsos et al. [2020] also point out the gap between data science work and taking 

ML systems into production with automated DevOps processes. They set out to design 

an ML pipeline using continuous integration (CI) and continuous delivery (CD), princi-

pals known from DevOps [Fitzgerald & Stol, 2017]. They propose a streamlined, auto-

mated process they call ML automated pipeline with CI/CD. Automation is required when 

there is a need for continuous training and testing of models. In the production phase, 

updating served models requires a reliable, automated deployment pipeline including test-

ing in various stages of the pipeline. This process allows the ML system to adapt to 

changes in the data or requirements for the models. 

First Karamitsos et al. [2020] describe a manual process for ML pipeline. This manual 

process is stated as a baseline for an ML system delivery project and assumes that it is 

used for small-scale ML projects where no, or only few, iterations of the implementation 

is required. Compared to an automated ML pipeline leveraging CI and CD principles, in 

a manual ML pipeline the tasks from developing and testing an ML model up to the point 

of deploying and operating it are manual. In an ML manual pipeline process an ML sys-

tem is delivered by separate teams of data scientists developing the model and registering 

it into a model registry via an API and then the operations engineers testing and operating 

the model retrieved from the registry. Since the ML pipeline is a one-off type of imple-

mentation, no tracking of the model results or actions is required. Machine learning man-

ual pipeline process is shown in Figure 1.  
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The ML automate pipeline for CI/CD defines a process for streamlining the develop-

ment of ML models for data scientists and ML engineers. Enabling a CI/CD process for 

model development enables faster lifecycle of taking a model from the development 

phases of feature engineering, model architecting and hyperparameter optimisation to de-

ploying the model into a test environment for validation and ultimately into production. 

It also enables retraining the model in production whenever new data is available. [Kara-

mitsos et al., 2020] 

The automated pipeline is shown in Figure 2. ML automate pipeline for CI/CD uses 

Git repositories for source code management. Jenkins is used to automate the CI pipeline. 

Jenkins is an open-source automation server [Jenkins, 2023]. Once Jenkins receives a 

trigger, i.e., a Git repository change, the CI pipeline validates and builds the latest version 

of the ML code and runs unit tests for it. The ML code is then used to train a ML model. 

Along with changes in the source code repository, the training can be triggered with new 

data or adjusted hyperparameters. The trained models are built into a complete ML ser-

vice using a CD pipeline that builds and registers a Docker image of the service. Docker 

is an open-source platform that enables the creation, deployment, and running of applica-

tions in self-contained and executable packages, i.e., containers [Docker, 2023]. The 

Docker image is deployed to a staging environment where the service container contain-

ing the newly trained model is automatically tested and validated against a test dataset for 

accuracy and performance. The CD pipeline is finalised with deploying an accepted ML 

model service into production that is running in a Kubernetes cluster. Kubernetes is a 

Figure 1. Machine learning manual pipeline process. [Karamitsos et al., 2020] 
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popular open-source system designed to automate the deployment, scaling, and manage-

ment of containerized applications [Kubernetes, 2023]. The CI/CD process can be rerun 

to retrain a model if model or data drift is detected when monitoring the performance of 

the production ML service. 

 

The end-result of a CI pipeline is packaged components (e.g., Docker containers), 

containing the trained and tested model ready to be delivered. Testing should include unit 

testing the code used for training and building the models as well as testing the perfor-

mance of the model using test data separated from the data used for training the model. 

Testing should also incorporate validating data, data schemas and models. The CI process 

should rely on version-controlled code and data used for building the models. This ena-

bles backwards traceability and reproducibility of models. Testing should validate that 

the models give sufficiently accurate predictions of the real-world phenomena. [Kara-

mitsos et al., 2020] 

Before delivering the built components to production environment, the components 

should be deployed to a preproduction environment to be tested in a production like en-

vironment. Models passing this integration test phase are pushed and stored into a model 

registry. In the CD process, the stored model is then delivered to the production environ-

ment to be operated and monitored. [Karamitsos et al., 2020] 

Figure 2. ML automate pipeline for CI/CD [Karamitsos et al., 2020] 
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Van der Goes [2021] described five best practices for MLOps: pipeline automation, 

data availability, exchangeable artifacts, observability, and policy-based security. Pipe-

line automation is achieved with CI/CD processes. Ensuring data availability means stor-

ing validated data sets used for training specific model versions to allow reproducibility.  

Exchangeability of artifacts means using version controlling and descriptive documenta-

tion for ML models, code, and configurations. This also includes documenting architec-

tural solutions for integrating deployed models into traditional software systems. With 

observability, MLOps should aim to achieve monitoring of ML system component per-

formance and fault tolerance by using performance metrics and logging of successful and 

erroneous events. Policy-based security should cover all four release environments: de-

velopment, testing, acceptance, and production. Each environment should have security 

policies in place and allow access with attribute-based access control (ABAC). 

As described in the literature, MLOps are a set of processes to be harnessed in the 

ML lifecycle. Various tools and systems have been built around MLOps to ease the auto-

mation of these processes. The MLOps process described in the case study in Chapter 3 

is utilising Microsoft’s Azure services and its ML life cycle service Azure Machine 

Learning. 
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3 MLOps case study 

This chapter describes the research and development project for an MLOps process for a 

deep learning ML NLP solution in healthcare big data context. The provider of project is 

a Finnish IT software and service company, Tietoevry [Tietoevry, 2022a]. The project 

was executed as an in-house research and development project during the end of 2021 

and the spring of 2022. 

Section 3.1 gives a brief description of the project and its requirements. Section 3.2 

frames the preconditions for the planned NLP solution and its MLOps process. In Section 

3.3, the designed MLOps architecture is described and two alternatives for the inference 

stage are proposed: online inference and batch inference. Section 3.3 ends with a descrip-

tion of the empirical study on inference performance. 

3.1 Project description and requirements 

In the research project, the goal was to design an MLOps process for developing and 

productising an NLP solution using deep machine learning for analysing free text contents 

in EHRs. The aim was to build a process for training, evaluating, deploying, and main-

taining a Finnish BERT model, “FinBERT” [TurkuNLP, 2019], fine-tuned for the task of 

named entity recognition in medical texts. The NER model would be trained to recognise 

valuable entities from EHR texts, e.g., mentions about a patient’s smoking or other sub-

stance usage. The NER results would then be used to create an improved search tool for 

clinicians viewing EHRs in clinical work. A simplified process of the NER model's func-

Figure 3. The NER model inference input and output for an EHR. 
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tioning, demonstrated using Finnish language examples, is shown in Figure 3. In the ex-

ample, the model is capable of recognising mentions about smoking and information re-

lated to heart conditions and treatment in a simple EHR containing free text. 

The designed ML NLP system should be capable of handling big data stored in a 

customer’s environment, e.g., a cloud environment of a Finnish hospital district, without 

the need for the data to be delivered or accessed outside the environment. The solution 

should be easily deliverable to multiple customers. Artifacts, e.g., ML codebase and 

trained models, created within the MLOps processes should be stored and hosted in the 

provider’s own environment for maintaining intellectual property rights. 

The final NLP solution should be integrated with a patient record viewer application 

called 360° Patient produced by Tietoevry. 360° Patient [Tietoevry, 2022b] is an appli-

cation built with web technologies. It enables clinicians to view EHRs from both archived 

and current HISs by integrating the HIS data stored in a data lake, a data storage technol-

ogy capable of storing big data in structured, semi-structured an unstructured format. The 

integration to the data in the data lake is implemented by creating data pipelines that ex-

tract and transform the raw structured and unstructured EHR data stored in the data lake 

and load it to the application database. To enable clinicians efficient use of patient data, 

360° Patient provides advanced search tools such as free text search and document filter-

ing using various clinical taxonomies. 

The NLP solution is intended to enhance the search functionality in the application 

by providing search labels for frequently searched topics. For example, a clinician evalu-

ating a patient’s applicability for a medical procedure could search all mentions about 

patient’s smoking status. Using a deep learning NLP model in recognising the related 

entities in the texts would cover various forms of expressing the smoking status of a pa-

tient and thus improve search accuracy compared to a key-word search performed by 

clinicians. The 360° Patient application’s patient health record view is displayed in Figure 

4. 
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The data used in the 360° Patient application comes from data lakes built for Finnish 

medical districts. The data is ingested with integrations built for various EHR sources. 

Usually, some of the data is historical and brought to the lake with a single load. Some of 

the data can be updating in batches periodically and some might be streamed continu-

ously. All these data intake processes should be considered when designing the MLOps 

architecture. New data should be available for the clinician as soon as possible and the 

inference process should conform to this need, i.e., new data should be run through the 

model’s inference and results should be available for clinicians simultaneously as the new 

data is visible in the application. The MLOps process should also give tools for monitor-

ing changes in the data and logging all events from training to inference stage. The ML 

system should also support monitoring data drift and notify about performance decline 

caused by drifting in the input data, e.g., due to changes in clinical recording practices. 

3.2 Preconditions 

The 360° Patient application gives a window to data stored in data lakes owned by Finnish 

medical districts. The largest Finnish medical district, HUS, hosted a seminar for clinical 

NLP [HUS, 2022] on February 4, 2022. It was noted that HUS data lake contains 9 800 

million words in patient texts and a total of 11 billion words when all document types in 

Figure 4. A clinician viewing a patient’s medical history in the 360° Patient application. 
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the lake are combined. Presumably, data lakes are expected to expand over time, resulting 

in an increase in the volume of text data. Therefore, the ML solution proposed in this 

project must be capable of efficiently and affordably processing such large volumes of 

data. 

The patient records used in training the model and viewed in the application are reg-

ulated by Finnish public health law and Finnish special healthcare law. Thus, any unnec-

essary access to raw data containing personal patient information should be limited. To 

support this requirement, development and testing environments should only be accessing 

data that is pseudonymised. Manual labelling any training or validation data sets should 

be performed by approved clinicians in a closed environment with appropriate access 

restriction policy in place. As stated above, no data should leave the customer’s environ-

ment in any stages of the MLOps process. 

The end-result of the inference, i.e., the model output data, is viewed in the 360° 

Patient application. As stated above, the application is built with web technologies. Thus, 

serving the model output for the end-user should have a latency that is acceptable in a 

web client environment. To reduce latency of consecutive inference requests, some sort 

of caching mechanism should be considered. It should also be noted that the clinician 

only views records of a single patient at a time. Thus, the maximum amount of text to be 

processed with the model for a single view is the amount of text for a given patient. This 

should be noted when designing and implementing an online inference architecture. It is 

assumed that maximum inference request latency occurs when a clinician is viewing con-

tents for a patient with no cached inference results for any of the stored health records. 

This initial inference request is what defines the compute resource requirements for the 

online inference API. It is also assumed that there are multiple simultaneous users view-

ing patient records at a given time. The built service should handle concurrent requests 

without noticeable performance hindrance in the application. 

3.3 MLOps process and architecture plan 

To answer research question 1, the MLOps processes and the architecture plan is de-

scribed in this section. The aim is to give a high-level description of the MLOps architec-

ture, and the tools required for implementing ML lifecycle tasks from training to 

productising the developed model. First, an overall description of the planned ML product 

lifecycle is given. Then, the MLOps tools and processes required in different lifecycle 
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phases are defined. Finally, the architecture plan for each phase is described in more de-

tail. 

The goal of the MLOps design project was to develop an MLOps process that is au-

tomated and conforms to DevOps principals, e.g., by using CI and CD tools for develop-

ing, testing, and productising the trained models. As the cloud service provider, Mi-

crosoft’s Azure cloud platform [Microsoft, 2022a] was selected. As the ML lifecycle tool, 

Azure Machine Learning [Microsoft, 2022b] was selected. It provides an end-to-end plat-

form for ML development. 

ML product lifecycle stages identified for the project are displayed in Figure 5. The 

project begins with the model requirement analysis phase where ML product require-

ments and goals are defined. The provider identifies domain specific goals for the NLP 

system together with domain experts from the customer side. In this NLP project, the 

NER classes would be defined and requirements for the model accuracy would be estab-

lished. 

The next phase in the ML lifecycle is the model development phase. This phase be-

gins with managing the data required in the model development including data explora-

tion, preparation, and transformation. Data modelling can begin once the required data 

pipelines are built, and the data is available. The output of this stage is a model training 

pipeline codebase that can be used to automate the training phase. 
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The next stage is the model training phase where the training pipeline infrastructure 

is provisioned in the cloud. A CI process is used to trigger the training pipelines. The goal 

in this phase is to train a model that reaches desired accuracy using evaluation datasets 

that is separated from the training dataset. Each training experiment and related metadata 

is stored in the ML lifecycle tool for reproducibility. 

In the model validation phase, a human-labelled validation dataset is used to evaluate 

the model against data that the model has not seen during the training phase. The model 

validation stage is an iterative process executed together with domain experts from the 

customer’s side. In our case, medical clinicians are involved to validate the final output 

of the produced model. If the model accuracy is not on an acceptable level, previous 

stages must be iterated until acceptance is reached. This iterative nature of the model 

development and training process is illustrated in Figure 5 with the arrows pointing back-

wards from the first lifecycle phases. If a model reaches the requirements, the produced 

model artifacts are stored in a model registry along with dependency metadata for back-

wards traceability and reproducibility. 

3.3.1 Infrastructure as code 

A key design decision was to incorporate infrastructure as code (IaC) techniques. This 

involved creating cloud infrastructure configurations as code that could be version con-

trolled and modular, enabling templating. The IaC templates were utilized to provision 

Figure 5. ML product lifecycle. 
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cloud infrastructure for multiple clients across various environments, such as develop-

ment, pre-production, and production, allowing for faster infrastructure management. 

Terraform by Hashicorp [Hashicorp, 2022] was selected as the IaC tool since it is a widely 

used technology within the project organisation at Tietoevry. The IaC process is visual-

ised in Figure 6. 

The Terraform core is used to provision resources in the cloud. The provisioning pro-

cess is controlled with Azure Pipelines. When the code in the Terraform repository is 

updated, it triggers a CI process where the DevOps pipeline uses Terraform to compare 

the state in the provisioned cloud infrastructure to the state to be provisioned by the Ter-

raform code base. By comparing the states, Terraform will create a plan what resources 

to create, update, or destroy within the cloud infrastructure. If the plan is valid and ap-

proved, the CD pipeline will trigger Terraform core to update the cloud infrastructure 

accordingly. 

The planned cloud infrastructure in Azure consists of two top-level entities. A sub-

scription is an agreement between an organisation and Microsoft of using Azure re-

sources. A subscription also defines a billing unit. Thus, subscriptions are used to track 

costs of a set of resources. In our plan, a customer’s subscriptions consist of three resource 

groups: development (Dev), preproduction (Test) and production. A resource group is 

logical set of Azure resources and with this distinction resources for each environment 

required in the ML lifecycle are managed separately. For the provider’s own subscription, 

Figure 6. All cloud resources are provisioned with an IaC process. 
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we defined two required resource groups. The development (Dev) resource group is used 

to develop and test the MLOps process and architecture in the provider’s own cloud Azure 

subscription. The management resource group is created for storing and managing arti-

facts created in the model development phase within client subscriptions. The inner con-

tents for a customer’s Azure subscription and resource groups are described in the fol-

lowing sections. 

3.3.2 Model development, training, and validation 

After the initial requirement analysis phase, where the problem scope and solution re-

quirements are defined together with the customer, the project advances to the develop-

ment phase. This phase begins with data preparation. In this project, the desired data is 

the patient journal texts within EHRs stored in disperse data tables in a data lake of a 

hospital district. Commonly, the data exploration and gathering process would require 

more extensive work and most likely a separate project for data integrations and engi-

neering. For 360° Patient the data is already pre-processed from raw disperse data tables 

in the lake into a semi-structured format as the patient events displayed in the application. 

This format contains the details of the patient event in a structured format and the un-

structured medical narrative as the free text content. This transformation takes place in 

data pipelines that load the data from the data lake, transform it into the data model, i.e., 

the patient event document format used by the application, and load the documents into 

Figure 7. Data flow in the data preparation process. 
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the database used by the application’s backend service. This data flow process is dis-

played in Figure 7. The free text stored with each event is the source data for our NLP 

model based on the BERT model architecture and its fine-tuned version for Finnish lan-

guage, FinBERT by TurkuNLP. 

The 360° Patient application event documents still need to be curated. Not all of them 

are suitable or usable in training the NLP model and its desired NER labels. The focus is 

on events containing medical narratives, i.e., journal texts. In this data preparation phase, 

suitable data is gathered from the patient events by analysing the text contents with simple 

rules not requiring machine learning. These queries are defined as regular expression rules 

that are used to mine the event data. The goal is to find a representative distribution of 

patient events to be used for each of the entities the NER model should learn from the 

data. The selected events should contain enough text with enough samples of the desired 

NER labels for the model to generalise in recognising many different linguistic patterns 

of expressing the entities. For instance, if a NER class is designed to identify mentions of 

a patient's smoking habits, it is essential to have a sufficient number of samples that in-

clude diverse ways in which clinicians report smoking. Azure Databricks [Databricks, 

2022] and Spark [Apache Spark, 2022] were selected as the tools for preparing the train-

Figure 8. Data curation and labelling processes. 
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ing dataset. Databricks is used as the computation clustering orchestration tool Spark be-

ing the data mining and data engineering tool running in the cluster. The architecture plan 

for data preparation processes is displayed in Figure 8. 

The curated document dataset is used in two processes. First, the dataset is used in 

manual data labelling. In this process, clinicians go through a subset of the curated docu-

ments and manually label the NER entities in the patient event documents. As the label-

ling tool Doccano [Doccano, 2022] was selected. Doccano is an open-source software 

enabling various text annotation tasks within an easy-to-use web application. For our pur-

pose, Doccano is used for the manual NER labelling process. Figure 9 illustrates a demo 

view of Doccano and its labelling functionality. Doccano provides a REST API for inter-

acting with the Doccano database. This enables loading the curated documents into the 

labelling application and then loading the labelled documents back to the data lake. 

The manually labelled dataset will create the ground-truth dataset that will be used in 

the model validation phase. Generally, human-labelled data can be used also in the train-

ing phase of an ML model. In our case, the manually labelled data is left for model vali-

dation to minimise leaking information from the validation dataset to the model during 

the training process. An overview of the planned model training, validation and register-

ing process is visualised in Figure 10. Instead of using manually labelled data for model 

training, we will use weakly-supervised labelling for creating the training, test, and eval-

uation datasets. This task is led by data scientists who examine the manually labelled data 

Figure 9. Doccano, an open-source text annotation tool. 
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to identify common linguistic patterns in each of the NER classes. From these patterns 

we can create a set of heuristic expression rules to be used in the weakly-supervised 

labelling process. These rules are created with Skweak [NorskRegnesentral, 2022], a soft-

ware toolkit for Python language that enables weakly-supervised NLP data labelling. The 

curated dataset is run through the Skweak labelling process producing an automatically 

annotated training dataset. This dataset is then used in the NER model training process. 

In addition to data preparations, the data scientists also prepare a training pipeline 

code base as the final output of the model development phase. This pipeline is coded 

locally with unit tests validating the functionalities in training the desired model architec-

ture. Since we are dealing with sensitive healthcare data that must not leave the cloud 

environment of a customer, the development must be done using a simple manually gen-

erated dataset that resembles the patient event documents to be used in the actual training 

phase. All code is version controlled using Azure DevOps [Microsoft, 2022c] services 

with a Git repository stored in Tietoevry’s service account. Finally, a CI pipeline is cre-

ated using Azure Pipelines. The pipeline will be responsible for triggering training jobs 

and automating the testing of the training pipeline codebase. 

The training phase is an iterative process, where the training pipeline is triggered us-

ing pipeline parameters controlling, e.g., hyperparameter tuning and other variables of 

the training pipeline. The output of the training phase is a model ready to be validated 

Figure 10. The model training, validation and registering process. 
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using the manually labelled ground-truth dataset. For a model to be acceptable for this, 

the training pipeline is rerun with modified variables until the model reaches a desired 

accuracy. A single training job run is called an experiment. Each experiment is registered 

and stored in Azure Machine Learning with all the dependency metadata related to each 

job. This includes dataset versions, the code base version, experiment logs and monitoring 

data. Using monitoring visualisations, the data scientists evaluate the performance of a 

model produced in each experiment. 

The best performing models are taken to the validation phase. The manually labelled 

dataset is preserved for this phase. This isolated ground-truth dataset is used in the vali-

dation phase to measure model generalisation. In other words, running inference for the 

ground-truth dataset should result in performance as close as possible to the results ob-

tained in the training phase.  The goal is to make the model learn general patterns for each 

of the NER classes and not to overfit to the data used in the training process. If the trained 

model performs well against the manually labelled data, we can be confident, the model 

has learned the actual linguistic patterns used in expressing the entities the model is de-

signed to recognise. 

The validation process is also triggered with a CI pipeline in Azure DevOps. Valida-

tion logs and monitoring data is stored in a cloud storage linked to Azure Machine Learn-

ing Workspace. If a model reaches required performance against the ground-truth dataset, 

it is registered with all the dependency metadata. The model artifacts and dependency 

data are registered into Tietoevry’s model management subscription. This process is trig-

gered manually from Tietoevry’s subscription using Azure DevOps pipelines. All the 

model related data, except for the sensitive training and validation data, is pulled into a 

storage account under the providers Azure subscription from where the model can be 

deployed for usage. 

3.3.3 Online inference 

Once a model is validated and registered, it can be deployed for inference usage. Two 

separate inference architectures were designed and tested to examine their validity in the 

use case. To test the validity of each of the architectures, an empirical study was con-

ducted to evaluate the inference performance. This study is described in detail in Section 

3.4. 

The online inference architecture enables running the inference in real-time whenever 

a clinician is viewing a patient’s records. The model is deployed packaged into a Docker 
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container behind a RESTful API. Patient journal texts are sent to the API via HTTP re-

quests created in the 360° Patient API backend service. The deployment process is or-

chestrated with a CI/CD pipeline in Azure DevOps. This pipeline will build the container, 

run integration tests on the containerised API in a CI test environment, register the con-

tainer into customer’s container registry, and then deploy the container into a container 

group in Azure Container Instances (ACI) [Microsoft, 2022d]. 

A container group is a scalable containerised compute resource that serves the infer-

ence API in the customer’s private network for the 360° Patient API backend service to 

consume. When a clinician performs an advanced search action in the application, the 

application API sends HTTP requests to the inference API containing all the EHR free 

text content of a single patient in a batch request. The model service will run the list of 

texts through the NER model and serve the results back to the application backend. The 

backend service will handle the response and use the NER classifications to execute ap-

plication specific logic, in this case the advanced searching by filtering the documents 

based on the NER results. The final output is sent back through a secure connection to 

the clinicians using the application on the hospital premises. Azure monitoring tools are 

used for monitoring various metrics, e.g., container resource workload, API event success 

rate, execution times and the distribution of inferred NER classes in the texts. Monitoring 

and logging events are set to trigger automatic alerts when anomalies occur in the infer-

ence API service. A complete view of the online deployment architecture is displayed in 

Figure 11. 

An online inference architecture provides many benefits. For instance, compared to a 

batch inference architecture where all the patient events must be processed before they 

are accessed by a clinician, an online inference service would remove the need for a large 

initial processing for all historical data. A hospital district data lake also contains lots of 

historical and “cold” data that is never accessed by clinicians in the context of the 360° 

Figure 11. Online inference deployment and operation architecture. 
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Patient application. An online inference architecture would ensure that the computation 

resources are used only for data that is viewed by the clinicians. Another benefit is the 

ability to integrate the service for various other services via a standardised RESTful HTTP 

API. Yet, an online architecture places certain expectations for the API in performance. 

For example, in the use-case of 360° Patient, the API must respond in an acceptable 

amount of time. For some cases, the response time may be excessively long, particularly 

when patients have a substantial medical history. It is assumed response times can be 

shortened with more powerful virtual machines running behind the inference service. 

3.3.4 Batch inference 

As an alternative for the online inference, a batch inference architecture was designed for 

offline big data processing. This architecture is based on Spark NLP [John Snow Labs, 

2022], an NLP library for Apache Spark. For the trained model to be executable with 

Spark NLP, first it must be converted into a TensorFlow [TensorFlow, 2022] model, a 

model type supported by Spark NLP. Spark NLP library is used to create an inference 

pipeline with the pretrained model that can be executed as a distributed computation using 

Apache Spark orchestrated with Databricks. 

The Spark NLP pipeline build process is created using Azure Pipelines. With this CD 

pipeline, the model artifacts are fetched from Tietoevry’s subscription, transformed into 

TensorFlow format, and then packaged into a Python library. The package is deployed to 

a customer’s environment where it can be used to execute batch inference pipelines or-

chestrated with Databricks. 

The source data in the batch process is the patient event documents pre-processed by 

the application data pipelines. These documents are loaded from the data lake in a dis-

tributed execution job with Apache Spark and then passed through the Spark NLP pipe-

line. After running the NER classification, the results are stored to the application data-

base from where they are ready to be served via the application backend service when 

clinicians request the documents in the application. 

With the batch inference architecture logging and monitoring occurs in the Databricks 

jobs. Metrics and log events are gathered from the Apache Spark executions. This enables 

tracking execution performance and then fine-tuning the required computation resources 

to optimise costs and batch job run time. Classes appearing in the NER inference results 

are also logged for tracking counts and distribution over time. Changes in these metrics 
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may point to model or data drift. The batch inference deployment and operation archi-

tecture are displayed in Figure 12. 

Apache Spark enables processing vast amounts of data by distributing the execution 

to multiple worker machines. With this process, we can execute inference for all the data 

stored in a data lake in a single offline execution. After the initial job, the batch pipeline 

can be run incrementally for new data loaded into the data lake. Databricks and Apache 

Spark also support data streaming which enables running the batch inference as a stream 

job to process new documents as soon as they are available in the lake. In our use case, 

the 360° Patient does not necessarily require an online inference architecture. Data is 

loaded offline to the application using the same tools planned to be used for batch infer-

ence. This enables integrating the batch inference architecture to the existing data pipe-

lines. As stated before, the downside is the requirement to process all the data available 

in the lake as it is not easily foreseen what data will be used in the application and what 

will not be. This brings some overhead to the computation requirements of the inference 

pipeline, and this results in additional costs. Another drawback is that with batch pro-

cessing, the data is always somewhat outdated. The amount of delay allowed by the batch 

processing should be defined joint with the customer. If the performance and cost-effec-

tiveness of batch inference is acceptable, a batch architecture is a viable option in the 360° 

Patient use case. 

3.4 Inference performance testing 

To test the validity of the two proposed inference architectures, an empirical study was 

conducted on the inference performance with both architectures with varying computa-

tional resource using Microsoft Azure cloud services. For reproducibility of the study, a 

Figure 12. Batch inference deployment and operation architecture. 



-30- 

 

pretrained base version of the English BERT model fine-tuned for NER [Lim, 2020] was 

used. The model was trained using the CoNLL-2003 dataset [Tjong Kim Sang and De 

Meulder, 2003] and it is available open-sourced in the Hugging Face model registry [Hug-

ging Face, 2022]. The CoNLL-2003 dataset was created for a shared language-independ-

ent NER task in which the goals were to train a model capable of recognising three distinct 

named entities: names of persons, organisations, and locations. It is assumed that the Eng-

lish pre-trained BERT-NER model is computationally as demanding as the final product 

in our research project. Although the final model in the project will be trained on Finnish 

language fine-tuned for medical entity recognition, the model architecture is similar in 

terms of neural layers and parameters and thus in the number of computations required to 

run the inference. Thus, an assumption was made that the experiment results are compa-

rable to running inference with the final Finnish NLP solution designed in the research 

project. 

For dataset creation, Natural Language Toolkit’s [NLTK, 2022] version 3.7 and its 

corpora were used. Specifically, the Reuters news article corpus [University of California, 

1999] was selected as a source for its textual content matching the NER classes trained 

for the model. The assumption was to generate somewhat realistic NER classification in 

the performance tests to mimic the final functionality of the planned medical NER model. 

The model was tested using free text in the corpus and the model was able to recognise 

the trained NER classes in the test dataset. 

For calculating the inference performance, the measurement of tokens per second is 

used. The more the tokens processed per second, the better the performance. In this con-

text, a token is a single word defined by the NLTK tokenisation. A list of tokens for the 

experiments is produced by using the “words” method in the NLTK corpora library. This 

enables reproducing these test results, since the NLTK corpora tokenisation is a standard-

ised process. 

The Reuters corpus contains over 10 000 news article documents with about 1,3 mil-

lion words in total. In the experiments, the full list of words in the corpus was loaded and 

split into sequences of 512 tokens. The NER model was configured to accept a maximum 

of 512 tokens meaning each entry in an inference batch resulted in maximum load of 

computation for the model. To increase the data volume to mimic big data processing, I 

duplicated the data to reach a maximum of 6 000 sequences. This resulted in a total of 

3 072 000 tokens for the maximum load in a single inference execution. To observe the 
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impact of batch size on performance, the number of tokens per inference request was 

gradually increased. 

For online inference, the experiments were run on five different Azure Container In-

stances computation resource configurations on a container group of a single container. 

This setup was selected to test the maximum performance of a single container. The con-

figurations, labelled as units A through E, can be found in Table 2. Unit A features 2 

virtual CPU (vCPU) cores, 4 GB of memory, and no GPUs. Unit B is configured with 4 

vCPU cores, 16 GB of memory, and no GPUs. Unit C includes 2 vCPU cores, 4 GB of 

memory, one GPU of the K80 type. Unit D consists of 6 vCPU cores, 4 GB of memory, 

and one K80 GPU. Unit E is equipped with 6 vCPU cores, 4 GB of memory, and two 

K80 GPUs. 

Unit vCPU count Memory GPU count GPU type 

A 2 4 0 - 

B 4 16 0 - 

C 2 4 1 K80 

D 6 4 1 K80 

E 6 4 2 K80 

Table 2. Azure Container Instances configurations. 

The containers were running Python based REST API using FastAPI web framework 

version 0.74.1. The inference pipeline was created using Hugging Face’s Transformers 

API version 4.18.0 with PyTorch version 1.11.0. The sequences were posted to the infer-

ence service API in a single batch request one request at a time. No concurrency was 

produced in terms of requests handled by the service, i.e., no concurrent computational 

load was generated. For GPU-powered ACI containers, GPU was enabled using the 

PyTorch API. No other optimisations were done to increase performance in any of the 

configurations. 

Azure Databricks notebooks were used to load the test dataset and to trigger the test 

runs. Execution performance results were measured by counting the time taken to execute 

the HTTP request. The maximum timeout for the HTTP requests was set to 10 minutes. 

Results were stored into csv files in the Databricks filesystem. To minimise network la-

tency, the Databricks computation resources and the ACI containers were created in the 

same Azure region, North Europe. 
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For batch inference, the Spark NLP inference performance was tested on Azure Data-

bricks using five different computation cluster configurations. The tests were performed 

using Databricks runtime version 10.2 ML with Scala version 2.12 and Spark version 

3.2.0. Three single node clusters were configured, comprising of two CPU-powered con-

figurations and one GPU-powered configuration. The two multi-node configurations each 

consisted of three standard clusters with one driver node and two worker nodes with the 

driver node type matching the worker node type. These multi-node clusters were used to 

test the performance of distributed computation with Spark NLP. In this setup, the driver 

node controls Spark NLP execution and distributes the inference computation for the 

available worker nodes. In simple terms, this setup was created to test the performance 

gain of increasing the inference node count from one to two and allowing Spark NLP to 

handle the distribution and optimisations of the computations. In Table 3, the specifics of 

each node type are outlined, with individual cluster configurations identified by test unit 

labels from F to J. 

Unit Worker type Workers Drivers Memory CPUs GPUs GPU memory 

F Standard_DS3_v2 0 1 14 4 0 0 

G Standard_F16 0 1 32 16 0 0 

H Standard_NC6s_v3 0 1 112 6 1 16 

I Standard_F16 2 1 64 32 0 0 

J Standard_NC6s_v3 2 1 224 12 2 32 

Table 3. Azure Databricks cluster configurations. 

The Azure Databricks cluster configurations F to H are configured as single-node 

clusters with one driver and no workers. Unit F has a node type of Standard_DS3_v2. 

The driver has 14 GB of memory, 4 CPU cores, and no GPUs. Unit G features a node 

type of Standard_F16. This configuration includes 32 GB of memory, 16 CPU cores, and 

no GPUs. Unit H is equipped with a node type of Standard_NC6s_v3 having 112 GB of 

memory, 6 CPU cores, 1 GPU, and 16 GB of GPU memory. 

Units I and J are multi-node configurations. For these units, computation resources 

are calculated based on the worker nodes. Unit I utilizes the Standard_F16 node type, 

with 1 driver and 2 workers. This configuration provides a total of 64 GB of memory, 32 

CPU cores, and no GPUs. Unit J includes a node type of Standard_NC6s_v3 having a 

total of 224 GB of memory, 12 CPU cores, 2 GPUs, and 32 GB of GPU memory. 
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Spark NLP performance was tested by creating a Databricks notebook that loaded the 

Reuters dataset into a Spark data frame. Each row in the data frame consisted of a single 

sequence created similarly to the request entries in the online inference testing. Thus, the 

number of rows and tokens per test matched the amounts used in the online inference 

testing. The data frame was passed for the Spark NLP NER pipeline. The NER pipeline 

was created using the same Hugging Face BERT model used in the online inference test-

ing. Running the inference created a new data frame in which the NER results were stored 

in a new column. To mimic a real-life scenario and to record the actual duration of the 

Spark computations, the results were loaded into a file on the Databricks filesystem. The 

inference duration was recorded from the point of passing the data to the NER pipeline 

to the point the results file was written on the filesystem. 

Both the online inference and the batch inference experiments were conducted during 

a three-day period. Each experiment was run once daily for each compute configuration. 

This measure was taken to average out the effect of variability in the performance of the 

reserved computation resources in Azure cloud. 
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4 Results and analysis 

4.1 Online inference results 

The results for online inference are displayed in Figures 13 and 14. Table 4 contains all 

values of average performance in tokens per second for each computation configurations 

described in Section 3.4. With CPU-powered ACI containers, the performance was be-

tween 202 and 286 tokens per second for the configuration with two CPU cores and 4 GB 

of memory, and between 501 and 605 tokens per second for the unit with 4 CPU cores 

Figure 14. Performance of GPU-powered online inference. 

Figure 13. Performance of CPU-powered online inference. 
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and 16 GB of memory. The performance was improved by increasing the number of se-

quences passed in a single request. Yet, neither of these CPU configurations was able to 

produce consistent results with requests of more than 100 sequences with the given 

timeout of 10 minutes. By doubling the CPU core count and tripling the memory, on 

average 2.4 times more tokens were processed per second. 

Sequences Tokens Unit A Unit B Unit C Unit D Unit E 

1 512 202 501 1460 1402 1122 

10 5120 214 587 5346 5319 5358 

100 51200 286 605 6051 6062 6259 

300 153600   6085 6083 6302 

1000 512000   6056 6047 6204 

3000 1536000   6041 6010 6170 

Average 234 564 5173 5153 5235 

Table 4. The average tokens per second results for online inference requests. 

The three different GPU-powered ACI configurations gave consistent results com-

pared to one another regardless of the amount of CPU or GPU cores and memory used. 

With the least powered configuration, Unit C, using 2 virtual CPU cores, 4 GB of memory 

and 1 GPU, average performance ranged from 1460 to 6085 tokens per second. Increasing 

the CPU count to 6 did not make significant changes to these results. Adding another 

GPU core to the configuration, Unit E, the performance first dropped by about 23 % and 

on the maximum result, 6302 tokens per second, increased by only about 4 % comparing 

to Unit C, 6085 tokens per second, with the least compute power of the GPU units. All 

configurations peaked at 300 sequences per request with an average of 6156 tokens per 

second. None of the configurations were able to run the request with 6000 sequences 

within the 10-minute timeout. 

The performance was significantly higher for the GPU-powered ACI containers com-

pared to the CPU-powered instances. Comparing the average performance for all config-

urations within the 1 to 100 sequences range of requests, units from C to E averaged with 

4264 tokens per second and units A and B only 399 tokens per second. The GPU-powered 

units, on average, exhibited more than 10 times better performance than the CPU-pow-

ered containers. Notably, the performance of GPU configurations did not improve signif-

icantly by adding more CPU cores or GPU units. Performance dropped for the request of 
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just one sequence with additional CPU cores. By omitting results for requests containing 

only one sequence, with Unit E the performance improved only 2 % compared to Unit C. 

GPU-powered units maxed out at around 6000 tokens per second after 100 sequences and 

kept this performance until reaching the 10-minute timeout limit for requests. 

4.2 Batch inference results 

Batch inference results are displayed in Figure 15 and presented in Table 5. Results for 

Databricks single node clusters that run CPU-powered virtual machines are provided by 

Units F and G. Unit F averaged a performance from 77 to 4397 tokens per second. Unit 

G averaged a result from 82 to 9606 tokens per second. Unit H was a GPU-powered single 

node cluster that averaged a result of 98 to 14966 tokens per second. Units I and J were 

created with Databricks standard cluster configuration having one driver node and two 

worker nodes. The CPU-powered Unit I averaged a performance from 28 to 18507 tokens 

per second. The GPU-powered Unit J averaged a performance from 24 to 23848 tokens 

per second. All units were able to process all batches from 1 to 6000 sequences. 

 The outcomes obtained from batch sizes 1 to 10 are excluded as outliers and not 

considered for the subsequent result comparisons. Results for smaller batch sizes gave 

significantly weaker performance compared to larger batch sizes. The decision to omit 

these results is reinforced by the expected use case of a batch inference architecture, 

Figure 13. Average results of running batch inference with Spark NLP. 
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where the inference pipeline is to be used for processing significant volumes of text se-

quences in a single batch. 

Sequences Tokens Unit F Unit G Unit H Unit I Unit J 

1 512 77     82     98     28     24     

10 5120 1784     2953     4088     926     336     

100 51200 3802     7537     12934     12322     14466     

300 153600 4215     8483     14966     15532     20577     

1000 512000 4352     9433     18310     18063     21818     

3000 1536000 4394     9606     18957     17982     23451     

6000 3072000 4158     9478     19284     18507     23848     

Average 3254 6796 12662 11908 14931 

Average (omit 1-10) 4184 8907 16890 16481 20832 

Table 5. Average tokens processed per second in batch inference executions. 

Batch inference performance improved significantly when increasing the batch size 

of sequences fed to the inference pipeline. Performance improvement started to plateau 

at around 1000 sequences in a batch. Unit F, which was powered by CPU, experienced a 

decrease in performance when processing batches containing 6000 sequences. Unit G had 

maximum performance at 3000 sequences. All GPU-powered configurations and the 

CPU configuration with distributed computations enabled, Unit I, were still slightly im-

proving at 6000 sequences. 

There was a significant boost in performance when increasing the computational ca-

pability of the single node units. With Unit G, processing speed improved 2.1 times com-

pared to Unit F. Furthermore, enabling GPU-powered inference with Unit H, the perfor-

mance was 1.9 times that of Unit G. Comparing to Unit F with least computational power, 

GPU-powered Unit H was 4 times more efficient. 

Going from single node executions to distributed clusters, the performance gain was 

more significant in the CPU-powered units. Unit I with one driver and two worker nodes 

running the same virtual machine type as Unit G, gave a performance boost of 85 %. 

Comparing the GPU-powered Unit H, running the same virtual machine type to a distrib-

uted configuration, Unit J, performance increased by 23 % when running distributed in-

ference. When comparing the distributed computations to single node configurations, 

Unit I with virtual machine type matching CPU-powered Unit G had comparative results 

to single GPU-powered configuration Unit H if batch sizes 1 and 10 were omitted. 
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4.3 Inference results comparison 

When comparing overall results between batch and online inference, batch processing 

outperformed online inference. Regarding computation power, the CPU-powered batch 

processing Unit F was comparable to online processing Unit B with 4 CPU cores and 14 

gigabytes of RAM compared to 4 CPU cores and 16 gigabytes of RAM respectively. 

Including the smallest batch sizes of 1-10, Unit F resulted an average of 3254 tokens per 

seconds. Unit B gave an average of 564 tokens per second. On a comparable CPU-pow-

ered non-distributed configuration, batch processing was 5.8 times more efficient. 

With GPU-powered non-distributed configurations, Unit H outperformed the best 

GPU-powered online configuration, Unit E, with performance jumping from 5235 tokens 

per second to 12662 tokens. Unit H resulted in a performance 2.4 times higher compared 

to Unit E. 

Online inference configurations outperformed batch inference only with a single se-

quence in a request. CPU-powered units maxed a result of 501 and GPU units 4160 tokens 

per second. With batch inference, the smaller batch sizes gave a significantly poorer per-

formance. For a single sequence, batch configurations maxed at 82 and 98 tokens per 

second for CPU and GPU-powered units respectively. Notably, batch sizes of larger than 

3000 sequences were only handled by the batch inference configurations. CPU-powered 

online configurations were able to process a mere 100 sequences per request.  
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5 Conclusions 

The goal of this thesis was to introduce an MLOps process model to be used for 

productising an NLP solution in healthcare big data context. To answer research question 

R1, an MLOps process was introduced that describes the lifecycle of an ML solution from 

data processing to training and deploying the ML NLP model. The MLOps process was 

centred around Microsoft Azure cloud services but depicted on a higher-level supporting 

generalising the model for other cloud platforms and ML lifecycle tools. 

The MLOps process has three distinct phases: data preparation and curation, model 

training and validation, and model deployment and inference operation. The level of au-

tomation planned for each of the phases varied based on the need for human intervention. 

Both the customer and the provider experts need to participate in the data curation and 

preparation phase of the ML project. Clinicians play a vital role in labelling the validation 

dataset to be used in validating the model performance in the training phase. Data scien-

tists are required for generalising clinicians labelling patterns into heuristic rules used in 

weakly-supervised labelling of the training dataset. 

The model training and validation phase was planned as an automated pipeline that 

can be triggered to run the training and validation process when either the training or the 

validation datasets are changed. This process can be iterated until the desired performance 

is achieved for the trained model. 

For the deployment and inference phase, two architectures were proposed. To com-

pare them, an empirical study was conducted to evaluate the performance of each archi-

tecture with varying computational configurations. The proposed architecture for batch 

inference outperformed the online inference architecture when using the average amount 

of tokens processed per second as the metric. Thus, to answer research question R2, the 

batch inference architecture is selected as the optimal solution for deploying a BERT-

based NER model to process big data in the clinical healthcare application context de-

scribed in this thesis. The Spark NLP batch inference pipeline produced significantly bet-

ter results for processing high volumes of data compared to Docker container based online 

inference. The NER inference pipeline built with Spark NLP running on Apache Spark 

orchestrated with Azure Databricks produced results suitable for productising the infer-

ence architecture without much need for further performance optimisations. On the other 

hand, the online inference did not perform on a level suitable for big data context without 

improving the performance with optimisations not covered in this thesis. 
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6 Discussion 

This thesis contributes to the research area of MLOps. A concrete MLOps architecture 

referring to publicly available cloud services gives a reference point for research and im-

plementation of MLOps in practice. MLOps expertise is evolving in response to emerging 

needs. Private and public sector companies implementing productised ML solutions are 

in the forefront of pushing MLOps development. In scientific literature though, MLOps 

is still a novel topic.  

The need for productised ML systems is rising and thus the need for research in im-

proving ML life cycle processes is evident and valuable. Especially, in the healthcare 

domain where robustness of software solutions is necessary, introducing ML solutions to 

clinical work is not trivial and requires research advancements not only in ML (model) 

development but also in ML productising. To reach the gap between researching and 

productising ML and AI in healthcare, MLOps is a promising concept to mitigate the 

uncertainties that arise with building ML systems. Borrowing concepts from well-estab-

lished practices of DevOps and bringing automated CI and CD processes to ML model 

development, training, and deployment phases, brings transparency and maintainability 

to ML system life cycle. Backwards traceability and the ability to pinpoint erroneous 

phases in the ML model productisation are key in reducing uncertainty. Once the pro-

cesses of data management, model training and model deployment have been automated, 

it enables the ML system developers to focus on delivering robust, efficient, and trust-

worthy ML solutions. 

MLOps brings a promise of improved ML system development. Yet, more research 

is required for developing MLOps practices and tools. The efficacy of implementing 

MLOps in improving outcomes of ML projects needs to be studied. MLOps affects vari-

ous aspects of ML system life cycle. For example, future research should tease out the 

effects of MLOps automation in improving model accuracy and performance. We can 

assume automation improves developer experience and reduces human errors in the ML 

model development phase. Another research area is model deployment. Researching and 

innovating automated model deployment pipelines can reduce the gap between model 

research and productisation of ML solutions. Future research should track the advance-

ments in MLOps and its implementation in companies and public actors producing ML 

solutions. Finally, the effect of MLOps in advancing ML system deployment speed and 

the amount of productised ML solutions across different industries should be studied. 
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Much of research has focused on ML methodology and model architecture develop-

ment. These areas are crucial for pushing the capabilities of ML and AI. Advances in ML 

methods, and recently especially in deep learning, create possibilities for using ML in 

ever more areas. But as the possibilities for using ML broaden, so does the need for im-

proving and innovating model deployment. Executing inference with deep neural net-

works is computation intensive and requires more computation power as model architec-

tures grow in complexity. This is not only a technical issue needing to be solved in the 

context of ML solution development, but it is also an environmental and societal issue. 

As the use of ML systems increases, research is needed to mitigate the impact of these 

systems for energy consumption. In the literature, this need is recognised and studied in 

the form of model compression and acceleration [Choudhary et al., 2020]. 

In this thesis, it was recognised that model deployment architecture and inference 

performance play a vital role in productising the final ML solution. As described, the 

inference performance affects the energy consumption and computational power require-

ments of the operated ML system, but it also defines the limitations of the system. In the 

context of big data, inefficient inference execution can create a bottleneck in an ML so-

lution. In the case study project of this thesis, data to be fed for the inference pipeline 

would consist of the complete EHR history of a healthcare district. Without a sufficient 

inference architecture, this task may be impossible in terms of execution time. And even 

if processing all historical data is achievable within a reasonable timeframe, it could still 

result in significant expenses. To enable such use cases and minimise the costs of big data 

processing, research and development are required in inference architecture design. In 

this thesis, a big data capable inference architecture was planned, tested, and proposed as 

a viable solution. For future research, it is proposed to combine model compression and 

acceleration techniques with inference architecture design to produce efficient inference 

pipelines for big data context with minimised computational and energy consumption 

requirements. 
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