

Oona Laitamäki

WEB APPLICATION ARCHITECTURE
FOR REAL-TIME MOBILE NETWORK

ANALYSIS

Master’s Thesis
Faculty of Information Technology and Communication Sciences

Examiners: Kari Systä & David Hästbacka
April 2023

i

ABSTRACT

Oona Laitamäki: Web application architecture for real-time mobile network analysis

Master’s Thesis

Tampere University

Master’s Degree Programme in Information Technology

April 2023

Mobile networks have an important role in the functioning of society today, which makes it

necessary to maintain and develop mobile networks. There are various programs for mobile net-
work analysis that can automatically identify problems in the network even in real-time. In this
work, a web application architecture enabling real-time analysis is designed as part of an existing
analysis program. The work is also partially developed as a so-called proof of concept, i.e. to test
whether the idea works in practice.

When designing the architecture, different solutions for key issues in architecture are sought
using literature review and previous experience. The first challenges are rational placement of
components in distributed architecture and responsibility sharing between components. Compo-
nent division must provide sufficient scalability and performance to enable real-time analysis with-
out the loss of user experience. In the selected component division, one component was placed
on distributed servers, which forms distributions of key performance indicators collected from a
mobile network system. In this way, the amount of traffic on a centralized server is lower. A ded-
icated component is responsible for combining calculated distributions on a centralized server.
Moreover, the web application has a separate backend component and a component responsible
for presenting a user interface.

Research will also consider suitable technologies for the implementation of the backend com-
ponent. Go and Node.js were compared as backend technology options. Since scalability was
emphasized in the choice of technology, Go was selected for the implementation of the compo-
nent. The new component also needed an application programming interface suitable for its pur-
pose. Compared API implementations were traditional REST API and GraphQL API. Performance
and maintainability were emphasized in the comparative study and previous research on the sub-
ject was also used in the comparison. Eventually, REST API was selected for use in the backend
component.

In addition, various solutions were sought for real-time communication between backend and
frontend components. Compared real-time communication technologies were HTTP polling, Web-
Socket and server-sent events. Alternatives were compared especially based on quality attrib-
utes. Moreover, the performance of real-time communication technologies was compared by car-
rying out an empirical study in the assumed application use case. Server-sent event technology
was selected for the implementation.

Based on the selected architecture and technology options, an architecture proposal was con-
ducted, and a more detailed structure was presented for the new backend component. Based on
this proposal, an architecture evaluation was carried out at the end of the research. The evaluation
was based on a lighter version of the ATAM method.

Keywords: mobile networks, web application architecture, distributed architecture, scalability

The originality of this thesis has been checked using the Turnitin OriginalityCheck service.

ii

TIIVISTELMÄ

Oona Laitamäki: Verkkosovellusarkkitehtuuri mobiiliverkkojen reaaliaikaiseen analysointiin

Diplomityö

Tampereen yliopisto

Tietotekniikan DI-ohjelma

Huhtikuu 2023

Mobiiliverkoilla on nykypäivänä tärkeä rooli yhteiskunnan toimivuudessa, minkä vuoksi on vält-
tämätöntä huolehtia verkkojen ylläpidosta sekä kehittää niiden toimintaa. Mobiiliverkkojen analy-
sointiin on olemassa erilaisia ohjelmia, joiden avulla voidaan tunnistaa verkossa esiintyviä ongel-
mia automaattisesti myös reaaliajassa. Tässä työssä suunnitellaan reaaliaikaisen analyysin mah-
dollistava verkkosovellusarkkitehtuuri osaksi jo olemassa olevaa analysointiohjelmaa. Työ toteu-
tetaan myös osittain niin kutsuttuna soveltuvuusselvityksenä (engl. proof of concept) eli testataan,
toimiiko idea käytännössä.

Arkkitehtuuria suunniteltaessa keskeisiin arkkitehtuurillisiin ongelmiin etsitään erilaisia ratkai-
suja kirjallisuuskatsausta sekä aikaisempaa kokemusta hyödyntäen. Ensimmäiset haasteista
ovat komponenttien järkevä sijoittelu hajautettuun arkkitehtuuriin sekä komponenttien keskinäi-
nen vastuunjako. Komponenttijaon on tarjottava riittävän hyvä skaalautuvuus sekä suorituskyky,
jotta analysointi onnistuu reaaliaikaisesti ilman käyttäjäkokemuksen heikkenemistä. Valitussa
komponenttijaossa hajautetuille palvelimille sijoitettiin komponentti, joka muodostaa jakaumia
mobiiliverkosta kerätyistä mittareista. Tällä tavalla keskitetylle palvelimelle kulkevan liikenteen
määrä on pienempi. Keskitetyllä palvelimella jakaumien yhdistämisestä vastaa oma komponentti.
Lisäksi verkkosovelluksella on erillinen backend-komponentti sekä käyttöliittymän esittämisestä
vastaava komponentti.

Tutkimuksessa pohditaan myös backend-komponentin toteutukseen sopivaa teknologiaa. Go
ja Node.js teknologioita vertailtiin vaihtoehtoisina backend-teknologioina. Koska teknologian va-
linnassa painotettiin erityisesti skaalautuvuutta, valittiin komponentin toteutukseen Go. Uusi kom-
ponentti tarvitsi myös käyttötarkoitukseen sopivan ohjelmointirajapinnan. Työssä vertailtavat
vaihtoehdot ohjelmointirajapinnan toteutukseen olivat perinteinen REST-ohjelmointirajapinta
sekä GraphQL-ohjelmointirajapinta. Näiden vertailussa painotettiin erityisesti suorituskykyä sekä
ylläpidettävyyttä. Vertailussa hyödynnettiin myös aikaisempaa tutkimusta aiheesta. Vaihtoeh-
doista REST-ohjelmointirajapinta valittiin käytettäväksi backend-komponentissa.

Tämän lisäksi backend- ja frontend-komponenttien väliselle reaaliaikaiselle liikenteelle haettiin
erilaisia ratkaisuja. Vertailtavat reaaliaikaiset kommunikointiteknologiat olivat HTTP polling,
WebSocket ja server-sent events. Ratkaisuja vertailtiin erityisesti laatuattribuuttien pohjalta. Li-
säksi reaaliaikaisten kommunikointiteknologioiden suorituskykyä vertailtiin toteuttamalla empiiri-
nen tutkimus sovelluksen oletetussa käyttötapauksessa. Sovelluksen toteutukseen valittiin ser-
ver-sent events -teknologia.

Valittujen arkkitehtuuri- ja teknologiavaihtoehtojen pohjalta muodostettiin arkkitehtuuriehdo-
tus, sekä esiteltiin tarkempi rakenne myös uudelle backend-komponentille. Tämän ehdotuksen
perusteella arkkitehtuurille toteutettiin arviointi työn lopussa. Arviointi pohjautui kevyempään ver-
sioon ATAM-arviointimenetelmästä.

Avainsanat: mobiiliverkot, verkkosovellusarkkitehtuuri, hajautettu arkkitehtuuri,
skaalautuvuus

Tämän julkaisun alkuperäisyys on tarkastettu Turnitin OriginalityCheck –ohjelmalla.

iii

PREFACE

This thesis work was done for Nokia Solutions and Networks Oy. I would like to thank

my team for providing the possibility to write my thesis about this topic. Especially,

acknowledgements go to my co-workers Petri Aalto and Marjaana Laine. Also, special

thanks to Professor Kari Systä for the excellent guidance and supervision of this thesis.

I would also like to thank my family and friends for their invaluable help and knowledge

throughout this process.

Tampere, 11.4.2023

Oona Laitamäki

iv

CONTENTS

1. INTRODUCTION .. 1

1.1 Background .. 1

1.2 Research questions and methodologies ... 2

1.3 Outline ... 5

2. APPLICATION ENVIRONMENT AND REQUIREMENTS 6

2.1 Docker in distributed architecture ... 6

2.2 Current system ... 7

2.3 Initial functional requirements ... 8

2.4 Quality attributes .. 9

2.4.1 Scalability ... 9

2.4.2 Performance ... 10

2.4.3 Availability ... 11

2.4.4 Maintainability ... 12

2.4.5 Security ... 12

3. WEB APPLICATION ARCHITECTURE... 14

3.1 Single-Page Application ... 14

3.2 Communication patterns .. 15

3.2.1 Client-server architecture .. 15

3.2.2 Publish-subscribe pattern .. 16

3.3 Web server API .. 17

3.3.1 REST .. 18

3.3.2 GraphQL ... 19

3.4 Real-time communication technologies .. 21

3.4.1 HTTP polling ... 21

3.4.2 WebSockets .. 24

3.4.3 Server-sent events .. 25

3.5 Frontend architecture ... 26

3.5.1 Basic principles with React library ... 27

3.5.2 Client-side data storage .. 27

3.5.3 Performance optimization ... 28

4. ARCHITECTURE AND TECHNOLOGY ALTERNATIVES 30

4.1 Component division.. 30

4.1.1 First alternative ... 30

4.1.2 Second alternative .. 32

4.1.3 Third alternative .. 33

v

4.2 Scalable backend technology ... 34

4.2.1 Go ... 35

4.2.2 Node.js ... 36

4.2.3 Conclusion .. 37

4.3 Web server API implementation ... 38

4.4 Real-time client-server communication... 40

4.4.1 Empirical research on performance .. 40

4.4.2 Feature comparison .. 45

5. ARCHITECTURE PROPOSAL ... 48

5.1 Component view .. 48

5.2 Real-time data processing in the backend server 50

6. ARCHITECTURE EVALUATION... 53

6.1 Lightweight architecture evaluation framework 53

6.2 Evaluation process ... 54

6.3 Evaluation results ... 57

7. ANALYSIS AND DISCUSSION ... 59

7.1 Research process .. 59

7.2 Future development ... 60

8. CONCLUSIONS .. 62

REFERENCES... 64

vi

LIST OF FIGURES

Figure 1. Constructive research process ... 4

Figure 2. Docker containerization ... 6

Figure 3. New GUI application and related services in the current system 8

Figure 4. Publish-subscribe pattern .. 16

Figure 5. The long polling communication scheme ... 23

Figure 6. The WebSocket communication scheme ... 24

Figure 7. The server-sent event communication scheme .. 26

Figure 8. The process of updating Redux store .. 28

Figure 9. The first alternative for component structure .. 31

Figure 10. The second alternative for component structure .. 33

Figure 11. The third alternative for component structure ... 34

Figure 12. The system used in empirical testing ... 41

Figure 13. Data sent from frontend clients to backend services 42

Figure 14. Transmitted real-time data from backend instances to frontend clients 43

Figure 15. CPU Usage in backend implementations ... 44

Figure 16. Memory usage in backend implementations .. 45

Figure 17. Web application located in the current system ... 49

Figure 18. Backend modules and publish-subscribe pattern 51

Figure 19. The final version of the utility tree after lightweight ATAM evaluation 55

vii

LIST OF TABLES

Table 1. Comparison of API technologies ... 39

Table 2. Comparison of real-time communication methods ... 46

viii

LIST OF SYMBOLS AND ABBREVIATIONS

3GPP 3rd Generation Partnership Project

API Application Programming Interface

ATAM Architecture Tradeoff Analysis Method

CIA (triad) Confidentiality, Integrity and Availability

CPU Central Processing Unit

DOM Document Object Model

eNB eNodeB, 4G base station

E-UTRAN Evolved Universal Terrestrial Radio Access Network

gNB gNodeB, 5G base station

gRPC Google Remote Procedure Call

GUI Graphical User Interface

Heccla Health Check Control Language

HTTP HyperText Transfer Protocol

IP Internet Protocol

JSON JavaScript Object Notation

KPI Key Performance Indicator

LAE Lightweight Architecture Evaluation

MPA Multi-Page Application

OSI Open Systems Interconnection

REST Representational State Transfer

RPC Remote Procedure Call

RTPM Real-Time Performance Monitoring

SQL Structured Query Language

SPA Single-Page Application

TCP Transmission Control Protocol

TLS Transport Layer Security

UI User Interface

URL Uniform Resource Locator

URI Uniform Resource Identifier

XML Extensible Markup Language

B/s byte per second

kB/s kilobyte per second

MiB mebibyte

1

1. INTRODUCTION

The first chapter introduces the background for the topic of this thesis work. Research

questions and methodologies are formed after background. Furthermore, the outline for

the thesis is described at the end of this chapter.

1.1 Background

Mobile networks are a significant part of people’s everyday interactions and activities.

Mobile networks and phones have evolved from an expensive and rare technology into

an everyday commodity used by most people on a daily basis. Therefore, the amount of

traffic on mobile networks has exponentially increased over the years. Failures in the

mobile network may have big economic, social and security impacts. This makes it even

more critical to identify problems that may exist in the network, as they may have widely

recognized effects. With a continuous increase in demand of cellular networks, their ca-

pacity is challenged.

A cause of failure in mobile network can be found out by following certain measurements.

These measurements consider for example throughput, packet sizes and data retrans-

missions. There are thousands of measurements per base station and even hundreds of

thousands of base stations in the network. With 5G technology, the number of base sta-

tions has even increased in order to achieve the same coverage as with 4G technology

(Lehr, Queder and Haucap, 2021). Additionally, there are many things that affect meas-

urements, which makes the analysis even more complex. For example, there are multiple

factors which affect throughput in cellular network. These factors may include radio tech-

nology, operator infrastructure and physical layer effects, like interference and fading

(Walelgne et al., 2018). As the manual analysis of failures in the cellular network requires

a lot of time, there exist programs which collect and analyse different measurements

from the network, also in real-time. It is good to find the cause of the failure quickly.

Automatic troubleshooting of extensive cellular networks is vital to ensure the efficient

use of network infrastructure and providing the quality of user experience (Rezaei et al.,

2016).

This thesis work is about developing a web application as a part of a system which col-

lects different measurements and analyses the state of cellular networks in real-time.

The designed web application is responsible for displaying informative statistics about

2

the mobile network condition based on the KPI (Key Performance Indicators) analysis.

3GPP (3rd Generation Partnership Project) maintains technical specifications for KPI

calculations. There are definitions for all used E-UTRAN (Evolved Universal Terrestrial

Radio Access Network) KPIs in 3GPP technical specification (3GPP 32.450, 2022). A

KPI is a measurable value used to track and evaluate the success of a system or a

specific aspect of a system towards its objectives. There is a huge amount of different

KPIs that indicate performance and operating status of the cellular network. In the con-

text of cellular network KPIs are formulas that are built from different measurement coun-

ters. A measurement counter in a cellular network refers to values used to track and

measure network performance metrics, such as signal strength, network utilization, and

data transfer rates. This information is used by network operators to optimize network

performance, ensure service quality, and troubleshoot issues. Measurement counters

are important for network monitoring and management systems in cellular networks.

The naming of different KPIs might be confusing but in order to know something is wrong,

the user must be able to interpret the KPI metrics. Sometimes user interfaces contain

too much information and may not give the user a right picture of current situation of a

system. User interface should be informative and easy to use. The intention is not to turn

the user interface into a window filled with data from different metrics. Such an extremely

informative interface can be playfully referred to as an engineering interface, as they are

most often implemented from the developers’ point of view and not so much from the

user's point of view. Even though user interface design is important in this application,

this thesis work is built around the architectural design.

The goal of this work is to design a web application architecture that would enable dis-

playing real-time KPI statistics on the web user interface in a way that is informative to

the user. A huge data traffic and amount of KPIs pose challenges for the architecture.

During this research different architecture solutions are explored and evaluated. Thesis

contains practical work but most of all it focuses on the architectural design of the web

application. The designed application is developed as a proof of concept and implemen-

tation is started alongside this constructive research. This thesis is made for a mobile

network software development team of the Nokia organization.

1.2 Research questions and methodologies

The main contribution in this work is to develop a web application architecture which is

suitable for a real-time analysis of mobile network measurement data. In this context a

web application is a software system that runs on multiple servers and can be accessed

3

through a web browser over the internet. Web application considers both frontend com-

ponent and its backend service, but it also considers all the services that are used by the

backend service. The designed application is developed as a part of an already existing

system that collects and analyses mobile network state.

This thesis finds and evaluates different architectural choices to use in the web applica-

tion. During the research a part of the application is developed as a proof of concept to

see if selected architecture is suitable or not. Thus, the main research question of this

thesis is formalized as follows: What kind of web application architecture is suitable for

analysing and presenting mobile network condition in real-time?

This study is carried out as constructive research. It aims to develop and create a new

architectural solution by building on existing theories, concepts, and practices. The focus

is on designing, prototyping, and testing of new solutions. Constructive research process

in this work is described in Figure 1. Initial requirements for the web application are gath-

ered in the beginning of the research process. Both functional and non-functional re-

quirements are gathered in the requirement specification. Requirements are specified to

define a clear goal and focus points. It also helps to identify potential risks and challenges

that the designed architecture may have.

4

Figure 1. Constructive research process

Once the initial requirements have been gathered, architectural solutions are explored.

Literature review is used as one primary research method to find different architectural

choices for the designed application. These architectural choices are examined mainly

from the perspective of the quality attributes in the comparative study. In addition to com-

parative study, empirical research is conducted to find out which communication tech-

nology best supports cost-effective real-time data updates from a backend server to cli-

ents. The empirical study considers CPU and memory usage of different technologies.

Furthermore, communication technologies are also examined in terms of application re-

quirements.

As the focus of this thesis is on architectural design, compliance with the quality attributes

can be predicted already before implementation by examining the architecture. Compli-

ance with both quality attributes and other requirements is evaluated in the end of this

work. Architecture evaluation is partially arranged using a lightweight architecture eval-

uation framework. Architecture proposal is corrected based on the evaluation and there

will be an architecture design as a result of this constructive research.

5

1.3 Outline

Chapter 2 introduces the environment where the web application is going to run. It pre-

sents the architecture at a general level and some of the services which are interacting

with the new application. Also, initial requirements for the application are introduced in

Chapter 2. Both functional and non-functional requirements are specified. It is followed

by Chapter 3 which presents the theory of web application architecture and introduces

web application architecture and technologies which are analysed more in the compar-

ative study.

In Chapter 4 architecture and technology options are analysed based on literature review

in comparative study. In addition, empirical study is used to evaluate performance of

different real-time communication methods. Chapter 5 presents an architecture proposal

based on the analysis in the previous chapter. It also presents a solution for scalable

data processing in backend component in more detailed level. This architecture proposal

is evaluated in Chapter 6. Evaluation is carried out with a lightweight evaluation frame-

work and practical experience. In addition to architecture evaluation, Chapter 7 contains

analysis and discussion about the research process and presents the plans for future

development. The conclusion of this thesis is reported in Chapter 8.

6

2. APPLICATION ENVIRONMENT AND REQUIRE-

MENTS

The designed application is developed as a part of an already existing system which

consists of many different services. The system is built as distributed architecture and

each service runs in its own Docker container. Docker containers are built from Docker

image based on Linux operating system. Therefore, the web application must run on

Linux operating system. Other architecture requirements are specified in sections 2.3

and 2.4. Requirements consist of functional and non-functional requirements, that are

also considered as quality attributes.

2.1 Docker in distributed architecture

Docker has been commonly used as containerization technology for different services.

It enables virtualization through containers and provides isolation from other applications

and processes running on the same system (Sesto et al., 2020). It has also been found

that some surveys adopt containerization for better performance than virtual machines

(Li et al., 2021). Figure 2 shows how three Docker containers are placed on a single

host.

Figure 2. Docker containerization

There is no need to add a complete operating system when a new container is brought

up. However, containerization still provides isolation and enables own environment in-

side every container. Each container hosts its own set of libraries, binaries and self-

contained dependencies (Sesto et al., 2020).

Docker provides a consistent environment for running applications, regardless of the un-

derlying infrastructure, which makes it a great technology to be used also in distributed

architecture. Applications can be developed and tested in a containerized environment

7

and then deployed to any environment that supports Docker. Containers can also be

easily scaled up or down to meet changing demands. This makes it easy to add or re-

move resources as needed, without having to modify the underlying infrastructure.

In distributed architecture the system is decentralized into multiple nodes. These nodes

form a collection of autonomous computing elements which appears to users as a single

coherent system (van Steen and Tanenbaum, 2016). The number of nodes behind the

system can be different depending on the use case. Distributed architecture enables

horizontal scalability by allowing a system to add or remove nodes dynamically according

to user needs. If services are implemented in a way that supports horizontal scalability,

in theory there is no limit for it how many nodes the system can have. However, the

distributed structure is not ideal for all processes. For example, doing data queries to

multiple nodes requires more effort than doing one data query on one central server.

Distributed architecture enables edge computing by having more ideal locations for han-

dling and filtering data before it is transferred to some other server with a greater dis-

tance. In this way there is less data to be transported. As data is increasingly produced

at the edge of system network, it is also more effective to process the data at the edge

(Shi et al., 2016). This way, the amount of data transfer in the system can be decreased.

Even if it might be more efficient to process the data on a centralized server with more

capacity, the data transfer is eating the capacity. Comparing to the fast evolution of data

processing speed the network bandwidth has not kept up with the processing speeds.

The data transportation speed becomes as the bottleneck for the cloud-based computing

paradigm. (Shi et al., 2016) The amount of data that can be transferred over a network

is limited by the available network bandwidth, and increasing the bandwidth often re-

quires upgrading network infrastructure. Moreover, the protocols used to transfer data

over a network add overhead to the transfer process. This overhead can reduce the

effective data transfer rate, particularly for small data packets.

2.2 Current system

The current system consists of many different services which are placed on the central

server and the edge servers. Figure 3 represents components related to the designed

application. Data collector components are located on the edge servers, which takes

advantage of edge computing. As there can be even hundreds of thousands of base

stations in the cellular network, there is also a lot of data collected from the network. This

makes it reasonable to collect and filter the data on the edge nodes and take advantage

of edge computing. Data collector services are responsible for collecting the data from

base stations and transmitting the data in a specific format to other services. The GUI

8

(Graphical User Interface) application designed in this work will also receive and present

the data that is collected by the Data collector components in real-time.

Figure 3. New GUI application and related services in the current system

There already exists a user authentication service in the system. Keycloak component

is a separate service, which handles authentication of system users. It is an open-source

software product for secure access management and identity management. It provides

single sign-on for modern applications and services and allows administrators to manage

authorization and user identity in a centralized manner. As Keycloak is used by other

services in the current system, it will be used also by the designed GUI application. The

green component represents the new application whose architecture is designed during

this work. The component is located on both edge nodes and central node in the picture

above as the location of the application services will be considered later in architecture

design.

2.3 Initial functional requirements

At the beginning of this work, the designed web application did not yet have precise

functional requirements. The main requirements already known are listed in this section.

1. Statistics as objects in UI: User interface must consist of different objects which

are responsible for displaying information about the KPIs of a particular topic. The

9

application design is started with a throughput object, that is responsible for pre-

senting throughput-related information. Throughput indicates the total number of

octets carried over an interface. The application should also be able to display

historical data and trends for different KPI values.

2. Data update events: Data is retrieved from the edge computing components if

the user interface has at least one active user viewing statistics. A continuous

data update process in the backend server is not required.

3. Authentication: Authentication is required whenever someone is using the web

application. User authentication is handled with a Keycloak service. Thus,

frontend and backend services must be compatible with Keycloak.

4. Authorization: There are at least two types of users: default and admin. Default

users can log in to the system and view statistics, but they cannot modify the

configuration of the statistics view. Admin is the only user who can do modifica-

tions to the configuration. Admin user can for example update calculation formu-

las which define KPI metrics that are used for checking statistics.

5. UI library: UI widgets for this application are imported from a library which is only

compatible with React framework. Therefore, the frontend component must be

developed with React.

2.4 Quality attributes

In addition to the functional requirements there are also non-functional requirements. In

this work the non-functional requirements mainly consist of quality attributes which are

not very precise in the base application development. However, it is important to consider

quality attributes already in the architecture design phase.

2.4.1 Scalability

As mentioned in the previous section, scalability can be achieved for example with dis-

tributed architecture. Scalability measures a system’s ability to add resources to handle

a varying number of requests (Li et al., 2021). In other words, scalability is increasing the

system’s capacity for work without loss of performance (Bass, 2022). Good scalability

means that performance is maintained even if there are more application users or more

data traffic. There are two types of scalability: horizontal scalability and vertical scalabil-

ity. Horizontal scalability, which is also called elasticity, decomposes a monolithic appli-

cation into independent services with ensuring that every instance of a service scales

out conveniently. However, there may be some difficulties in implementing horizontal

10

scalability. For example, sometimes it is hard to determine how many instances of each

service are needed to maintain good application quality. (Li et al., 2021)

Where horizontal scalability refers to increasing the number of nodes, vertical scalability

refers to adding additional resources to a node (Li et al., 2021). Vertical scalability can

be for example increasing the number of CPUs (Central Processing Units). One enabler

for implementing good vertical scalability is concurrency, which in this case stands for

multi-threading. However, concurrency should not be sprinkled all over the place, but

need to consider reasonable points of use. Implementing concurrent processes in places

where they are not needed can, at worst, slow down a program.

One key thing mentioned to achieve horizontal scalability is to implement stateless ser-

vices. That means each instance of application should not have any kind of internal state,

in other words, data should not be internally saved for later use. (Andrawos and Helmich,

2017) The stateless constraint usually means a trade-off in design, as network perfor-

mance may decrease. When services are fully stateless, the repetitive data sent in re-

quests is usually increased, as data cannot be left on the service as a shared context.

(Fielding, 2000) It is usually necessary to have an external storage such as a database

service (Andrawos and Helmich, 2017). On the other hand, it is not a good option for

example to save transient real-time data to a database. This might have a bad impact on

scalability when data loads are big, and database is updated frequently. Therefore, it is

necessary to think carefully about what data is stored in a database. Instead of using a

database, for example in-memory cache might be a good option for transient data.

In the designed application scalability is handled as an ability to process high data traffic

from multiple sources. The data traffic is based on user requests which are made through

a web user interface. However, the web application will not have at least very many

simultaneous users, so the application does not have to scale well for a large number of

simultaneous user requests. In this case scalability is more about handling the varying

amount of data traffic and sources.

2.4.2 Performance

In web-based systems events come in a form of user requests via clients. When a system

is responding to an event, performance is a measurement of a system’s ability to meet

timing requirements. It is often linked to scalability, which means the system’s modifia-

bility while it still maintains its good performance. (Bass, 2022)

In the designed architecture, the amount of time between a client sending a request and

receiving a response must be primarily considered from the performance point of view.

11

In addition, the frontend component must also be implemented in such a way that usa-

bility of the application is good even if some data query to backend servers takes a bit

longer.

To achieve sufficient performance in the application this thesis work specifically exam-

ines how different real-time communication technologies affect performance. Technolo-

gies suitable for the designed architecture are selected partially based on this. In addition

to different communication technologies, it is considered how certain backend technolo-

gies affect performance.

In the previous section, it was mentioned that in-memory cache can be an alternative for

database storage. Using a cache can eliminate some interactions between services, and

in that way, it can also improve performance by reducing the average latency of series

of interactions. However, it has a trade-off as a cache can decrease reliability of service.

The data that would be obtained with a new request directly from a server may differ

significantly from the data in the cache. (Fielding, 2000)

2.4.3 Availability

Software availability refers to the application’s readiness to carry out its tasks when it is

needed. In addition to reliability, it also encompasses recovery aspect. It refers to the

way how software is able to repair itself after system breaks. (Bass, 2022) Most of all

software availability is the percentage of time during which the software is operational

and able to receive requests.

Availability is closely related to other quality attributes, for example security. As an ex-

ample, there are denial-of-service attacks which are a big security thread in web appli-

cations and their purpose is to make a system unavailable. Availability is also related to

performance, as system failures may also cause slow responds in addition to unavaila-

bility. (Bass, 2022)

It is possible to ensure good availability when designing new software. Tactics to ensure

the availability can be divided into three categories. The first category refers to fault de-

tection. Different faults can be detected for example by running ping function for a server

or an application to see if it is available. Another category contains fault recovery tactics,

like software upgrade or just ignoring faulty behaviours. The third availability tactic cate-

gory is about preventing faults. One prevention tactic is exception prevention, which is

also a requirement for responsible code. (Bass, 2022) Code should check incorrect ar-

guments and handle those gracefully by not throwing an exception.

12

2.4.4 Maintainability

Usability of code can also be considered from the developer’s point of view. In that case

it refers to maintainability. Maintainability defines the degree of effectiveness and effi-

ciency with which a product or system can be modified by the maintainers (Bass, 2022).

It is important that in the future it will also be easy for anyone other than the original

developer of the program to read code files, make changes and further develop it.

One of the requirements for this application is to have code structure and patterns which

support the usability of the code. Modularity is the key thing and specifically having rea-

sonable module division which supports future development. Modularity makes it easier

to read and modify the code. Moreover, having a single source of specific functions

makes it faster to fix the code later. If multiple developers are updating the application,

collaboration is easier when there is a clear division between code source files.

When considering maintainability, it would be good if the selected technologies were also

relatively easy to use. There are differences between syntax, but there are also differ-

ences between library and community support. Of course, usually if technology is a good

choice from other architectural viewpoints, it also has good community support.

In addition to modularity and technologies, testability is also important when maintaina-

bility is considered as tests verify that the program still works when it has been updated.

When the code is easy to test, there will be probably fewer mistakes when modifying the

code.

2.4.5 Security

Security is a software quality attribute which measures the system’s ability to protect data

from unauthorized access while still providing access to authorized parties (Bass, 2022).

The CIA (Confidentiality, Integrity and Availability) triad can be used to describe the pri-

mary goals of information security (Ingeno, 2018). A balance between these attributes

needs to be found also in this web application. Confidentiality stands for preventing un-

authorized individuals from accessing application information. To achieve integrity, it

needs to be ensured that information is not modified or destroyed by unauthorized par-

ties. Availability involves that authorized parties have access to application information

in a timely and reliable way. (Ingeno, 2018) To summarize this, the application must allow

data access only for authorized users always when data is needed.

In this application data traffic must be encrypted. One way to encrypt the data is to use

TLS (Transport Layer Security). TLS encryption ensures that data transmitted between

13

components and browser is encrypted and cannot be intercepted by a third party. En-

cryption relies on trusted third-party certificate authorities to issue digital certificates to

servers. This helps to ensure that the server is who it claims to be. Implementing TLS

encryption also improves compliance with regulatory standards.

Another security requirement is to allow only authenticated users to access API end-

points. Token-based authentication must be used to verify confidential access. Token-

based authentication is stateless, and the server does not need to maintain a session

state for each user. This makes token-based authentication more scalable.

The application must also be robust. There can be intentional as well as unintentional

overloads of traffic or network connections to the application. A denial-of-service attack

is an example of an intentional traffic flood or a high connection amount towards an ap-

plication. It can be avoided by recognizing what traffic is normal and what is not. One

technique is to restrict the number of requests that come from a certain domain within a

certain period. This may help prevent an attacker from overwhelming the application with

too many requests.

14

3. WEB APPLICATION ARCHITECTURE

This chapter considers the theory of web application architecture. More specifically, it

describes single-page application architecture, client-server and publish-subscribe com-

munication patterns, API designs and real-time communication technologies. Moreover,

frontend architecture items are considered, such as React principles, client-side data

storage and ways to optimize performance on the frontend side.

3.1 Single-Page Application

In the early days of the web the focus of web development was on generating and serving

individual HTML files, which formed complete web pages. This could mean static HTML

pages or rendering HTML pages on a backend server using server-side logic. It was far

from how native applications worked. When a web page was opened there were always

additional calls to a backend server which were necessary to make, and a page refresh

was required when data was updated. In a native application there were only calls

needed for sending or getting data. Before SPA (Single-Page Application) design model,

the emphasis was on sending complete HTML files from server to client. (Choi, 2020)

However, server-side rendering is still widely used in web development as server-side

rendered pages load fast also with worse internet connection.

SPA design is a relatively new architectural pattern that has been widely embraced in

web application development. It can be even said that using SPA design is a common

practice for building a large-scale web application. Before SPA design AJAX technology

introduced a way to update only some parts of a web page without the need to reload

the whole page. SPA architecture is largely used in client-side rendered web applica-

tions, but it is also possible to utilize SPA in a server-side rendered application. One

reason for using SPA pattern is to develop a web application that feels more like a native

desktop or mobile application. The program responds and looks like it was installed on

the device. The application developed using SPA design redraws portions of the screen

immediately without waiting for a new file from the backend server. (Choi, 2020)

The naming of Single-Page Application comes from the fact that the entire application

lives on one HTML page only. It means the first page is the only page that ever loads on

a SPA. Previously it has been common that all the scripts and files needed to run the

application have loaded at the beginning of use. But this has been changing lately. (Choi,

15

2020) Techniques that can be used to implement late loading for scripts and files are

discussed in the later paragraph.

One of the key things in SPA design is virtual routing, which means routing that only

happens in the client browser. When an application is making a logical transition to a

different screen, the browser does not make any calls to servers for changing the URL

(Uniform Resource Locator) address. There is no real server path indicated by the URL

when routing is happening in an application developed according to SPA design. Instead

of indicating the server path the application uses the URL as a kind of container. The

URL contains sections of the application and triggers certain behaviours when different

URLs are given. Even though the URL is only a sort of container, it is still useful to have

URL routing as it for example allows users to bookmark different screens. (Choi, 2020)

3.2 Communication patterns

In the history of the web one typical architectural style used has been client-server archi-

tecture. One commonly used communication pattern in client-server architecture is a re-

quest-response pattern, where the client sends a request and the server answers with a

response. This is probably the most known communication pattern used in web applica-

tions. Another commonly known pattern is a publish-subscribe pattern which is also dis-

cussed in this section.

3.2.1 Client-server architecture

In the client-server architecture clients and servers have their own distinct responsibili-

ties. Those can be implemented and deployed independently and using any language or

technology. (Massé, 2011) The client is the component which makes various service

requests to the server, whereas the server is the component which provides services to

the clients as per requests placed by it. There is no limitation to the number of clients

that can be serviced by a single server. Both client and server can reside on the same

system or in separate systems, and communication is handled using a request-response

pattern. (Raj, 2017)

As the client is unaware of server details in client-server architecture, maintenance is

relatively easy. Server maintenance activities like upgrade and repair do not affect the

functioning of the client. Also, access to data is centralized and most of the data is stored

centrally, which makes data updates easier. Data centralization also offers greater con-

trol and higher level of security. (Raj, 2017)

16

The traditional client-server-architecture is two-tier architecture which consists of two lay-

ers. One layer is running on the client which is responsible for presenting the data. An-

other layer is responsible for storing the data on the server-side. There are some limita-

tions in two-tier client-server architecture, like limited extensibility and scalability as ap-

plication data and business logic usually reside on the same server. To overcome limi-

tations in two-tier architecture, three-tier and multi-tier client-server architectures were

developed. Most of the client-server architectures today are developed based on the

three-tier or multi-tier models. The three-tier client-server architecture has a separate

application layer between the presentation layer and the data layer. The data layer does

not contain application logic, and it is usually a database server, which has a positive

effect on scalability. (Raj, 2017)

3.2.2 Publish-subscribe pattern

Publish-subscribe model provides an efficient communication pattern for loosely coupled

systems. The main entities in publish-subscribe pattern are the publishers and the sub-

scribers of the data. In the general model of event notification, the subscribers define

their interests by using topics, channel names, or filters. (Tarkoma, 2012) Publishers

produce information in form of events, which are then consumed by subscribers issuing

subscriptions. Unlike in the request-response pattern subscribers are not directly tar-

geted by the publisher. Targeting is implemented indirectly according to the type of

events. (Baldoni et al., 2009) Figure 4 presents the example use case of publish-sub-

scribe pattern.

Figure 4. Publish-subscribe pattern

17

The core mechanism in publish-subscribe pattern is event routing, which is a process of

delivering an event to the subscribers of the event (Baldoni et al., 2009). The entity which

is handling the event routing process is usually a broker. The broker is responsible for

the data distribution, and it does not store the data, but scalability may be an issue also

in the event routing process. Performance should not significantly decrease when the

number of brokers, subscriptions and publications increases. (Baldoni et al., 2009) On

the other hand, publish-subscribe pattern may provide better scalability than commonly

used request-response pattern thanks to parallel functioning of message delivery.

The publish-subscribe pattern may be a good option for systems with heavy traffic be-

tween multiple publishers and subscribers. The publish-subscribe model can mitigate the

number of connections between these entities. Every service in the system only needs

to connect to the broker service. In addition, the traffic load decreases as the data can

be sent only when it is updated, and no unnecessary polling is needed.

Publishers and subscribers are decoupled in the publish-subscribe model. There is no

dependency between these entities. However, if no subscriber is subscribing the topic

which is published by a certain publisher, it may not make sense for a publisher to publish

messages on that topic. Pausing the publisher process could save resources in this case.

This, of course, depends on the use case. In case of a network disconnect, old messages

from broker’s cache memory might be needed, even if the subscribers have disappeared

for a while.

3.3 Web server API

It is common that the server implements a specific API (Application Programming Inter-

face) through which the clients can communicate with the server. An API exposes a set

of data and functions to facilitate interactions between services and allow them to ex-

change information. When specifying API multiple things can be considered. Maybe the

most known architectural concept for API implementation is REST (Representational

State Transfer). This work also considers another way to implement API called GraphQL.

It is an architectural API concept like REST, but GraphQL is also considered a query

language. Even though these API styles are compared in this thesis they are not exclud-

ing each other, in fact, they can also be used as a combination. In addition to REST and

GraphQL there are also other popular technologies to use in API implementation. One

of these is gRPC (Google Remote Procedure Call), which is a new version of RPC (Re-

mote Procedure Call). As a data format gRPC uses a concept of protobufs instead of

JSON (JavaScript Object Notation). (Kornienko, Mishina and Melnikov, 2021) gRPC was

18

also considered to be used in this application as it offers high-performance data trans-

mission. Since the real-time data received by the backend server is JSON it was thought

that it would not be worth converting it to protobuf format. Using JSON with gRPC may

require additional code and configuration to handle serialization and deserialization of

JSON data. Thus, only REST and GraphQL API implementations are considered in this

work as JSON format is preferred to be used.

3.3.1 REST

The REST architectural style is commonly applied to the design of APIs. It is an abstrac-

tion of the architectural elements within a distributed hypermedia system (Fielding,

2000). If the API is implemented according to the REST architecture style, it is called the

REST API (Massé, 2011). REST APIs are well-suited for client-server architectures as

they are designed to work over HTTP (HyperText Transfer Protocol), which is the stand-

ard protocol used for communication between web clients and servers. REST APIs are

based on a set of principles for building web services, including a uniform interface,

statelessness, and the use of HTTP methods to represent different operations.

REST architecture has certain rules that the API must follow in order to be called REST

API (Massé, 2011). The central feature of REST architectural style is an emphasis on a

uniform interface. With the uniform interface details of component implementation can

be ignored. To obtain the uniform interface, four interface constraints are needed for

guiding the components’ behaviour. These constraints include identification of re-

sources, resource manipulation through representations, self-descriptive messages and

hypermedia as the application state engine. (Fielding, 2000) Resource identification is

done by using the URI (Uniform Resource Identifier) sequence. In REST architecture

resources are not directly edited but they are manipulated through representations in

requests. As messages are self-descriptive each message includes all the needed things

to handle the request event. Hypermedia plays the role as an application state engine

as the client and the server share state information via hypermedia, like body content of

a request or response headers.

The uniform interface improves the visibility of interactions and simplifies the overall ar-

chitecture of a system. However, as a trade-off it may decrease efficiency of the program

since data is transferred in a standardized form and not in a form which might be more

suitable to an application’s needs. (Fielding, 2000) There are many applications which

are using some REST architecture constraints, but which are not implementing the whole

uniform interface according to the specification.

19

Most of all REST architecture emphasizes scalability of component interactions. This

means that each request contains all the necessary information to understand the re-

quest. Every request is independent of any other requests. Thus, the server does not

need to retain the client’s state between requests. The stateless nature of REST im-

proves scalability of the application, and it also may have a positive impact on the con-

sumption of physical resources. (Fielding, 2000) It is still good to remember, that in some

cases statelessness may increase resource consumption. For example, network traffic

may increase if a high amount of client-specific information is included in each request.

The original REST architecture specification does not propose how to use HTTP request

methods, but those methods have commonly adopted use cases in APIs implemented

according to REST architecture. Each HTTP request method has usually specific and

well-defined semantics within the context of a REST API’s resource model. Commonly

used HTTP request methods are GET, DELETE, PUT and POST:

1. GET: Get the representation of a resource’s state

2. DELETE: Remove a resource

3. PUT: Add a new resource to a store or update a resource

4. POST: Create a new resource within a collection and execute controllers.

All the other HTTP methods mentioned may contain body except the GET method.

(Massé, 2011)

HTTP methods provide a standardized way of performing operations on resources, mak-

ing it easier for developers to understand and use APIs that follow the REST architectural

style. Some HTTP methods, such as GET and DELETE, are idempotent, meaning that

they can be safely repeated without causing any side effects. This makes it easier for

developers to build reliable and robust applications with REST API.

3.3.2 GraphQL

GraphQL is a query language and an execution engine originally created by Facebook

in 2012 (GraphQL, 2021). GraphQL is suitable to be used in client-server architecture as

it provides a flexible and efficient way for clients to communicate with a server. Clients

can send queries to the server using GraphQL and receive a response that includes only

the data they requested. This can help to reduce the amount of network traffic and im-

prove performance of the application. GraphQL query language allows clients to specify

exactly what data they need and receive only that data, rather than retrieving a fixed set

of data as is the case with REST APIs.

20

There are five design principles provided by GraphQL. The first principle is product-cen-

tric design as GraphQL is driven by the requirements of frontend views. GraphQL re-

quests are structured hierarchically, and structure remains the same also in responses.

Hierarchical design is another principle in GraphQL language. The third design principle

is strong-typing, which means requests are executed in application-specific context de-

fined by GraphQL service. Syntax and validity of operations are always ensured before

execution. The fourth design principle is introspective implementation of services.

GraphQL schemas can by queryable by the GraphQL language itself, which makes

GraphQL APIs introspective. One of the main things that differs GraphQL APIs from

common REST APIs is the principle of client-specified response. In GraphQL API the

client is responsible for specifying how it consumes published capabilities, whereas the

service determines the structure of data returned in the majority of client-server applica-

tions developed without GraphQL. (GraphQL, 2021) When a response is specified by

clients the data usually contains only the needed information, and unnecessary infor-

mation is left out of the response. This may also have a positive impact on the number

of requests, as the client is able to do tailored and combined requests which might not

be reasonable to implement in server-specified APIs.

GraphQL defines data structures as schemas and provides collective type system capa-

bilities. Schemas contain definitions of supported types, directives, and root operations.

Type is a fundamental unit of GraphQL schema. Directives on the other hand describe

alternate runtime execution and type validation behaviour. (GraphQL, 2021) GraphQL

schemas ensure that the data sent and received by clients and servers are of the correct

type.

There are three different root operation types for interaction with GraphQL. These types

have their own use cases:

1. Query: The query operation is used to retrieve data from the schema. It is the
primary way that clients use to interact with a GraphQL API.

2. Mutation: The mutation operation is used to modify data in the schema. It allows
clients to perform create, update, or delete operations on the data.

3. Subscription: The subscription operation is used to listen to changes in the data
in real-time. It allows clients to receive updates as soon as they occur, rather than
having to poll the server for updates.

The query root operation type is mandatory, and it must be provided for every schema.

The mutation and subscription are optional root operation types, and if they are not pro-

vided the service does not support mutations or subscriptions. (GraphQL, 2021) In con-

21

trast to HTTP request methods that are usually used in REST API, GraphQL root oper-

ations provide a flexible way to retrieve and modify data, allowing clients to specify ex-

actly what data they need and receive only that data.

3.4 Real-time communication technologies

Many things are called real-time even if timing of those things may vary a lot. Real-time

means that system responds to events at the same time or in a very short time after

events occur. In the context of the designed application, responds happen after short

and configurable time after events occur. This kind of real-time system can also be called

reactive. Reactivity refers to the behaviour of the system, but it does not take a position

on the time the response takes place. Reactivity is ability of a system to respond to

changes in its environment. In this section we go through communication technologies

that enable sending data between the client and the server in a short time after events

occur. Latency may differ between the methods, and the application requires latency to

be inside configured time interval between data updates.

In web architecture there are multiple different techniques to retrieve data from a server

to a client. This chapter introduces different methods for real-time communication be-

tween those entities. There is always some latency in getting the data to a user interface,

but it needs to be considered which kind of implementation works best in this application.

HTTP polling, WebSockets and server-sent events are common methods used for real-

time communication, and they can be used as server-side push technologies. HTTP/2

server push method can also be used as a server-side push technology. It is similar to

server-sent events but with HTTP/2 server push the server can send resources pre-emp-

tively based on the initial request of the client (de Souza Soares et al., 2018). However,

HTTP/2 server push might not be supported by some primary browsers in the future as

it is still quite rarely used. Thus, HTTP/2 server push method is not discussed in this

work.

3.4.1 HTTP polling

In communication networks different network protocols set rules for data format and pro-

cessing. The OSI (Open Systems Interconnection) Reference Model is a common model

to describe data communication between systems. (Ibe, 2018) There are multiple differ-

ent protocols which can be defined in the application layer of the OSI model. One of

these protocols is HTTP which is a request/response protocol that defines client, proxy,

and server entities (Saint-Andre et al., 2011).

22

HTTP is a protocol for distributed, collaborative, hypermedia information systems. It is

used with a client-server mode, and it is underlying protocol used in web applications.

The HTTP protocol defines message formats and how those are transmitted. It also de-

fines which actions clients and servers should take in response to various commands.

(Ibe, 2018) In the standard HTTP model, the client needs to poll the server periodically

for getting new data. In this case a server cannot initiate a connection with a client nor

send an unrequested HTTP response to a client. In the standard model the server cannot

push asynchronous events to clients. (Saint-Andre et al., 2011) However, there are also

ways to implement event pushing from the server-side. These ways are discussed in

subsequent sections.

As stated, polling is a standard method for retrieving data from server to client. With the

traditional polling technique, also called short polling, the client sends regular requests

to the server. Requests attempt to get any available events or data, and an empty re-

sponse is returned if there are no events or data available. This communication mecha-

nism consumes resources such as server processing and network. By forcing a request-

response round trip when no data is available, continuous polling can consume signifi-

cant bandwidth. In some cases, it can also reduce the application responsiveness since

data is queued until the server receives the next request from the client. (Saint-Andre et

al., 2011)

However, there is also a long polling method, which is a common server-push mecha-

nism. The client starts a long polling process by making an initial request and then leaves

waiting for a response. The server refers a response until a new update is available or

until a certain status or timeout has occurred. The server sends a response to the client

when an update is available. A new request is sent by the client either immediately upon

receiving a response or after a while to allow an acceptable latency period. (Saint-Andre

et al., 2011) The long polling communication scheme is described in Figure 5.

23

Figure 5. The long polling communication scheme

In contrast to short polling, in long polling the server attempts to hold HTTP requests

open. There is always a pending request from the client, and the server responds only

when there are events to deliver. This way the latency in message delivery can be mini-

mized as the server can reply when certain events occur. (Saint-Andre et al., 2011)

There are a few known issues with HTTP polling techniques. One issue is that these

techniques might frequently open and close TCP/IP (Transmission Control Protocol /

Internet Protocol) connections. However, polling method works well with persistent HTTP

connections that can be reused for many poll requests. For example, a short pause be-

tween a long poll response and the following long poll request avoids the closing of idle

connections. (Saint-Andre et al., 2011)

HTTP polling is founded on the request-response messaging pattern. It is also possible

to create the publish-subscribe pattern using HTTP polling, but network traffic and la-

tency may increase as clients are needed to start every event with a request. HTTP

polling consists of repeatedly sent update requests, which can also result in out-of-order

responses. It can happen for example in case multiple updates are received by the server

at the same time.

Scalability comes to an issue when the state of the continuously polling client must be

kept in memory. Since there is no permanent connection, the starting point of the polling

process must be somehow indicated. Detecting the ending point of the process also

worsens scalability. When the client suddenly drops out, the server can notice it only by

keeping track of how much time has passed since the latest poll request.

24

3.4.2 WebSockets

WebSocket protocol was developed to replace HTTP technologies such as short polling

and long polling, and it is an abstraction on the application layer of the TCP socket

(Hribernik and Kos, 2020). Like HTTP, it also uses the TCP protocol in the transport layer

of the OSI model. However, the transmission delays are reduced when using WebSocket

due to the combination of one connection and the appropriate optimizations. (Karla and

Tarnawski, 2019) WebSocket can be used for bidirectional communication between cli-

ent and server over a single TCP connection by using a “so-called” socket (Kulshrestha,

2013; Karla and Tarnawski, 2019). However, the socket used in WebSocket technology

is not the same as the TCP socket. WebSocket technology is fully supported by all pri-

mary browsers (The WebSocket API (WebSockets), 2022).

A WebSocket connection is established via HTTP protocol. Once a connection is estab-

lished, both connected services can send and receive data independently and without

any agreements. (Hribernik and Kos, 2020) The WebSocket communication scheme is

described in Figure 6.

Figure 6. The WebSocket communication scheme

First, to establish a connection with WebSocket the client sends an HTTP GET request.

There is HTTP Connection Upgrade located in the header of the HTTP message. The

server receives the HTTP Connection Upgrade request and triggers protocol change via

the HTTP response if it supports WebSocket and can communicate with the client via

WebSocket protocol. After the response the HTTP connection will be closed and re-

placed by the WebSocket connection over the same TCP connection. The server and

the client can begin communicating via WebSocket once they have completed the first

handshake using HTTP. (Hribernik and Kos, 2020)

25

HTTP protocol allows WebSocket to run via proxies and on top of TLS. HTTP and Web-

Socket protocols do not provide security themselves, but they can be used with TLS

protocol to establish a secure connection. (Hribernik and Kos, 2020) WebSocket itself

does not provide a solution either for denial-of-service attacks. Defence against a denial-

of-service attack can be implemented by verifying the origin of incoming requests (Wang,

Salim and Moskovits, 2013). The Origin header is sent during the WebSocket handshake

along an HTTP request, but it cannot be relied on as the attacker is able to modify the

header.

WebSocket technology is also vulnerable to Cross-Site WebSocket hijacking which can

happen if WebSocket handshake relies only on HTTP cookies. It is similar to Cross-Site

Request Forgery, but in Cross-Site WebSocket hijacking vulnerability a complete two-

way communication channel is established and it is not restricted by the same-origin

policy. However, protection against Cross-Site WebSocket hijacking can be imple-

mented by using individual random tokens in the WebSocket handshake. (Mei and Long,

2020)

3.4.3 Server-sent events

Where HTTP polling and Websocket technologies provide bidirectional communication

between the client and the server, server-sent events are developed for unidirectional

communication. Server-sent events operate using HTTP protocol in the application layer.

In contrast to traditional HTTP polling server-sent events use a persistent client-server

connection, which is initiated using HTTP. (de Souza Soares et al., 2018)

It is relatively easy to create and parse events as they are text-based (de Souza Soares

et al., 2018). On the other hand, server-sent event technology is based on HTTP stream-

ing technique, which makes it possible to send several application messages within a

single HTTP response. In that case the separation into application messages need to be

performed by the application (Saint-Andre et al., 2011).

The server-sent event process starts when the client sends an HTTP request to register

an EventSource HTML (Hypertext Markup Language) element. The EventSource is a

client-side object used to follow the event process. When the permanent HTTP connec-

tion is initialized with a response from the server the requested resources can be re-

turned through the EventSource element. (de Souza Soares et al., 2018) The server-

sent event communication scheme is described in Figure 7.

26

Figure 7. The server-sent event communication scheme

Server-sent events support the publish-subscribe paradigm. Clients subscribe to a chan-

nel and receive published messages from the server in real time without a separate re-

quest. (de Souza Soares et al., 2018) It is not mandatory to have a broker or a message

bus when implementing server-sent events, but it has a positive impact on scalability.

The server can push messages to multiple subscribers at once if a broker or a message

bus is used.

EventSource is compatible with all primary browsers. But it is not supported by Internet

Explorer. There is also a limitation when server-sent events are not implemented over

HTTP/2. In that case the maximum number of open connections is six per browser. (Us-

ing server-sent events, 2022) In practise, it means that no more than six tabs can be

open at once.

3.5 Frontend architecture

On the client architecture side one of the major technologies is React, which is used for

example in the development of Facebook and Netflix. React is a JavaScript framework

which can be used for building user interfaces. (Thomas, 2018) There are also other

good options to be used as a frontend framework, for example Vue.js and Svelte. How-

ever, in this work React is selected as a client-side framework since it provides support

for the necessary UI (User Interface) component libraries.

27

3.5.1 Basic principles with React library

React has multiple features which support application development according to the SPA

architectural pattern. Firstly, React has its own virtual DOM (Document Object Model).

DOM is a logical tree that represents all the HTML elements according to their order and

relative to other elements in the structure. Virtual DOM maintained by React is distinct

from the browser’s DOM, and it is created and updated based on a reconciliation process

by React service. The reconciliation process, also called as the render phase, is a com-

parison where React looks at the browser’s DOM and contrasts that with its own virtual

DOM. If there are differences found, React will send instructions to the browser’s DOM

for modifying elements. (Choi, 2020).

Another main attribute of React is that it is state-driven. React application is made up of

components, and each component may have some local state. The reconciliation pro-

cess is triggered if the state of some component changes. In that way the DOM tree of

the browser will be updated. (Choi, 2020)

It can be said that routing is ubiquitous in web development. React has also own Router

framework for managing client-side URL routing. Router allows SPA application to be-

have as a classic web application by indicating the URL address to users. Router in

React acts as a parent component and screen rendering components are its children

components. (Choi, 2020)

3.5.2 Client-side data storage

There are multiple ways to manage and store application state, in other words data, in

the client-side application. If a change in the application state should trigger a reconcili-

ation process, there are two ways to handle the state. Either using a component-based

state or Redux store. According to Choi (2020) Redux is a relatively new framework,

which creates a common location, the Redux store, for storing the application state. Re-

act has also its own Redux library which is designed to work well with React. It has been

the most popular enterprise-level framework for managing the global state in a React

application. (Choi, 2020)

Component-based nature of React has its advantages, but a component-based state

can be limiting. The state might not be always specific to a component or even to a

component hierarchy. In React, the state is passed down only one way, from the parent

component to the child components as props. (Choi, 2020) Redux provides a way to

share and modify the application state globally, by storing all of the application state data

in a single location called Store (Chinnathambi, 2018).

28

The process of updating Redux Store is described in Figure 8. Adding a new state or

updating an existing state in the Store is done by using actions. Actions are objects which

provide the data for specific reducers and describe what to change. (Choi, 2020) As a

result of a given action, the reducer determines what the final state will be (Chinnathambi,

2018).

Figure 8. The process of updating Redux store

It might seem that there are unnecessary steps in Redux Store update process, but all

these steps ensure scalability of the application. Using Redux Store makes it easy to

maintain the application state as it is stored in a single location. By using actions, Redux

ensures that wrong parts of the application cannot modify the application state. Reducers

specify what the final state will be so the state is never directly modified or mutated.

(Chinnathambi, 2018)

Redux ensures good maintainability of the code with centralized state management. It is

easier to maintain the code when the state is always modified in the same way using

actions and reducers. When the logic for managing state is separated from the logic for

rendering components, code is probably easier to understand and debug. Redux also

makes it easier to reuse components across an application or between different applica-

tions.

3.5.3 Performance optimization

In the application designed according to SPA architecture, the first page is the only page

that ever loads (Choi, 2020). Despite of that it is not necessary to load all scripts and files

needed to run the application at the same time. Lazy loading can be used to increase

client-side application performance. According to Elrom (2021) it is one of the easiest

29

ways to increase performance. By using the lazy method for importing the component it

can be ensured that the component loads only once it is used. There is no clear rule

about when the lazy method should be used. It is up to the use case what is the best

way to implement component imports. (Elrom, 2021)

Another thing to consider when optimizing frontend performance is the way how big lists

of data are rendered. Usually, these kinds of lists are viewed with scrolling, and it is not

necessary to render all the information at once. When there are too many items rendered

as a list scrolling is sluggish. To optimize performance, it is a good choice to render only

a subset of the list. One option is to use pagination when rendering a subset of the data

at a time. Only the data that is visible on a current page is rendered. In addition, there

are libraries which implement rendering subsets while a user is scrolling. When the page

is initially loaded, only a subset renders. And later when the user scrolls down the list

more subsets are rendered.

30

4. ARCHITECTURE AND TECHNOLOGY ALTER-
NATIVES

In this chapter different architectural solutions are presented and compared. First, the

component structure and division of responsibilities between components is designed.

There are three possible solutions from which the best will be chosen. Secondly, it is

considered which technology best enables good scalability in the backend component.

Finally, communication between the backend server and clients is considered. Different

communication solutions contain the backend component’s API implementation and

real-time communication technology used between the backend and frontend compo-

nents.

4.1 Component division

One of the main things to keep in mind when designing software components is that the

responsibilities for one component are reasonable. Component division must support a

clear division of responsibilities. Three different alternatives for the component division

were observed in this section. The first alternative is the simplest one, but on the other

hand it might not be the best solution. The main thing considered is that good perfor-

mance and scalability are supported.

4.1.1 First alternative

Once there is a clear understanding of the system requirements, it is possible to identify

the different components that will make up the system. Each component should have a

well-defined responsibility. When a component is responsible for a specific task, it can

be updated later without affecting other parts of the system. It may also affect scalability

as each component can be duplicated more easily as needed to handle increased load.

On the other hand, when the number of components in a system increases, so does the

complexity of the system. In addition, a higher amount of components may also increase

maintenance and testing efforts when the most benefits of component division are

achieved.

The first alternative for component division is presented in Figure 9. There are only data

collector components located on edge nodes in the first alternative. Data collectors pro-

vide measurement counters in binary format. The frontend component located on central

node receives binary measurement counters from one or multiple data collectors, which

31

creates a huge traffic load on the frontend component. The frontend component is re-

quired to be developed using React and JavaScript, but for example Go or C++ may be

better choices for CPU-intensive tasks, like processing binary measurement counters as

such. According to Aalto (2022) one measurement counter is typically 32 bits. In a typical

use case 496 RTPM (Real-Time Performance Monitoring) counters are received from

one eNB (eNodeB) per second. In the case of gNB (gNodeB) the same number of coun-

ters is 177. The number of analysed base stations varies depending on the use case.

However, in the case where the amount of eNBs is 800 and the amount of gNBs is 200,

the estimated incoming RTPM report stream is about 123 Mbit/s. (Aalto, 2022)

Figure 9. The first alternative for component structure

Overall, there are a lot of data elements to be monitored to analyse the state of a mobile

network system. RTPM is giving meaningful info for most of the cases, and it is still rel-

atively easy to handle. However, in applications that are analysing mobile networks big-

ger data volumes are also needed to take care of. Data amount will increase if going to

on more detailed level, for example to layer 3 level radio protocol events. In this study

the focus is more on RTPM.

Besides receiving and analysing measurement counters, the frontend component would

also be required to handle user interface events and interact with the database. The

performance of a frontend component can directly impact the success of a web applica-

tion. If the frontend is slow or unresponsive, users may become frustrated and stop using

the application.

Generally, it is a good idea to keep components small and focused, with a single and

well-defined responsibility. In this solution the so-called frontend component is having

too many responsibilities. First of all many different responsibilities make the component

32

very complex. The component is difficult for developers to understand, which can make

it hard to extend and maintain. Moreover, a component with many responsibilities may

become large and unwieldy, which makes it difficult to work with and can also negatively

impact performance. Many different responsibilities may lead the component to be tightly

coupled to other parts of the system, which can make it harder to reuse or modify the

component independently.

4.1.2 Second alternative

The second alternative for component division is taking more advantage of distributed

computing. The solution is described in Figure 10. In this alternative, a new Parser com-

ponent has been added to edge nodes. It forms parametric distributions from binary

measurement counters and thus reduces the traffic load to the central node. Formed KPI

distributions contain all the needed information for further analysis. Cause-symptom re-

lations based on KPI distributions are utilized later for root-cause analysis.

One way to identify problems in a mobile network system is to represent the relationship

between KPIs and fault causes. The cause-symptom relations can be modelled through

parametric distributions. One possible distribution is Gaussian, which can use for exam-

ple average and standard deviation as parameters to define the model. KPI can be ana-

lysed for each fault cause by comparing its behaviour with the distribution describing the

normal behaviour. (Gómez-Andrades et al., 2016) It was planned to take advantage of

cause-symptom distributions also in this use case. As it requires very high computing

capabilities to form distributions, it is a good choice to form those on edge nodes. In

addition, handling measurement counter data in binary format and creating KPI distribu-

tions based on the data is a very heavy computing task, so that functionality is good to

locate to own component. It improves a clear responsibility division between compo-

nents.

33

Figure 10. The second alternative for component structure

In this solution GUI frontend component receives KPI distributions instead of binary

measurement counters. The incoming traffic has decreased as KPI distributions provide

information in a more compact form and the amount of irrelevant data has reduced. How-

ever, there is still quite a lot of information for a frontend component to receive. Also, KPI

distributions need to be analysed more for providing the information to a user in an easily

understandable format. So, all the received KPI data is not needed in the frontend for

providing needed information in the user interface. Transferring a large amount of data

over the network can slow down the page load time and result in a slower user experi-

ence. In addition to the data transfer browser storage has also limited resources. Storing

a large amount of data in the browser's memory can consume a significant amount of

system resources, leading to slower performance and an increased risk of crashing.

This component division alternative also indicates that the frontend component has too

many responsibilities and so it is too complex. Also with more data, the complexity of the

frontend component increases, which can lead to increased difficulty in maintaining and

updating the code.

4.1.3 Third alternative

The third component division alternative in Figure 11 has a new backend component

added to the central node where the web application logic and database interactions are

located. In this case the frontend component gets only high-level information about the

network status. It just subscribes statistics from certain KPI topics, but it does not have

to know in detail which KPIs to subscribe to. Of course, it is possible to inspect and

modify the KPIs through the user interface, but the frontend component is not required

34

to mention KPIs when it is requesting data updates for example about network through-

put topic.

Figure 11. The third alternative for component structure

GUI backend component contains the basic web application logic, that is handling the

API requests that come from the frontend component and communicating with the data-

base. It is better to have a backend component to communicate with a database rather

than communicating with the database directly from the frontend as the backend com-

ponent provides an abstraction layer between the frontend and the database. Database

schema and implementation are hidden from the frontend, and it is easier to make

changes to the database schema without affecting the frontend component. Also sepa-

rating the frontend and backend components improves the modularity of the application.

GUI backend component also communicates with Parser instances. Basically, the GUI

backend component is aware of the KPI data at a more detailed level. When it sends

requests to get the KPI data from Parser instances, it must also include the KPI formula

information in the request body. It receives KPI distributions and analyses those a bit

further before sending more informative statistics to the GUI frontend component.

4.2 Scalable backend technology

Two different technologies were considered to use in the implementation of the web ap-

plication backend server. Go and Node.js are compared as they are commonly used in

other services in the system environment. Whereas Go is a statically typed programming

language, Node.js is a runtime environment for code written in JavaScript language,

35

which is dynamically typed. It makes these alternatives quite different, but both are good

options for the implementation of a scalable backend service.

4.2.1 Go

Go, also known as Golang, is a relatively new technology developed by Google and it is

currently used by numerous of companies (Andrawos and Helmich, 2017). It has multiple

features which make it a great choice to be used as a backend technology. It was devel-

oped as an attempt to combine good features from different statically and dynamically

typed languages. Go combines the ease of dynamically typed programming languages

with the efficiency and security of statically typed languages. (Golang, 2022a) Go was

developed specifically with its performance in mind, making it a good competitor to the

C language family. However, it supports also a relatively simple syntax similar to dynamic

languages like JavaScript. (Andrawos and Helmich, 2017)

As Go has been developed with simplicity in mind, it also has an easy learning curve.

There are the same practices for maintainable code in Go as there are in other lan-

guages. It is important to keep function and module sizes reasonable and have mean-

ingful names. However, Go’s standard library offers a great library for code formatting.

The greatest thing in the library is that its format is uncontroversial and the code format

does not change. It is easier to read and maintain code when it all looks the same.

As Go is still a relatively new language, there are not so many third-party libraries avail-

able for Go. This may cause issues, but as Go has been quickly increasing its popularity

the number of actively maintained libraries should also increase. Go’s standard library

also offers a great number of features.

Go supports building applications which take advantage of concurrency and parallelism.

Concurrency is implemented in the language as a native feature, and it can be exploited

by using goroutines, which is more lightweight than using threads. Native support makes

it easier to implement concurrency. With goroutines the application can execute multiple

tasks concurrently. Goroutine is a logical execution unit that contains the instructions for

a program to run. Execution of a goroutine is handled by a processor, which has own

scheduler and queue that consists of goroutines. (Anurag, 2018)

Uni-directional communication between goroutines is handled with channels. Channels

can be buffered or unbuffered. If a channel is buffered, the capacity of the channel buffer

can limit the data amount waiting in the channel. The sender blocks and waits for the

receiver to receive the data only if the buffer is full. In unbuffered channels the sender

always blocks until the receiver has received the value. (Golang, 2022b) Channels can

36

be used for message passing from one goroutine to another, but channels can also be

used for message broadcasting when there are multiple listeners for a channel.

Even if goroutines are easy to create with Go, jammed connections may consume a huge

number of resources. Go’s standard library net/http offers timeout implementation which

can be used for mitigating hanging connections. Timeouts are not implemented by de-

fault, but they can be set when configuring HTTP server. Go’s net/http package also

supports HTTP/2 protocol transparently when HTTPS and TLS are used since Go ver-

sion 1.6. (http package - net/http - Go Packages, 2022)

4.2.2 Node.js

Node.js is an ope-source and cross-platform JavaScript runtime environment (Node.js

community, 2022). It is commonly used in web development, as it provides great support

for different API implementations. Node.js is a great choice for the backend technology

of a web application as frontend code is also written in JavaScript. In this case there

would be no need to have multiple different languages used in the application.

Node.js runs the V8 JavaScript engine outside the browser, which allows it to have good

performance. The V8 is a high-performance JavaScript engine, used for example in

Google Chrome to parse and execute JavaScript code. Even though programs devel-

oped with Node.js run in a single process and without multiple threads, it provides asyn-

chronous primitives which prevent code from blocking. When an I/O operation is per-

formed Node.js will resume the operations when the response comes back, and this way

any thread execution is not blocked. This way it is possible to handle multiple concurrent

connections without managing thread concurrency, which is easily coming a source of

bugs. (Node.js community, 2022)

The event-based model of Node.js supports the implementation of good scalability. How-

ever, when the application needs to perform concurrent tasks which require high CPU

load, good scalability may not be achieved. The lack of parallelism can become an ob-

stacle in that case. The scalability issues can be handled for example with multiple ap-

plication instances and a load balancer in that case.

There are also built-in HTTP and HTTP/2 modules in Node.js, which provide a great

implementation for HTTP features. With HTTP/2 multiple requests are sent over the

same TCP connection between a client and a server, which can make communication

more efficient and secure. Also timeouts can be configured through the HTTP/2 module

37

to avoid hanging connections (HTTP/2 | Node.js v19.1.0 Documentation, 2022). For ex-

ample, denial-of-service attacks can be mitigated when proper server timeouts are con-

figured.

4.2.3 Conclusion

When considering performance and scalability Go is a better choice than Node.js. The

performance of Go is at the same level with C family languages. There is previous re-

search made considering the performance of Go language in comparison to other lan-

guages. A study published by BMC Bioinformatics compares Go, C++ and Java for the

development of a sequencing tool. The research concludes that Go performs best for

the implementation of the tool presented in the study. Go provides the best balance be-

tween memory usage and runtime performance. In the study it was observed that Java

benchmarks had slightly better runtime performance than Go runs, but Go benchmarks

used less memory than both Java and C++ runs. (Costanza, Herzeel and Verachtert,

2019)

Go also supports concurrency, and programs written with Go can take advantage of us-

ing multi-thread execution through goroutines. Goroutines make it easy to implement

good scalability. Node.js as a single-threaded engine cannot keep up with the perfor-

mance of Go. Single-threaded architecture also makes it harder to achieve good scala-

bility with Node.js, even if concurrency can be achieved with asynchronous callback func-

tions. Node.js may be more suitable for applications that handle a large number of con-

nections with low throughput requirements.

Maintainability is considered from the viewpoint of development tools and community

support. As Go is a newer technology than Node.js and JavaScript, there are fewer li-

braries and packages available for Go. There is also more community support available

for Node.js and JavaScript as they are older technologies. However, the popularity of Go

is increasing fast, so it can be assumed that maintenance support is also increasing in

the future.

Go was decided to use as language in the backend service as it supports better scala-

bility and performance through concurrency, and those are the most critical requirements

for this web application. Concurrency in Go can also be implemented in a very easy way,

and it is supported by Go’s standard library.

38

4.3 Web server API implementation

The performance of applications implemented using REST architecture and GraphQL

language is compared in the study published by Lublin University of Technology. The

research found that GraphQL application was more efficient when a large number of

queries were made to one endpoint to retrieve relatively small data sets. However, when

the data set was increased, it was seen that the service with REST interface was more

efficient. This was caused by the large size of requests in GraphQL application, as the

client had to specify all the information that was needed for responses. When the client

is able to define the queries in a way that the data in response does not contain unnec-

essary information, and the data obtained is smaller in that sense, the GraphQL-based

service processes requests faster. The effectiveness of GraphQL can also be seen in

situations where multiple requests can be combined into one. (Mikuła and Dzieńkowski,

2020) However, this unnecessary fetching can also be avoided in applications with wisely

developed REST architecture. This depends on the use cases of API. REST architecture

itself does not declare the implementation of API endpoints. The architecture only offers

certain design constraints.

There is also another study considering the performance of services implemented with

GraphQL and REST APIs. It states that GraphQL is a good choice when data require-

ments change often, whereas REST architecture is better when data is frequently re-

trieved. When considering resource utilization GraphQL is the best choice, but this is

affected by the decreased number of endpoints in GraphQL implementation. (Lawi,

Panggabean and Yoshida, 2021)

The comparison of REST and GraphQL API technologies is summarized in Table 1. As

stated, the performance depends on the use case. If multiple endpoints or data queries

can be optimized by the client, the GraphQL API is a great choice. However, in this web

application there are no plans for combining endpoints or client-side query optimization.

So it might be that using GraphQL would not offer a great advantage to performance in

this case.

39

Table 1. Comparison of API technologies

 REST API GraphQL API

Performance

Good when querying large

data sets, but over- and

underfetching decreases

performance

Good when multiple endpoints

are combined or queries can

be optimized, complex queries

decrease performance

Maintainability
A conventional and well-

known standard

A steeper learning curve, but

later development might be

faster, simplifies complex API

Typing Weakly typed Strongly typed

From a maintainability perspective, there is no obvious choice. REST API is a conven-

tional and well-known standard, and most people are familiar with it. On the other hand,

GraphQL simplifies complex API implementations and might make development faster.

However, GraphQL has a steeper learning curve.

It can be said that REST API is more weakly typed than GraphQL. It is up to the client

and server to agree on the format and interpretation of the data being exchanged. De-

pending on the use cases of the system weak typing can be both an advantage and a

disadvantage. Weak typing allows for more flexibility and ease of development. On the

other hand weak typing can lead to more errors as there is less strict control over the

data being exchanged. This can improve the overall reliability and security of the appli-

cation, and it is an advantage. A strongly typed API can provide a level of abstraction

that allows clients to interact with software components without knowing their implemen-

tation details. It also helps to prevent runtime errors and improves the overall stability of

the application.

However, API based on REST architecture was decided to use in this web application

backend component as the possibility for query optimization by clients was not recog-

nized in this use case. Of course, if it turns out later that client-driven queries could be

useful, the change of API technology could be considered.

40

4.4 Real-time client-server communication

This section considers the evaluation of client-server communication methods for real-

time data transfer from the backend server to frontend clients. Evaluated methods are

HTTP polling, WebSockets and server-sent events. Evaluation is done both with

empirical performance testing and by comparing features and quality attributes of each

method.

4.4.1 Empirical research on performance

It is not obvious that there are no bottlenecks in traffic between application components.

The data is updated according to a configured time interval, and the interval between

data updates in the frontend will not be less than one second. This empirical testing is

done to observe the performance of the backend server when certain communication

methods are used. When considering the client side, it was noticed that the CPU load

and memory load were quite the same with different methods. Moreover, it is not yet

known how many endpoints there will be in the backend API, and that would probably

affect test results more from the client’s point of view. Bigger data amount will be ana-

lysed and extracted which requires more effort from the backend component than the

client. The amount of statistics data sent to clients will be tried to keep as low as possible.

Empirical research was conducted regarding CPU and memory usage of backend

services with different communication technologies. Three simple backend and frontend

components were developed using different methods for real-time communication.

Frontend components request continuous updates from backend servers either using

HTTP polling, WebSocket or server-sent events. Each of these components runs in its

own Docker container. Backend servers are developed with Go language, and frontend

components are React applications served with Nginx. The system used in empirical

testing is presented in Figure 12.

41

Figure 12. The system used in empirical testing

In the test phase eight Google Chrome browser tabs were opened to connect to each

frontend component. This triggers eight parallel processes between clients and the

backend component. Each process triggers data updates from a backend server to

clients every second. Data transfer is secured using TLS, but user authentication is not

implemented for the test phase. TLS might have a slight impact on performance, but not

considerable. The impact of using TLS encryption is not examined as TLS encryption is

in any case used for data traffic. In addition to Google Chrome tests were also run by

using Microsoft Edge browser for clients. Test results were broadly similar so the

conclusion was that the browser did not significantly affect the outcome of the tests.

Figure 13 presents the received data by each backend server during the performance

test. Received data is presented as B/s (byte per second). As can be seen from the figure

the received data amount is the largest in the implementation where HTTP polling

method is used for data updates. HTTP polling contains additional HTTP header data

which is sent back and forth during every data update event triggered by a new HTTP

request. It probably explains why the received data amount is the largest in traditional

HTTP polling method.

42

Figure 13. Data sent from frontend clients to backend services

The backend server which uses WebSockets receives more data than the backend

server implemented with server-sent event updates. Clients of the WebSocket server are

sending heartbeat messages to inform the server that they are listening, but it still does

not explain the discrepancy entirely. In server-sent event implementation heartbeat

messages sent by a client are not required as client activity can be followed by

supervising the context of an HTTP request. The context is cancelled when the client

closes the connection.

Where the previous figure presented inbound data traffic, the transmitted data by

backend servers is presented in Figure 14. Transmitted data is represented as kB/s

(kilobyte per second).

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8

N
et

w
o

rk
 R

x
(B

/s
)

Time (min)

HTTP polling WebSockets Server-sent events

43

Figure 14. Transmitted real-time data from backend instances to frontend clients

The amount of transmitted data is almost on the same level in every backend server

implementation. Measurement timepoints may cause a slight variation between results.

The amount of transmitted data is approximately 125 kB/s.

The differences in performance can be observed when comparing CPU usage statistics

for each backend implementation. CPU usage for backend servers is presented as

percentages in Figure 15. CPU usage is the highest in backend implementation which is

responding to continuous HTTP polling requests. On the other hand CPU usage is lower

in backend servers which are using WebSockets or server-sent events to deliver data

updates. The results are quite similar in these two implementations.

0

25

50

75

100

125

150

1 2 3 4 5 6 7 8

N
et

w
o

rk
 T

x
(k

B
/s

)

Time (min)

HTTP polling WebSockets Server-sent events

44

Figure 15. CPU Usage in backend implementations

In the HTTP polling method, every request is considered as a new client, and a new

connection is created. This may have a major impact on CPU load in test cases. How-

ever, in practice most of CPU time will be spent on data parsing and computing in the

finished application.

Another measurement for observing the performance of different methods is the memory

usage of backend servers. Memory usage is presented as MiB (mebibyte) in Figure 16.

Memory usage is the highest in backend implementation which is responding to

continuous HTTP polling requests. The lowest memory usage is in the backend service

which is using server-sent events for data updates. Memory usage of the backend

implemented with WebSockets is between the memory usage of the previous mentioned

backend services. It may be explained by the fact that an external library is used for the

WebSocket implementation.

0,00

0,10

0,20

0,30

0,40

0,50

1 2 3 4 5 6 7 8

C
P

U
 U

sa
ge

 (
%

)

Time (min)

HTTP polling WebSockets Server-sent events

45

Figure 16. Memory usage in backend implementations

All in all, seems that the backend implemented with server-sent events performed slightly

better than servers using HTTP polling method or WebSockets for data updates.

However, results may differ for example if another WebSocket library would be used.

Benchmarking between SSE, WebSocket and HTTP polling is hard to normalize due to

the frequency of updates. In addition, server configuration may still affect the result even

if Docker containers were used in the deployment of services.

There is also previous research made considering the performance of web-based com-

munication methods. In the study published by Wroclaw University of Technology au-

thors analyze the performance of web-based systems using XMLHttpRequest, server-

sent events and WebSocket. It was stated that WebSocket technology performed best

in terms of bidirectional communication. In the case of unidirectional communication from

the server to the client server-sent events and WebSocket technologies performed sim-

ilarly. (Słodziak and Nowak, 2016) The same outcome was also reached in the tests

executed in this work.

4.4.2 Feature comparison

In addition to performance, real-time communication methods were also evaluated from

other viewpoints. A comparison summary of these methods is presented in Table 2. As

can be noted from the empirical performance test results presented in the previous sec-

tion, the performance of the HTTP polling method is the weakest in the use case of this

0,0

2,0

4,0

6,0

8,0

10,0

1 2 3 4 5 6 7 8

M
em

o
ry

 U
sa

ge
 (

M
iB

)

Time (min)

HTTP polling WebSockets Server-sent events

46

web application. CPU usage was quite similar in both WebSocket and server-sent event

implementations. There was a bit higher memory consumption when using WebSocket

for data updates.

Table 2. Comparison of real-time communication methods

 HTTP polling WebSockets Server-sent events

Performance Weak on the

backend server side

Good Good

Scalability Keeping track of

starting & ending

points of the polling

process makes it

worse

Good Good

Maintainability Supported by Go

standard library

Requires third-

party library

Supported by Go

standard library

Browser support Good Good No Internet Explorer

support, only 6 con-

nections/browser

with HTTP/1

Performance and scalability depend highly on the practical implementation but different

communication methods, however, also have an effect. Different methods require things

to be implemented differently in code logic. For example, the HTTP polling process does

not happen with a continuous connection, instead, a separate HTTP connection is cre-

ated with each data update request. All the requests a client is making during the polling

process look the same. This contributes to the fact that the starting point of the HTTP

polling process must be somehow indicated by the client if it affects the function of the

server. However, this is not the case if WebSocket connections or server-sent events

are used. Those methods create a continuous connection for the date update process,

and the process between a client and a server starts when the connection is created.

Moreover, in the case of the HTTP polling, the ending point of the polling process can be

only noticed by keeping track of how much time has passed since the client’s latest poll

request. This makes scalability poor when using HTTP polling for this use case.

47

From a maintainability perspective HTTP polling and server-sent event methods are the

best choices as those are supported by Go standard library. WebSocket implementation

requires some third-party library. However, there currently exist multiple libraries for

WebSocket implementation with Go. The libraries seem to be maintained by volunteers.

When considering browser support HTTP polling and WebSocket methods are well sup-

ported by all common browsers. EventSource interface to server-sent events is not sup-

ported by Internet Explorer. As Internet Explorer support is already ended by Microsoft,

the lack of EventSource support is not considerable. Server-sent events also have an-

other limitation. If those are used with HTTP/1 there can be up to 6 connections per

browser and domain with some common browsers. However, when HTTP/2 is used the

maximum number of simultaneous HTTP streams can be configured.

When security is considered none of these communication methods provides secure so-

lutions by themselves. TLS encryption can be used with each of the methods. And when

considering for example denial-of-service attacks securing must be implemented in code

logic or with proxies or firewalls.

WebSocket would support bi-directional communication between client and server, but

it does not bring any noticeable advantage for this web application as the web user in-

terface is not designed to have much two-way interactive communication. Therefore,

based on performance, scalability and maintainability server-sent events were decided

to use for the real-time data updates between backend and frontend services.

48

5. ARCHITECTURE PROPOSAL

This chapter presents the proposed architecture based on the analysis of different solu-

tions in the previous chapter. The architectural design is not complete, but the main ar-

chitectural issues have been considered. The component view for the proposed archi-

tecture is explained in the first section. The view contains those components that are

essential to this web application. The second section describes the module view of the

backend component on a more detailed level. In addition, the scalable real-time data

processing method is explained through the module view.

5.1 Component view

The proposed architecture consists of components placed on both a central server and

edge servers. The component division is based on the alternative in Figure 11, which

takes advantage of distributed computing and has a separate backend service for GUI.

There is also one addition to the structure. Analyzer service (Haavisto, 2019) is a new

component between Parser services and the GUI backend component. Analyzer is lo-

cated on the central node, and it is responsible for collecting and analysing the data from

the services located on edge nodes. It is already part of the system, and it was decided

to use it between the components as it already has implemented conversion from Par-

ser’s proprietary interface to the REST interface. Analyzer forms weighted averages of

data coming from multiple Parser instances on distributed servers and provides a solu-

tion to scalability with multiple distributed servers.

Figure 17 represents how components are located on central and edge nodes. Some of

the heavy computing tasks are located on edge servers, which takes advantage of edge

computing. Data collector services are responsible for collecting the data from base sta-

tions and transmitting the data to other services. One of these services is Parser which

filters the data coming from Data collectors. It subscribes only needed measurement

counters. It creates statical distributions of the KPI data and transmits those to Analyzer

service.

49

Figure 17. Web application located in the current system

Green components are the new components created during this work. GUI frontend com-

ponent is developed with React and it is responsible for presenting the user interface

and application data. The user interface is fetched by the web browser running on a

user’s device.

GUI backend service is a middle tier, which is running the business logic of the web

application. It is developed with Go to enable good performance and scalability. The

backend service has a REST interface through which frontend clients can communicate

it. Real-time data updates to clients are provided by using server-sent event method. The

backend service receives real-time KPI distribution data from Analyzer component. In

addition, it also detects problems and suggests possible fault causes based on the KPI

distributions. A more detailed module view of the GUI backend component is presented

in the following section.

50

In addition to backend and frontend components, a new database service is needed.

SQLite is used as a database management system, as it is lightweight and requires min-

imal setup and configuration. It provides a good performance capability and can handle

a large number of concurrent read and write operations.

5.2 Real-time data processing in the backend server

Data is retrieved from edge computing components only if the interface has at least one

active user viewing the statistics. If a request for continuous data updates is received

from the client, the backend service starts fetching the data from edge computing com-

ponents if there is not already another client getting the same data updates.

The backend component has modules which form a publish-subscribe pattern to enable

scalable processing of the data. Every real-time data request that comes from a client is

handled in a specific controller module. The controller module creates a subscription for

a certain topic in the broker module and establishes a continuous connection with the

client. If there is at least one subscriber for a topic, a related service module publishes

data updates for that data topic throughout the broker module. A simplified module view

of the backend service is presented in Figure 18. It shows publish-subscribe pattern lo-

cated between controllers and services.

51

Figure 18. Backend modules and publish-subscribe pattern

52

There are different controller modules for different REST API endpoints. For example,

ThroughputController is responsible to handle requests considering the throughput data

and SwUpgradeController is responsible to handle requests which consider software up-

grade statistics. There are also services which publish similar data topics, like Through-

putService and SwUpgradeService. Those services interact with AnalyzerClient module

which is responsible to request data from the external Analyzer component.

In addition to HTTP requests that trigger continuous data updates, in other words server-

sent events, there are HTTP requests that trigger events to interact with the database.

These requests, for example, update formulas stored in the database. Requests are

handled with basic controllers which do not create continuous connections with clients.

The FormulaController in Figure 18 is an example of a basic controller, which handles

requests considering formula data stored in the database. Through the formula REST

API endpoint authorized clients can for example get a list of formulas or create a new

formula.

When server-sent events provide real-time data updates to frontend clients, the data will

be stored in Redux store. As the data need to be shared between multiple components

it is more clear and easier to test when the data will be stored in a common location.

Redux will dispatch subscribe action for real-time data updates when certain React com-

ponents render has committed to the screen. To avoid memory leaks, an unsubscribe

action will be called in the clean-up function before the component is removed from the

UI.

53

6. ARCHITECTURE EVALUATION

Architecture evaluation is a process of determining the extent to which an architecture

fits the intended purpose (Bass, 2022). This chapter contains an evaluation of the pro-

posed architecture. Evaluation is carried out by using a lightweight architecture evalua-

tion framework based on ATAM (Architecture Tradeoff Analysis Method). In the first sec-

tion the framework used in the evaluation is presented. Secondly, the evaluation process

is described. The last section goes through the results of the architecture evaluation pro-

cess.

6.1 Lightweight architecture evaluation framework

Software architecture can be evaluated using different evaluation frameworks. One of

these is the popular ATAM framework. It has already been used over two decades to

evaluate a variety of large-scale architectures. Using ATAM does not require the system

to be constructed yet, which makes it suitable for the evaluation of the architecture de-

signed in this thesis. (Bass, 2022) However, ATAM is quite a heavy process as it requires

many stakeholders to be present in the evaluation phase, so as such is not a proper

choice to use in the evaluation of this architecture. It is resource-intensive and time-

consuming, and for small projects, the cost of conducting an ATAM analysis may out-

weigh the benefits it provides.

The LAE (Lightweight Architecture Evaluation) method (Bass, 2022) uses the same con-

cepts as the ATAM, but it is intended to be used in a project-internal context and to have

fewer participants than the ATAM. In the LAE method stakeholder identification can be

skipped. It is not required to define stakeholders who will be affected by the architecture

and their concerns and requirements. A quality attribute utility tree can also be imple-

mented before the architecture evaluation session. It articulates quality attribute goals in

detail and defines quality attribute requirements that architecture must provide. A quality

attribute tree is a hierarchical tree structure that provides a systematic way of specifying

and organizing the quality attributes of a system.

All the phases of the LAE process are shown in the following list:

1. Present the method steps

2. Review the business goals

3. Review the architecture

54

4. Review the architectural approaches

5. Review the quality attribute utility tree

6. Brainstorm and prioritize scenarios considering quality attributes

7. Analyze the architectural approaches

8. Capture the results

The evaluation process is quite effective and can be kept in less than a day. The down-

side is that the evaluation team is internal, and evaluation is typically more subjective

than it would be if the evaluation team would also contain externals. (Bass, 2022)

6.2 Evaluation process

Lightweight ATAM evaluation based on the LAE method was kept during this work to

evaluate the architecture design. The evaluation was arranged as two one-hour meet-

ings. First, the evaluation method was presented. After that business goals and architec-

ture were reviewed. The architecture proposal was presented, including its key compo-

nents, relationships, and behaviours. The review did not take so much time as the eval-

uation was internal. The utility tree was partially implemented already beforehand, and

scenarios were then updated in the evaluation meeting. Moreover, importance and diffi-

culty ratings were analysed during the meeting. The final version of the utility tree is

presented in Figure 19. The root of the tree represents the overall quality goal for the

system, and the branches represent the various quality attribute refinements, that con-

tribute to the quality goal. Branches are further divided into sub-branches, which repre-

sent more specific aspects of the quality attribute as scenarios.

55

Figure 19. The final version of the utility tree after lightweight ATAM evaluation

Utility tree identifies the most important quality attributes, which are in this case scalabil-

ity, performance, availability, maintainability, and security. These attributes are then di-

vided into refinements, such as request-response time and page load time. According to

these refinements there are scenarios listed in the utility tree. The application and its

architecture are wished to implement these scenarios.

The importance and difficulty of each scenario were rated on a scale of high (H), medium

(M) and low (L). These rates are mentioned in parentheses. The first letter is a rating for

the importance and the second letter is a rating for the approximated difficulty of imple-

mentation of a scenario.

Scalability is observed both from an application user perspective and a data source per-

spective. When the number of data sources increases, also the amount of incoming data

increases. The first scenario considers that the backend server’s response time does not

56

increase significantly if there are many clients at once making requests to the backend

server. This scenario has a lower importance as the application will probably not have

multiple concurrent users. Its implementation is estimated to be easy with server-sent

events and the current backend structure, so the difficulty is also low. On the other hand,

scalability according to the varying number of data sources has a high importance.

Surely, the application must be able to maintain good performance in an environment

which has only one edge server but also in an environment which is having multiple edge

servers and hence multiple data sources and high data load.

The performance-related scenarios consider the request-response time and page load

time. In this work user interface is not designed, and thus user experience is not consid-

ered as such. However, the application’s performance should be good. The scenarios

considering the application performance are rated with medium importance. Otherwise,

difficulties are rated as low, but it is not sure yet how hard it will be to load the page with

all the needed statistics in less than 5 seconds on average. If the page load time will not

be good enough, rendering can be optimized by loading only critical user interface items

first.

The availability of the application is considered from the fault tolerance point of view.

Good fault tolerance has high importance. The fault tolerance is largely affected by code

logic and style decisions, and the application’s availability is probably mostly ensured

with good error handling. The application must not crash if another component cannot

be reached. Modularity affects usability, but it also has an impact when multiplying com-

ponents. It is important to have a modular application structure as when part of the ap-

plication cannot be reached it can easily be multiplied.

The maintainability-related scenarios consider loose coupling and testability. The system

must be loosely coupled so that change in one component affects other components as

little as possible. When the impact of a change in another component is minor the

changeability is good. Testability has been not considered yet in this phase, and it often

gets less attention when architecture is designed. Tactics to achieve good testability are

divided into two categories. The first category concerns the ability to control and observe

a system state. Another category is about limiting the complexity of software. Localizing

state storage and storing application state in a single place improves testability, as it is

easier to control and observe the system state from a single place. (Bass, 2022) By using

Redux store for storing the application state in a web browser the state is localized and

the application is easier to test.

57

The fifth quality attribute in the utility tree is security. The first two security scenarios

consider traffic encryption. Data traffic between components will be encrypted by using

TLS encryption. In addition, client authentication is supported between backend compo-

nents. Security scenarios related to data integrity consider the order in which the real-

time data is sent from the backend component to clients. The order must be correct, and

it can be indicated by observing timestamps in the data. When using server-sent events

instead of traditional HTTP polling, the backend server is responsible to maintain the

correct order for the real-time data updates. If HTTP polling method would have been

used, clients should have sent indicators to the backend server to tell more precisely

which data packet is required. Another data integrity scenario is to use TCP/IP protocol

for data traffic as it provides a checksum which can be used to detect corruption in data

integrity. The third refinement of the security attribute is an authorization. Authorization

scenarios consider the API implementation of the backend server. An unauthorized user

gets 401 error from all API endpoints, which describes Unauthorized Error. Another sce-

nario considers the rule that users with an admin role are the only ones authorized to

make modifications to KPI formulas.

After this architectural sensitivity and trade-off points were considered. It proved to be

the most challenging part of the evaluation process. In addition to sensitivity and trade-

off points, evaluation results were reviewed at the end of the evaluation meetings. Re-

sults of the architecture evaluation, including the sensitivity and trade-off points are con-

sidered in the next section.

6.3 Evaluation results

There were also some architectural sensitivity and trade-off points considered during the

evaluation. Sensitivity points are architecture decisions which affect the attainment of

some quality attribute. Trade-off points are considered decisions that affect more than

one quality attribute. Trade-off point decisions can for example improve the achievement

of some attribute but at the same time make some other quality attribute worse.

The main trade-off points that were noticed during the evaluation considered security

decisions. Most of them have a small degrading effect on performance. For example,

using TLS encryption or authentication consumes more computing resources and pro-

cessing time. However, the effect on performance is very little, and security decisions

are mandatory to implement so there is no uncertainty in trade-off points considering

security.

58

Using goroutines in the backend server implementation affects positively multiple differ-

ent quality attributes. The first thing to mention is performance, which is the main reason

to use concurrency in this application. The implementation also affects scalability posi-

tively as it is relatively easy to adapt the number of goroutines to current resource needs.

The third quality attribute affected is maintainability as communication via channels be-

tween threads is implemented in a user-friendly way with Go. It makes it also easy to

maintain the code in the future.

Regarding the real-time statistics updates with server-sent events, it was decided to im-

plement cache memory to improve performance in the REST API of the GUI backend

component. REST architecture supports cache mechanisms, but it does not automati-

cally implement those. HTTP methods include caching mechanisms that can help im-

prove performance by reducing the number of requests that need to be made to the

server. One approach for caching server-sent events data is to use the Last-Event-ID

header, which allows clients to request only new events from the server.

59

7. ANALYSIS AND DISCUSSION

This chapter contains an analysis and discussion about research and future development

ideas. The chapter is divided into two sections. The first section covers the research

process, and the second section is about future development. Future development con-

siders new ideas on how to improve current architecture solutions and continue devel-

opment work in the future.

7.1 Research process

At the beginning of the research the application requirements were defined. As the user

interface was not designed in the first place, the requirement specification was not com-

plete. In addition, a detailed API structure could not be designed. However, it was rec-

ognized that the amount of data used in the analysis would be large, and that should be

considered in architecture design. The suitable component division was found quite eas-

ily. It took well into account the current components of the system. As the project was

implemented as a proof of concept there was not much time allocated to it. When already

existing components were reused, there was no need to write so much new functionality.

Moreover, component reuse ensured consistency across the application.

Evaluating architecture before the software is ready was challenging as the architecture

was a quite high-level representation of the system. It was not as easy as first thought to

understand and evaluate the implications of the architecture. The design for the system

was limited and incomplete, making it difficult to predict how the architecture will perform

in real-world conditions. Moreover, without the final version of the software developed,

the empirical performance testing was slightly unreliable. It was not possible to generate

realistic testing data and scenarios that accurately reflect how the system will be used.

It is also difficult to simulate real-world conditions, such as load and stress when evalu-

ating architecture. This can make it challenging to accurately predict the performance

and scalability of the architecture. In addition to this, software requirements can change

later and evolve over time, making it difficult to properly anticipate and evaluate all the

trade-offs and impacts of different architectural choices.

Moreover, for this kind of small internal project, other evaluation techniques that are less

formal and require fewer resources may be more appropriate. ATAM may be a useful

tool for ensuring the quality and reliability of the architecture for larger or more complex

projects. However, the quality attribute tree helped to ensure that the quality attributes

60

are understood and consistently considered throughout the development process. It was

convenient to process the overall picture of the designed architecture solution.

Despite these challenges, evaluating architecture before the software is ready is still an

important part of the development process. Different techniques and tools, for example

prototyping and scenario-based evaluation help to mitigate these challenges. By com-

bining these techniques with expertise and experience, it is possible to effectively eval-

uate architecture and make proper decisions about the design of a software system.

7.2 Future development

KPIs are widely used in fault identification but it is still hard to know the effects of each

fault cause on the KPIs. Even if the network problem is solved, the real cause is unknown

on many occasions, which may result in the same problem happening again. This web

application is developed as a part of the so-called rule-based analysis system. One of

the major advantages of rule-based diagnosis systems is that they are designed based

on the reasoning and thinking of experts, and so are easily understandable and inter-

pretable. The rule-based system only diagnoses problems when all the rules are satis-

fied, so it cannot identify problems whose impact on KPIs is a small deviation from the

defined threshold. However, the diagnosis error is quite small. In addition to rule-based

diagnosis systems there are also fuzzy-logic-based systems, where the undiagnosed

errors are reduced at the cost of a small increase in the faulty diagnosed error. (Gómez-

Andrades et al., 2016) Fuzzy-logic-based systems are designed to handle uncertainty

and imprecision in data and inputs, whereas rule-based systems rely on explicit rules. In

the future it could be considered if the fuzzy-logic-based diagnosis would be easier to

implement on a larger scale and if it would give good analysis results. In some cases,

fuzzy-logic-based systems can handle complex systems more effectively than rule-

based systems. Rule-based systems require manual updates to adapt to changing con-

ditions. In addition, a fuzzy-logic-based diagnosis could take advantage of machine

learning. Machine learning can be used to automatically generate fuzzy-logic rules,

which can improve the accuracy and effectiveness of fuzzy-logic-based systems.

Another thing to consider in future development is the component structure. In the current

solution Analyzer component combines and centralizes the data it receives from Parser

instances located in multiple edge servers. In addition to this it also provides a REST

interface for the GUI backend component. Analyzer was in the current system already at

the beginning of this project, and it provided a REST interface and the possibility to edge

data centralization already at that point. Therefore, it was decided to use it also at least

in the proof of concept phase of this project. Even though the current application may

61

work well also with Analyzer as a part of it, the GUI backend component could also han-

dle data centralization in the future. Similar functionality could be used but previous C++

code should be written with Go. If also data centralization would be handled in GUI

backend, there would be fewer components and interfaces between them. Fewer com-

ponents and interfaces would help to improve system performance by reducing commu-

nication overhead and data transfer between components. In practice, fewer interfaces

would help to reduce the attack surface of the system and minimize the potential for

security vulnerabilities.

At this point of the design there were only Parser services used as a data source in edge

nodes. However, there might be also additional services to be used as a data source in

the future. Besides the data from Parser services, additional data sources could be used

in the analysis of cellular network problems. This might require the reconstruction of

component interfaces, and one possible solution would be to use a distinct centralized

API component. Centralized API would act as an API gateway between GUI backend

and services on edge nodes. It would create a unified API interface through which the

GUI backend could interact with multiple servers without knowing the detailed interfaces

for each service. A centralized API component could handle the details of interacting with

the backend services on edge nodes.

62

8. CONCLUSIONS

This research was carried out for a software development team in the Nokia organization.

The research problem appeared as there was a need for a web application that would

provide an analysis of a state of mobile network systems. Analysis should be done based

on the measurements collected from mobile networks. In addition, possible solutions

should be provided if problems occur. Descriptive information about a state of mobile

network systems is needed, but it requires a deep analysis in backend services. In this

constructive research an architecture proposal is conducted to provide a solution for a

web application that would be able to analyse a condition of a mobile network system

and indicate possible solutions for these problems.

At the beginning of the research initial application requirements were collected and spec-

ified. Based on the requirements some problems were found. These points were

acknowledged when designing an architecture proposal and technology selections. It

was also important to design architecture in a way that supports future changes and

enhancements. Possible solutions were collected via literature review and from previous

experience.

After architecture and technology alternatives were found, different solutions were ana-

lysed in a comparative study. At the beginning of the comparative study alternative com-

ponent structures were compared. The preferred structure was the alternative which

made use of edge computing in the formation of KPI distributions. The scalability problem

with distributed services in edge nodes was resolved with an already existing component

in the system. This component receives data from multiple edge computing components

and provides weighted averages for KPI distribution data.

Research also compared Go and Node.js technologies for backend implementation.

Most of all backend component was preferred to provide good performance and scala-

bility and consequently Go was chosen. Goroutines support scalability well, and Node.js

as a single-threaded engine is not able to have the same performance as Go.

Comparative analysis was also conducted for a web server API technology. REST and

GraphQL were compared even if they do not completely exclude each other. However,

REST architecture was decided to use in backend API implementation as a possibility

for query optimization by clients was not recognized in this use case. In addition to the

comparative analysis, previous research about API implementations was reviewed in the

literature review.

63

As the backend component was required to send continuous real-time data updates to

clients, it was needed to decide what real-time communication method would be used in

communication between the backend and frontend components. In addition to compar-

ative study empirical research was used for performance evaluation of different real-time

communication methods. It was found that server-sent events and WebSockets per-

formed better than traditional HTTP polling method. Performance was evaluated in the

simulated use case of the designed application. Eventually, server-sent events were de-

cided to be used as a communication method, as they are supported by Go’s standard

library.

An architectural proposal was conducted based on the above-mentioned studies. After

the presentation of the proposal, an architecture evaluation was done. The evaluation

was carried out by using a lightweight architecture evaluation framework. In the final

analysis the architecture design seems successful but as implementation is still ongoing

it is not possible to make an accurate assessment about the success of the research

results. Nevertheless, there are still multiple plans for future development.

64

REFERENCES

3GPP 32.450 (2022) ‘Telecommunication management; Key Performance Indicators
(KPI) for Evolved Universal Terrestrial Radio Access Network (E-UTRAN): Defi-
nitions’, in. 3GPP. Available at: https://www.3gpp.org/DynaReport/32450.htm
(Accessed: 26 March 2023).

Aalto, P. (2022) Method for health check of radio networks from real-time data streams.
Master’s thesis. University of Tampere. Available at: https://trepo.tuni.fi/han-
dle/10024/139167.

Andrawos, M. and Helmich, M. (2017) Cloud native programming with Golang: develop
microservice-based high performance web apps for the cloud with Go. 1st edi-
tion. Birmingham, England: Packt Publishing.

Anurag, V.N. (2018) Distributed Computing with Go. 1st edition. Packt Publishing.

Baldoni, R. et al. (2009) ‘Distributed Event Routing in Publish/Subscribe Communica-
tion Systems’, Middleware for Network Eccentric and Mobile Applications.

Bass, L. (2022) Software architecture in practice. 4th edition. Boston: Addison-Wesley
(SEI series in software engineering).

Chinnathambi, K. (2018) Learning React: a hands-on guide to building web applica-
tions using React and Redux. 2nd edition. Addison-Wesley Professional.

Choi, D. (2020) Full-Stack React, TypeScript, and Node. Packt Publishing.

Costanza, P., Herzeel, C. and Verachtert, W. (2019) ‘A comparison of three program-
ming languages for a full-fledged next-generation sequencing tool’, BMC Bioin-
formatics, 20(1). Available at: https://doi.org/10.1186/s12859-019-2903-5.

Elrom, E. (2021) React and libraries: your complete guide to the React ecosystem. 1st
ed. 2021. Berkeley, CA: Apress. Available at: https://doi.org/10.1007/978-1-
4842-6696-0.

Fielding, R.T. (2000) Architectural Styles and the Design of Network-based Software
Architectures. University of California.

Golang (2022b) Effective Go - The Go Programming Language, Go.dev. Available at:
https://go.dev/doc/effective_go (Accessed: 15 October 2022).

Golang (2022a) Frequently Asked Questions (FAQ) - The Go Programming Language,
Go.dev. Available at: https://go.dev/doc/faq (Accessed: 15 October 2022).

Gómez-Andrades, A. et al. (2016) ‘Methodology for the Design and Evaluation of Self-
Healing LTE Networks’, IEEE Transactions on Vehicular Technology, 65(8), pp.
6468–6486. Available at: https://doi.org/10.1109/TVT.2015.2477945.

GraphQL (2021) GraphQL. Available at: http://spec.graphql.org/October2021/ (Ac-
cessed: 5 October 2022).

65

Haavisto, O. (2019) Matkapuhelinverkkojen analysointiohjelmisto. Master’s thesis. Uni-
versity of Tampere. Available at: https://trepo.tuni.fi/handle/10024/118077.

Hribernik, M. and Kos, A. (2020) ‘Secure WebSocket Based Broker and Architecture
for Connecting IoT Devices and Web Based Applications’, IPSI Transactions on
Advanced Research, 16(1). Available at: http://ipsitransactions.org/journals/pa-
pers/tar/2020jan/p2.pdf.

http package - net/http - Go Packages (2022). Available at: https://pkg.go.dev/net/http
(Accessed: 20 November 2022).

HTTP/2 | Node.js v19.1.0 Documentation (2022). Available at:
https://nodejs.org/api/http2.html (Accessed: 20 November 2022).

Ibe, O.C. (2018) Fundamentals of data communication networks. 1st edition. Hoboken,
New Jersey: Wiley.

Ingeno, J. (2018) Software Architect’s Handbook: Become a Successful Software Ar-
chitect by Implementing Effective Architecture Concepts. Birmingham: Packt
Publishing, Limited.

Karla, T. and Tarnawski, J. (2019) ‘Soft Real-Time Communication with WebSocket
and WebRTC Protocols Performance Analysis for Web-based Control Loops’, in
2019 24th International Conference on Methods and Models in Automation and
Robotics (MMAR). 2019 24th International Conference on Methods and Models
in Automation and Robotics (MMAR), pp. 634–639. Available at:
https://doi.org/10.1109/MMAR.2019.8864680.

Kornienko, D.V., Mishina, S.V. and Melnikov, M.O. (2021) ‘The Single Page Application
architecture when developing secure Web services’, Journal of Physics: Confer-
ence Series, 2091(1). Available at: https://doi.org/10.1088/1742-
6596/2091/1/012065.

Kulshrestha, A. (2013) ‘An Empirical Study of HTML5 Websockets and their Cross
Browser Behaviour for Mixed Content and Untrusted Certificates’, International
Journal of Computer Applications, 82(6).

Lawi, A., Panggabean, B.L.E. and Yoshida, T. (2021) ‘Evaluating GraphQL and REST
API Services Performance in a Massive and Intensive Accessible Information
System’, Computers, 10(11). Available at: https://doi.org/10.3390/comput-
ers10110138.

Lehr, W., Queder, F. and Haucap, J. (2021) ‘5G: A new future for Mobile Network Op-
erators, or not?’, Telecommunications Policy, 45(3). Available at:
https://doi.org/10.1016/j.telpol.2020.102086.

Li, S. et al. (2021) ‘Understanding and addressing quality attributes of microservices ar-
chitecture: A Systematic literature review’, Information and software technology,
131. Available at: https://doi.org/10.1016/j.infsof.2020.106449.

Massé, M. (2011) REST API Design Rulebook. 1st edition. Place of publication not
identified: O’Reilly Media Incorporated.

66

Mei, W. and Long, Z. (2020) ‘Research and Defense of Cross-Site WebSocket Hijack-
ing Vulnerability’, in 2020 IEEE International Conference on Artificial Intelligence
and Computer Applications (ICAICA). 2020 IEEE International Conference on
Artificial Intelligence and Computer Applications (ICAICA), pp. 591–594. Availa-
ble at: https://doi.org/10.1109/ICAICA50127.2020.9182458.

Mikuła, M. and Dzieńkowski, M. (2020) ‘Comparison of REST and GraphQL web tech-
nology performance’, Journal of Computer Sciences Institute, 16, pp. 309–316.
Available at: https://doi.org/10.35784/jcsi.2077.

Node.js community (2022) Introduction to Node.js, Introduction to Node.js. Available at:
https://nodejs.dev/en/learn/ (Accessed: 15 October 2022).

Raj, P. (2017) Architectural patterns: uncover essential patterns in the most indispen-
sable realm of enterprise architecture. 1st edition. Birmingham, England: Packt.

Rezaei, S. et al. (2016) ‘Automatic fault detection and diagnosis in cellular networks us-
ing operations support systems data’, IEEE/IFIP Network Operations and Man-
agement Symposium, pp. 468–473. Available at:
https://doi.org/10.1109/NOMS.2016.7502845.

Saint-Andre, P. et al. (2011) Known Issues and Best Practices for the Use of Long Poll-
ing and Streaming in Bidirectional HTTP. Request for Comments RFC 6202. In-
ternet Engineering Task Force. Available at: https://doi.org/10.17487/RFC6202.

Sesto, V. et al. (2020) The Docker Workshop: Learn How to Use Docker Containers Ef-
fectively to Speed up the Development Process. Birmingham: Packt Publishing,
Limited.

Shi, W. et al. (2016) ‘Edge Computing: Vision and Challenges’, IEEE Internet of Things
Journal, 3(5), pp. 637–646. Available at:
https://doi.org/10.1109/JIOT.2016.2579198.

Słodziak, W. and Nowak, Z. (2016) ‘Performance Analysis of Web Systems Based on
XMLHttpRequest, Server-Sent Events and WebSocket’, in, pp. 71–83. Available
at: https://doi.org/10.1007/978-3-319-28561-0_6.

de Souza Soares, E.F. et al. (2018) ‘Evaluation of Server Push Technologies for Scala-
ble Client-Server Communication’, in 2018 IEEE Symposium on Service-Ori-
ented System Engineering (SOSE). 2018 IEEE Symposium on Service-Oriented
System Engineering (SOSE), pp. 1–10. Available at:
https://doi.org/10.1109/SOSE.2018.00010.

van Steen, M. and Tanenbaum, A.S. (2016) ‘A brief introduction to distributed systems’,
Computing, 98(10), pp. 967–1009. Available at: https://doi.org/10.1007/s00607-
016-0508-7.

Tarkoma, S. (2012) Publish/subscribe systems: design and principles. London ; Wiley
(Wiley series on communications networking & distributed systems). Available
at: https://doi.org/10.1002/9781118354261.

The WebSocket API (WebSockets) (2022) MDN Web Docs. Available at: https://devel-
oper.mozilla.org/en-US/docs/Web/API/WebSockets_API (Accessed: 13 Septem-
ber 2022).

67

Thomas, M.T. (2018) React in action. 1st edition. Shelter Island, New York: Manning
Publications.

Using server-sent events (2022) MDN Web Docs. Available at: https://devel-
oper.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-
sent_events (Accessed: 13 September 2022).

Walelgne, E.A. et al. (2018) ‘Analyzing throughput and stability in cellular networks’, in.
NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Sympo-
sium, pp. 1–9. Available at: https://doi.org/10.1109/NOMS.2018.8406261.

Wang, V., Salim, F. and Moskovits, P. (2013) ‘WebSocket Security’, in The Definitive
Guide to HTML5 WebSocket. Berkeley, CA: Apress, pp. 129–147. Available at:
https://doi.org/10.1007/978-1-4302-4741-8_7.

