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Parkinsonin tauti on neuroneja tuhoava pitkäaikaissairaus, jonka oireiden kirjoon kuuluu hei-
kentynyt puheentuottaminen. Puheenlaadun heikentyminen voidaan havaita digitaalisen signaa-
linkäsittelyn avulla, sillä puhesignaali sisältää myös kielellisen informaation ulkopuolista eli para-
lingvistisiä tietoa. Tässä työssä tunnistetaan Parkinsonin tautia puheesta koneoppimismalleilla 
seuraten tyypillisen paralingvistisen puheenkäsittelyn tutkimuksen vaiheita. Työn tavoitteena on 
arvioida, miten erilaiset piirreirroitukset sekä koneoppimismallit kykenevät tunnistamaan Parkin-
sonin tautia spontaanista puheesta. 

Työn kirjallisuustutkimusosassa esitellään paralingvistisen puhesignaalin käsittelyn vaiheet ja 
tarkastellaan vastaavia tehtyjä tutkimuksia. Vastaavat tutkimukset osoittavat, että Parkinsonin 
tautia sairastavilla on äänisignaaleissa tunnistettavia ominaisuuksia, joita voidaan käyttää taudin 
arvioimiseen. Tutkimuksissa on hyödynnetty monenlaisia erilaisia piirrejoukkoja sekä koneoppi-
mismalleja. 

Tämän työn tutkimuksessa käytetään kahta eri piirrejoukkoa piirreirroitukseen eli Mel-kepstri-
kertoimia sekä niin sanottuja eGeMAPS-piirteitä, joiden avulla irrotetaan hyödyllistä informaatiota 
äänisignaaleista koneoppimismalleja varten. Piirteitä käytetään syötteenä kolmeen eri koneoppi-
mismalliin, jotka ovat tukivektorikone, satunnaismetsä sekä konvoluutioneuroverkko. Koneoppi-
mismallien avulla tunnistetaan Parkinsonin tautia PC-GITA-aineiston monologipuhemateriaalista. 
Käytetyssä aineistossa on noin minuutin pituinen spontaani puhenäyte sadalta eri henkilöltä, 
joista puolet olivat terveitä ja puolella oli todettu Parkinsonin tauti aineiston keräysvaiheessa. 

Työn tulokset laskettiin käyttäen puhujakohtaista ristiinvalidointi-menetelmää, jossa jokainen 
puhuja toimii kerrallaan koneoppimismallin testidatana ja loput puhujat opetusdatana. Lopullinen 
mallin tarkkuus saatiin laskemalla puhujien lukumäärän eli sadan yksittäisen mallin tunnistustark-
kuuksien keskiarvo. Tämän menetelmän avulla vähennettiin yksittäisen merkittävästi muusta da-
tasta poikkeavan testidatan vaikutusta kokonaistulokseen. 

Tämän työn tutkimuksen tulokset osoittavat, että Parkinsonin tautia voidaan tunnistaa pu-
heesta hyödyntäen koneoppimismenetelmiä. Konvoluutioneuroverkko tuotti parhaimman tark-
kuuden Mel-kepstri-kertoimilla 67,40 %:n luokittelutarkkuudella, kun tehtävänä oli erotella Parkin-
sonin tautia sairastavat puhujat terveistä, kun taas satunnaismetsä tuotti eGeMAPS-piirteiden 
avulla 75,00 %:n tarkkuuden. Tarkkuuksien alhaista lukua selittää spontaanin puheen monimut-
kaisuus, aineiston pieni koko sekä valitut koneoppimismenetelmät. 
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tauti, satunnaismetsä, konvoluutioneuroverkko 
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ABSTRACT 

Hanna Ylinen: Automatic assessment of Parkinson’s disease using spontaneous speech 
Batchelor’s thesis 
Tampere University 
Information technology 
January 2023 
 

Parkinson's disease is a neurodegenerative disease with a range of symptoms, including 
speech impairments. These can be detected with digital signal processing, since speech signals 
carry paralinguistic information, which means information beyond linguistic information. In this 
work, Parkinson's disease is being recognized from speech signals using machine learning meth-
ods while following the steps of a typical research of paralinguistic speech processing. The main 
goal of this work is to evaluate how different feature extractions and machine learning models are 
capable of recognizing Parkinson's disease from spontaneous speech. 

The literature research part of this work presents the stages of a typical paralinguistic speech 
processing pipeline and evaluates related studies and research. Based on the related studies, 
people with Parkinson's disease have recognizable features in their speech signals which can be 
used to assess the disease. Additionally, multitude of feature sets and classification models have 
been applied in the studies. 

In the research of this work, for feature extraction MFCCs and eGeMAPS features are used 
to extract useful information from audio signals. The features work as an input to three different 
machine learning models used in this study: support vector machine, random forest, and convo-
lutional neural network. These machine learning models are used to identify Parkinson's disease 
from the monologues of PC-GITA corpus. The data from PC-GITA used in this study consists of 
around a minute long spontaneous speeches from a hundred people of healthy speaker and peo-
ple with diagnosed Parkinson’s disease. 

The results of this work were evaluated with a speaker-independent cross-validation method, 
in which each speaker acts as test data for the machine learning model and the remaining speak-
ers as the training data. The final accuracy of the model was obtained by calculating the average 
accuracy of all folds of one hundred speakers. 

The results of this work indicate that Parkinson's disease can be recognized from speech using 
machine learning methods. Convolutional neural network produced the best accuracy for MFCCs 
features with 67.40% classification accuracy (Parkinson’s patient versus healthy talker), while 
random forest produced 75.00% accuracy for eGeMAPS features. The low accuracies are ex-
plained by the complexity of spontaneous speech and the chosen machine learning methods. 
 

 
Keywords: Machine learning, signal processing, paralinguistic speech processing, Parkinson’s 
disease, support vector machine, random forest, convolutional neural network 
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1. INTRODUCTION 

Parkinson’s disease (PD) is a neurodegenerative disorder which is common in people 

over 60 years old [1]. The disease is caused by a loss of dopaminergic neurons and 

results in number of symptoms which usually worsen with time. The variety of motor and 

non-motor symptoms of PD include speech impairments which have been a studied sub-

ject in the fields of signal processing and machine learning in recent years [2]. A regular 

aim of these studies has been the detection of the disease from speech. Consequently, 

early detection of the disease is crucial because then a medical process can be started 

to ease with the symptoms and improve the quality of life.  

PD is often diagnosed and measured with in 1980s published and later in 2008 improved 

Unified Parkinson’s Disease Rating Scale (UPDRS) [3]. The diagnose is conducted by a 

series of questions which are performed by professionals and answered by the patients 

or their caregivers. The scale provides reliable results but in the field of machine learning 

the interest is in more objective assessment.  

PD patients often develop hypokinetic dysarthria which can be seen as monopitch, re-

duced stress, speech dysfluencies and inappropriate silences during talking [4]. Speech 

impairments can be due to motor symptoms such as the rigidity of vocal folds, but it’s 

not entirely understood which speech problems are based on motor and which are from 

cognitive symptoms [5]. On the whole, speech carries a lot of information, and early-

stage symptoms which can be hard to detect by humans can be detected by pattern 

recognition algorithms [6]. 

While the earlier work has shown approvable results in automatic assessment of PD 

from speech, the accuracy of the assessment declines when speaking tasks get more 

complex. It is easier to detect speech impairments from similar short and repetitive 

speaking tasks, but not from unscripted monologues. In this work, the aim is to study 

how PD can be detected and assessed from speech signals of spontaneous speech with 

machine learning methods. In detail, a typical speech analysis method is followed to 

evaluate how different feature extraction and machine learning models assess PD from 

speech signals. 

This thesis is structured as follows. Firstly, chapter two introduces paralinguistic speech 

processing which is the category this study belongs to. Moreover, chapter 2 encom-

passes typical pipeline of speech analysis and related studies. In the chapter 3, the main 
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methods are described and in this study two feature extractions and three different clas-

sifying models are used. The fourth chapter describes in detail the database and setup 

used in this study and the following chapter shows the results. Lastly, the final chapter 

summarizes the results and provides a conclusion. 
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2. BACKGROUND 

In this chapter the topic of speech processing is introduced, and its standard character-

istics and methods are examined. Furthermore, studies related to the aims of the present 

study are discussed. 

2.1 Paralinguistic speech processing  

Machine learning is part of artificial intelligence and holds an essential role in modern 

world. The idea of machine learning is based on finding solutions, also known as func-

tions, by learning from input data to tune the parameters of an algorithm. In practice 

machine learning is used to identify patterns in the data and use them to classify or 

predict desired outputs related to the data. In fact, machine learning is often utilized to-

gether with digital signal processing in which the input data can be signals, audio and 

time series [7].  

Paralinguistic speech processing (PSP) is part of the digital signal processing with the 

aim of detecting different paralinguistic factors of speech. These factors signify different 

types of information conveyed by speech beyond its linguistic content. Utilization of par-

alinguistic factors in various speech processing analysis is possible since speech signals 

contain cognitive and neurophysiological information of the speaker [8]. Furthermore, in 

PSP the goal is to create automatic systems to detect and analyze these factors. In the 

context of PD, for instance, fluidity and clarity of speech production could be such factors 

that are affected by PD [9].  

Paralinguistic factors are often divided into two basic categories: traits and states [9]. 

Traits are long-term and hardly changing characteristics of a speaker, such as biological 

or cultural characteristics or personality traits. On the contrary, states are short-term fac-

tors such as emotions. Both categories are useful in the case of an automatic assess-

ment of neurodegenerative diseases, such as PD. In addition, longer speech recordings 

reflect the multitude of symptoms and characteristics of speech better than shorter ones. 

Additionally, involuntary speech changes which are caused by PD are more likely to oc-

cur in longer speech recordings [8].  

2.2 Pipeline of a paralinguistic speech processing system  

Machine learning consists of two distinguished learning types: supervised and unsuper-

vised learning. In supervised learning the input data is marked with labels and the goal 
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is often either classification or regression task. In classification, the goal is to identify the 

labels of previously unseen data samples with a taught model [7]. The model is trained 

with a labeled dataset and its performance is evaluated with another dataset called test 

set. Performance of the model is estimated by comparing the predicted labels of the test 

set with the correct ones.  

PSP systems often follows a typical supervised ML pipeline which is visualized in figure 

2.1 [8]. As seen on the figure, the training process starts with speech signals as inputs 

to the pipeline. The speech signals often have a length of multiple second and from them 

short-time feature vectors are then extracted on the next phase. In fact, in PSP systems, 

it is important to keep on track which feature vectors belong to each speech signal, so 

the classification can be done over time. On the third phase, the features with their labels 

are used to train a classifier. As a result, model parameters are acquired. 

Similarly to the training, during the testing process features are extracted from the input 

as seen in the figure 2.1. In this case the model is tested with only one input signal 

without labels. Additionally, in contrast to the training process, the classifier now works 

Figure 2.1. A typical machine learning pipeline with training and testing. 
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without labels. The classifier predicts the label for the testing data based on the infor-

mation carried by the model parameters and properties of the input samples. 

A standard requirement for a good performance in machine learning is that the training 

data should be representative of the data encountered in practical deployment of the 

system, as represented by the test set in the system development process [9]. Therefore, 

a typical solution for the training process is to divide the original data into training and 

testing sets. In the case of small datasets or datasets with unevenly balanced labels, a 

cross-validation technique is often utilized in the process [10]. Cross-validation can min-

imize the effect of biased small-scaled test data, since the full dataset can be used for 

testing by dividing the data multiple times into training and testing sets in different ways. 

To be precise, an application of cross-validation called Leave-One-Subject-Out (LOSO) 

is often used in speech processing [11]. The method is visualized in figure 2.2 with 𝑖 as 

the total number of speakers. The LOSO cross-validation refers to having one speaker 

as a testing data and other speakers for the training data for a machine learning model 

[10]. The training and testing process is repeated such that all individual speakers end 

up being tested with separately trained models. For instance, in the case of 100 speakers 

there are 100 folds in which each speaker is used only once as the test data. Classifica-

tion accuracy is calculated from the correctly labelled test samples divided by the total 

Figure 2.2. An example of cross-validation with 𝒙 symbolizing the speakers. In this 
case, there are 𝒊 number of speakers and iterations. In each iteration the speakers who 
belong to the training data are marked with white and the test speakers are marked with 
blue. 
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number of them. The final result is obtained as the arithmetic mean of the classification 

accuracies of all the cross-validations.  

2.3 Related work 

There have been numerous studies of the usage of machine learning to identify PD and 

other similar dysarthria or speech impairments from speech with the help of speech da-

tabases made for these studies. The scope of these databases varies from short utter-

ances such as vowels to long monologues. Additionally, different combinations of fea-

tures and machine learning models have proven beneficial. 

For shorter utterances, Karan et al. [12] used recordings from PC-GITA corpus [13]. The 

corpus consists of multiple different speech tasks including short-term utterances, read-

ing a text out loud and long monologues. From the database, sustained vowels and iso-

lated words were chosen in this study. The researchers used non-negative matrix fac-

torization to three different types of features. The features were extracted from the parts 

of the speech signals which contained discontinuities and changes of speech. For clas-

sification, support-vector machine (SVM) was used with speaker-independent k-fold 

method. One of the three features used, called Mel-Frequency Cepstral Coefficients 

(MFCC), resulted on average 56% classification accuracy on vowels and on average 

60% on words. 

Similarly, Syed et al. [14] detected PD using all the speech task recordings in PC-GITA 

database. They extracted features with the Extended Geneva Acoustic Minimalistic Fea-

ture Set (eGeMAPS) which yielded in 72% classification accuracy on reading a text and 

80% for monologue. The results were obtained by a mean accuracy of cross-validation 

with logistic regression classifier. In addition, Narendra and Alku [11] utilized 

openSMILE-toolkit in order to combine glottal parameters, such as abrupt vibration 

changes in vocal folds, with more traditional acoustic features. In their research they 

detected dysarthria using non-words, words and whole sentences from TORGO and uni-

versal access speech databases. The results were calculated from the classification ac-

curacies with LOSO cross-validation. They tested various combinations of the features 

with SVM classifier. As an example, with INTERSPEECH feature set of openSMILE they 

got 69% classification accuracy as a result.  

Vásquez-Correa et al. [1] classified PD using PC-GITA corpus with two different meth-

ods. The first method, described as the baseline, used SVM and the feature extraction 

focused on the motor skills of the onset and offset of spoken words. A segment was 

taken around these to form transfer speech segments. For the baseline, 12 MFCCs were 



11 
 

taken with their first and second derivatives and the classifying was done with 10-fold 

cross-validation strategy with speaker independent training and testing sets. Their sec-

ond method used convolutional neural network (CNN) with time-frequency representa-

tions as inputs. Based on majority voting strategy either repeated utterances, a text or a 

monologue were used from the PC-GITA database to teach the CNN model.  

In the study of Vásquez-Correa et al. [1] not only the Spanish database was used but 

also German and Czech. Researchers used a transfer learning method with the CNN 

and with it they refer to training CNN with one language and using that as a baseline 

model to train other language. Therefore, the biggest model training was conducted with 

the first language and the latter language was used to fine-tune the model parameters. 

The best accuracy for both SVM and CNN without transfer learning method was acquired 

by Spanish language with accuracies of 73.7% and 71.0% respectfully. Furthermore, 

using Spanish as the baseline provided the best accuracy for every classification with 

transfer learning method. For instance, the Spanish baseline improved the accuracy of 

German language from 63.1% of baseline CNN to 77.3% with the transfer learning 

method. 

The focus of the aforementioned studies relies on motor signs. For comparison, the study 

of researchers Pérez-Toro et al. [15] focused on the linguistic level of language by ana-

lyzing transcriptions of the monologue of PC-GITA database. For methodological ap-

proach, they used word-embeddings which is a Natural Language Processing method. 

The results aligned with the hypothesis that PD also affects non-motor language impair-

ments with the best accuracy of 72% for World2Vec method in which similar words are 

closely located vectors in a multidimensional space. Additionally, the researchers noted 

that the topic of the PC-GITA monologues being everyday activities might help to sepa-

rate the speakers with PD from healthy clients based on the fact that they are much more 

non-active in their free-time and might had made it harder to find suitable words for the 

monologue. 
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3. METHODS 

This chapter gives an in depth-analysis of the methods used in this study. First, section 

3.1 introduces two different feature sets for a feature extraction which is the second part 

of the pipeline in figure 2.1. Second, three different machine learning models are intro-

duced in section 3.2. These models are used for classification which is the third phase 

in the pipeline in figure 2.1. Both feature sets are used separately with all three classifi-

ers. 

3.1 Features 

Feature extraction is a way to obtain the most relevant information out of a signal, given 

the processing task in hand, and produce a format for input data that is the most useful 

for the following machine learning pipeline to use and analyze. In this study, two different 

features are extracted separately.  

3.1.1 Mel-Frequency Cepstral Coefficients 

There are many different methods to analyze signals and gather the most important in-

formation out of them for speech analysis. One popular method for the feature extraction 

is extraction of Mel-Frequency Cepstral Coefficients (MFCC) [8]. The coefficients are 

obtained by performing mel-frequency mapping, logarithm and discrete cosine transform 

(DCT) on a short-term magnitude of a signal. 

In the field of signal processing, windowing is a popular method to analyze signals in 

short parts [16]. In the windowing method, the audio signal is divided into such small 

fixed sized segments that the signal is quasi-stationary over the given time frame. Win-

dowing is often done with overlapping between segments to minimize discontinuations. 

Furthermore, to minimize discontinuations and the aliasing of the signal, the signal seg-

ments are smoothened with windowing functions, for instance, with a Hann window 

which is also known as raised cosine.   

The calculations of the MFCC can be divided into three phases [17]. For the first phase, 

windowed speech segments are turned into frequency domain by discrete Fourier trans-

form. This results in short-time Fourier transforms of the windowed segments. This can 

be visualized by taking a log-spectra of the short-time Fourier transforms across the 

whole signal which is also known as a spectrogram. A spectrogram of a monologue by 

a speaker from the corpus of this study is portrayed in figure 3.1. Secondly, the non-
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linear frequency resolution of hearing in humans is taken into account by filtering the 

spectra with a mel-scale filter bank and then taking logarithm of the output. This mel 

spectrogram is visualized in the figure 3.2. Without mel-scaling, the higher frequencies 

can have a too large of an effect on the resulting feature vector. Lastly, the cepstral 

Figure 3.1. A spectrogram of the first five seconds of a monologue from a male 
speaker with PD from PC-GITA corpus [13].  

Figure 3.2. A mel spectrogram of the first five seconds of a monologue from a male 
speaker with PD from PC-GITA corpus [13]. 
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domain coefficients are created by taking the DCT of the log-mel-spectrum. [8] The re-

sulted coefficients are visualized in figure 3.3. with the same monologue.  

For most speech processing tasks, the most relevant information of MFCC lays in the 

first 10–20 low-level coefficients which are often used for recognition studies. For the 

most optimal classification phase, the feature vectors are normalized, for instance, with 

global cepstral mean and variance normalization [18]. To support machine learning 

tasks, the first and second derivatives of the coefficient can be taken from the low-level 

coefficients [6]. This results in multitude of different coefficients, for example, with 13 low-

level coefficients the number of coefficients is 39 in total. 

3.1.2 The extended Geneva Minimalistic Acoustic Parameter Set 

The Geneva Minimalistic Acoustic Parameter Set (GeMAPS) was created to be a base-

line of feature parameters for different studies based on detecting paralinguistic charac-

teristics. Minimal number of features were chosen to reduce the probability of overfitting 

and the selection was carried by three main criteria [19]. First, to detect physiological 

changes in speaking. Secondly, based on the success in earlier studies. Lastly, based 

on theoretical considerations. 

Figure 3.3. MFCC of the first five seconds of a monologue from a male speaker with 
PD from PC-GITA corpus [13].   
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Table 3.3.1. The minimalistic and extended parameter sets of eGeMAPS [19]. 

The baseline of GeMAPS consists of 62 features from which 18 features are low-lever 

descriptors (LLD), i.e., short-term features, which can be roughly divided into three pa-

rameter groups [19]. These groups are related into either frequency, amplitude or spec-

tral. Additionally, functionals are calculated from the LLD across the entire signal of in-

terest together with additional 8 functionals from related to loudness and pitch parame-

ters. These 52 parameters contain only voiced regions, so for the unvoiced segments, 

four parameters are added. Finally, six temporal features are added to the set, which 

sums up to a total of 62 parameters for the baseline. All the parameters belonging to the 

baseline are depicted in table 3.3.1. in more detail. 

Furthermore, an expanded version of GeMAPS called the extended Geneva Minimalistic 

Acoustic Parameter Set (eGeMAPS) is one of the most used feature sets used in social 

 
Minimalistic Parameter 

Set 
Extended Parameter Set 
(includes all parameters 

from minimalistic 
version) 

LLD Pitch MFCC 1–4 

Jitter Spectral flux 

Formant 1, 2, and 3 
frequency 

Formant 2-3 bandwidth 

Formant 1 
 

Shimmer 
 

Loudness 
 

Harmonics-to-noise ratio 
(HNR) 

 

Alpha Ratio 
 

Hammarberg Index 
 

Spectral Slope 0-500 Hz 
and 500-1500 Hz 

 

Formant 1, 2, and 3 
relative energy 

 

Harmonic difference H1-H2 
and H1-A3 

 

Functionals Arithmetic mean and 
coefficient of variation of all 

LLD 

Arithmetic mean and 
coefficient of variation of all 

LLD 

Hammarberg Index, 
Spectral Slope 0-500 Hz 

and 500-1500 Hz and 
arithmetic mean of Alpha 

Ratio for unvoiced sections 

Arithmetic mean of 
Spectral flux for unvoiced 

sections 

8 additional functionals to 
loudness and pitch 

Arithmetic mean and 
coefficient of variation of 

spectral flux and MFCC 1–
4 for voiced only regions 

6 temporal features Equivalent sound level 
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signal processing [11]. It consists of 88 features and 62 of them belong to the aforemen-

tioned baseline. The extended version is also defined in detail in table 3.3.1 . The ex-

tended parameters are affiliated with cepstral parameters and the final set results in 26 

additional parameters. The LLDs are expanded with seven parameters that are either 

spectral or frequency related. From these parameters functionals are also calculated. 

The extended set consists also of 11 other descriptors and results in a set of 88 features 

in total. The LLDs and the statistical functional of eGeMAPS can be extracted with 

OpenSMILE toolkit [20].  

3.2 Classifiers 

This section introduces the third part of the pipeline in figure 2.1. Three different machine 

learning method are used in this study. Each method is tested with both feature sets 

separately. 

3.2.1 Support Vector Machine 

One popular supervised learning method often used in pattern recognition is called sup-

port vector machine (SVM). SVM can be used to classify both linear and non-linear data 

[21] into two or more classes. Training samples of SVM are represented as data points 

in a feature space which dimensions depends on the input data and the chosen version 

of SVM. In the case of two classes in a three-dimensioned space, SVM separates the 

space between the data instances with a hyperplane [22]. Therefore, the side in which a 

test data points lands will determine the class label.  

There are multiple solutions to form a hyperplane [23]. Therefore, an ideal solution to the 

model corresponds to optimization for the best classification accuracy of unknown test 

data. The advantage of SVM is the fact that the model is improved by maximizing the 

margin which is the sum of the distances between the hyperplane and the closest data 

points from each class regarded to the hyperplane. Mathematically a hyperplane in N-

dimensional space can be defined as 

𝒘𝑇𝑥𝑖 + 𝑏, 

(1) 

in which 𝒘 is the feature vector, 𝑥𝑖 represents the 𝑖𝑡ℎ data point and 𝑏 is the margin [21]. 

In a perfect classification case, the formula is  

𝑦𝑖(𝒘𝑇𝑥𝑖 + 𝑏) > 0,  

(2) 
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where 𝑦𝑖 represents the corresponding 𝑖𝑡ℎ class label [22]. The optimization of margin is 

done with the help of support vectors. In the case of two classes, with the equation (2) 

the data points can be divided into 

𝒘𝑇𝑥 + 𝑏 ≥ 1 for 𝑦𝑖 = 1, 

(3) 

and 

𝒘𝑇𝑥 + 𝑏 ≤ −1 for 𝑦𝑖 = −1, [22] 

(4) 

in which the 𝑦𝑖 values of 1 and -1 symbolize the two classes.  

However, a perfect margin is not always attainable in practice [23]. Therefore, SVM has 

a hyperparameter C to help to tune the choosing of margin with the help of a measure-

ment for classification error. Thus, SVM is robust to outliers meaning individual outliers 

don’t modify the model noticeably. Although, in some cases the data can’t be linearly 

separable, hence it needs to be converted into higher dimension in which the data is 

linearly separable. This method is called the kernel trick. 

3.2.2 Random Forests 

Random forests (RF) is an ensemble method for predicting classes in the field of ma-

chine learning [23]. The prediction is done by a major class label voting from a collection 

of decision trees. A decision tree lands on a prediction after multiple condition stages, 

where each stage makes a decision based on some threshold. These stages, which are 

called nodes, create a tree-shaped model. The tree starts on a root node and after the 

internal nodes it ends on leaf nodes which are each linked with a class label.  

RF takes labelled feature set as an input, but the tree needs to be built before classifying. 

Each tree is given a set which has the same dimension as the original feature dataset. 

The set is formulated from a subset of the original dataset with duplications of some of 

the features in the subset to acquire the same dimension as the original dataset. During 

the learning process, random variables from the subset are chosen for splitting. From 

the most correctly divided split, the node is divided again into two other nodes. Splitting 

is continued until a chosen threshold of nodes. This method is called the bootstrap ag-

gregation and it is used to avoid overfitting [23]. Decision trees are prone to overfitting 

[7], which means they model the specifics of the input features in such a detail that the 

algorithm fails to classify new data when the details differ. In other words, too accurate 
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decision trees can prove faulty. Thus, RF minimizes possible biased or over-fitted deci-

sion trees by taking the average of the predictions of numerous individual trees in crea-

tion of the final result.  

3.2.3 Convolutional Neural Network 

Human learning has inspired the structure of a machine learning model called neural 

network [22]. The biological learning in brains takes place through a nervous system 

which is formed by neurons which can send signals to other neurons. These neurons 

and their ability to communicate with each other create a complex network that can pro-

cess data fast and parallelly to learn and make decisions. These facts have inspired 

artificial neural networks in machine learning.  

Artificial neural networks consist of at least one hidden layer between the input and out-

put layer. In deep learning, the model has multiple hidden layers which together create 

higher level features. Furthermore, the model itself identifies the most important proper-

ties of the input data whereas in more traditional techniques the features and pattern 

detection are carefully designed by humans [24]. Deep learning has proven to be suc-

cessful in finding the most useful patterns and it is widely used in PSP.  

A hidden layer in artificial neural networks consist of neurons, also known as nodes. 

Additionally, each node performs a series of operations of three different steps [22]. First, 

a node has multiple input values which are all the node values from previous layer. The 

first step is to multiply each input value with a certain weight value. The second step is a 

summation junction in which all the weighted inputs are summed together. Lastly, with 

the help of the result value from the summation junction an activation function returns an 

output based on a certain threshold. In fact, a popularly used non-linear activation func-

tion called Rectified Linear Unit (ReLU) function return the same value as it received 

unless the value is negative. In the case of negative summation value, the output of the 

activation function is zero. 

Convolutional Neural Network (CNN) is specific type of deep learning [24]. The model 

can process well one-dimensioned and high dimensioned data, such as two-dimensional 

audio spectrograms. The main benefit of CNN models is its ability to recognize patterns 

regardless of size, location or translation of the pattern in the input form. Therefore, there 

is no need to create multiple pattern recognition models, one for each different pattern.  

A typical learning process is achieved from plethora of stages [24]. In these stages, typ-

ically multiple pairs of convolutional or pooling layers are stacked and the network ends 

with a fully connected output layer. First, in convolutional layers, a high-dimensional filter, 
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also known as a kernel, glides through the data from previous layer. The values of the 

filter are then weighted and summed together, and this method is called a filter bank. 

This results in a feature map. The convolutional layer consists of multiple feature maps 

with each having an own filter bank. Therefore, this method allows the model to detect 

local similarities and this information is passed on to the next layer.  

Moreover, pooling layers compress the representations in time or space by outputting 

only the highest activation within the pooling window to the next layer, thus also reducing 

computational burden of the following layers [24]. Additionally, pooling layers have dif-

ferent types such as maximizing or averaging pooling. The main logic behind the CNN 

algorithm is that high-level attributes are created from aggregating lower-level features 

together in a non-linear matter. The results of a classification task are obtained from a 

fully connected layer with an activation function such as softmax. 
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4. EXPERIMENTS 

The experimental setup of this study is described in this chapter. The experiment follows 

the PSP pipeline illustrated in figure 2.1. Specifically, the database used in this study is 

introduced in detail in section 4.1 and the setup is described in section 4.2. The afore-

mentioned feature sets and classifiers in chapter 3 are utilized in this study.  

4.1 Data 

The data used in this study is from PC-GITA corpus which was published by Orozco-

Arroyave et al. in the article “New Spanish speech corpus database for the analysis of 

people suffering from Parkinson’s disease” in 2014 [13]. The main motive for the creation 

of the corpus was research purposes of PD. In fact, PC-GITA was the pioneer corpus in 

Spanish language for PD related research.  

PC-GITA corpus [13] consists of 100 native Colombian Spanish speakers from whom 

half has been diagnosed with PD and the other half is healthy controls (HC). Both halves 

have 25 women and 25 men. The metadata of the corpus is depicted in table 4.1. As 

seen from the table 4.1, the average age is around 61 years for both PD and HC speak-

ers. Based on these aforementioned facts the database is reasonably well balanced in 

terms of demographic properties. 

Furthermore, the corpus [13] includes the UPDRS stage and UPDRS speech level of 

speakers which are represented in table 4.1. The UPDRS scale is from zero to 100 and 

the speech impairment-focused UPDRS-speech scale ranges from zero to three. The 

ratings were obtained from professional neurologists. On the contrary to the gender and 

age, the speech impairment stage of the corpus is unbalanced since most of the speak-

ers with PD have stage one of speech impairment and only four out of all 50 speakers 

have the stage three in speech impairment. In addition, seven speakers with PD have 

the stage zero which indicates a lack of speech impairment.  

The audio recordings of the PC-GITA corpus [13] were captured in a studio environment 

and sampled at 44100 Hz with a 16-bit resolution. To be precise, the database has mul-

tiple different speech task recordings, and the tasks were originally chosen to represent 
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Table 4.1 Metadata of the speakers in PC-GITA corpus [13]. 

three different voice characteristics. From the three characteristics, phonation and artic-

ulation can not only be evaluated from repeated and sustained vowels but also from 

words and groups of words. Similarly, on top of the phonation and articulation, prosody 

can be measured with sentences, conversations and spontaneous speech, the last being 

also known as monologue data. In PC-GITA the average duration of the monologues is 

44.86 seconds for which the speakers were asked to describe their everyday activities. 

Women Men 

PD HC PD HC 

Age UPDRS UPDRS-
speech 

Age Age UPDRS UPDRS-
speech 

Age 

72 19 0 63 64 28 1 67 

75 52 2 75 65 32 1 67 

66 28 1 65 59 6 0 55 

55 30 1 60 60 44 1 55 

60 29 1 57 81 50 1 56 

57 41 1 63 57 20 0 63 

51 38 2 73 68 14 0 42 

55 43 2 55 71 93 2 65 

57 61 2 68 50 53 2 86 

66 28 1 62 75 13 0 63 

55 30 1 61 75 75 3 76 

62 42 1 65 56 30 1 61 

61 21 1 63 50 19 1 51 

69 19 0 55 74 40 2 62 

59 40 2 63 48 9 1 67 

51 23 2 58 68 67 3 68 

65 54 1 62 54 15 3 54 

59 71 1 61 33 51 2 67 

64 40 1 64 69 40 2 71 

49 53 3 76 67 28 1 50 

73 38 1 61 47 33 2 62 

58 57 2 57 65 53 2 68 

70 23 1 50 64 45 1 64 

54 30 0 49 68 65 2 31 

55 29 2 50 45 21 1 42 

Total Age (PD) = 61 
(SD 9 years; 

min 33, max 81) 

Age (HC) = 61 
years (SD 9 

years; min 31, 
max 86) 

UPDRS = 38 
(SD 18; min 6, 

max 93) 

UPDRS-
speech = 1,3 

(SD 0,82; min 0, 
max 3) 
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4.2 Setup 

The aim of this study is to detect PD from spontaneous speech using machine learning. 

Particularly, in this study a binary classification is used with the values of one meaning 

PD and zero meaning HC. The process of this study follows a typical PSP pipeline which 

is illustrated in figure 2.1. Moreover, the target language for classifying is Spanish and 

the data is from PC-GITA corpus [13]. The three classifiers were chosen based on suc-

cess in related work which are introduced in chapter 2. All calculations of this study were 

done with Python.  

Two feature sets were extracted from the monologues of PC-GITA corpus. The first fea-

ture set of MFCC was extracted with Librosa [25] with 25ms segments with a 10ms hop 

length using a Hann windowing function, totaling to 39 coefficients with first and second 

temporal derivates included. The overall dimensions of MFCC depended on the duration 

of the monologue. Secondly, for the eGeMAPS the LLD features and functionals were 

extracted with openSMILE toolkit [20]. The functionals created a vector with the length 

of 88 features whilst the LLD create multiple 25 features long vectors on each frame and 

the vectors of LLD formed a matrix together. The dimension of the matrix varied between 

the speakers based on the length of the monologue. In other words, even though the 

same number of features per feature set were extracted from each monologue, the num-

ber of feature vectors per speaker varies for MFCC and LLD of eGeMAPS as mentioned 

before.  

Additionally, machine learning classifiers used in this study require exact same dimen-

sioned input segments in order to correctly classify all segments belonging to speakers 

to classes. Therefore, fixed length segments of the feature matrices were created for 

each speaker, and these were used as input segments. The matrices of MFCC were 

divided into one-second-long segments for RF and SVM along with two-second-long 

segments for CNN. In the case of eGeMAPS only 2-second-long segments were used 

for the CNN since the one-dimensioned functional vectors were acceptable for classify-

ing RF and SVM. Moreover, since the length of the monologues varied, the possibly 

uneven last segments of each speaker were not used in the calculations. This resulted 

in losing maximum of a last second of each monologue. 

As for the classification part, this thesis uses three different classifying models which are 

introduced in chapter 3. All three classifier models were optimized with GridSearch by 

Scikit-learn [26] with concentrating on the important parameters on each model. In more 

detail of the GridSearch, radial basis function kernel proved to return more accurate re-
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sults than linear kernel in the case of SVM. Comparatively, the two other optimized pa-

rameters, regularization 𝐶 and kernel scale coefficient 𝛾, varied from 10−3 to 102 in mul-

tiplies of 10. The optimization resulted in the best regularization of 10 and kernel scale 

coefficient of 0.1 for MFCC and 1000 and 0.01 for eGeMAPS respectfully.  

In the case of Random Forest, the most optimal value for number of estimators was 

searched with values from 200 to 103 in steps of 200 and maximum depth with values 

from 10 to 500 with the step of doubling the last step. The best number of estimators was 

400 for both feature sets but max depth varied from 100 of MFCC to 300 for eGeMAPS. 

Moreover, the architecture of CNN was inspired from researchers Liu et al. [27] in their 

article “Automatic Assessment of Parkinson’s Disease Using Speech Representations 

of Phonation and Articulation” but it was modified based on the performance of the model 

while experimenting. Based on the article, 10 epochs were chosen for the model. The 

model of MFCC consists of four convolutional layers with filter size of (3,3) and filter 

count of 64 with an activation function of ReLU. These layers are divided by max-pooling 

layers with sizes (5,1) and (2,1). The last average-pooling layer sends the information to 

a dense layer of 64 units. This is followed by two additional dense layers of 16 and 2 

units. The last layer returns the prediction of the binary classification using a softmax 

activation function. However, the CNN of eGeMAPS consists of one convolutional layer 

less than the CNN of MFCC to avoid overfitting. In addition, the last average-pooling 

layers has the size of (2,2). Moreover, both models use learning rate of 0.001 with Adam 

as an optimizer. 
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5. RESULTS 

The results of the experiments done in this study are presented in table 5.1. In the table 

the mean accuracies of the cross-validations are stated using feature sets MFCC and 

eGeMAPS. For both of the sets three classifiers were tested with cross-validation. Over-

all, the scores implicate that Parkinson’s disease can be detected from spontaneous 

speech of Spanish language.  

As seen from the table 5.1. the mean classification accuracies obtained in this study vary 

from 65.25% to 75.00%. The best classifier for MFCC was CNN with the mean accuracy 

of 67.40%. Comparatively, RF was the most accurate for eGeMAPS with the mean ac-

curacy of 75.00%. In general, eGeMAPS showed better classification accuracy results 

than MFCC with over 70% mean classification accuracies compared to over 65% accu-

racies of MFCC. The numbers are logical since eGeMAPS contains MFCC in addition to 

other features. 

Table 5.1. The mean classification accuracies of cross-validations. 

For better understanding of the cross-validation accuracies, statistics of each classifica-

tion are presented in table 5.2 for MFCC and eGeMAPS. For each cross-validation, a 

mean standard deviation and an evaluation metric named F1 score are presented. 

Standard deviations for the classifications with multiple feature segments per speaker 

were around 20%. For instance, the best classification accuracy obtained with MFCC 

had a standard deviation of 20.05%. Alternatively, the high valued standard deviations 

of eGeMAPS with SVM and RF are explained with the structure of the features extracted. 

For these classifiers the summarized vector of lower-level descriptions of eGeMAPS was 

used which resulted in one feature segment of data per speaker. Henceforth, a single 

cross-validation fold could only return either perfectly or completely falsely classified re-

sult which fails to return valuable information for the standard deviation. 

The F1 score results in range of zero to one in which the maximum result represents a 

perfectly classified situation [28]. The measurement is a harmonic mean of true positives 

divided by true positives summed with false positives and negatives. As seen from the  

Feature set SVM accuracy (%) RF accuracy (%) CNN accuracy (%) 

MFCC 66.48 65.25 67.40 

eGeMAPS 71.00 75.00 70.87 
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Table 5.2 Statistics of the accuracies of MFCC and eGeMAPS. 

table 5.2 the F1 scores support the performance of the classifiers, with over 0.67 values 

for MFCC and over 0.70 values for eGeMAPS. In the case of MFCC, the best F1 value 

of 0.69 was obtained by SVM, but the F1 value of 0.67 for the most accurate classifier of 

CNN had a similar result. Additionally, eGeMAPS performed better than MFCC in case 

of F1 values with the best F1 value of 0.76 for RF which was the most accurate classifier 

for eGeMAPS. The results are manageable taking into account the fact the complex na-

ture of spontaneous speech and the feature sets chosen. 

Furthermore, the classification results of MFCC and eGeMAPS are visualized with con-

fusion matrices in figure 5.1 for SVM, figure 5.2 for RF and figure 5.3 for CNN. Each 

confusion matrix displays the number of correctly and falsely classified data inputs while 

using zero to HC and one to speakers with PD. In the matrix, y-axis is the estimation 

made by classifier and x-axis shows the correct label. The monologues consist of multi-

ple feature segments in all other cases than SVM and RF of eGeMAPS, which used the 

functionals vector of eGeMAPS. 

For both cases of MFCC and eGeMAPS, the majority of the segments were classified in 

correct classes with a similar number of false estimations as seen from the figures 5.1, 

5.2 and 5.3. However, SVM and RF of MFCC resulted in substantially more false posi-

tives than negatives. Additionally, the results are relatively balanced which is coherent 

since the database is well balanced based on the distribution of labels. 

Classifier F1 score Standard deviation (%) of 

the accuracy 

SVM (MFCC) 0.69 16.24 

RF (MFCC) 0.67 18.06 

CNN (MFCC) 0.67 20.05 

SVM (eGeMAPS) 0.70 45.38 

RF (eGeMAPS) 0.76 43.30 

CNN (eGeMAPS) 0.70 26.99 
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Figure 5.1. Confusion matrices of SVM when using features of a.) MFCC with multiple 
feature segments per speaker and b.) eGeMAPS with one feature vector of functionals 
per speaker. 

 

Figure 5.2. Confusion matrices of RF when using features of a.) MFCC with multiple 
feature segments per speaker and b.) eGeMAPS with one feature vector of functionals 
per speaker. 

 

Figure 5.3. Confusion matrices of CNN when using features of a.) MFCC and b.) 
eGeMAPS with multiple feature segments per speaker. 
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6. CONCLUSIONS 

In this study the possibility and accuracy of detecting and assessing PD from spontane-

ous speech with the help of machine learning techniques was studied. The methodology 

of this study followed a typical PSP system which is described in chapter 2 and visualized 

in figure 2.1. The setup of this study consisted of training different machine learning mod-

els with features extracted from the monologues of PC-GITA corpus and evaluating clas-

sification accuracy with new data. The classification method used in this study was a 

binary classification between healthy speakers and speakers diagnosed with PD. To 

avoid overfitting, a cross-validation method was used to train and test a model with all 

the hundred speakers. 

In detail, two feature sets of MFCC and eGeMAPS were tested with three machine learn-

ing models separately resulting in suitable cross-validation accuracies with at least over 

65% classification accuracy for MFCC and over 70% for eGeMAPS. The best classifica-

tion accuracy was obtained with RF for eGeMAPS with 75% accuracy and for MFCC the 

accuracy of 67.40% was acquired with CNN. Additionally, in the case of performance, 

the classification accuracies with the feature sets with multiple feature vectors per 

speaker had around 20% standard deviation. Furthermore, F1 values of the models sup-

ported the hypothesis that PD is detectable from spontaneous speech with machine 

learning methods. The best F1 values for each feature set was 0.69 for MFCC and 0.76 

for eGeMAPS.  

Overall, the results of classification accuracies and model performances acquired in this 

study are supported by the related works depicted in chapter 2. In the related works 

similar accuracies and performances were acquired with the same PC-GITA corpus and 

other similar speech databases with the help of related feature sets and classifiers. Ad-

ditionally, in chapter 5 the classification results are evaluated and justified. 

Nonetheless, the results of this study have scope for improvement, but they are explain-

able by plethora of reasons. The major challenge of similar speech assessment tasks is 

the unpredictability and complexity of spontaneous speech while using a small sized 

speech corpus. Furthermore, from the methodology aspect of this study, an improvement 

could be gained from richer feature sets or using only the most relevant features for the 

task of detecting PD. Additionally, the machine learning models could be optimized for 

the task or pre-taught by a possible bigger speech corpus and then fine-tuned with the 

target data set. 
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Moreover, this study concentrated only on the paralinguistic information of speech. The 

diagnosing process could benefit also from linguistic information. Linguistic speech im-

pairments could be detected, for example, with the help of transcriptions of the mono-

logues. Additionally, the research can be expanded with other languages. 
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