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Abstract
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The human brain has one of the most complex networks in the world. Neuroscience
attempts to address this complexity by studying the function of the regular ner-
vous system and the effects of neurological, neurodevelopmental, and psychiatric
disorders. Major depressive disorder is a known clinical condition plaguing millions
today. Some research seeks to give insight into the mechanisms and therapeutic
processes of clinical depression. There has been some evidence that nitrous oxide
relieves depression symptoms in some subjects, but little is known about how ni-
trous gas affects brain interactions after anaesthesia. In this work, continuous and
intermittent EEG data of subjects induced with the gas were pre-processed to re-
move prevalent noise and separated into even window trials according to a pipeline.
It was possible to evaluate the effects of the circumstances on brain connections
since the weight phase lag index had the greater statistical power to identify phase
synchronization alterations and was least sensitive to additional noise sources that
are uncorrelated. Graph analysis of EEG data shows that nitrous oxide alters brain
connectivity on a varied scale. The strength of these changes differs among the
subjects and frequency bands considered, but all subjects’ neural interactions were
consistently altered by nitrous oxide. The effects of nitrous oxide on the EEG were
evident in both groups, with some participants exhibiting increased delta connectiv-
ity values. After anaesthesia, a noticeable decline in beta band connection strength
was observed in individuals in the continuous group. Small data size, sensor-level
data and lack of preceding research are potential limitations of this work. With
more participants, data points and source-level data analysis, a more comprehen-
sive understanding of nitrous oxide’s effect on the brain may be possible. This thesis
does not, therefore, make any general assertions about the use of nitrous oxide as
an antidepressant. However, the methods developed in this work will be beneficial
in further study of this investigation.
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1 Introduction
The human brain is among the most intricate systems in the universe [1]. The scope
of neuroscience seeks to provide insight into the brain state and consciousness and
this has widened over time to involve various approaches used to study the nervous
system at different scales. Neuroscientists have developed numerous techniques to
study neurons, from molecular and cellular studies to imaging of motor, sensory,
and cognitive processes. In order to develop therapeutic measures for neurological
disorders, it is crucial to understand how the brain functions in various patient
cases. Recent studies have used several noninvasive imaging modalities that aid
the understanding of human brain function. Examples of imaging techniques that
can deliver millimetre-level spatial resolution include positron emission tomography,
single-photon emission computed tomography, and functional magnetic resonance
imaging [2]. However, these methods have a temporal resolution disadvantage such
that neuronal activities that occur in milliseconds can be lost. Alternatively, Electro-
encephalography EEG is a widely used and non-invasive method to monitor brain
activity that has a high temporal resolution, based on electrical activity in the
brain. EEG’s millisecond temporal resolution makes it one of the ideal techniques
for understanding the brain as a dynamic system [3]. In learning about the human
brain, it is imperative to identify the source of an EEG signal. [4] indicated that
this usually requires a source model, a head model and EEG data. He described
the source model as a three-dimensional position of dipoles on the cortical surface
and it is generally assumed that EEG signals are generated by sources that can be
approximated as dipoles. He also mentioned that the head model helps to describe
how the electric currents from these sources will flow through the head and finally
end up as EEG measurements. Therefore, the electric forward head model is crucial
for precise source localisation. This model involves determining the geometry, based
on MRI data, and the conductivity of various tissue sections such as scalp, skull,
cerebrospinal fluid, grey and white matter of the brain, etc. in the volume conduction
process [2].

Psychiatric disorders such as major depression can be highly disabling and increase
the risk of suicide, as well as contribute to the overall global disease burden [5].
In patients with depression, the N-methyl-D-aspartate receptor (NMDA-R) blocker
ketamine quickly relieves symptoms [6, 7]. Nitrous oxide is a type of NMDA-R
blocking dissociative anaesthetic that has recently been shown to relieve depression
symptoms in some patients [8]. In a brain connectivity study using graph analy-
ses by [9], nitrous oxide was found to induce changes in the brain network during
anaesthesia, resulting in a decrease in information processing efficiency in cognition-
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relevant frequency bands. Although research has been carried out on the sedative
and depression-alleviation effect of nitrous oxide, there is still little scientific un-
derstanding in brain connectivity study of the effect of nitrous oxide to describe
the features of the neuronal assemblies after anaesthesia. The depression-alleviating
effect of nitrous oxide needs to be understood in terms of the interactions between
brain regions. Connectivity is often analyzed to study the functional interactions
of brain regions in both normal and pathological conditions. Thus, the concept of
brain connectivity and some of its contemporary techniques explored in this work
will give further insight into how nitrous oxide affects brain functions when subjects
are anaesthetized.

This study retrieved EEG recordings without MRI data from 20 sub-anaesthetic-
induced subjects. The data were divided into two groups, the continuous group and
the intermittent group, based on the procedure given for the gas exposure. The con-
tinuous group procedure is 20min sub-anaesthetic gas exposure. The intermittent
group procedure is two cycles of 10min followed by a 10min break. In both cases,
considerations are made for the properties of the signal before, during and after the
nitrous oxide-inspired process. Insights drawn from what happens to the features of
the EEG before, during and after the gas exposure would be of clinical significance.
This thesis will demonstrate how nitrous oxide affects brain function and how this
depends on the timing method of exposure (intermittent or continuous). The meth-
ods applied shall provide tools for monitoring brain state and consciousness. All
available information about the brain activity of the subjects comes from the EEG
signals. This makes the exploration of EEG functional connectivity very important.
Typically, electrophysiological connectivity is considered to reflect functional inter-
action due to the propagation of saltatory conduction through short-range volume
conduction to individual electrodes [1]. It is unfortunate that the same volume con-
duction that enables EEG also creates difficulties for functional connectivity. In
the practical use of EEG, long-range volume-conducted potentials reach multiple
electrodes. This is the problem of volume conduction plaguing electrophysiology
connectivity measures. Having only the EEG signals of the subjects, phase syn-
chronization of brain connectivity metrics are found to be suitable in quantifying
the interaction among neuronal groups of signals under consideration. To overcome
the effect of volume conduction, studies have proposed various approaches. In this
study, the weighted phase-lag index was used. The weighted phase-lag index was
utilized due to its reduced sensitivity to additional, uncorrelated noise sources and
its heightened ability to detect changes in phase synchronization [10]. This work
will investigate the effect of nitrous oxide on four EEG frequency bands using the
weighted phase-lag index connectivity measure. It will also compare this effect be-
tween the continuous and intermittent groups to provide an enhanced idea of how
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nitrous oxide may be helpful in depression treatment.

The thesis is organized so that the objective and theoretical background knowl-
edge are established before the methods and materials sections. The materials and
methods describe the EEG dataset collection protocols, the raw EEG pre-processing
pipeline and details of the implemented connectivity metric. This section also sum-
marised the statistical techniques used to perform the analysis of the anaesthetic
effect on the EEG features. The results section highlights the findings of the work
presented in graphs and tables. These results are discussed in the next section,
explaining the implication of the values obtained as a correspondence to other lit-
erature. Lastly, conclusions are presented on the key findings from the discussion
and suggestions for future research are provided. Appendix A includes circular con-
nectivity graphs not included in the results section, while Appendix B contains the
script links used in this thesis.
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2 Theoretical Background
The theoretical background for investigating neuronal interactions in event of anaes-
thesia employs a wide range of knowledge involving electrophysiology signal pro-
cessing, and connectivity techniques. In this Chapter, the basics of EEG and its
applications as well as measures of quantifying brain signals are presented.

2.1 Electroencephalography

EEG is a medical technique used to track the electrical activity of the cortex Figure
2.1, the outer layer of grey matter in the brain, which covers the inner parts. This
activity is a result of action potentials [11]. In the cortex, regions are grouped based
on the complexity of their functions in primary cortices and associated cortices. The
brain produces several rhythmic patterns of electric impulses in different locations.
A typical brain wave consists of five categories of frequency, inclusive of the delta,
theta, alpha, beta and gamma bands. However, the scope of this work is limited to
the first four of these frequency bands. The levels of these waves are relatively con-
stant and similar among all normal individuals [12]. Certain neurological disorders,
including seizures and brain lesions, can be diagnosed using brain waves.

It is essential to study EEG signals because they are used both for research and for
studying brain functions. Various modalities, including invasive and non-invasive
approaches, are used to quantify the characteristics of brain electrical activity. These
methods can be deployed to understand, diagnose and treat brain diseases. As
earlier stated, an EEG is one of the non-invasive methods used in the study of brain
electrical activity. During an EEG, electrical signals produced in the brain can be
picked up by small electrodes attached to the scalp. Measurements are made of the
differences in the potentials of the electric fields caused by neural currents at the
scalp. A more detailed description of this mechanism is found in the subsequent
sections of this work.

2.1.1 EEG’s biophysics and measurement

Scalp potentials originate from the intrinsic electrophysiological activities of the ner-
vous system. By identifying the generator source(s) and electrical field(s) of prop-
agation, one can identify the electrographic patterns that describe the expression
of the brainwaves as normal or abnormal [14]. EEGs recorded at the scalp usually
represent the collective electrical activity produced by many neurons in the region



5

Figure 2.1 The human brain cortex [13]

and not action potentials [15]. The central nervous system creates electrical sig-
nals as electrical charges move. Ionic gradients established by neuronal membranes
maintain normal neuronal function [14]. It is important to show a sufficient amount
of electrical currents in the brain in order to be able to interpret the results of brain
activity. Normally, resting (diffusion) membrane potential is maintained by the ef-
flux of positive-charged potassium ions that maintain an electrochemical equilibrium
of –75 mV. The depolarization process causes an influx of positive-charged sodium
ions, which exceeds the resting potential of the electrochemical system to -55 mV
[15]. These voltage changes determine how the lipid bilayer opens, and time deter-
mines how it closes. When the depolarization threshold is exceeded in the presence
of conductance to adjacent nerve cell membranes, the ionic concentration change
generates an action potential. EEG potentials, however, are primarily generated by
synaptic potentials, which are the most significant source of extracellular current
flow. Excitatory postsynaptic potentials (EPP) flow inward (from extracellular to
intracellular) via sodium and calcium ions into other parts of the cell while the
Inhibitory post-synaptic potential (IPP) which involves the chloride or potassium
ions, flows outward (intracellular to extracellular) [14]. These postsynaptic poten-
tials occur when neurotransmitters are released from the axon’s terminal boutons
at relatively slower rates[15]. EEG waveforms mainly consist of summed potentials
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and they generally have a longer duration than the action potentials. In normal and
abnormal situations, the brain stem and thalamus function as subcortical generators
of synchronizing neocortical neurons. [14].

Figure 2.2 Electrical activity of the brain measurement [15]

A direct measure of neuronal activity can be performed by analyzing electrical sig-
nals from single neurons, populations of neurons, and parts of the cortex. As de-
scribed in [15] (A) in Figure 2.2 shows the patch-clamp technique used in single-unit
recordings of action potentials of individual neurons. This schematic shows a pyra-
midal neuron. Action potentials have a short duration of usually 1 ms and high-
amplitude ( 100 mV) pulses. In (B) neuronal activity can be recorded via electrode
microarrays inserted into brain tissue. By using different filter settings, one can
isolate multi-unit activity (action potentials) or lower frequency local field poten-
tials (LFPs), which have similar spectral characteristics to scalp-recorded EEG. (C)
Electroencephalography (EEG) measures the electrical activity of large portions of
the brain using electrodes placed on the scalp. In the EEG, oscillations are governed
by neuronal populations that are synchronized or desynchronized. Furthermore, vol-
ume conduction between the scalp and various intracranial media causes attenuation
and distortion of the scalp signal. In other words, the single-unit activity could be
compared to one-on-one conversations with a coach, LFPs could be compared to
capturing commentators at a live football match, and EEG could be compared to
hearing the cheers of fans from outside the stadium.

An internationally recognized method for recording EEG that allows electrode place-
ment to be standardized is the 10-20 system. This method ensures that inter-
electrode spacing is equal and electrode placements are proportional to skull size
and shape. It covers all brain regions shown in the Figure 2.3. The numbers are
placed so that odd are on the left side and even on the right. The letter of the elec-
trode indicates the general region of the brain that it covers. From front to back, the
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Figure 2.3 The electrode layout in the corresponding brain regions of the 10-20 system
(image generated from photo)

electrodes are labelled as follows: Fp (frontal pole or pre-frontal), F (frontal), C (cen-
tral brain line), T (temporal), P (parietal) and O (occipital). The higher-dimension
EEG systems have electrodes lying between these lines combining multiple letters
and ordering from front to back. Additionally, the letters M and A are referred to
as the mastoids or earlobes respectively and are typically included to serve as an
(offline) reference for signal analysis [16].

2.1.2 EEG Wave bands

EEG signals are broadly categorized into the delta, theta, alpha, beta and gamma.
However, the description of the typical wave band characteristics for this study is
as follows.

• Delta wave
Delta wave is a low-frequency wave ranging up to 4 Hz. These waves tend to
have the highest amplitude and slowest speed. They normally occur during
deep sleep in all ages of patients. It is also seen normally in infants still devel-
oping [12]. This condition may be focally present with subcortical lesions as

https://commons.wikimedia.org/wiki/File:21_electrodes_of_International_10-20_system_for_EEG.svg
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Figure 2.4 EEG brain wave bands [17]

well as in a diffuse manner with diffuse lesions, metabolic encephalopathy hy-
drocephalus, or deep mid-line lesions. It tends to be more prominent frontally
in adults.

• Theta waves
The theta band ranges from 4 - 8 Hz. Theta is commonly observed in young
children whereas, among older children and adults, it can be manifested in
drowsiness, arousal and in meditation [12]. A high theta value for the age
indicates abnormal activity. In focal subcortical lesions, it can be seen as a
focal disturbance seen in diffuse disorders or metabolic encephalopathy, in deep
mid-line disorders, or in hydrocephalus in some instances. The opposite has
been found to be true; reports of relaxation, meditative states, and creative
thinking have been associated with this range.

• Alpha waves
Alpha is an EEG rhythmic activity that could range from 8 - 12 Hz. Adults
who are healthy and awake experience alpha waves when they are resting with
their eyes closed. In the course of sleep and when concentrating on a particular
task they disappear. Neurologists usually measure the alpha rhythm while a



9

patient’s eyes are closed. The rhythm emerges when the patient closes their
eyes and relaxes and diminishes when they open their eyes or exert themselves
mentally [12].

• Beta waves
At the time of attention to tasks or stimuli, beta waves replace alpha waves and
are of a higher frequency. A person can experience them while concentrating,
under stress, or when under psychological tension [12]. Beta waves usually
have a rhythm between 12 - 40 Hz. Additionally, beta waves are present over
the other frontocentral regions of the scalp, besides the regions described under
alpha waves. Opening the eyes or beginning mental activity causes the alpha
waves to decrease or attenuate, and beta waves to substitute for them.

2.1.3 EEG Applications

EEG devices can measure electrical activity associated with mental health states,
thoughts, and imagination. These devices are used by researchers in diverse areas of
research. EEG data applications are shown in Figure 2.5 along with their respective
subcategories.

Figure 2.5 Applications of Electroencephalography [18]

Brain–computer interfaces (BCI)

A common application of EEG is in BCIs. They control and direct mechanical
and electronic devices using real-time EEG data [19]. BCI devices allow individuals
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with mild to severe motor disabilities to interact with machines, including those who
are incapable of communicating with others [20]. Devices designed for the disabled
use brain stimulation rather than muscle movement; they translate specific mental
activities, such as imagining doing an activity, into control functions and commands
[20, 21].
The list below shows examples of the most common BCI applications.

• Autonomous Navigation of Devices: This includes managing and monitoring
sensors in smart homes [22], guiding and operating a drone [23], a vehicle
dashboard [24], or a robot [25].

• Neurogaming and Entertainment: Involves controlling virtual reality (VR) or
video games using body gestures and eye movements [26] and manipulating
fiber optic dresses [27].

• Providing assistance to people with disabilities or impairments of motor ac-
tivity: includes control of prosthetic arm [20], electrical wheelchair movement
directing [28], using VR in post-stroke motor rehabilitation [29] and other
purposes.

Biometrics

Biometrics refers to the use of physiological and behavioural characteristics, like
fingerprints, face, gaze, voice, iris, posture and gait to identify and distinguish people
[30]. According to studies, EEG data can help reveal individual differences. In recent
years, brain activity has been utilized for biometrics by using EEG data to identify
individuals [31]. There are various reasons why EEG biometric systems have gained
popularity, including privacy concerns, resilience against spoofing attempts, and
universality [30, 31].

Custom Solutions and Neurofeedback

In other research areas, EEG devices have been used to improve learning, well-being,
and quality of life [18]. In both clinical and non-clinical research, neurofeedback data
can be used to create custom EEG solutions in the following listed ways:

• Educational purposes: Evaluating cognitive workload and concentration levels
while solving math puzzles, as well as confusion levels during online lectures
with the goal of designing intelligent tutor systems [18]. It is applicable in
the measurement of students reading ability. The visualization of the brain in
real-time is also useful for educational purposes, training, and entertainment
[32].
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• Fitness, sports and meditation: Utilizing brain activity while exercising and
listening to music to improve health status and quality of life [33].

Neuroscience and Clinical applications

It is the goal of neuroscience to understand how the nervous system functions. In this
way, clinical or non-clinical researchers can learn how the brain behaves and works
when humans experience different emotional or mental states. Hence, according to
[18], researchers use EEG devices in their studies across many fields as follows.

1. Cognitive neuroscience:
In this field, cognitive load is measured, differences in brain wave activity be-
tween suicidal and non-suicidal states are analyzed, and brain activity during
insight is examined. Learn how to analyse brain workload during decision-
making, while learning new tasks, and also examining sleep patterns.

2. Behavioral neuroscience:

• Measuring brain alertness in response to workplace lighting

• Measuring mental workload of deaf children exposed to a noisy environ-
ment during a word recognition task

• Detecting drowsiness or sleepiness in drivers and pilots

• Evaluating stress level of surgeons during operations

• Reducing stress levels

• Environmental psychology.

3. Neurology:
Real-time EEG data provides information on brain activity. EEG is used
for diagnosing and predicting various abnormal brain diseases and cognitive
impairments such as:

• Level of consciousness

• Neurosurgery

• memory problems (e.g. Alzheimer’s)

• Parkinson’s Disease

• Language impairments (e.g. dyslexia)

• Seizures and epilepsy

• Attention Deficit Hyperactivity Disorder

• Sleep disorders and insomnia
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• Post-traumatic stress disorder

• Anxiety

• Traumatic brain injury (TBI)

• Multiple sclerosis diagnosis

• Amyotrophic lateral sclerosis

• Schizophrenia

• Autism in adults and children

4. Neurophysiology:

• Fatigue detection

• Measurement of brain activity after alcohol intake

Neuromarketing or Consumer Neuroscience

Today, neuromarketing has been added as one of the branches of the advertising in-
dustry. It is targeted at understanding consumer needs, emotions, and behaviours,
and predicting their decision-making processes [34, 35]. Some neuromarketing re-
search attempts to understand customer preferences and expectations regarding a
specific product [34, 18] and their reaction to TV advertising by analyzing EEG
signals.

2.2 Overview of Brain Connectivity Metrics

Recognizing changes in brain activity and the relationships between brain regions
has grown in significance for examining both normal and abnormal brain function
[36]. Grasping the operation of the brain involves more than simply recognizing the
active areas, it requires comprehending the functional connections between neural
networks throughout the brain [36]. The concept of brain connectivity is introduced
to describe the relationship between brain areas. Structural and functional con-
nectivity are examples of ways these activities can be quantified. Common metrics
deployed in brain functional connectivity are described in this section. Functional
connectivity could be subdivided based on if the metric measures the direction of
cortical information flow or not. The measure of functional connectivity that is non-
directed attempts to measure information interdependence without considering the
direction of influence. Conversely, directed measures aim to establish causal rela-
tionships from the data based on the principle that causes come before their effects.
With methods like Granger causality and transfer entropy, one can predict to some
extent how effects will emerge. [37]. Both directed and undirected estimates can
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further be distinguished into model-based and model-free approaches. According
to [37], all the model-based approaches assume a linear kind of interaction taking
place between two signals. Meanwhile, to quantify non-linear neuronal interactions,
it may be useful to deploy model-free approaches. Some major metrics used in
functional connectivity analysis are described as follows.

2.2.1 Dynamic Causal Modelling

Dynamic Causal Modelling (DCM) is a method of modelling the response of a dy-
namic system as a network of interacting neural sources, described in terms of
conductance-based models or neural masses [36]. In EEG analysis, DCM entails the
inversion of informed spatiotemporal models of observed responses. By varying only
a few key parameters among conditions, modelling condition-specific responses over
channels and peri-stimulus time is possible [38]. It is thus possible to apply this
same approach to the analysis of single trials, where parameters can be modulated
parametrically to model the changes in an experimental variable from trial to trial
(e.g., reaction time or forgotten vs. remembered). The method can also be applied
to steady-state source-reconstructed LFP, MEG or EEG responses under certain
assumptions about the input distribution [38].

2.2.2 Granger Causality

Granger causality (GC) is a data-driven technique for analyzing connectivity. Unlike
other methods, it does not require a specific model or prior information about spatial
and temporal relationships [36]. Historically, GC was applied in the time domain,
but in 1982, Geweke [39] applied it to the frequency domain to study EEG frequency
bands. Over time, GC was extended from bivariate to multivariate signals [40, 41].
The Directed Transfer Function (DTF) and Partial Directed Coherence (PDC) are
more recent offshoots of the GC method. In bivariate cases, DTF and PDC are
equivalent, but in multivariate cases, PDC can identify both direct and indirect
pathways between interacting brain regions. PDC is based on partial coherence
[42], which evaluates the correlation between two signals out of n and addresses
the issue of volume conduction in traditional coherence by considering the impact
of interactions from n − 2 signals [36]. PDC measures directional influences as a
continuation of partial coherence, which will be discussed further in the next section.

2.2.3 Coherence

The coherence metric evaluates pairs of signals in each frequency band using a
correlation coefficient, which gauges the consistency of their relative amplitudes
and phases [37]. Coherence quantifies linear phase synchronization and the extent
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to which one signal can account for the other signal’s variance, as a function of
frequency, similar to the squared correlation coefficient in the time domain [43].
Simply put, the cross-spectral density of two signals, i and j, at frequency f can be
expressed as;

Cohij(f) =
|Sij(f)|√

Sii(f)Sjj(f)
(2.1)

Where Sij(f), Sii(f) and Sjj(f) are cross-spectral values from a singular matrix. The
numerator term represents the length of the vector average of the individual trial
cross-spectral densities between the signals at f frequency. The divisor represents
the square root of the product of the average of the individual trial power estimates
of the signals at f frequency [37].

Wavelet Coherence (WC) is a method of calculating coherence that uses a different
approach. To achieve the best time-frequency resolution, it is necessary to know
the coupling range in both time and frequency beforehand. WC is a function of
time and scale that is mapped to specific frequency bins, referred to as pseudo
frequencies. Calculating the leading dominant frequency of the scaled wavelet basis
function is a necessary step in the mapping process [36]. WC uses a longer window
for lower frequencies and a shorter window for higher frequencies, making it ideal
for quantifying time-varying coherence [36].

Recently, the imaginary component of the coherence has gained popularity, par-
ticularly in the study of connectivity in EEG and MEG [37]. This component is
obtained by projecting the complex-valued coherency onto the imaginary axis [3].
By discarding contributions to the connectivity estimate along the real axis, this
method eliminates any instantaneous interactions that may be present due to field
spread.

2.2.4 Phase Synchronization

Brain connectivity can be assessed using EEG in time, frequency or time-frequency
domains. However, phase synchrony is calculated from the frequency domain rep-
resentation of two signals. The concept of phase synchrony involves quantifying
the consistency of the distribution of phase differences between single observations,
which is based on the probability distribution of cross-spectral densities. To com-
bine these densities, a weighted sum is taken that combines all vectors from head
to tail and normalizes the result. If the phase difference between the two signals is
consistent, the weighted sum length will be non-zero. However, if the phase differ-
ences are evenly distributed, the weighted sum will be close to zero [37]. This idea
is demonstrated in Figure 2.6.
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Figure 2.6 Measure of synchrony computation: (A) A perfect phase alignment at 0
radians. (B) A scenario of complete synchronization with a radian variance of π/2. (C)
No phase synchronization due to inconsistent phase differences [37]

.

Assuming oscillation 1 and oscillation 2 are two signals with amplitudes of 1 and
divided into four trials, Figure 2.6A shows that a vector sum with a length of 4 is
obtained due to the same phase difference observed in all the trials. In the second
scenario, the phase difference is consistent across observations at 90°. However, in
Figure 2.6C, the phase differences are not consistent across trials, with differences
of 0°, 90°, 180° and 270° for each trial. This results in cross-spectral density vectors
pointing in different directions, which leads to a zero-length vector sum, indicat-
ing a lack of consistent phase difference. It is worth noting that in real data, the
phase synchronization will fall between zero (vector sum equal to zero) and perfect
synchronization (vector sum equal to 1) due to sampling size bias [37].

Interactions between neuronal groups result in phase synchronization that is mea-
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surable from EEG, LFP or MEG signals [10]. Phase synchronization metrics like
Phase Locking Value (PLV) and Phase Lag Index (PLI) are commonly used to
analyze inter-regional functional connectivity. PLV is a phase-based connectivity
method that considers only the instantaneous phases of signals and eliminates the
ambiguity of coherence by ignoring the amplitude component[44]. If two regions are
functionally connected, PLV assumes that their signal phase difference will remain
relatively constant. Phase locking is computed by first filtering the instantaneous
phase of signals since its physical interpretation is only done for narrow band signals
[45]. PLI, on the other hand, measures connectivity based on the asymmetry of the
distribution of phase differences between two regions. The idea here is, If there is
consistent phase lag, it means there is a time lag between two-time series [37]. In
other words, PLI shows how well brain regions are connected functionally when pairs
of signals are synchronized. Unlike PLV, the main approach here disregards phase
differences that centre around 0 mod [46]. PLI values can range from 0 to 1, with
0 indicating possible non-coupling and 1 indicating complete phase locking. Despite
PLI’s advantage of being less affected by volume conduction and phase delays, its
discontinuous characteristics inhibit the sensitivity to noise, volume conduction, and
ability to detect phase-synchronization changes. A slight perturbation could turn
phase leads into lags and vice versa. To address this, Vinck et al.[10] introduced the
weighted phase lag index (wPLI) which has been used in the study.

2.2.5 Weighted Phase Lag Index

To introduce the Weighted Phase Lag Index (wPLI), it is necessary to compare
it with the PLI connectivity measure. The formulae for PLI and wPLI are given
Equation 2.2 and 2.3 respectively. In these equations, the cross-spectral density
between two signals i and j is represented by Xij. If the phase difference is equal
to nπ, the imaginary part of the cross-spectral density is 0, and if it is equal to nπ

+ π/2, where n is an integer, the imaginary part is at its maximum. In the given
equations, sgn refers to the sign function and I, is the imaginary component.

PLI = |E[sgn(I(Xij))]| (2.2)

wPLI =
|E[I(Xij)]|
E[|I(Xij)|]

, (2.3)

For PLI, a value greater than 0 indicates that there is an imbalance in the likelihood
that the signal will be leading or lagging, while a value of 0 indicates that the signal
leads and lags equally often. Signal only leads or only lags other signals if the value
is 1.
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A number greater than 0 indicates that there is an imbalance between these weights,
whereas a value of 0 indicates that the total weight (not the quantity) of all leading
relationships matches the total weight of lagging relationships. Similar to PLI, a
value of 1 indicates that a signal solely leads or only lags another signal.

The wPLI is a tool for evaluating phase synchronization based on the imaginary
components of the cross-spectrum. The metric is based on the PLI discussed pre-
viously and it is intended to increase the ability to reduce the impact of noise and
phase shifts and increase the accuracy of detecting actual changes in phase synchro-
nization [10]. In order to alleviate the discontinuity constraint of PLI, it uses the
imaginary component of the cross-spectrum to weigh the contributions of observed
phase leads and lags. In addition to their ability to detect true phase synchronization
changes, the wPLI is also more sensitive to additional, uncorrelated noise sources
compared to the PLI.

PLI and wPLI differ primarily in how phase relationships are weighted. In PLI,
phase differences are weighted as −1 or 1 according to their sign. Phase differences
in wPLI are weighted based on their values, which means that phase differences
close to ±π2 are weighted more heavily than those closer to 0 or any other multiple
of π. Consequently, all phase differences near this transition are treated similarly,
avoiding discontinuities at the transition between positive and negative phases. As
a result, the estimation of connectivity is more robust against outliers and noise.
EEG/MEG recordings, for example, can be distorted by volume conduction, when
multiple sensors on the scalp pick up the same neural signal. The relative phase
differences between two signals can be reduced to zero, which affects connectivity
estimation. The wPLI approach minimizes the contribution of phase relationships
that are minor but non-zero (and may therefore be attributed to volume conduction),
whereas PLI weighs these in the same way as phase relationships of ±π2 [47].

2.3 Nitrous oxide in Anesthesia

Nitrous oxide N2O is a sub-anaesthetic that is widely used for conscious sedation
in medicine and dentistry [48]. Having the least potency of any inhalation anaes-
thetic, it can however not produce general anaesthesia alone, so it is used today
primarily to reduce the quantity administered during general anaesthesia by using
it as an adjunct [48]. As an example of a standard anaesthetic, nitrogen oxide in
conjunction with ether anaesthetics, such as sevoflurane, desflurane, or isoflurane,
and a muscle relaxant and analgesic is used [49]. The ether anaesthetic is typically
switched to nitrous oxide during the closure of the surgical incision so that general
anaesthesia recovery can be expedited. It produces insensibility to pain which is
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maybe preceded by mild hysteria when inhaled. Studies have found that anaes-
thesia causes a decrease in the interconnection between brain regions[9] and most
strongly in the parietal areas [50]. An analysis of nitrous oxide’s effect on the brain
network was conducted using graph theory, revealing that nitrous oxide interferes
with information integration in cognitive and attention-related frequency bands.
The disruption of the brain network during nitrous oxide administration may be
linked to its sedative mechanism [9].

2.4 Statistical Significance

Statistical significance refers to the likelihood that a result or relationship observed in
a sample is real and not due to chance. In hypothesis testing, a result is considered
statistically significant if it is unlikely to have occurred by chance and provides
evidence to support the hypothesis being tested [51]. More specifically, a study’s
defined significance level, denoted by alpha (α), indicates how likely it is that the
study will reject the null hypothesis if it is true [52]. The p-value of the result
indicates the likelihood that the study will obtain at least as extreme a result. It is
possible to define statistical significance as either strong or weak. When analyzing
a data set and performing the required tests, it is important to support results with
strong statistical significance and not simply assume they are a result of chance. A
small p-value, often less than 0.05, means that the result is more reliable [51]. It
shows that there is a significant difference between the two groups of data under
consideration, hence, aiding a decision to reject a null hypothesis that claims the
data groups are similar.

Considering multiple comparisons is a primary concern in EEG connectivity statis-
tics. In EEG cap setups with more than 64 electrodes, there is the possibility
for electrode pairs to assess connectivity within numbers greater than a thousand
since the number of electrode pairs increases with the number of electrodes that are
available to be analyzed. It is almost impossible to avoid false positives if multiple
comparisons are not taken into account when statistical comparisons are made be-
tween experimental groups for every set of electrodes [53]. Common methods for
controlling multiple comparisons are the Bonferroni correction and False Discovery
Rate (FDR), but these methods can reduce statistical power, create overly strict
values, and mask actual effects from adjusting the p-values for these two methods.
The number of comparisons cannot be accurately accounted for by functional con-
nectivity analysis and the Bonferroni correction assumes too much independence
between electrode pairs [54, 55]. This is because EEG data is correlated and multi-
dimensional, making functional connectivity values between different electrode pairs
not independent.
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3 Materials and Methods
The purpose of this chapter is to describe the materials and methods used to study
the effects of nitrous oxide on EEG features. Materials presented in this article
have been reviewed carefully in order to gain a better understanding of neuronal
interactions after anaesthesia.

There are two groups of EEG data considered in this thesis: continuous and inter-
mittent data. To meet the aims of this study, the data were pre-processed to remove
prevalent noise and separated into even window trials according to the pipeline de-
scribed in Section 3.2. Specifically, this study aimed to determine whether nitrous
oxide affected EEG features after anaesthesia. The weighted phase lag index (wPLI)
was used to check the effects of the conditions on neuronal interaction. In the sec-
tions that follow, we will describe the tools used and the steps that were taken in
order to achieve our results.

3.1 Data Collection

The EEG data were collected from 20 healthy adult volunteers (all males, 18 - 40
years, BMI 18 -27). All subjects reported no medication/chronic illness and no
previous history of psychiatric, neurological, or substance abuse disorder. Male
volunteers were recruited because of the low incidence of nausea and also because of
the menstrual cycle’s effect on the EEG. The experiment protocols were compliant
with the Helsinki declaration, and each subject provided written informed consent
before the experiment. Before drug administration, the functions of monitors and
data acquisition equipment were confirmed. Inhalation masks were placed and the
participant breathed air through them for a few minutes. Next, the participant
was asked to close their eyes and continue breathing steadily. An anesthesiologist
adjusted the inspired nitrous oxide concentration (oxygen ad 100%) according to
one of the following protocols (pre-randomization, see below):

Study protocols

Intermittent group (N=10):
Face mask trial 5 min (O2 100 %) → 50 % N2O 10 min → 100 % O2 10 min → 50
% N2O 10 min → 100 % O2 10 min.

Continuous group (N=10):
Face mask trial 5 min (O2 100 %) → 50 % N2O 20 min → 100 % O2 20 min.

Data were collected in each subject’s folder and these folders contained multiple raw
EDF files of the EEG recordings. It was possible to concatenate these EDF files
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Figure 3.1 Sub-anesthetic study protocol

for each subject in MNE Python, hence creating continuous raw data for the entire
recording period in all subjects’ cases.

3.2 Pre-processing of raw EEG

Data pre-processing is required before any useful data analysis can be done on the
acquired data. However, it is often difficult to choose the best processing pipeline
due to the lack of a gold standard. The pre-processing pipeline implemented used the
MNE-python package. MNE-python is an open-source package for the exploration,
visualization, and analysis of human neurophysiological data such as EEG, mag-
netoencephalography (MEG), stereo EEG, intracranial EEG, near-infrared spec-
troscopy, and more in the Python environment. The pipeline was implemented in
two main steps. First in the structuring and alignment of the raw EEG data. It
involved the concatenation of unique subjects’ data, renaming the files to commonly
used names, dropping of non-relevant channels, assigning channel types to electrode
signals and setting individual subject montages. The second stage processed these
structured data to clean data. Filtering between (0.1 Hz to 40 Hz) was done to re-
move undesired frequency components of the signal, and also there was division into
trials (epochs) of non-overlapping 30 seconds windows. The auto-reject algorithm
was implemented to reject bad trials and repair bad sensors in the EEG signal. We
applied the independent component analyses (ICA) technique next to remove preva-
lent artefact components scoring more than 0.5 and finally the auto-reject algorithm
was implemented again to produce clean EEG data.
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Figure 3.2 Implemented EEG pre-processing pipeline

3.2.1 Cluster computing

Implementing the pre-processing pipeline stated above for all the subjects would take
a significant amount of time to be completed on a local PC. A better alternative was
to use clustered computers to execute the tasks. The idea behind cluster computing
is to bring together several computers that can be closely or loosely connected in
order to act as one entity. As a result, it appears that there is one system since
all the computers are connected and performing the same operations. A cluster
computer consists of cluster nodes, cluster operating system, the node or switch
interconnect and lastly the network switching hardware. The Narvi is Tampere
University’s high-performing computing SLURM cluster. it consists of 140 CPU-
only nodes with 3000+ CPU cores. Narvi also has 22 nodes with different GPU
nodes with 4 GPUs in each. This makeup makes it useful for researchers, faculty
members and students at the university. The processing of the raw EEG files was
completed within an hour.

3.2.2 Autoreject and ICA

Autoreject is a library that automatically rejects and repairs bad trials in both
magneto- and electro- encephalography (MEEG) signals. It combines cross-validation
and robust evaluation measures to estimate the optimal peak-to-peak threshold used
in identifying bad trials in MEEG [56].

ICA – Independent component analysis is an algorithm that separates mixed signals
according to their sources. That is, it localizes independent signals that have been
mixed. In MEEG, ICA could decompose artifactual signals into several components
so that components resembling non-brain signals can be removed from the signal
before reconstruction. The Autoreject technique was applied to the EEG signal
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trials before and after ICA. Bad trials were removed before the computation of signal
source localization on non-artifactual signals. During this process, a threshold of
0.5 was set to exclude blink artefact components from the signal. A new signal was
reconstructed using the ICA parameter applied to the copy of the original EEG trial
data. Autoreject was applied the second time on the resulting signal to reject and
repair signal trials.

3.2.3 Filtered signal segmentation

To effectively analyse the connectivity properties of the filtered signals at the various
conditions of the experiment, some python functions were written. They include
getting the actual time stamps comprising of epochs within the specified conditions.
This was possible because the time stamps for all the subjects were collated into
a single excel file. A function reads the time values and converts them into the
equivalent seconds of when the anaesthetic is on and off for the continuous cases and
multiple on-and-off states for the intermittent cases. These values were then used in
other functions to read the filtered signal and appropriate epochs corresponding to
before, during and after the introduction of nitrous oxide for each of the subjects.
Hence, this splits the data of each subject into a number of conditions. It was now
possible to compute the spectral connectivity of these conditions in all the cases.

3.3 Implementation of wPLI

The Weighted Phase Lag Index, a new member of the phase-synchronization fam-
ily was initiated to increase the capability of detecting true phase-synchronization
changes, to reduce noise source effects, and to reduce the influence of phase changes
of the coherence based on the imaginary component of the cross-spectrum [10].
These attributes make wPLI a suitable tool for graph analysis, as it has a more
robust relationship with true phase consistency [57]. The EEG sensors could be
considered as nodes and the wPLI values between sensors as links between the
nodes in a graph network. In this work, the spectral connectivity across the trials
was computed using this method for each subject. A connectivity matrix comprising
all the electrode pair values was realised for each subject for each segmentation. The
matrix values represent the connectivity strength between two EEG channels, and
these values have also been represented in circular connectivity graphs, as shown in
the next chapter of this work.

3.4 Statistical Analysis

The significance levels for this analysis were set at the 5% (i.e. α = 0.05) level using
student t-tests before beginning the analysis.
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3.4.1 Surrogate dataset

An inter-subject EEG surrogate test was done to determine a null distribution for
significance tests using surrogate data. This test assumes independence between
EEG signals from different subjects. Despite the fact that the properties of EEG sig-
nals from one subject may not match those of another subject when viewed through
the lens of surrogate data, inter-subject EEG signal pairs (two EEG signals from
different subjects) were treated as surrogates for intrasubject EEG signal pairs (two
EEG signals from the same subject)[58]. This is for two reasons: i) EEG signals are
natural, not artificially generated, and ii) inter-subject EEG signals do not exhibit
interdependence, which is often examined in intrasubject EEG signals. 19 EEG
channels were randomly selected and the wPLIs were calculated for each pair that
did not belong to the same subject to create surrogate datasets. These surrogate
datasets were therefore assumed to preserve properties of before, during or after sub-
anaesthetic EEG connectivity of the original data. Therefore, a significance test to
determine if the original data has these randomized properties can be performed
[58].

Scipy’s statistical function was used to extract the p-values of these randomly se-
lected intra-subject channel pairs. A null distribution of connectivity values was
generated for each phase and frequency band of the experiment. Considerations of
the continuous and intermittent cases were observed, thus, multiple distributions of
surrogate datasets were retrieved. Furthermore, each subject’s connectivity results
in the specified categories were compared with a corresponding surrogate dataset to
get the p-values.

3.4.2 Significance of connectivity across phases

To significantly ascertain the phase changes before, during and after the Nitrous
oxide was introduced, EEG connectivity was computed and compared across the
phases. This approach like the surrogate test above considered each band of EEG
in the analysis for both continuous and intermittent cases. P-values were retrieved
for each subject in a table.

3.4.3 Hypothesis testing

Hypothesis testing in EEG connectivity is a statistical method used to determine
the significance of a relationship between two or more EEG signals. It involves for-
mulating a hypothesis about the presence or absence of a connectivity relationship,
collecting EEG data, and comparing the observed connectivity relationship to what
would be expected by chance using statistical tests. The goal of hypothesis testing is
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to determine whether the observed relationship is statistically significant, meaning
that it is unlikely to have occurred by chance and provides evidence to support the
hypothesis. If the relationship is statistically significant, it suggests that the signals
are connected and that changes in one signal are likely to be related to changes in
the other signal.

A hypothesis test was carried out to determine if the p-values obtained were statis-
tically significant so as to inform how the surrogate dataset generated from inter-
subject EEG pairs corresponds to the original dataset. Secondly, another hypothesis
conducted was to check the statistical significance among experiment phases of each
subject. The results will indicate the extent to which nitrous oxide-induced changes
in EEG connectivity.
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4 Results
An overview of the outcomes of the activities described in the methodology is pre-
sented in this section. Graphs and tables are presented summarizing the results
of the EEG pre-processing, connectivity computations, hypothesis test and p-values
obtained for each subject in the continuous and intermittent experiment groups. All
graphs were plotted with MNE Python, and the tables containing p-values for each
case were also collected from a Python dictionary variable output. Although only
two samples of subjects’ circular graph are shown in this section, all other graphs
plots for every subject is shown in Appendix A. The overall results are summarized
in this section.

4.1 EEG Pre-processing

This section describes the state of the raw data and outcomes of the pre-processing
pipeline implemented. After concatenating the unique subject’s raw data, Figure
4.1 shows all the data plotted with respect to the duration of the experiment.
Subjects were renamed to fit the pre-processing pipeline and for effective analysis of
the experimental phases, their time stamps were extracted as shown in Table 4.1.
Both the table and the raw plot indicate that six of the subjects had incomplete
experimental phases. The total number of subjects that could be analysed was
reduced to 14 out of 20. However, all of the data collected passed through the
pre-processing pipeline.

There are a couple of several eyes blinks and movement artefacts in Figure 4.3(a) and
4.3(c). Typically, eye blink artefacts are ten times larger than ongoing EEG, which
is why they are so problematic. It should be noted that only five trials are shown in
the images in order to clearly display these artefacts. Eye blink artefacts are picked
up the strongest by the frontal electrodes Fp1 and Fp2 and other electrodes with
labels starting with ”F” [59]. These artefacts show a sharp increase and decrease
in electrical potential, and an inversion of the artefact at more posterior electrodes,
such as TP9 and TP10. The ICA component ICA000 can be used to identify these
artefacts as independent sources shown in 4.2(a) and attenuate them by zeroing the
component.

On the other hand, constant eye positions don’t affect EEG recordings as the dipole
created by the retina is constant. Nevertheless, when the eyes move to observe
different locations in space, the dipole created by the retina moves and the electrodes
on the scalp detect this movement, leading to changes in electrical potential at frontal
electrodes on one side of the head and the opposite change on the other side. The
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Figure 4.1 Plot of subjects indicating the duration of examination before pre-processing
of the data

horizontal eye movement roughly generates a ”square wave” effect at electrodes F7
and F8, with F7/F3 becoming positive and F8/F4 becoming negative [59]. These
artefacts are identified because the polarity magnitude at F7 and F8 is the same
but in different directions. The ICA decomposition of this eye movement shows
as bilateral frontal topography in Figure 4.2(b). It was possible to remove these
artefactual sources in the pre-processing pipeline.

Overall, there were 9 successfully cleaned EEG signals; 5 from the continuous group
and 4 from the intermittent group.

4.2 EEG Connectivity graphs

EEG connectivity refers to the correlation of EEG signals between different brain
regions. It is a measure of how electrical signals in the brain are synchronized across
different locations, reflecting the communication and coordination between different
brain regions. Examples of the EEG connectivity results are shown in the circular
graphs for both continuous and intermittent cases. Inhaling the sub-anaesthetic
caused several changes to occur. Instead of showing the connectivity strength among
all the pairs of electrodes, the 12 electrode pairs with the strongest connectivity
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Table 4.1 Raw data with time stamps

subject renamed start gas_on gas_off gas_on2 gas_off2 end total
1 1 12:56:46 13:07:21 13:27:09 13:48:12 0:51:26
2 2 14:19:24 14:30:07 14:33:08 14:54:01 0:34:37*
3 3 14:01:30 14:10:22 14:12:15 14:23:20 0:21:50*
4 4 13:56:57 14:08:15 14:28:18 14:48 0:51:04
5 5 13:34:18 13:46:08 13:56:09 14:06:08 14:16:06 14:26:23 0:52:05
6 6 12:08:36 12:19:12 12:22:46 12:25:00 0:16:24*
7 7 8:42:31 8:55:07 9:14:23 9:35:25 0:52:54
28 8 8:30:29 8:43:09 9:03:08 9:23:24 0:52:55
29 9 15:47:16 15:58:16 16:14:23 16:24:36 0:37:20*
10 10 9:09:54 9:22:07 9:25:01 9:25:22 9:35:34 0:25:40*
24 11 12:28:05 12:40:06 13:00:07 13:20:18 0:52:13
12 12 13:36:46 13:47:08 13:57:09 14:07:07 14:17:07 14:27:25 0:50:39
13 13 12:12:18 12:24:42 12:34:32 12:44:24 12:54:24 13:04:44 0:52:26
14 14 10:26:23 10:36:17 10:45:32 10:55:08 11:05:07 11:15:24 0:49:01
15 15 12:38:27 12:51:50 13:01:30 13:11:07 13:21:06 13:31:28 0:53:01
16 16 8:29:46 8:40:07 8:43:45 8:45:00 0:15:14*
27 17 13:54:42 14:07:49 14:17:23 14:27:17 14:37:05 14:47:20 0:52:38
18 18 14:02:18 14:13:07 14:23:09 14:33:10 14:43:11 14:53:29 0:51:11
19 19 12:41:01 12:52:11 13:12:26 13:33:17 0:52:16
20 20 14:10:15 14:21:17 14:41:42 15:02:15 0:52:00

* Incomplete experiment

were plotted. This clearly identifies where or whether there are significant changes
in connectivity strength among the electrode pairs in the various conditions.

Subject 1 is a member of the continuous group and its circular connectivity graphs
is shown in Figure 4.4, 4.5, 4.6, 4.7.

The images depict changes in neuronal electrode pairs in the given frequency range
and their connectivity strength before, during, and after anaesthesia.

In the next set of circular graphs Figure 4.8, 4.9, 4.10, 4.11, we find those of subject
12, part of the intermittent group.

4.3 P-values - Continuous vs Intermittent cases

4.3.1 Surrogate analysis

Among the continuous group, the original data distribution was found to be statis-
tically significant when compared to the surrogate data in most instances. In Table
4.2 the theta band recorded the highest significant difference as shown in every
phase of the experiment (before, during and after anaesthesia). The alpha band had
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(a) Frontal Topography

(b) Frontal bilateral topography

Figure 4.2 ICA components indicating eye blink and eye movement artefacts independent
sources that are zeroed during pre-processing

the least significant difference which is seen across 3 subjects with 4 non-significant
p-values instances. During the nitrous oxide application phase, the delta band p-
values observed are non-significant in 2 of the subjects. In the beta band, 3 out of
4 of the subjects’ results were significant.

In the intermittent group, most of the results are also statistically different from
the surrogate data generated. However, the theta band recorded some statistically
non-significant results compared to the continuous case. The alpha and theta bands
had the most statistically significant results across the 5 phases of the experiment
before, during1, after1, during2, after2. The band with the least connectivity p-
values among the subjects is the beta band, where in 7 instances, values among all
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(a) Raw EEG signal, A (b) Cleaned EEG signal, A

(c) Raw EEG signal, B (d) Cleaned EEG signal, B

Figure 4.3 Instances of EEG pre-processing results: raw signals (left), clean signals
(right)

the subject experimental phases are not statistically significant.
Based on the results in the tables, the beta band offers the least statistically signif-
icant p-values in the surrogate test for intermittent groups. It contrasts the result
of the continuous group surrogate test where the beta band had just two instances
of statistical non-significance on one subject.

4.3.2 Across experimental phases

It was necessary to measure how the phase processes of the experiment vary from
each other for all the subjects individually. This compares the continuous and
intermittent conditions to know where the most significant changes occurred and
which frequency band are these changes most significant. The Tables 4.4 and 4.5
show the resulting p-values across experimental phases for each subject.

Continuous group individual analysis

The continuous group had 3 experimental phases i.e. the before, during and after
anaesthesia was administered to the subjects. Since the aim of this work is to
investigate the effect of nitrous oxide after was induced in the subjects, therefore,
we compared the before vs after phases results for each of these subjects as shown
in Table 4.4.
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Figure 4.4 Circular connectivity graph of subject 1 in the delta band showing the 12
strongest connectivity strengths between pairs of electrodes in episodes of before, during
and after nitrous oxide anaesthesia.

Figure 4.5 Circular connectivity graph of subject 1 in the theta band showing the 12
strongest connectivity strengths between pairs of electrodes in episodes of before, during
and after nitrous oxide anaesthesia.

Subject 1: Both alpha and beta band comparison of before vs after results are
statistically significant. Whereas the results recorded in the delta and theta bands
were found to be non-significant statistically.

Subject 4: There are significantly varying connectivity properties of EEG in theta,
alpha and beta band while only the delta band contained statistically non-significant
results when the state of connectivity was compared for before vs after phases.

Subject 7: The results computed for before vs after phases across the 4 frequency
bands were statistically significant in two out of the four frequency bands. This is
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Figure 4.6 Circular connectivity graph of subject 1 in the alpha band showing the 12
strongest connectivity strengths between pairs of electrodes in episodes of before, during
and after nitrous oxide anaesthesia.

Figure 4.7 Circular connectivity graph of subject 1 in the beta band showing the 12
strongest connectivity strengths between pairs of electrodes in episodes of before, during
and after nitrous oxide anaesthesia.

in the alpha and beta bands while the delta and theta bands are not statistically
significant.

Subject 11: Three out of the four frequency bands were statistically significant
when connectivity was computed for before vs after phases. These include the theta,
alpha and beta bands while the delta band is not significant as shown in the table.

Subject 19: This subject had all statistically significant in all the bands when the
before vs after phases were computed. It is clear across all EEG frequency bands
that there is a significant difference between the phases.
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Figure 4.8 Circular connectivity graph of subject 12 in the delta band showing the 12
strongest connectivity strengths between pairs of electrodes in episodes of before, during1,
after1, during2 and after2 nitrous oxide anaesthesia.

Figure 4.9 Circular connectivity graph of subject 12 in the theta band showing the 12
strongest connectivity strengths between pairs of electrodes in episodes of before, during1,
after1, during2 and after2 nitrous oxide anaesthesia.

The results among the continuous group show that the lower frequency bands were
the least affected in connectivity after the introduction of nitrous oxide. In four out
of five instances, the result was not statistically significant in the delta band. In two
out of five, the theta band showed no significant variation. Beta and alpha are the
bands most affected by this phenomenon, as every result is statistically significant.

Intermittent group individual analysis

The intermittent group had 5 phases (before, during1, after1, during2 and after2)
of the experiment. We however compared the before nitrous oxide and the after
phases of nitrous oxide introduction and also the after1 and after2 phases to have a
clearer understanding of the effect of the anaesthesia and how these changes differ
from each other in the intermittent case. The result is shown in Table 4.5.

Subject 12: In before vs after1 comparison, the p-value was found to have a statis-
tically significant result all through the alpha band. However, the results computed
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Figure 4.10 Circular connectivity graph of subject 12 in the alpha band showing the 12
strongest connectivity strengths between pairs of electrodes in episodes of before, during1,
after1, during2 and after2 nitrous oxide anaesthesia.

Figure 4.11 Circular connectivity graph of subject 12 in the beta band showing the 12
strongest connectivity strengths between pairs of electrodes in episodes of before, during1,
after1, during2 and after2 nitrous oxide anaesthesia.

for before vs after2 and after1 vs after2 are statistically significant in all the fre-
quency bands.

Subject 13: In this subject, the EEG connectivity values for the phases are shown
to vary significantly in both delta and alpha bands. Two each in theta and beta band
p-values are statistically significant in both before_vs_after2 and after1_vs_after2.
Based on this, there is no significant difference between the pre-anaesthesia phase
and the first post-anaesthesia phase in the theta and beta bands.

Subject 14: Among the three instances, the highest non-significant p-values were
observed in the theta band. The p-values for the delta and alpha bands were sta-
tistically non-significant once in each. The beta band had two instances where the
p-values were not significant. Aside from these, all other results are statistically
significant.

Subject 18: The results, in this case, were somewhat statistically significant. All
the delta band instances were significant, whereas the theta, alpha and beta bands
had a single occurrence of non-statistical significant results.
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Table 4.2 Continuous group surrogate analyses - p_values

delta theta alpha beta
Subject 1
before NS ** ** NS
during * *** ** ***
after *** *** * NS

Subject 4
before * *** NS ***
during *** *** *** ***
after *** *** NS ***

Subject 7
before * *** NS ***
during *** *** ** ***
after *** *** *** ***

Subject 11
before *** *** *** ***
during NS *** *** ***
after *** *** *** ***

Subject 19
before ** *** *** ***
during NS ** NS ***
after *** *** *** ***

NS - Not Significant
Significant * 0.005 - 0.05, ** 0.00005 - 0.005, *** 0 - 0.00005

Overall the intermittent cases, the most affected EEG frequency bands in post-
anaesthesia comparison are the delta and alpha bands. The theta band is the least
affected, followed by the beta band. This result is in contrast with the results
gathered from the continuous group, where higher frequency bands generated most
of the statistically significant results.
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Table 4.3 Intermittent group surrogate analyses - p_values

delta theta alpha beta
Subject 12
before * * *** ***
during1 * *** *** NS
after1 *** ** *** ***
during2 *** *** *** *
after2 *** *** *** **

Subject 13
before *** *** ** *
during1 *** NS ** ***
after1 *** NS *** NS
during2 *** * *** ***
after2 * NS *** ***

Subject 14
before *** NS *** NS
during1 *** *** *** NS
after1 *** NS *** ***
during2 *** *** *** **
after2 ** *** *** NS

Subject 18
before *** *** * NS
during1 ** *** *** NS
after1 ** *** * ***
during2 NS *** NS *
after2 *** *** * ***

NS - Not Significant
Significant * 0.005 - 0.05, ** 0.00005 - 0.005, *** 0 - 0.00005

Table 4.4 Continuous group p-values showing the comparison of before vs after anaes-
thesia

delta theta alpha beta
Subject 1

before_vs_after NS NS * *
Subject 4

before_vs_after NS ** * **
Subject 7

before_vs_after NS NS *** ***
Subject 11

before_vs_after NS *** * ***
Subject 19

before_vs_after *** *** * ***
NS - Not Significant
Significant * 0.005 - 0.05, ** 0.00005 - 0.005, *** 0 - 0.00005
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Table 4.5 Intermittent group p-values showing the
comparison of before vs after anaesthesia

delta theta alpha beta
Subject 12

before_vs_after1 NS NS ** NS
before_vs_after2 *** *** *** ***
after1_vs_after2 *** *** *** ***

Subject 13
before_vs_after1 *** NS * NS
before_vs_after2 ** *** *** ***
after1_vs_after2 ** *** *** ***

Subject 14
before_vs_after1 NS NS *** NS
before_vs_after2 ** NS *** *
after1_vs_after2 ** NS NS NS

Subject 18
before_vs_after1 ** *** NS ***
before_vs_after2 *** NS *** NS
after1_vs_after2 *** *** * ***

NS - Not Significant
Significant * 0.005 - 0.05, ** 0.00005 - 0.005, *** 0 - 0.00005
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5 Discussion
This study provides insight into how to monitor the brain state and consciousness
of subjects for major depression studies by examining the effect of nitrous oxide on
brain connectivity. It aimed to substantiate the scientific understanding of how and
to what extent the cortical unit interactions are affected by the possible depression-
alleviating agent nitrous oxide. Having assessed both the benefits and caveats of
the various EEG connectivity metrics, the wPLI technique of phase synchronization
was applied. In the following paragraphs, the results will be discussed along with
their interpretation, implications, limitation of the study and suggestions for further
research.

Analyses have shown that nitrous oxide alters brain connectivity on a variety of
levels. Indications in the graph plots showed that raw EEG data were suitably
pre-processed and eliminated a considerable amount of signal noise arising from eye
blinks so the nitrous oxide effect could be assessed reliably. Nevertheless, some EEG
data quality was poor such that their correction was ineffective in the pre-processing
pipeline. Changes in neuronal interactions were consistent with the introduction of
nitrous oxide. The strength of these changes differs among the subjects and fre-
quency bands considered. In the surrogate test, the significance level indicates that
the wPLIs of original intra-subject EEG signals are not correlated. Post-anaesthesia,
higher frequency bands of EEG were mostly affected by prolonged gas exposure,
while beta waves were least affected by intermittent gas exposure.

It is hypothesized that phase changes in neuronal synchronization serve as mecha-
nisms for neuronal communication. The results of the surrogate test suggest that
the data generated can provide an appropriate significance test. The results pre-
sented by wPLI are consistent with the graph analysis study on the nitrous oxide
sedative effect [9]. However, the phase synchronization metric deployed in this study
determined whether there is oscillatory synchrony between brain regions at similar
frequency ranges in pre and post-conditions of anaesthesia. In the continuous group,
the EEG connectivity dynamics acquired indicate strict variation in beta and alpha
waves wPLI distribution of the pre and post-anaesthesia. This contrasts the results
acquired in the intermittent gas exposure group where the beta band recorded the
minimum change among the four frequency ranges. Since major depression disorder
has been associated with alterations in mood, cognitive ability, sensorimotor func-
tions and homeostatic functions [60], the data, therefore, suggest that continuous
nitrous oxide exposure may be a more effective therapy protocol if found to be a suit-
able antidepressant. The reason is that most of the stated depression characteristics
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are more associated with beta frequency. In addition, [48] found delta oscillations to
be induced by nitrous oxide using power spectral density (PSD). Although results
from PSD and network analysis performed on functional correlation (FC) shows
some strong relation, PLI vs PSD comparison is not as straightforward as PLV vs
PSD [61]. However, it suggests that PSD and FC results may not be independent
and should not be separated. Instead, they should be analyzed together to provide
a more comprehensive view of the result. Considering this, it would seem that the
wPLI technique cannot easily confirm the induced delta oscillation. Nonetheless,
the unvarying delta distribution in the continuous group may imply increased delta
wave activities in synchrony between neuronal pairs of EEG electrodes. In another
study [62], depression disorder was found to not be associated with the delta band
but with theta, alpha and beta bands of EEG electrophysiology properties. The in-
termittent group result showed more variation in both delta and alpha EEG bands.

This study has some potential limitations. It is difficult to make major inferences
on the effects of nitrous oxide due to the low number of subjects, few data collected,
sensor-level analysis and the lack of sufficient prior research on the topic. Five and
four subjects from the continuous and intermittent groups respectively are insuf-
ficient to draw general conclusions. The sample size is too small to make group
analyses that identify the significant relationships in the data and this is why a
case-by-case analysis has been applied in this work. Recruiting more subjects and
collecting multiple data after anaesthesia treatment can be considered for future
research. Nitrous oxide had been identified to alleviate symptoms of depression in
some subjects by [8]. The study investigated the changes on the 21-item Hamil-
ton Depression Rating Scale resulting from nitrous oxide treatment 2hrs and 24hrs
after the treatment. The assessment of neuronal connectivity just after the treat-
ment was necessary, however, additional data collection after 2hr and 24hr can be
helpful to establish a better understanding of the neuronal circuit mechanism of
nitrous oxide and relate it with the referenced study. It is imperative to note the
following considerations when analyzing at the sensor level: EEG channels do not
necessarily correlate with the source location [63]; however, this study assumes so,
and despite the application of the wPLI method, spurious estimates of functional
connectivity between the channels may still occur as a result of field spread and
volume conduction [64, 65]. The other limitation observed in this study is because
of insufficient previous studies on brain connectivity arising from the identified an-
tidepressants. There is an obvious need to investigate other NMDA-R features in
neuronal connectivity. It would provide insight into the common function of nitrous
oxide with other NMDA -R in brain connectivity relating to anti-depression effects.
Using source-level data to investigate the effect of nitrous oxide could also help to
quantify the effects of nitrous oxide on brain interactions.
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In summary, the wPLI method of phase synchronization was chosen after weighing
the advantages and disadvantages of the different EEG connectivity measurements.
The graph plots show that the raw EEG data was sufficiently pre-processed to re-
move eye blink noise and estimate the nitrous oxide effect. All of the subjects’ neural
interactions were consistently altered by nitrous oxide. These findings support the
conclusions of [9]’s graph analysis study on the sedative effects of nitrous gas. Addi-
tionally, it was shown by [48] that nitrous oxide causes delta oscillations, and some
participants in both groups displayed elevated delta connectivity values. According
to one study [62], theta, alpha, and beta electrophysiological bands, rather than the
delta band, were associated with depressive disorder. This study discovered that the
beta band connection strength was noticeably diminished in the continuous group
participants. Small data size, sensor-level data and insufficient prior research are
potential limitations of this work. A general conclusion cannot be drawn since there
is not enough research on how the antidepressants identified affect brain connec-
tions. More research into how nitrous oxide affects brain state and consciousness
may be possible with the addition of more participants, several data points after
nitrous oxide administration, and source-level data analysis.
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6 Conclusions and Future perspective
This chapter serves as a conclusion, summarizing the primary research findings in
relation to the research objectives, and highlighting their value and contribution.
It is important to acknowledge the limitations identified in the preceding chapter,
namely the relatively small sample size, which hindered the interpretation of the
results and limited conclusions regarding complex phenomena. However, this section
will provide a broader perspective on potential avenues for future research.

The primary objective of this investigation was to examine the impact of nitrous
oxide on cortical interactions. This research was motivated by the need to expand
our understanding of the claimed antidepressant effect of nitrous oxide, as reported
by some studies. Based on the findings of this investigation, the following conclusion
can be drawn.

• The results indicate that nitrous oxide alters information processed during
anaesthesia, as observed on the EEG bands. The beta band connectivity was
significantly reduced at prolonged gas exposure than at intermittent exposure,
indicating a faster loss of consciousness in the former condition.

• This study does not, however, claim any major findings about how nitrous
oxide can relieve depression. It is necessary to collect more data from a larger
study of known antidepressants to establish nitrous oxide’s baseline impact on
depression symptoms relating to neural interactions.

• Future studies can benefit from the considerations made in this study. The
wPLI connectivity metrics used after the pre-processing pipeline are more
reliable due to the fact that they are less prone to noise caused by volume
conduction. In addition, further research may consider other connectivity
techniques that may be more suitable for any prior assumptions about its data.
By adding more subjects to this study, it should become easier to analyze EEG
connectivity properties on a broader scale based on the pre-processing pipeline
generated from this study.

• In any given condition, the Python algorithms provide efficient case-by-case
analysis, and this can easily be optimized to make a group analysis that es-
tablishes a baseline understanding of nitrous oxide’s effect on neuronal circuit
mechanisms.

Considering this, further research in this area could yield valuable insights into the
mechanism of action of nitrous oxide and its potential therapeutic applications in
treating depression.
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APPENDIX A. Circular graphs

Figure 1 Circular connectivity graph of subject 4 (from the continuous group) in the
delta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.

Figure 2 Circular connectivity graph of subject 4 (from the continuous group) in the
theta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.
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Figure 3 Circular connectivity graph of subject 4 (from the continuous group) in the
alpha band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.

Figure 4 Circular connectivity graph of subject 4 (from the continuous group) in the beta
band showing the 12 strongest connectivity strengths between pairs of electrodes in episodes
of before, during and after nitrous oxide anaesthesia.
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Figure 5 Circular connectivity graph of subject 7 (from the continuous group) in the
delta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.

Figure 6 Circular connectivity graph of subject 7 (from the continuous group) in the
theta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.
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Figure 7 Circular connectivity graph of subject 7 (from the continuous group) in the
alpha band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.

Figure 8 Circular connectivity graph of subject 7 (from the continuous group) in the beta
band showing the 12 strongest connectivity strengths between pairs of electrodes in episodes
of before, during and after nitrous oxide anaesthesia.
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Figure 9 Circular connectivity graph of subject 11 (from the continuous group) in the
delta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.

Figure 10 Circular connectivity graph of subject 11 (from the continuous group) in the
theta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.
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Figure 11 Circular connectivity graph of subject 11 (from the continuous group) in the
alpha band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.

Figure 12 Circular connectivity graph of subject 11 (from the continuous group) in the
beta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.
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Figure 13 Circular connectivity graph of subject 19 (from the continuous group) in the
delta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.

Figure 14 Circular connectivity graph of subject 19 (from the continuous group) in the
theta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.
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Figure 15 Circular connectivity graph of subject 19 (from the continuous group) in the
alpha band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.

Figure 16 Circular connectivity graph of subject 19 (from the continuous group) in the
beta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during and after nitrous oxide anaesthesia.
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Figure 17 Circular connectivity graph of subject 13 (from the intermittent group) in the
delta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.

Figure 18 Circular connectivity graph of subject 13 (from the intermittent group) in the
theta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.

Figure 19 Circular connectivity graph of subject 13 (from the intermittent group) in the
alpha band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.
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Figure 20 Circular connectivity graph of subject 13 (from the intermittent group) in the
beta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.

Figure 21 Circular connectivity graph of subject 14 (from the intermittent group) in the
delta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.

Figure 22 Circular connectivity graph of subject 14 (from the intermittent group) in the
theta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.
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Figure 23 Circular connectivity graph of subject 14 (from the intermittent group) in the
alpha band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.

Figure 24 Circular connectivity graph of subject 14 (from the intermittent group) in the
beta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.

Figure 25 Circular connectivity graph of subject 18 (from the intermittent group) in the
delta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.
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Figure 26 Circular connectivity graph of subject 18 (from the intermittent group) in the
theta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.

Figure 27 Circular connectivity graph of subject 18 (from the intermittent group) in the
alpha band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.

Figure 28 Circular connectivity graph of subject 18 (from the intermittent group) in the
theta band showing the 12 strongest connectivity strengths between pairs of electrodes in
episodes of before, during1, after1, during2 and after2 nitrous oxide anaesthesia.
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APPENDIX B. Algorithms
The GitHub links below contain the Python scripts used to preprocess the EEG
data and other analyses performed in this thesis work.

EEG-Preprocessing pipeline
Analysis scripts in Python

https://github.com/Healthpy/EEG-Preprocessing
https://github.com/Healthpy/Analysis-Effects-of-Nitrous-oxide-on-EEG
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