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1. Introduction and preliminaries

Fixed point theory is a powerful and fruitful tool in the study of non-linear phenomena. It is an
interdisciplinary branch of mathematical sciences which can be applied in several areas of mathematics
and other fields, viz., game theory, mathematical economics, optimization problems, approximation
theory, initial and boundary value problems in ordinary and partial differential equations, variational
inequalities, biology, chemistry, physics, engineering and others. The most fundamental result in fixed
point theory that influenced several researchers was due to the Polish mathematician Stefan Banach [1]
in 1922. Indeed, he proved a theorem which guarantees a unique fixed point of any contraction mapping
in complete metric space. This result is popularly known as the Banach fixed point theorem or Banach
contraction principle. Also, a constructive proof of the Banach fixed point theorem is very interesting
because it yields one of the iterative methods for computing a fixed point. Because new discoveries of
space and their properties are always interesting to researchers in mathematics, several researchers have
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generalized the metric space structure by either weakening the properties of the metric or modifying
the domain and range of the metric: for example, b-metric by S. Czerwik [2] in 1993, partial metric
by S. G. Matthews [13] in 1994, partial rectangular metric by S. Shukla [22] in 2014 and many others
(see [3,5,6,17-19,21] and references therein). Interestingly, Matthews explored applications of partial
metric spaces in the field of computer science, especially in the study of denotational semantics of
programming languages and algorithms. Recently, in 2016, Mutlu et al. [14] generalized the metric
space structure by changing the domain of the function in which they considered the distance between
points of two different sets instead of a single set. The concept is known as a bipolar metric space,
and various fixed point theorems including the Banach contraction principle, of metric spaces are also
extended to the settings of the notion (see [9, 11, 12, 15, 20] and references therein). Furthermore,
Kishore et al. [10] proved some common fixed point theorems in a bipolar metric space with important
applications, while Mutlu et al. [15, 16] proved the coupled fixed point results and principle of locally
and weakly contractive mappings in bipolar metric spaces. Hence, fixed point theory of bipolar metric
space is an active research area, and it is capturing a lot of attention for further work.

In this article we will present some common fixed point theorems for generalized rational type
contractions in bipolar metric spaces. The approach is based on some fixed point results for contraction
type mappings of Kishore et al. [10] and others. Our results are the extensions of Banach’s contraction,
Kannan’s contraction, Jaggi’s contraction and Khan’s contraction of the metric space to a bipolar metric
space. Also, we show that our conclusions improve, generalize and extend comparable conclusions of
the literature in bipolar metric spaces. Also, we have given some non-trivial examples to demonstrate
our conclusions, and applications are obtained for homotopy theory and integral equations.

Throughout this paper N and R stand for the set of all positive integers and the set of all real
numbers, respectively. In particular we write R* = [0, +0c0), the set of all non-negative reals. Moreover,
we recall some definitions which are needed for our study.

Definition 1.1. [/4] Let X, Y # ¢ and o : X X Y — [0, +0) be a mapping satisfying the following
properties:

(Bl) p=v, if o(u,v) = 0;

(B2) o(u,v) =0, ifp=v;

(B3) ou,v) =o(v,p), ifp,v €XNY;

(B4) o(u1,v2) < o(ur, vi) + 0(u2, vi) + 0(ua, v2) for all py, us € X and vy, v, € Y.

Then, the mapping o is called a bipolar metric on the pair (X,Y), and the triple (X, Y, 0) is called a
bipolar metric space.

Example 1.1. [14] Let X be the class of all singleton subsets of R and Y be the class of all nonempty
compact subsets of R. We define o : X XY — Ras o(u,A) =| u —inf(A) | + | u — sup(A) |. Then, the
triple (X, Y, 0) is a complete bipolar metric space.

Definition 1.2. [/4] Let (X,,Y)) and (X», Y,) be two pair of sets. Amap S : X, UY, - X, UY, is
called

(i) covariant if S(X,) C X, and S(Y,) C Y,, and it is denoted as S : (X1,Y) =3 (X3, Y>);
(ii) contravariant if S(X;) C Y, and S(Y,) C X5, and it is denoted as S : (X1,Y1) 2 (X3, 12).

Definition 1.3. [14] Let (X, Y, 0) be a bipolar metric space. Then,
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(1) X = set of left points; Y = set of right points; XNY = set of central points.
In particular, if X N'Y = ¢, the space is called disjoint, and otherwise it is called joint. Unless
otherwise stated, we shall work with joint spaces.
(2) A sequence (u,) on the set X is called a left sequence, and a sequence (v,) on Y is called a right
sequence. In a bipolar metric space, a left or a right sequence is called simply a sequence.
(3) A sequence (u,) is said to be convergent to a point u if and only if (u,) is a left sequence,
lim o(u,,u) = 0and u €Y, or (u,) is a right sequence, nEToo o(u, i,) =0and u € X.

n—+oo

(4) A bisequence (u,,v,) on (X, Y, 0) is a sequence on the set X X Y. Furthermore, if the sequences
(u,) and (v,) are convergent, then the bisequence (u,,v,) is said to be convergent. In addition, if
(u,) and (v,) converge to a common point t € XNY, then (u,,v,) is called biconvergent.

(5) A bisequence (u,,v,) is a Cauchy bisequence if lim o(u,,v,) = 0.
n—+oo

Remark 1.1. In a bipolar metric space, every convergent Cauchy bisequence is biconvergent.

Definition 1.4. [I14] A bipolar metric space is called complete if every Cauchy bisequence is
convergent, hence biconvergent.

Definition 1.5. [14] A covariant or a contravariant map S from the bipolar metric space (X, Y1,01)
to the bipolar metric space (X, Y>,0,) is continuous, if and only if (u,) — v on (X1, Y1,01) implies
S (un) = S(v) on (X2, Y2, 02).

Now, we have the following fixed point theorems on metric spaces.

Theorem 1.1 (Banach’s contraction (1922)). [1] Let (X, 0) be a complete metric space, and T : X —
X satisfying o(Tu, Tv) < pyo(u, v), for all u,v € X, with O < y; < 1. Then, T has a unique fixed point.

Theorem 1.2 (Kannan’s contraction (1969)). [7] Let (X, 0) be a complete metric space, and T : X
— X satisfying o(Tu, Tv) < pilo(u, Tu) + o(v, Tv)], for all u,v € X, with 0 < u; < % Then, T has a
unique fixed point.

In addition, two other fixed point theorems have been obtained under some new contractive
conditions, which are the following.

Theorem 1.3 (Khan’s contraction (1975)). [8] Let (X, 0) be a complete metric space, and T : X — X

satisfying

o, Two(p, Tv) + o(Tv, v)o(v, T)
oI < o(u, Tv) + o(v, Tu) ’

SJorall u,v € X, with O < yy < 1. Then, T has a unique fixed point.

Theorem 1.4 (Jaggi’s contraction (1977)). [4] Let T be a continuous self map defined on a complete
metric space (X, 0). Suppose that T satisfies the following contractive condition:

, T Ty,
o(Tv. Ty SMQ(.U wo(Tv,v) + 11207,
o(u, v)

forall u,v € X, u # v, and for some py,u, € [0, 1) with uy + o < 1. Then, T has a unique fixed point
in X.
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2. Main results

Now, we establish two common fixed point results for mappings satisfying the generalized rational
type contractive conditions which extend Theorems 1.1-1.4 to bipolar metric spaces. First we prove
the following theorem.

Theorem 2.1. Let (X, Y, 0) be a complete bipolar metric space, and let T,S : (X, Y,0) 2 (X,Y,0) be
contravariant mappings satisfying
o, Two(Sv,v)
oS, Tp) < py oY) + o0, v) + pslo(u, Tp) + o(S v, v)l, 2.1
Sforall (u,v) e X XY, withu #vand 0 < uy + up + 2uz < 1, where uy, pp, uz = 0. Then, T,S : XUY —
XUY have a unique common fixed point, provided that T and S are continuous in (X,Y).

Proof. Let uy € X and v € Y. For each n € N U {0}, we use the following one of the iterative methods
to define sequences (u,) and (v,):

Strn = Van y Thone1 = Vonst » SVon = Mot » TVons1 = Honso.

Now, by (2.1), we get

O(Woni1> Vons1) = 08 Van, Thops1)
Q(ﬂ2n+l ’ T/J2n+l)Q(S Von, V2n)
Q(,u2n+1 ) VZn)
Q(/JZn s Von )Q(,UZn % Zn)
= W ASLACLE + + 1o0(U2n+1, Van) + H3[0(Wons1, Vant1) + 0(U2ns15 Van)]
Q(/J2n+l ’ VZn)

= oMant1, Vans1) + 20(WUans1, Van) + U30(U2n+1, Vans1) + H30(Han+15 Van)s

IA

+ 10(Hon+15 Van) + U3l0(Wons1, THone1) + 0(S Van, Vi)l

O(U2n+1, Vanse1) < e O(U2n+1, Van)- (2.2)
1=y —p3
We obtain also
Oo(WUon+1,Van) = 0(SVan, S Hon)
(205 S 1422)0(S Vau, V2n)
< W 2 2 2w 2l 12020, Van) + p3[0(Uon, S f2n) + 0(S Vau, v2u)]
Q(,UZm VZH)
O(Uons V20)O(Hons15 Van)
= WU Wian, Vou)QHhzns 1. V2 + t20(on, Van) + p3lo(Uan, Van) + 0(Uon+1, Van)l
Q(/«‘Zn, V2n)

= 10U2n+1, Van) + 20(Uon, Van) + H30(Hon, Van) + H30(H2n+15 V2n)s
e

O(M2n+1, Van) < 1— O(U2n, V). (2.3)
Hi
+
Take A = 1.“2—/13, and then A € [0, 1) because u; +u; +2us3 € [0, 1). Hence, from (2.2) and (2.3),
— M1 — M3
we get
O(tans1, Vane1) < A" 20(uo, vo) and 0(Uans1, van) < A o(uo, Vo). (2.4)
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Now, we can get that for any n € N,

and

Q(/ln+l 5 Vn+1) < /12’14—29(}10’ V0)7

(i1, V) < 22" o(uo, vo),

Oy Vi) < 2" 0(1o, Vo).

Further, for all m,n € N, we consider the following cases:

Case 1. If m > n, we have

O(Wns Vin)

INIA A

IA

IA

IA

O(tn> V) + 01> Vi) + O( s 15 Vin)

oo, vo) + A" oo, Vo) + 01, Vin)

(A" + 27" DYoo, v0) + 0(nsts Vart) + 0(Uns2s Var1) + 0(tns2, Vin)
(" + 22" DYoo, vo) + 12010, vo) + 100, Vo) + 0(ne2s Vin)

AL+ A+ 2+ 2+ .+ 22(uo, vo)

1= /12(m—n)+1
PR (?) oo, Vo).

Since A < 1, lim o(u,,v,) = 0.
n,m—+o0o

Case 2. If m < n, we have

o(tn, Vin)

IA A

IA

IA

<

Again, since 4 < 1,
n,

Q(/1m+la Vm) + Q(/1m+la Vm+l) + Q(/lna Vm+l)
"o, vo) + ™ 0(1o, vo) + 0, Vine1)
(/12m+1 + /12m+2)Q(lJ0, VO) + Q(/Jm+2a Vm+1) + Q(/Jm+2a Vm+2) + Q(,un’ Vm+2)

AL+ A+ 2+ 28+ o+ 227 Do (o, vo)

1= /lZ(n—m)—l
PR (ﬁ)@(ﬂo, 0).

lim o(u,, viy) = 0.
m— +00

This means that o(u,, v,,) can be made arbitrarily small by large m and n, and hence (u,, v,,) is a Cauchy
bisequence in (X, Y). By the completeness of (X,Y, o), the bisequence (u,, v,) biconverges to some u* €
XNY such that Eerwn) = lier(vn) = u*. Also, S (uz,) = (va,) — u* € XNY implies that S (uy,) has
a unique limit ,un*, and (/Jn)n—> p* implies that (up,) — p*. Now, the continuity of S implies that
S (t2,) — Su*. Therefore, Su* = u*.

Similarly, T (va,+1) = (Uons2) — i € XNY implies that 7'(v,,,) has a unique limit ¢*, and (v,,) —
u* implies that (v,,,1) — u*. Now, the continuity of 7 implies that 7'(v,,.1) — Tu*. Therefore,
Tu* = p*. Thus, Syu* = Tu* = y*,i.e., T and S have a common fixed point.

AIMS Mathematics
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Now, we will prove the uniqueness of the common fixed point. If v* € XNY is another common
fixed point of S and T, that is, Sv* = Tv* = v* € XNY, then we get

oV, 1) = oSV, Tu")
LTSV, V) . — .
< 19(” ”*Q* + oo, v7) + uslo(u™, Tu™) + o(Sv', v7)]
o(u*,v)
oW", 1 )o(v', v') . s - “ o
= — + oo, v7) + palo(u, 1) + o(v', vl
o, v)
Therefore, o(v*, u*) < wo(u*, v*), which is a contradiction, and hence, y* = v*. This completes the
theorem. m|

Now, we have the following example to validate Theorem 2.1.

Example 2.1. Let X = {7,8,11,17} and Y = {2,4,17,18}. Define o : X X Y — [0, +0) as the usual
metric, o(u,v) = | u—v |. Then, the triple (X,Y, o) is a bipolar metric space. The contravariant mappings
T,S : XUY 2 XUY, defined by

17, a € XU{18}, 17, a€{17,18},
Ta = and Sa =
18, otherwise, 18, otherwise,
. : . 1 1 1 _
satisfy the inequality of Theorem 2.1 for u, = M= = and 17 € XNY is the only common

fixed point of T and S.

Moreover, by taking T = S in Theorem 2.1, we get the following result, which is a generalization of
Theorems 1.1, 1.2 and 1.4 in the context of a bipolar metric space.

Corollary 2.1. Let (X, Y,0) be a complete bipolar metric space and T : (X,Y,0) 2 (X,Y,0) be a
contravariant mapping satisfying
o, Tio(Tv,v)
o(Tv, Ty) < oY) + oo, v) + pslo(u, Tp) + o(Tv, v)],
Jorall (u,v) e X XY, withu #vand0 < uy + uy +2us < 1, where uy, up, uz > 0. Then, T : XUY —
XUY has a unique fixed point, provided that T is continuous in (X,Y).

Remark 2.1. The results obtained by Mutlu et al. [14] are special cases of Corollary 2.1.
Now, we prove our second result in a bipolar metric space as follows.

Theorem 2.2. Let (X,Y,0) be a complete bipolar metric space and T,S : (X,Y,0) 2 (X,Y,0) be
contravariant mappings satisfying

o(u, Two(u, Sv) + o(S v, v)o(v, Tu)
o(u, Sv) +o(v, T)

forall (u,v) e X XY, withu #vand 0 < uy + u + 2uz < 1, where uy, o, uz > 0. Then, T,S : XUY —
XUY have a unique common fixed point, provided that T,S are continuous in (X,Y).

o(Sv, Tp) < uy + poo(u, v) + uslo(u, T + o(Sv,v)l,  (2.5)

AIMS Mathematics Volume 8, Issue 8, 19004—-19017.
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Proof. Let uy € X and vy € Y. For each n € N U {0}, we use the following iterative method to define
sequences (u,) and (v,):

Strn = Vvan » Thone1 = Vonst 5 SVan = Mot » TVons1 = Honso-

Now, from (2.5), we get

Q(/12n+1, V2n+1) = Q(S Vons Tﬂ2n+l)
O(Wons1> TH2ne1)O(M2n 41, S Van) + 0(S Van,s v2u)O(Van, T us1)
H 02041, S v2n) + 0(Van, THops1)

+ 120(U2n+1, Van) + p3[0(ans1, Tont1) + 0(S Vo, v24)]
Q(,Uzn+1 s Vo )O(Mons 15 Mant1) + O(H2n11, V2)O(Vans Vans1)
O(Wons15 M2n41) + OVans Vans1)

+ 120(H2n+1, Van) + 3[0(H2n115 Vans1) + 0(U2nt15 Van)]

H10(Hone15 Vo) + 20(Uons15 Van) + 3020415 Vonet) + H30(Hons15 Van),

<

which implies
i+ o+ 13

1-— Q(:u2n+1’ VZn)' (26)

O(U2n+1, Vane1) <

We obtain also

O(U2ns1,V2n) = 0(SVan, S t2n)
Q(/JZn’ S;“Zn)Q(/-‘Zm S V2n) + Q(S Von, VZn)Q(VZna S/JZn)
Q(/J2n’ SVZn) + Q(VZm SﬂZn)
+ o0(U2ns Van) + H3[0(W2ns S Han) + 0(S Vau, v2i)]
Q(/lzn, V20)O(Uons H2n+1) + 02415 V2n)O(Vans Van)
(2, Hons1) + 0(Van, Vau)
+ 02, Van) + H3[0(Wans Van) + O(Uani15 Van)]

= 10(Uan, Van) + 20(Uan, Van) + 30(Uon, Van) + H30(Hon+15 Van),

IA

which implies
Hi+ o + 3

1 Q(MZn’ VZn)- (27)
—H3

O(Uan+1,Van) <

Hi+ Ho + 13

Take A’ = ,and then A’ € [0, 1) because u; +u, +2us € [0, 1). Hence, from the previous

3
two inequalities (2.6) and (2.7), we get
O(ns1, vann) < A 20(uo, vo)  and  @(Hanr1, van) < A oo, o). (2.8)

Now, we can get that for any n € N,

O(Un+15Vns1) < /1’2'”2@(/10, v0)s

Q(/Jn+] s Vn) < ﬂlzn_ﬂ@(ﬂo’ VO)

and

Oty Vi) < A" 0o, Vo).

Hence, for all m,n € N, we consider the following cases:

AIMS Mathematics Volume 8, Issue 8, 19004—-19017.
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Case 1. If m > n, we have

Q(,Una Vi) Q(ﬂna Vn) + Q(:un+1’ Vn) + Q(ﬂn+1, Vin)
"0, vo) + 2" o(1to, vo) + (15 Vin)
(/1/2’1 + /1'2’”1)@(/10, Vo) + O(Wns15 Vnr1) + OWns2, Vasr1) + 0(Uns2, Vin)

(/1/2n + /1,2n+1)Q(/JO’ VO) + /ll2n+2Q(/10, VO) + AQ?H'SQ(/JOa VO) + Q(/'ln+2a Vm)

IAN A

IA

IA

APA+ X+ 2%+ % 4+ 2o, vo)

1= /lIZ(m—n)+l
e (—) 0o, vo)-

<
1=

Since A’ <1, lim o(u,,v,) = 0.

n,m—+0oo

Case 2. If m < n,

Oy Vi)

IA

Q(/-lm+l, Vm) + Q(/-lm+l’ Vm+1) + Q(,um Vm+l)
2™ oo, vo) + A0 (o, o) + 0(tns Vins1)
(/YZMH + ﬁamﬂ)@(ﬂo, v0) + O(Um+2> Vins1) + OWms25 Vini2) + O(Uns Vins2)

IA

IA

IA

/1/2m+1(1 + /1’ + /1’2 + /1’3 + ...+ /I,Z(H_m_l))g(/"l(b VO)

. 1 - /l/Z(n—m)—l
< amH (?)QWO,VO).

Again, since I’ < 1, lim o(u,,v,) = 0.
n,m—+oo

This means that o(u,, v,,) can be made arbitrarily small by large m and n, and hence (u,, v,,) is a Cauchy
bisequence in (X,Y). By the completeness of (X,Y, o), the bisequence (u,, v,) biconverges to some u* €
XNY such that Emen) = ETm(vn) = u*. Also, S (ua,) = (v2,) — p* € XNY implies that S (u,,) has
a unique limit ,un* and (/.ln)n—> p* implies that (u,,) — p*. Now, the continuity of S implies that
S (uon) — Sp*. Therefore, Su* = u*.

Similarly, T (vu11) = (Uons2) — p* € XNY implies that 7' (v,,,1) has a unique limit ¢*, and (v,) —
u* implies that (v,,,1) — u*. Now, the continuity of 7 implies that T'(v,,,1) — Tu*. Therefore,
Tu* = . Thus, Sy* = Tu* = u*, i.e., T and S have a common fixed point.

Now, we will prove the uniqueness of the common fixed point. If v* € XNY is another common
fixed point of S and T, that is, Sv* = Tv* = v* € XNY, then we get

oV, u) = oSV, Tu")
o, T )ou", Sv*) + o(Sv*, v)o(v*, Ty")
. o, Sv) + 00", Ti)
o™, uHo",v') + o(v*, v )o(v', 1)
ow*,v*) + o(v*, u*)
Therefore, o(v*, u*) < wo(u*,v*), which is a contradiction, and hence, u* = v*. This completes the
theorem. o

+ o, v*) + uslo(u”, Tu™) + o(SV', v)]

= W + oo, V) + slo(u’, 1) + oV, v

AIMS Mathematics Volume 8, Issue 8, 19004—-19017.
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The following example shows the validity of our Theorem 2.2.

Example 2.2. Let X = {7,8,11,17} and Y = {2,4,17,18}. Define o : X X Y — [0, +00) as the usual

metric, o(u,v) = | u— v |. Then, the triple (X,Y, o) is a bipolar metric space. Moreover, contravariant

mappings T,S : XUY — XUY, defined as in Example 2.1, satisfy also the inequality of Theorem 2.2
1

1
with u, = 3 Mo = T Uz = 3 Nevertheless, 17 € XNY is the only common fixed point of T and S .

However, by taking T = S in Theorem 2.2, we get the following corollary, which is a generalization

of Theorems 1.1-1.3 in the context of bipolar metric spaces.

Corollary 2.2. Let (X,Y,0) be a complete bipolar metric space and T : (X,Y,0) 2 (X,Y,0) be a
contravariant mapping satisfying

o(u, Tpyo(u, Tv) + o(Tv, v)o(v, T )
o, Tv) + o(v, Tp)

for all (u,v) € X XY, withu # vand 0 < uy + pp + 2us < 1, where uy,pup,uzs > 0. Then, T :
XUY — X UY has a unique fixed point, provided that T is continuous in (X,Y).

o(Tv, Tu) < uy + 20, v) + uslo(u, Tu) + o(Tv,v)],

3. Applications

Now, we study the following application for the existence of a solution in homotopy theory.

Theoren_l 3_.1. Let (S,T,0) be a complete bipolar metric space, and let (A,B) iae an open subset of (S, T)
so that (A, B) is a closed subset of (S,T) and (A, B) C (A, B). Suppose L : (AUB) X [0,1] > SUT,is
a mathematical operator satisfying the following conditions:

(i) u # L(u, k) for each u € A U OB and k € [0, 1], where (0A U OB stands for the boundary of AUB

inSUT).
g s L(u, K)o(L(v, k), v))

(i) o(L(v, k), L(u, k)) < /ut1Q('u ('uQ(LQ ») ) + oo, v) + uslo(u, L(u, k) + o(L(v, k), v)], for all
ﬂEZ,VGE,kG[O,l],andOS[.ﬁ+ﬂ2+2ﬂ3<I,Wherel.l],,llz,,ua'ZO. _ _
(iii) There exists an M > 1 such that o(L(u,p),L(v,0)) < M | p—0o |, forallu € A,v € B and

p,o €[0,1].

Then, L(.,0) has a fixed point if and only if L(., 1) has a fixed point.

Proof. LetC ={p€[0,1]: u=L(u,p),ucA},D ={0€[0,1]:v=L(v,0),v € B}. Since L(.,0) has
a fixed point in A U B, we have 0 € C N D. Thus, C N D is a non-empty set. Now, we shall show
that C N D is both closed and open in [0, 1], and so, by connectedness, C = D = [0, 1]. Let ({ ,,}:{fl ,
({0} € (C,D) with (p,,0,) — (4,2) € [0,1] as n — +oo. We also claim that A € C N D. Since
(on,0) €(C,D)forn =0,1,2,3,..., there exists a bisequence (u,, v,) € (A, B) such that v, = L(u,, p,,)
and u,+, = L(v,, 0,) are iteratively defined. Also, we get

O(L(Vy, 0), L(tn, p1))
< Q(/Jn’ L(ﬂna pn))Q(L(vn, O'H), Vn)

B O(tn, Vi)

Q(,un+l s Vn)

+ luZQ(ﬂn’ Vn) + U3 [Q(/lna L(/Jn’pn) + Q(L(Vn’ 0-}1)’ Vn)]
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= Q(:um Vn)Q(ﬂnH s Vn)
oW, Vi)

+ 10, Vi) + uslo(tn, Vi) + 0(tse1, Vi),

which implies

M2 +

Q(,un+la Vn) < I—IJSQ(/JW Vn)-
M1 — M3

Also,

O(Hn, Vi)

O(L(Vi-1, 0n-1), Lttns Pn))
w Q(ﬂm L(:um pn))Q(L(Vn—l s O-n—l), Vn—l)

IA

+ ,UZQ(/Jm anl) + H3 [Q(ﬂm L(/Jna pn) + Q(L(anl, O_nfl)’ anl)]

Q(/lna Vn—l)
n» Vn) n> Vn— )
= 1Q(ﬂ Q('u : + IUZQ(:un’ Vp-1) + H3 [Q(/’l”’ V) + Q(ﬂ”’ V-1,
Q(lln, Vn—l)
which implies
Mo + U3
O\Un, Vn) S T 0(Hn, Vao )
(k I =y — 3 w 1

By a similar process as used in Theorem 2.1, we can easily prove that (u,, v,) is a Cauchy bisequence
in (A, B). By completeness, there exist 4y € A N B such that lim (u,) = lim (v,) = 4;. Now, we have
n—+oo n—+oo

o(L(A1,0),vn) = o(LA1,0), L(tn, pn))
" O, L(ttn, pr)o(L(A1, ), A1)
o, A1)
O, vi)O(L(A1, 0), A1)
Q(;un’/ll)

Applying the limit as n — +oco, we get o(L(Ay,0), 1) < uzo(L(4,,0), A1), which is a contradiction.
Hence, o(L(4,,0), A1) = 0, which implies L(1;,0) = A;. Similarly, L(1, ) = 4;. Therefore, p = o €
C N D, and clearly C N D is closed in [0, 1].

Next, we have to prove that C N D is open in [0, 1]. Suppose (pg,00) € (C,D), and then
there is a bisequence (uo,vo) so that py=L(ug,p0), vo=L(vy,00). Since A U B is open, there is
r>0 so that Bo(uy,r)SA U B and Bo(r,vg) € A U B. Choose o € (09 — €,09 + €) and o €

+ 120, A1) + p3lo(n, L, pn)) + 0(L(A1, 0), 41)]

= M + 20, A1) + p3lo(n, vi) + 0(L(A1, ), A1)].

€ €
(plo—e,po+e) such that | p — op [< M"< 5 | o —po |< W< 5 and | pg — o¢ |<
€

W<§' Thus, we have v € Beup(uo,r) = {v,vo € Blo(uo, v) < 1+ 0(up, vo)} and u € Beup(r, vo) =
{1, o € Alo(u, vo) < r + o(uo, vo)}. Additionally, we have

o(L(u, p), o) o(L(w, p), L(vo, 079))
o(L(w, p), L(v, 070)) + o(L(to, p), L(v, 70)) + o(L(to, p), L(vo, 070))
2M | P — 0o | +Q(L(/J()a p)’ L(V7 0-0))

+ Q(L(/'L()’ p)’ L(V’ 0-0))

IA

IA

IA

Mn—l
Letting n — +o00, we get o(L(u, p), vo) < o(L(uo, p), L(v, 07)). By (ii), we have

Q(L(IJ’ ,0), VO) < Q(L(/JOa p)’ L(V’ 0-0))
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IQ(ﬂO’ L(pto, p)o(L(v, 070), v))

< u + poo(to, v) + pslo(uo, L(po, p) + o(L(v, 079), v)]
Q(/JO’ V)
Qto: )@ YY) 0, v) + oo o) + 0, )]
o(uo, v)
< /’lZQ(/lO’ V),

which implies
O(L(1, p), vo) < 0(Ho, V) < 1+ 0(Ho, Vo).

In an analogous manner, we get o(uo, L(v,0)) < o(u, vy) < r + o(uo, vo). However, as n — +oo, we

have

1
0(to, vo) = 0(L(o, po), L(vo, 070)) < M | po — 07 |< YT 0,

which implies o = vy.

Thus, for each fixed o, 0 = p € (09 — €, 00 + €), and L(.,p) : Bcup(uo, ) = Beup(uo, r). Since all
the hypotheses of Corollary 2.1 hold, L(., p) has a fixed point in A N B, which must be in A N B. Then,
p =0 € CnDforeach o € (oy—€,00+ €). Hence, (0y — €,00 + €) € C N D, which gives that C N D
is open in [0,1]. We can use a similar process for the converse. m|

Next, we discuss the existence and uniqueness of the solution of an integral equation as an
application of Corollary 2.1.

Theorem 3.2. We consider the integral equation
Y =6+ [ plryONdy forpeXUX
XUy

where X U Y is a Lebesgue measurable set.
Now, suppose the following:

(i) P: (X*UY?) x[0,+00) = [0, +00) and f € L¥(X) U L™(Y).
(ii) There is a continuous function T : (X> U Y?) — [0, +o0) such that
| P(u, v, y(v)) = P(u, v, B(v)) |

<t BOLZIEONTYOD YOV ) o) = y00) | +asll BO) = TO) |+ Tyo) -y 11,
1B0) Y|

for p,v € (XU Y?).
(iii) || [o,, T V)V S 1, that is, sup,cyoy foo, | T@v) [dv < 1.

Then, the integral equation has a unique solution in L*(X) U L*(Y).

Proof. Let A = L*¥(X) and B = L*(Y) be two normed linear spaces, where X,Y are Lebesgue
measurable sets, and m(XUY) < co. Consider o : AX B — [0, +00) to be defined by o(g, h) =|| g —/ ||,
for all g,h € AXB. Then, (A, B, o) is a complete bipolar metric space. Define the contravariant mapping
(mathematical operator) I :L*(X) U L*(Y) — L®(X) U L*(Y) by

100 = fX Pl YO+ £,
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whereye XUY.
Now, we have

o (y(u)), 1(B(1))) I 1Cy () = 1BG) I

- | f (s v, Y())dy f Pt v, By
Xuy Xuy

< f | p(iu’ Vv, Y(V)) - p(ﬂ, V’IB(V)) | dv
XUY
| B0) = TBO) || Ty() = y() | B
< fx Uyrw,v){m B9 =70 | + 2 | B) =y |
+u3( 1 B0) = TBO) | + | Ty() = y() | )}dv
1 B) = TA) Il Ty») = yO) | B
< |m 30— T + 12 1 BO) =y |l
+3( | BO) = TBO) |+ | Tym) = y0) 1) f fr(u, v)ld
XuY
IB=TAI Ty -7 B
< |m G trelB-vI
ws(1B=TE I+ 1Ty =y 1)) swp [ JrGur) v
HEXVY JXUY
_T T —
< w2 ”fﬂ'yﬁ YN 1=y I+ B=TB U+ 1 Ty = 7 )
A(B)eU (),
= ,UIQ(B (5();@;)(7) L2 120(B,7y) + pu3(0(B, 1(B) + o(I(y), ¥))-

It follows from Corollary 2.1 that the mathematical operator / has a unique fixed pointin AUB. O
4. Conclusions

In the present paper, we have proved some common fixed point theorems for generalized rational
type contractions in bipolar metric spaces. Established theorems extend Theorems 1.1-1.4 to bipolar
metric spaces. Also, our results generalize several fixed point theorems due to various researchers in
the literature of bipolar metric spaces. Moreover, we have given some examples for justification of our
results and provided applications for our obtained results. Henceforth, our theorems open a direction
to new fixed point results and applications in a bipolar metric space.
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