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Abstract: Simulation and numerical study for the blood ethanol concentration system (BECS) and
the Lotka-Volterra system, i.e., predator-prey equations (PPEs) (both of fractional order in the Caputo
sense) by employing a development accurate variational iteration method are presented in this work.
By assessing the absolute error, and the residual error function, we can confirm the given procedure
is effective and accurate. The outcomes demonstrate that the proposed technique is a suitable tool for
simulating such models and can be extended to simulate other models.
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1. Introduction

Over the past three decades, numerous authors have continued to be interested in fractional
calculus [1–6]. To fulfill the demand to model real-world problems in various domains like
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mechanics, biology, finance and engineering [7–12], several academics have discovered that
developing new fractional derivatives with various single or non-singular kernels is crucial. There
were very important studies done with the help of the Caputo operator, for example, periodic motion
for piecewise Caputo derivatives of impulsive fractional functional differential equations was studied
in [13] and the Mittag-Leffler stabilization and exponentially stable periodic oscillation for
factional-order impulsive control neural networks using piecewise Caputo derivatives also was studied
in [14]. At the same time, there are many efforts to develop the theory of fractional calculus, for
example on the foundation of the conventional Caputo fractional derivatives, Caputo and Fabrizio
constructed the Caputo-Fabrizio operator (CFO). This new definition has a nonsingular kernel, which
sets it apart in the Caputo sense (i.e., exponential function) [15,16]. See for further information on the
definitions of fractional derivatives and their characteristics [17].

The majority of the fractional differential equations (FDEs) lack an exact solution, so numerical
and approximate techniques must be used [18–25]. One of the most popular of these methods is, the
variational iteration method (VIM), which is a potent analytical technique, and was initially described
in [26]. Numerous circumstances have successfully used this method: for instance, see [27]. In
addition, the first instance of the VIM being used with FDEs was in [28]. The VIM was used by
Odibat and Momani [29] to solve partial FDEs. The advantages of the VIM lie in it treating the
shortcoming in some other approximate and numerical methods, such as the Adomian decomposition
method [30], where it does not need to compute the Adomian polynomials of the nonlinear terms in
the differential equation under study and does not need to divide the domain of the problem to
compute the numerical solution only at the resulting nodes as in the finite difference method.

In this work, we will use the VIM to investigate the approximate solutions for two important models.
The first one is the fractional BECS, whereas the second model is the fractional PPEs. The following
is how the paper is set up:
• Some of the preliminaries and the studied models are presented in Section 2.
• The solution procedure is shown in Section 3.
• Some numerical examples for the two studied models are presented in Section 4.
• The paper’s conclusion is presented in Section 5.

2. Preliminaries, notations and formulations of the models

2.1. Some definitions of fractional calculus

Definition 2.1. The fractional integration in the Riemann-Liouville sense is defined by [31]:

Iνφ(t) =
1
Γ(ν)

∫ t

0

φ(τ)
(t − τ)1−νdτ, ν > 0, t > 0,

where Γ(.) is the Gamma function.
Definition 2.2. The fractional derivative Dν of order 0 < ν ≤ 1 in the Caputo sense for φ(t) ∈ H1(0, b)
is given by:

Dνφ(t) =
1

Γ(1 − ν)

∫ t

0

φ
′

(τ)
(t − τ)ν

dτ, t > 0.
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2.2. The proposed fractional models

2.2.1. Model 1: blood ethanol concentration system

This part focuses on figuring out the levels of alcohol in a human body’s stomach Φ(t) and blood
Ψ(t). An experimental study was carried out in [32], the major source of the actual data for the current
work. The suggested model is based on the fractional derivative kinetic reaction (for 0 < ν ≤ 1) and
provided by:

DνΦ(t) = −β νΦ(t), (2.1)

DνΨ(t) = β νΦ(t) − µ νΨ(t), (2.2)

Φ(0) = Φ̄0, Ψ(0) = 0, (2.3)

where we have the following descriptions for the included functions and parameters [32]:
Φ(t): The alcohol’s concentration in the stomach at time t (mg/l).
Ψ(t): The alcohol’s concentration in the blood at time t (mg/l).
β: The rate law constant 1 (min−1).
µ: The rate law constant 2 (min−1).
The exact solution of the above system is [33]:

Φ(t) = Φ0 Eν(−β νtν), Ψ(t) = Φ0 β
ν
∞∑

r=0

∞∑
q=0

(−β ν)r(−µ ν)q

Γ(r ν + q ν + ν + 1)
tr ν+q ν+ν. (2.4)

2.2.2. Model 2: predator-prey system

The predator and prey equations are a pair of nonlinear first-order differential equations that are
frequently used to analyze the dynamics of biological systems involving interactions between two
species, one of which is a predator and the other a prey. Samardzija [34] made an extension of this
model and proposed the concept of predators and single prey for the Lotka-Volterra system. This
system is what we are going to study here, and it is formulated in its fractional form as follows:

DνΦ(t) = σ1Φ(t) − σ2Φ(t)Ψ(t) + σ3Φ
2(t) − σ4Υ(t)Φ2(t), (2.5)

DνΨ(t) = −σ5Ψ(t) + σ6Φ(t)Ψ(t), (2.6)

DνΥ(t) = −σ7Υ(t) + σ4Υ(t)Φ2(t), (2.7)

Φ(0) = c1, Ψ(0) = c2, Υ(0) = c3, (2.8)

where c1–c3 are constants. Here, the number of predators are Φ(t) and Ψ(t), and the number of its
prey is Υ(t), through the time t, σ1–σ7 are parameters that elucidate the interaction between the three
species [34].

3. Implementation of variational iteration method

The fundamentals of the VIM and how it applies to different types of differential equations are
described in [35]. It was demonstrated in [28] that the FDEs may also be solved using the VIM. In this
section, we expand the application of the VIM to solve the two proposed fractional system models.
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3.1. Concepts of VIM via BECS

We can create the correction functionals form of the systems (2.1) and (2.2) according to the VIM
as follows:

Φm+1(t) = Φm(t) + Iν
[
λ1(τ) (DνΦm(t) + β νΦm(t))

]
= Φm(t) +

1
Γ(ν)

∫ t

0

[
(t − τ)ν−1 λ1(τ) (DνΦm(τ) + β νΦm(τ))

]
dτ,

(3.1)

Ψm+1(t) = Ψm(t) + Iν
[
λ2(τ) (DνΨm(t) − β νΦm(t) + µ νΨm(t))

]
= Ψm(t) +

1
Γ(ν)

∫ t

0

[
(t − τ)ν−1 λ2(τ) (DνΨm(τ) − β νΦm(τ) + µ νΨm(τ))

]
dτ,

(3.2)

where λk, (k = 1, 2) are the general Lagrange multipliers, which can be identified optimally via
variational theory [36, 37]. Some approximations must be made to determine the estimated Lagrange
multipliers. It is possible to roughly express the rectification of functional Eqs (3.1) and (3.2) as
follows:

Φm+1(t) = Φm(t) +
∫ t

0

[
λ1(τ)

(
Φ̇m(τ) + β ν Φ̃m(τ)

)]
dτ, (3.3)

Ψm+1(t) = Ψm(t) +
∫ t

0

[
λ2(τ)

(
Ψ̇m(τ) − β νΦ̃m(τ) + µ ν Ψ̃m(τ)

)]
dτ, (3.4)

where Φ̃m and Ψ̃m are considered as restricted variations, in which δ Φ̃m = δ Ψ̃m = 0. To find the
optimal λ1 and λ2, we proceed as follows:

δΦm+1(t) = δΦm(t) + δ
∫ t

0

[
λ1(τ)

(
Φ̇m(τ) + β ν Φ̃m(τ)

)]
dτ = 0, (3.5)

δΨm+1(t) = δΨm(t) + δ
∫ t

0

[
λ2(τ)

(
Ψ̇m(τ) − β νΦ̃m(τ) + µ ν Ψ̃m(τ)

)]
dτ = 0. (3.6)

The following can be done to acquire the stationary conditions:

λ̇k(τ) = 0, 1 + λk(τ)|τ=t = 0, k = 1, 2. (3.7)

The solutions of the Eq (3.7) is given by:

λ1(t) = λ2(t) = −1. (3.8)

We substitute from (3.8) into the functional Eqs (3.1) and (3.2) to obtain the following iteration
formula:

Φm+1(t) = Φm(t) −
1
Γ(ν)

∫ t

0

[
(t − τ)ν−1 (DνΦm(τ) + β νΦm(τ))

]
dτ, (3.9)

Ψm+1(t) = Ψm(t) −
1
Γ(ν)

∫ t

0

[
(t − τ)ν−1 (DνΨm(τ) − β νΦm(τ) + µ νΨm(τ))

]
dτ. (3.10)

The beginning estimations Φ0(t) and Ψ0(t) can be freely chosen if they satisfy the initial conditions of
the problem. Finally, the solutions Φ(t) and Ψ(t) can be approximated by the m-th terms Φm(t) and
Ψm(t), respectively as follows:

Φ(t) = lim
m→∞
Φm(t), Ψ(t) = lim

m→∞
Ψm(t). (3.11)
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3.2. Concepts of VIM via PPS

By following the same procedure in subsection 3.1 but on the systems (2.5)–(2.7), we can obtain
the following iteration formula:

Φm+1(t) = Φm(t) −
1
Γ(ν)

∫ t

0

[
(t − τ)ν−1

(
DνΦm(τ) − σ1Φm(τ) + σ2Φm(τ)Ψm(τ)

− σ3Φ
2
m(τ) + σ4Υm(τ)Φ2

m(τ)
)]

dτ,
(3.12)

Ψm+1(t) = Ψm(t) −
1
Γ(ν)

∫ t

0

[
(t − τ)ν−1 (DνΨm(τ) + σ5Ψm(τ) − σ6Φm(τ)Ψm(τ))

]
dτ, (3.13)

Υm+1(t) = Υm(t) −
1
Γ(ν)

∫ t

0

[
(t − τ)ν−1

(
DνΥm(τ) + σ7Υm(τ) − σ4Υm(τ)Φ2

m(τ)
)]

dτ. (3.14)

The initial approximations Φ0(t), Ψ0(t) and Υ0(t) can be freely chosen if they satisfy the initial
conditions of the problem. Finally, we approximate the solutions Φ(t), Ψ(t) and Υ(t) by the m-th
terms Φm(t), Ψm(t) and Υm(t), respectively as follows:

Φ(t) = lim
m→∞
Φm(t), Ψ(t) = lim

m→∞
Ψm(t), Υ(t) = lim

m→∞
Υm(t). (3.15)

4. Numerical applications

4.1. Approximate solution of the BECS

Now, we are ready to get the approximate solution of the studied model BECS by considering
the variational iteration formulas (3.9) and (3.10) with distinct values of ν, m with β = 0.02873,
µ = 0.08442 and initials conditions Φ0 = 4 and Ψ0 = 0 through Figures 1–6.

If we start with Φ0(t) = 4 and Ψ0(t) = 0 in the iteration formulas (3.9) and (3.10) we can obtain
directly some of the other components of the solution as follows:

Φ1(t) = 4 −
4 βν tν

Γ(1 + ν)
, Ψ1(t) =

4 βν tν

Γ(1 + ν)
,

Φ2(t) = 4 −
4 βν tν

Γ(1 + ν)
+

41−ν β2ν √π t2ν

Γ(0.5 + ν)Γ(1 + ν)
,

Ψ2(t) =
4 βν tν

Γ(1 + ν)
−

41−ν βν (βν + µν)
√
π t2ν

Γ(0.5 + ν)Γ(1 + ν)
,

Φ3(t) = 4 −
4 βν tν

Γ(1 + ν)
+

41−ν β2ν √π t2ν

Γ(0.5 + ν)Γ(1 + ν)
−

4 β3ν t3ν

Γ(1 + 3ν)
,

Ψ3(t) =
4 βν tν

Γ(1 + ν)
−

41−ν βν (βν + µν)
√
π t2ν

Γ(0.5 + ν)Γ(1 + ν)
+

41−ν βν (β2ν + (βµ)ν + µ2ν)
√
πΓ(1 + 2ν)t3ν

Γ(0.5 + ν)Γ(1 + ν)Γ(1 + 3ν)
,

and so on. The remaining parts of the iteration formula can be produced in a similar manner. Here,
in our computation, we approximated the solution to Φ(t) and Ψ(t) by Φ(t) � Φm(t) and Ψ(t) � Ψm(t),
respectively.
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In Figure 1, both the exact and numerical solutions with ν = 0.97 and m = 4 are compared, whereas
in Figure 2, the absolute error with ν = 0.93 and m = 4 is presented. In Figure 3, again the exact and
numerical solutions are compared but for ν = 0.87 and m = 4, whereas in Figure 4, the absolute error
is presented with ν = 0.83 and m = 4.

Figure 1. Comparison the approximate and exact solutions with ν = 0.97 and m = 4.

Figure 2. The absolute error with ν = 0.93 and m = 4.

Figure 3. Comparison the approximate and exact solutions with ν = 0.87 and m = 4.

AIMS Mathematics Volume 8, Issue 8, 19083–19096.
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Figure 4. The absolute error with ν = 0.83 and m = 4.

Figure 5 is given to see both the behavior of numerical (a and c) and exact solutions (b and d)
with distinct values of ν = (0.92, 0.82, 0.72, 0.62) at m = 5. Finally, Figure 6 is given to show
both the behavior of numerical (a and c) and exact solutions (b and d) with distinct values of β =
0.05, 0.10, 0.15, 0.20 and µ = 0.15, 0.20, 0.25, 0.30 with ν = 0.95 and m = 5.

As a result, the behavior of the numerical solution is strongly dependent on ν, β and µ which
confirms that, in the case of fractional derivatives, the suggested approximation method is effectively
used to solve the stated problem.

Figure 5. Behavior of the approximate and exact solutions with distinct values of ν at m = 5.

AIMS Mathematics Volume 8, Issue 8, 19083–19096.
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Figure 6. Behavior of the approximate and exact solutions with distinct values of β and µ at
m = 5 and Φ0 = 4.

To validate the numerical solutions at (ν = 0.9, Φ0 = 6 and Ψ0 = 0), m = 5 and the same values
of the parameters as in Figure 1, a comparison of the absolute error (AE) is presented in Table 1 for
the proposed method and the Chebyshev spectral collocation method for the same model but with
the Atangana-Baleanu-Caputo fractional derivative with non-singular kernel [38]. This comparison
demonstrates how the approach suggested in this article is suitable for solving the proposed model
with its fractional form.

Table 1. Comparison of the absolute error for numerical solutions by two different methods.

AE of present method AE of method [38]
t Φ(t) Ψ(t) Φ(t) Ψ(t)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

2.159753E-04
6.852320E-05
5.852014E-05
3.132145E-05
3.852014E-04
7.952147E-05
1.852140E-05
8.654123E-05
0.753654E-05
1.852014E-05
3.951023E-06

3.456123E-06
3.025874E-06
2.652413E-05
3.980021E-06
2.012365E-06
0.014785E-06
2.963258E-05
2.012345E-05
1.150210E-06
0.321470E-05
3.852140E-05

5.741025E-07
1.021345E-07
2.654123E-06
5.321412E-07
3.632584E-07
3.321004E-07
0.954127E-06
4.321456E-06
3.021456E-07
2.123456E-06
2.951423E-07

2.321045E-08
3.123456E-08
5.963258E-07
8.956542E-08
5.123054E-07
3.696325E-09
1.321456E-07
3.012547E-07
3.110253E-07
2.524142E-07
3.321456E-07
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4.2. Approximate solution of the PPS

Here, we verify the accuracy of the presented scheme by presenting a numerical simulation on a test
example, where we address the systems (2.5)–(2.8) with different values of ν and m with σ1 = σ2 =

σ3 = σ4 = 1, σ5 = 2, σ6 = 3 and σ7 = 2.7 and initial conditions Φ0 = 1, Ψ0 = 1.4 and Υ0 = 1.
The obtained numerical results for the studied model by applying the proposed technique are shown in
Figures 7–9.

If we start with Φ0(t) = 1, Ψ0(t) = 1.4 and Υ0(t) = 1 in the iteration formulas (3.12)–(3.14), we can
obtain directly some of the other components of the solution as follows:

Φ1(t) = 1 −
0.4 tν

Γ(1 + ν)
, Ψ1(t) = 1.4 +

1.4 tν

Γ(1 + ν)
, Υ1(t) = 1 −

1.7 tν

Γ(1 + ν)
,

Φ2(t) = 1 −
0.4 tν

Γ(1 + ν)
+

0.408 × 4−νHypergeometric2F1[1, 1 + ν, 2 + 2ν, 1] t2ν

Γ(ν)Γ(1.5 + ν)

−
0.8Γ(1 + 2ν) Hypergeometric2F1[1, 1 + 2ν, 2 + 3ν, 1] t3ν

Γ(ν)Γ(1 + ν)Γ(2 + 3ν)

+
0.272Γ(1 + 3ν) Hypergeometric2F1[1, 1 + 3ν, 2 + 4ν, 1] t4ν

Γ(ν) (Γ(1 + ν))2 Γ(2 + 4ν)
,

Ψ2(t) = 1.4 +
1.4 tν

Γ(1 + ν)
−

0.248 × 4−νHypergeometric2F1[1, 1 + ν, 2 + 2ν, 1] t2ν

Γ(ν)Γ(1.5 + ν)

−
1.68Γ(1 + 2ν) Hypergeometric2F1[1, 1 + 2ν, 2 + 3ν, 1] t3ν

Γ(ν)Γ(1 + ν)Γ(2 + 3ν)
,

Υ2(t) = 1 −
1.7 tν

Γ(1 + ν)
+

3.704 × 4−ν t2ν

Γ(1 + ν)Γ(0.5 + ν)
+

1.52Γ(1 + 2ν) t3ν

(Γ(1 + ν))2 Γ(1 + 3ν)
−

0.272Γ(1 + 3ν) t4ν

(Γ(1 + ν))3 Γ(1 + 4ν)
,

and so on. The remaining parts of the iteration formula can be produced in a similar manner. Here, in
our computation, we approximated the solution to Φ(t), Ψ(t) and Υ(t) by Φ(t) � Φ7(t), Ψ(t) � Ψ7(t)
and Υ(t) � Υ7(t), respectively.

The behavior of the approximate solution for ν = 1.0, 0.97, 0.94 with m = 7 is given in Figure 7.
In Figure 8, we present the approximate solution for m = 6, 7, 8 with ν = 0.95. Figure 9 is plotted to
represent the residual error function (REF) [39] of the approximate solution at ν = 0.96 with m = 6.
From these results, it can be noted that the behavior of the numerical solution resulting from the
application of the proposed method depends on ν and m, and this demonstrates that the suggested
approach is appropriate for solving the suggested model in its fractional version.

As opposed to their counterparts, the integer order derivative operators, fractional models have been
found to be more accurate at estimating the true data. The fractional operator has the fewest errors,
according to the REF. These instances involve the exact same mistakes. On the other hand, under the
optimum values of the computed parameters, the errors for the integer order and the Caputo operator
are the same.

AIMS Mathematics Volume 8, Issue 8, 19083–19096.
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Figure 7. The approximate solution Φ(t), Ψ(t) and Υ(t) with distinct values of ν.

Figure 8. The approximate solution Φ(t), Ψ(t) and Υ(t) with distinct values of m.

AIMS Mathematics Volume 8, Issue 8, 19083–19096.
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Figure 9. The REF of the solutions Φ(t), Ψ(t) and Υ(t).

5. Conclusions

The powerful variational iteration method has been used to approximate the solutions of two
important nonlinear systems of the FDEs, namely the predator-prey equations and the blood ethanol
concentration system. The findings demonstrate that the used technique is efficient and cost-effective
for obtaining rough solutions of the two suggested models. By including new components of the
solution drawn from the solution sequence, we can control and reduce the absolute approximate error.
Also, to demonstrate the viability of the suggested method, approximate solutions with various values
of the fractional-order ν, the order of approximation m and the residual error function were computed.
It has been shown that the Caputo fractional operator is substantially more accurate than the integer
order version of the model for estimating the amount of alcohol in a human’s blood. Also, it has been
noted that the performance of this fractional operator is on par with that of its integer order model. We
intend to deal with these models in the future, but on a larger scale, by generalizing this research to
include a modified proposed method or additional types of fractional derivatives. The Mathematica
software program was used to perform numerical simulation operations.
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