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Abstract: The aerodynamics analysis has grown in relevance for wind energy projects; this
mechanism is focused on elucidating aerodynamic characteristics to maximize accuracy and
practicability via the modelling of chaos in a wind turbine system’s permanent magnet synchronous
generator using short-memory methodologies. Fractional derivatives have memory impacts and are
widely used in numerous practical contexts. Even so, they also require a significant amount of storage
capacity and have inefficient operations. We suggested a novel approach to investigating the
fractional-order operator’s Lyapunov candidate that would do away with the challenging task of
determining the indication of the Lyapunov first derivative. Next, a short-memory fractional
modelling strategy is presented, followed by short-memory fractional derivatives. Meanwhile, we
demonstrate the dynamics of chaotic systems using the Lyapunov function. Predictor-corrector
methods are used to provide analytical results. It is suggested to use system dynamics to reduce
chaotic behaviour and stabilize operation; the benefit of such a framework is that it can only be used
for one state of the hybrid power system. The key variables and characteristics, i.e., the modulation
index, pitch angle, drag coefficients, power coefficient, air density, rotor angular speed and
short-memory fractional differential equations are also evaluated via numerical simulations to
enhance signal strength.
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1. Introduction

In recent years, the amount of turbine-sourced electricity produced has risen dramatically to
safeguard the planet from the effects of anthropogenic emissions and fossil fuel use [1]. The potential
energy of the airflow is converted by the wind farm into mechanical energy, which is later transformed
into electric power. Part of the offshore airflow is captured by the control surfaces and transferred to
the connector, which is then be rectified to the jet stream turbine’s motor. The electro-mechanical
system then receives the mechanical energy and transforms it into electricity that is generated [2].

There are numerous power station components including some coupled inductors [3], an electrically
excited synchronous transformer [4] and a permanent magnet synchronous generator (PMSG) [5].
Due to the PMSG’s numerous benefits, including its moderate value of production, top bandwidth,
sturdiness, ease of fabrication, fast response, operation at maximum power point, and high power
density, it is an attractive implementation transformer for use in conjunction with a power system, and
it is well-known in the market as one of the most encouraging wind configurations.

The PMSG is a classic dynamic, nonlinear, interacting framework and even if the input propeller,
including an impact field, is successfully completed, its effectiveness is acutely vulnerable to boot-up
perturbations, surface roughness and specification variability. According to several explorations, the
PMSG exhibits chaotic behaviour whenever the active disturbance rejection control strategy is
proposed. The implementation of a predictive control strategy is being examined with a one-point
controller of PMSG, and this control technique that employs genetic algorithms to determine the most
effective parameter values of the wind turbine results in energy generation maximisation [6]. Due to
all of these elements, it is stressful to manage the PMSG in order to achieve flawless monitoring
progress characteristics in practical applications. In the area of adaptive dynamics of the power
source, the marginalisation and regulation of upheaval in a PMSG have drawn a lot of interest. For the
downregulation and management of chaos in a PMSG, different switching techniques have been
constructed to date [7].

Fractional-order (FO) calculus is a significant area of mathematics that was developed nearly
simultaneously with classical integer-order calculus. L’Hospital and Leibnitz corresponded about the
significance of the derivative of order 0.5 in 1695. Due to the ambiguity surrounding the strong
relevance of FO derivatives and its applications, FO calculus has been constructed for three decades
primarily as pure mathematics [8, 9]. Interestingly, the memory and/or nonlocality of the framework
can fluctuate with time, space, or additional factors, according to the research [10]. The memory and
hereditary characteristics associated with numerous tangible processes and events can be described
using the variable-order (VO) fractional operators and their non-stationary power-law kernel. As a
result, VO fractional calculus emerged as an intriguing option for establishing a viable mathematical
scheme for perfectly identifying multifaceted physical structures and procedures [11]. Following that,
VO-fractional differential equations (FDEs) gained growing interest, owing to their appropriateness
for modelling a wide range of phenomena, including those related to anomalous diffusion,
viscoelastic mechanics, control systems, petroleum engineering and numerous additional areas of
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science and technology. In 1993, Samko and Ross [12] put forward the notion of VO integrals and
differentials, in addition to some basic features. Lorenzo and Hartley [13] summarized the VO
fractional operator study findings and then examined the terminology of VO fractional operators in
different contexts. Following that, certain novel variations and important implementation potentials of
the VO-FDE models were additionally investigated [14]. In the past decade, VO-FDE has emerged as
an epicentre for research and has sparked broad concern. VO-FDEs have rapidly advanced over the
last few centuries in terms both the mathematical approach and practical implementation [15, 16]. In
this investigation, we use Caputo FO and VO calculus because it provides a significant advantage in
terms of removing the restrictions on the primitive function [8, 9, 14]. An essential component to
characterize the size of the memory is the FO feature. The currently used “derivative” c

ξ0
Dφξ is the

continuous concentration of the classical derivative ϕ′(ξ) from the starting point of ξ0 to ξ.
Fractional difference equations are effective models for discrete processes with memory effects.

Several specific advancements, such as the Riemann and Caputo fractional differences, the
fundamentals of discrete fractional calculus, numerical simulations, initial value problems, etc.,
demonstrate this viewpoint [17]. Implementations of discrete fractional calculus, such as those
involving fractional chaotic maps, image encryption, tumour growth and shock frequency, among
others, further demonstrate its effectiveness and simplicity [18, 19].

In the real sense, Miller and Ross [8] classified a fractional sum by expanding linear difference
equations in 1981 as follows:

∆−φg(ξ) =
1
Γ(φ)

ξ∑
s=a+φ

Γ(ξ − s + φ)
Γ(ξ − s + 1)

g(s − φ), ξ ∈ Na+φ. (1.1)

Therefore, (1.1) can be assumed to be the discrete form of the Riemann-Liouville fractional integral.
The semi-group property of the fractional sum, for instance, is an underlying scientific theory that
is challenging to introduce within the context of classical discrete calculus. Perhaps because of this,
fractional difference equations have received too little consideration.

Another approach to determining the fractional sum is on the basis of time scale [20]. Both the
continuous and discrete-time incidences were generalized. In addition to the ∆-integral on time
scales, better characterizations for the mathematical framework were provided [21]. Guo et al. [22]
contemplated the three-dimensional fractional total variation regularized tensor optimized model for
image deblurring. The FO φ better describes the transitional state between interfacial tension and
pliability. A methodology based on FDEs is presented in [18], showing that sodium chloride exhibits
long-term memory behaviour. In addition, there are a few other fascinating fields where fractional
derivatives are used, including finance, biology and string theory. Several other fractional formulae
have been suggested, including fractional delay differential equations, fractional impulsive differential
equations, fractional interval-valued differential equations and fractional difference equations
(see [19, 23–25] and the references cited therein). Fractional calculus has grown in popularity as a
modelling technique.

As a result, fractional operators have a significant impact on scientific methods for processes and
systems such as the memristor [26], electroosmotic slip flow of Oldroyd-B fluid [27] and (PMSM)
models [4].

However, PMSM’s effectiveness is impacted by plant-wide exterior capacity disturbances and
model parameters. Several studies, like those by Li et al. [28] and Jing et al. [29], demonstrate that the
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PMSM exhibits chaotic behaviour when specific input parameters are used. It has been discovered
that several processes in multiple disciplines can be eloquently explained with the aid of fractional
derivatives [12, 13]. Integer-order (classical) DEs are merely a special case of FDEs, which are used
to describe all observed processes in existence [30]. FO and VO frameworks are significant because
they can produce a more appropriate version and provide a profound understanding of the physical
mechanisms underpinning long-term memory behaviour. Numerous fields of scientific research and
construction have used chaos simulation [31].

The article is organized as follows, in Section 2, we first deduce the integer-order dimensionless
framework of the PMSG wind turbine structure. Utilising a discrete Caputo fractional derivative,
the PMSG system’s FO concept is created in Section 3. In Section 4, a design procedure for the FO-
PMSG scheme is developed to demonstrate its chaotic behaviour. Furthermore, a FO responsive control
scheme is created to reduce the variability of the FO-PMSG mechanism. Section 4 also deduces the
consistency of the device. The generated device’s ability to restrict chaotic oscillations is demonstrated
through simulation studies.

2. Mathematical modelling of the wind turbine

Because wind is an infinitely sustainable option, harnessing its kinetic energy has no influence
on the intrinsic processes that cause turbines to turn. Because of this, using renewable energy is
significantly more ecologically friendly than power generation by the combustion of fossil fuels, and
wind generators create power without harming the environment as the wind passes. In this context, an
induction motor with synchronous machines and turbines is a highly complex electric power-generating
system that includes metal equipment, a differential velocity generator and a simple end-up driving of
the transformer. This intricate electric power-generating structure is shown in [4].

In order to satisfy the conditions of the specialised formulae required for the system shown in
Figure 1, we will describe the following: ℘1abc, which stands for capacity resistance, ℘sabc, which
denotes the generator’s three-phase circuit, vdc, which denotes the voltage level, vsabc, which denotes
the rotor circuit three-phase battery, Qε andPε,which denotes the proactive and reactive power density,
respectively, v, which stands for airflow, β, which is the infield viewpoint, and Pw, which stands for the
power consumed by the airflow. The basic mathematical formulation for wind power can be converted
into mechanical power. described in the following way:

Pw =
π

2
ρCPv3

wR
2. (2.1)

The formula for the modulation index that represents aerodynamic effectiveness is

CP(ς, β) = (Λζ1ζ2 − βζ1ζ3 − ζ1ζ4) exp(−Λ) + ςζ6, (2.2)

where Λ =
(

1
ς+0.05β −

0.035
β3+1

)
. Table 1 lists the operational specifications for (2.1) and (2.2).
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(a)

Figure 1. Wind turbine with a PMSG [4].

Table 1. List of parameters.

S ymbols Explanation

ρ Air density
CP Power coefficient
ℓw Wind speed
R Turbine
ς Tip speed ratio
β Pitch angle
Λ Assumed variable

ζ1 − ζ6 Drag coefficients
ω Rotor angular velocity

Drag coefficients ζ1 = 0.5109, ζ2 = 116, ζ3 = 0.4, ζ4 = 5, ζ5 = 21, and ζ6 = 0.068 are also shown.
The following formulas are used to describe the rotor’s angular velocity:

ς = (vw)−1Rω. (2.3)

Furthermore, (2.1) is used to solve (2.2) and (2.3), and the result is

Popt =
π

2
ρCPv3

wR
2CPmax

(R3ω3

ς3
opt

)
. (2.4)

We now deduce the fundamental interacting voltage formulae using the 3ϕ and 2ϕ stationarity of the
variables with respect to two components, i.e., a static structure ψ, three-phase abc stationary to two-
phase a and a ψ stationary reference frame as follows:

vχ = va −
1
2

(vb + vc), vψ =
√

3
2

(vb − vc) (2.5)

and

vd = vψ sinϑ + vχ cosϑ, vr = vψ cosϑ − vχ sinϑ. (2.6)
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Now, we investigate the PMSG wind turbine’s final efficiency and prevailing interactions by attempting
to solve (2.5) and (2.6) as 

ω̇ = p
ȷ

[
ιrϕg + ιdir(L̄d − L̄r)

]
−

T̄L̄
ȷ
− ω F̄

ȷ
,

ι̂r =
vr
L̄d
−
Rs
L̄r
ιr −

ρϕg
L̄r
ω + ωριd

L̄d
L̄r
,

ι̂d =
vr
L̄d
−
Rs
L̄r
ιr + ωριd

L̄d
L̄r
.

(2.7)

Here, P represents the quantity of pole sets, g is the tension factor, ȷ is the inertial moment of the
turbine, T̄ L̄ stands for the load rotational speed, ϕg denotes the rotor speed latching mechanism with
the transformer, Rs is the stator resistance, L̄r denotes the phase difference, ιr and ιd are the quadrature
and direct axis stator currents, vr indicates the phase shift and Ld is the viscous friction coefficient.
Now, using (2.7), which describes the aerodynamic framework of a wind generator manufactured by
the authors of [4], compute the following non-dimensional quantities:

ẋ = δ1(y − x) + δ2yz,
ẏ = δ3x − xz − y,
ż = xy − z.

(2.8)

We specify the presented interpretations of the short-memory fractional differential/integral
formulations in [32] in order to formulate the mathematical aerodynamic framework of a wind
generator using these interpretations.

In this article, we just take into account the fractional derivatives of the Caputo type. Following
that, we describe short-term memory fractional derivatives and explain their purpose.

Definition 2.1. ( [33, 34]) For φ > 0, suppose that there is a mapping ϕ ∈ L1([ξ0,T]; [R]). Then the
Riemann-Liouville integral operator is stated as

ξ0I
φ
ξϕ(ξ) =

1
Γ(φ)

∫ ξ

ξ0
(ξ − s)φ−1ϕ(s)ds, ξ ∈ [ξ0,T], (2.9)

where Γ(, ) denotes the Euler-gamma function.

Definition 2.2. ( [33,34]) For φ ∈ (0, 1], suppose that there is a mapping ϕ ∈ L1([ξ0,T]; [R]). Then the
Riemann-Liouville derivative operator for ϕ is stated as

ξ0D
φ
ξϕ(ξ) =

d
dξ
I1−φξ ϕ(ξ), almost everywhere ξ ∈ [ξ0,T]. (2.10)

Definition 2.3. ( [33, 34]) For φ ∈ (0, 1], suppose that there is a mapping ϕ ∈ L1([ξ0,T]; [R]) such that
ξ0D

φ
ξϕ(ξ) holds for almost everywhere ξ ∈ [ξ0,T]. The Caputo derivative operator for ϕ is stated as

c
ξ0
Dφξϕ(ξ) = ξ0D

φ
ξ

[
ϕ(ξ) − ϕ(ξ0)

]
, almost everywhere ξ ∈ [ξ0,T]. (2.11)

Remark 2.1. If ϕ(ξ) is differentiable, then

c
ξ0
Dφξϕ(ξ) ==

1
Γ(1 − φ)

∫ ξ

ξ0

(ξ − s)−φϕ′(s)ds, φ ∈ (0, 1) (2.12)

and c
ξ0
Dφξϕ(ξ) = dϕ

dξ for φ = 1.
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What follows are certain additional fractional derivatives that resemble Caputo.

Definition 2.4. ( [35]) For ℓ > 0 and a ∈ R, suppose that g : Na 7→ R. Then the ℓth-order fractional
sum is presented as

∇−ℓa,ℏg(ξ) :=
ℏ

Γ(ℓ)

ξ
ℏ−ℓ∑

s=a/ℏ

(ξ − σ(sℏ))(ℓ−1)g(sℏ), σ(s) = s + ℏ, ξ ∈ (ℏN)a+ℓℏ, (2.13)

where ξ(ℓ)
ℏ = ℏ

ℓ Γ(
ξ
ℏ+1)

Γ( ξℏ+1−ℓ)
denotes the discrete factorial function.

Definition 2.5. ( [36]) For ℓ ∈ (0, 1] and a ∈ R, suppose that g : Na 7→ R. Then the ℓth-order Caputo
fractional difference is presented as

c∇ℓa,ℏg(ξ) :=
ℏ

Γ(1 − ℓ)

ξ
ℏ+ℓ−1∑
s=a/ℏ

(ξ − σ(sℏ))(−ℓ)∇ℏg(sℏ), a ∈ R, ξ ∈ Na+(1−ℓ)ℏ, (2.14)

and c∇ℓa,ℏg(ξ) = ∇ℏg(ξ) for ℓ = 1.

The interpretations mentioned above are classical fractional derivatives and differences involving
long-memory impacts beginning at time ξ0 or a.

Definition 2.6. ( [37]) For ℓ(ξ) ∈ (0, 1], t ∈ Na and suppose that g : Na 7→ R. Then the ℓth-VO Caputo
fractional difference is presented as

c∇
ℓ(ξ)
a,ℏ g(ξ) :=

ℏ

Γ(1 − ℓ(ξ))

ξ
ℏ+ℓ−1∑
s=a/ℏ

(ξ − σ(sℏ))(−ℓ(ξ))∇ℏg(sℏ), a ∈ R, ξ ∈ Na+(1−ℓ(ξ))ℏ. (2.15)

3. Short-memory principle

The short-memory principle (also known as the fixed memory principle or the logarithmic memory
principle) is approached from a new perspective, and as a result, its efficiency is increased from φ ∈

(0, 1) to φ ∈ (0, 2), which is also related to the observation that case φ ≥ 2 does not appear to be
particularly pragmatic. When φ ∈ (0, 1), the kernel decays much more quickly and exhibits Podlubny’s
fixed memory principle. For the application of the fixed memory principle and its useful applications,
(see [33, 38]).

C
ξ0
Dφξx(ξ) = g(x, ξ), (3.1)

where C
ξ0
Dφξx(ξ) ≈ C

ξ−L̄
Dφξx(ξ). Numerical methodologies use only data from x(ξ − L̄) to x(ξ), resulting

in less data to store and a significant reduction in supercomputing costs. In actuality, we might run
into the following challenges when using fractional calculus in practical situations:
(a) Remember that the framework of the medium and its components may vary or be significantly
altered [39]. The modelling process does not require any historical data. After that, memory only
begins at the innovative phase.
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(b) By using simulation tools for fractional chaotic processes, chaotic series development raises
simulation complexity [40, 41]. As a result, creating accelerated encrypted communication algorithms
and protecting large amounts of personal content are difficult.
(c) Effectiveness and algorithmic efficiency should be balanced in other fractional modelling
implementations.

Here, we have the accompanying main memory FDEs to tackle these issues and are incentivized by
the well-known fixed memory principle [33, 38] as follows: c

ξ−L̄
Dφξx(ξ) = g(x, ξ), L̄ > 0,

x(ξ) = ψ(ξ), ξ ∈ [ξ0 − L̄, ξ0], φ ∈ (0, 1]
(3.2)

and  c
ξ∗D

φ
ξx(ξ) = g(x, ξ), L̄ > 0,

x(ξ0) = x0, ξ
∗ = ξκ, ξ

∗, ξ ∈ [ξ0T], κ = 0, ...,m.
(3.3)

Regarding the initial setting ξ∗ in the fractional derivative, we will now have different occurrences:
Case I: When ξ∗ 7→ ξ0, then (3.3) is transformed into the classical FDEs containing long memory.
Case II: In (3.3), when L̄ 7→ 0 or ξ∗ 7→ ξ in (3.2), produces

Dφξϕ(ξ) = lim
L̄ 7→0

c
ξ−L̄D

φ
ξϕ(ξ) (3.4)

and

Dφξϕ(ξ)
∣∣∣
ξ=ξ∗
= lim

ξ 7→ξ∗

c
ξ∗D

φ
ξϕ(ξ), (3.5)

respectively. They are members of the class of local fractional derivatives [42], rendering the
framework local and memoryless.
Case III: The relationship between locality and long memory for time ξ∗ ∈ (ξ0, ξ) is a feature of the
scheme (3.3). Here, we consider it to have a fixed memory.

There are two major differences between the fixed memory FDEs: unlike (3.2), which has a fixed
constant length of L̄, (3.3) has variable memory.

A further advancement is VO FC. This concept was used by Sun et al. [43] in their fractional
modelling of propagation through complicated media. For instance, the VO fractional derivative is
identified by

c
ξ0
Dφ(ξ)
ξ ϕ(ξ) =

1
Γ(1 − φ(ξ))

∫ ξ

ξ0

(ξ − s)−φ(s)ϕ′(s)ds, ξ0 < ξ, φ(ξ) ∈ (0, 1], (3.6)

where φ(ξ) is a function whose value depends on ξ. It can be viewed as being a more prevalent
instance of (2.10). Numerous different fractional VO methodologies have been introduced, and it
is advantageous to acquire the analytical results by using predictor-corrector techniques [44]. For
instance, the VO fractional integral is identified by

ξ0I
φ(ξ)
ξ ϕ(ξ) =

1
Γ(φ(ξ))

∫ ξ

ξ0

(ξ − s)φ(s)−1ϕ′(s)ds, ξ0 < ξ, φ(ξ) ∈ (0, 1]. (3.7)
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Moreover, the Leibniz rule and semi-group characterization do not satisfy certain well-noted formulae
in the FC:

ξ0I
φ(ξ)
ξ

c
ξ0
Dφ(ξ)
ξ ϕ(ξ) = ϕ(ξ) − ϕ(0), ξ > ξ0, φ(ξ) ∈ (0, 1],

c
ξ0
Dφ(ξ)
ξ ξ0I

φ(ξ)
ξ ϕ(ξ) = ϕ(ξ), ξ > ξ0, φ(ξ) ∈ (0, 1] (3.8)

and

ξ0I
φ(ξ)
ξ ξ0I

β(ξ)
ξ = ξ0I

φ(ξ)+β(ξ)
ξ ϕ(ξ), ξ > ξ0, φ(ξ), β(ξ) > 0. (3.9)

As a result, the emergence consequences and certain other conceptual components that use the
corresponding integral equations to specify fixed-point formulations cannot be considered. Having a
VO strategy that is practical and feasible for both qualitative and numerical modelling is becoming a
difficult task. An FDE containing a VO can be defined for the fixed memory scenario. With respect to
ξ, the FO mapping can be thought of as a piecewise constant mapping. We only take into account the
fixed memory FDE from the aforementioned evaluation of the fixed memory and VO technique (3.3).
We exclusively employ the Caputo-type derivative or difference scheme in this investigation because
the Riemann-Liouville derivative necessitates integral initial conditions (ICs).

3.1. Short-memory and fractional VO technique for modelling

Initially, we introduce the spatial solution for (3.3). At ξκ, if x(ξ−κ ) = x(ξ+κ ), then the continuous
findings can be illustrated, whereas x(ξ−κ ) , x(ξ+κ ) yields a fractional impulsive DEs. We use impulsive
FDE representations [45]. Suppose there is a Banach space C(J ,R) of all continuous functions having
the norm ∥u∥c := sup

{
∥u∥ : ξ ∈ J = [ξ0,T]

}
. For 0 = ξ0 < ξ1 < ... < ξm < ξm+1 = T, the set C(J ,R) ={

u : J 7→ R : u ∈ C(ξκ, ξκ+1],R), κ = 0, ...,m
}

is also a Banach space with u(ξ+κ ) = lim
ϵ 7→0+

u(ξκ + ϵ) and

u(ξ−κ ) = lim
ϵ 7→0−

u(ξκ + ϵ).
Wu et al. [32] demonstrated the idea of fixed-memory FDEs. For ξ ∈ [ξ0, ξ1], we have the FDE

c
ξ0
Dφ0
ξ x = g(x, ξ). At time ξ1, for ξ ∈ (ξ1, ξ2], we only take into account the memory impacts of ξ1

and not at the beginning at ξ0; the revised FDE reads as follows c
ξ1
Dφ1
ξ x = g(x, ξ) supplemented by

x(ξ1) = x1. The initial setting (ξ1, x1) now demands the fractional-order to be fluctuated by φ1. Here,
we apply x1 = x(ξ−1 ); as the solution of c

ξ0
Dφ0
ξ x = g(x, ξ). Furthermore, we gradually develop a fixed

memory scheme over the range [ξ0,T].

3.2. Short-memory wind turbine aerodynamic model

Messadi et al. [4] proposed the wind turbine system with a PMSG in 2015. The PMSG is a
quintessential slightly elevated dynamical, multivariate coupled system and when the input shaft has
an impact field, it is extremely responsive to stack perturbations and contact pressure, and the
variability of its specifications is recommended by the modelling of FC [46]. We proposed a wind
turbine system with a PMSG through the use of a fractional derivatives, as follows:

c
0D

q1
ξ x = δ1(y − x) + δ2yz,

c
0D

q2
ξ y = δ3x − xz − y,

c
0D

q3
ξ z = xy − z,

(3.10)
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where q℘ ∈ (0, 1), ℘ = 1, ..., 3 are dimension-free terms and δ1 = 5.45, δ2 = 1 and δ3 = 20 are operating
parameters.

3.3. Qualitative analysis of the FO wind turbine model

Addressing the FO wind turbine corresponding to (3.10) will reveal its equilibria by substituting the
left-hand side of (3.10) with zero. 

0 = δ1(y − x) + δ2yz,
0 = δ3x − xz − y,
0 = xy − z.

(3.11)

The three equilibria points of model (3.10) are E1 = (0, 0, 0) and E2,3 = (y − 1,±
√

y − 1,±
√

y − 1).
And the Jacobian matrix is specified as

J =


−δ1 δ1 + δ2z δ2y
−z + δ3 −1 −x

y x −1

 (3.12)

where x, y and z denote the equilibrium points.
Furthermore, (2.2) presents the Lyapunov exponents as L̄1 = 0.852023, L̄2 = 0.009746 and L̄1 =

8.502219. Figure 2 displays the simulation’s numerical outcomes.

Figure 2. Plot of Lyapunov exponents.

Theorem 3.1. Suppose that λ > 0, η > 0, δ1 > 0, δ2 and δ3 > 0 with

℧λ,η =
{
(x, y, z)|λx2 + (λ + η)y2 + η

[
z −

(δ1 + δ3)λ + ηδ3

η

]2}
≤ R2

λ,η, (3.13)

where

R2
λ,η =


δ2

2
4δ1(δ2−δ1)

((δ1+δ3)λ+ηδ3)2

η
, δ1 ≥ 1, δ2 ≥ 2δ1,

δ2
2

4(δ2−1)
((δ1+δ3)λ+ηδ3)2

η
, δ1 > 1, δ2 ≥ 2,

((δ1 + δ3)λ + ηδ3)2, δ2 < 2δ1, δ2 < 2.

(3.14)
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Then, ℧λ,η is the ultimate bound and positively invariant set of model (3.10).

Proof. Introducing the Lyapunov-type candidate gives

Uλ,η(U) = Uλ,η(x, y, z)

= λx2 + (λ + η)y2 + η
[
z −

(δ1 + δ3)λ + ηδ3

η

]2
, ∀ λ, η > 0. (3.15)

Then, the derivative ofUλ,η(U) is

U̇λ,η(U) = 2λxẋ + 2(λ + η)yẏ + 2η
[
z −

(δ1 + δ3)λ + ηδ3

η

]
ż

= 2λx(δ1y − δ1x + δ2yz) + 2(η + λ)y(δ3x − y − xz) + 2η
[
z −

(δ1 + δ3)λ + ηδ3

η

]
(xy − z)

= −2δ1λx2 − 2(η + λ)y2 − 2ηδ2z2 + 2δ2
(
(δ1 + δ3)λ + ηδ3

)
z. (3.16)

Assume that U̇λ,η(U) = 0 and we attain a bounded closed set Θ :

Θ =

{
(x, y, z)

∣∣∣∣ 4δ1ηλx2

δ2[(δ1 + δ3)λ + ηδ3]2 +
4η(η + λ)y2

δ2[(δ1 + δ3)λ + ηδ3]2 +
4η2[z − ((δ1 + δ3)λ + ηδ3)/2η

]2
[(δ1 + δ3)λ + ηδ3]2 = 1

}
.

(3.17)

Because the chaotic framework given by (3.10) is bounded, the continuous function given by (3.15) is
able to attain its greatest value on the above-mentioned bounded closed set.

As a result, solutions to the structure described by (3.10) exist in the set defined by{
(x, y, z)

∣∣∣Uλ,η(U) ≤ maxUλ,η(U) = R2
λ,η,U ∈ Θ

}
. By solving the constrained extremum problem that

follows, we can achieve the maximum value of function (3.15) as follows:

max Uλ,η(U) = max
{
λx2 + (λ + η)y2 + η

[
z −

(δ1 + δ3)λ + ηδ3

η

]2}
(3.18)

such that

4δ1ηλx2

δ2[(δ1 + δ3)λ + ηδ3]2 +
4η(η + λ)y2

δ2[(δ1 + δ3)λ + ηδ3]2 +
4η2[z − ((δ1 + δ3)λ + ηδ3)/2η

]2
[(δ1 + δ3)λ + ηδ3]2 = 1. (3.19)

Letting x1 =
√
λx, y1 =

√
η + λy, z1 =

√
ηz, γ = (δ1+δ3)λ+ηδ3

2
√
η

, α2 =
δ2[(δ1+δ3)λ+ηδ3]2

4ηδ1
and ℑ2 =

δ2[(δ1+δ3)λ+ηδ3]2

4η , then (3.19) reduces to the subsequent form: max Uλ,η(U) = max
{
x2

1 + y2
1 + (z1 − 2γ)2}

such that

x2
1

α2 +
y2

1

ℑ2 +
(z1 − γ)2

γ2 = 1. (3.20)

We can address (3.20) using the optimisation approach and obtain the formula R2
λ,η as follows:

R2
λ,η =


δ2

2
4δ1(δ2−δ1)

((δ1+δ3)λ+ηδ3)2

η
, δ1 ≥ 1, δ2 ≥ 2δ1,

δ2
2

4(δ2−1)
((δ1+δ3)λ+ηδ3)2

η
, δ1 > 1, δ2 ≥ 2,

((δ1 + δ3)λ + ηδ3)2, δ2 < 2δ1, δ2 < 2.

(3.21)

This completes the proof.
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Remark 3.1. Assume that η = 1 and λ = 1; then, Theorem 3.1 reduces to

℧1,1 =
{
(x, y, z)

∣∣∣x2 + 2y2 + (z − δ1 − 2δ3)2 ≤ 𭟋2
}

(3.22)

as the ultimate bound and positively invariant set of (3.11), where

R2
λ,η =


δ2

2(δ1+2δ3)2

4δ1(δ2−δ1) , δ1 ≥ 1, δ2 ≥ 2δ1,
δ2

2(δ1+2δ3)2

4(δ2−1) , δ1 > 1, δ2 ≥ 2,

(δ1 + 2δ3)2, δ2 < 2δ1, δ2 < 2.

Consider the non-negative specific values δ1 = 35, δ2 = 7 and δ3 = 25 in ℧1,1 above; then, we are able
to determine that

℧1,1 =
{
(x, y, z)

∣∣∣x2 + 2y2 + (z − 20.25)2 ≤ (121.45)2
}

(3.23)

is the ultimate bound and positively invariant set for model (3.10).

Now, we propose a novel short-memory wind turbine system with a PMSG described as follows:
c
ξ∗D

q1
ξ x = δ1(y − x) + δ2yz,

c
ξ∗D

q2
ξ y = δ3x − xz − y,

c
ξ∗D

q3
ξ z = xy − z,

(3.24)

supplemented with the ICs x(0) = x0, y(0) = y0 and z(0) = z0.

The specifications and order of the framework are changed, and the bifurcation schemes for
framework (3.10) are resolved at δ2 = 20 and δ1 = 15.46. By correlating the eigenvalues and
Lyapunov exponents and incorporating the FO bifurcation plots, it is possible to see that the chaotic
behaviour of the framework exhibits broader Lyapunov exponents as the order of the fractional
equation remains between q ∈ [0.6, 0.9]. Therefore, FO restrictions for chaos reduction are more
effective than classical control.

Due to the fact that nonlinear processes have multiple equilibria, they have much more complicated
stability approaches than FO linearization. This matter is still unresolved [47]. The examples that
follow show plenty of outcomes.

Theorem 3.2. The equilibria are asymptotically stable for q1 = q2 = q3 = q if all of the eigenvalues
Ξ℘ (℘ = 1, 2, 3) of the Jacobian matrix J = ∂g

∂x , where g = [g1, g2, g3]T , elaborated at the equilibrium
E∗, are subject to the subsequent criterion:∣∣∣ arg(eigJ)

∣∣∣ = | arg(Ξ℘)| >
qπ
2
, ℘ = 1, 2, 3. (3.25)

When we consider the incommensurate FO system q1 , q2 , q3 and suppose that m is the least
common multiple of the denominators u℘’s of q℘’s, where q℘ = v℘/u℘, v℘,u℘ ∈ Z+ for ℘ = 1, 2, 3, and
adjusting ς = 1/m, which indicates that (3.10) is asymptotically stable if | arg(Ξ)| > ςπ

2 for all roots Ξ
of the following equation:

det(diag([Ξςq1 Ξςq2 Ξςq3]) − J) = 0. (3.26)
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A necessary stability condition for FO systems (3.10) to remain chaotic is keeping at least one
eigenvalue Ξ in the unstable region [48]. A previous summary [49] precisely outlined the handful of
equilibria and eigenvalues for one-scroll, double-scroll, and multiscroll attractors. Consider the
scenario where there are only three equilibria in a three-dimensional dynamic scheme. As a result, a
structure with a double-scroll attractor might have two saddle-focus points that are encircled by
scrolls, one more saddle point, etc. We should evaluate the characteristic equations for the linear
parts with slopes c and d, respectively, in the particular instance of the piecewise nonlinearity shown
in Figure 3.

Slope=c1

Slope=d1

-1 1

Figure 3. A piecewise-linear flux-controlled memristor’s features.

Maintaining one or more eigenvalues in the unstable eigenvalues of scroll saddle points Ξ1,2 =

r̄1,2 ± ȷω1,2. These are the necessary conditions to exhibit the double-scroll attractor of (3.10) is the
eigenvalues Ξ1,2 remaining in the unstable region. We can also establish a minimal order q for which a
dynamical framework exhibits chaotic behaviour in accordance with condition q > 2

π
arctan

(
|ω℘ |

r̄℘

)
, ℘ =

1, 2.

4. Numerical schemes

Here, we present several schemes for the solution of a wind turbine system with a PMSG.

4.1. Piecewise fractional derivative scheme

Assume that ξ∗ = Tκ, κ ∈ [0,m] and [0,T] = [T0,T1]∪ (T1,T2]∪, ...,∪(Tm,Tm+1 = T]. Furthermore,
ξ∗ starts form T0. For ξ ∈ (Tκ−1,T], the framework (3.24) is only dependent upon the state starting at
time ξ∗ = Tκ−1, often not starting at time ξ∗ = 0, as is the case for (3.24). Additionally, the FO q℘
on every sub-interval is a crucial factor to characterise memory consequences and it may fluctuate.
Furthermore, a piecewise mapping q℘ is stated by q℘(ξ) = q℘,κ, ξ ∈ (Tκ−1,Tκ], ℘ = 1, 2, 3. q℘,κ
represents a constant and q℘,κ ∈ (0, 1]. Thus, we can obtain every sub-system one by one.
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For ξ ∈ (0,T1] and (x0, y0, z0), we have
c
0D

q1,0
ξ x = δ1(y − x) + δ2yz,

c
0D

q2,0
ξ y = δ3x − xz − y,

c
0D

q3,0
ξ z = xy − z.

(4.1)

For ξ ∈ (T1,T2], numerical techniques can be used to acquire the situation x(T1) from (3.24) as the
revised ICs of 

c
T1
Dq1,1
ξ x = δ1(y − x) + δ2yz,

c
T1
Dq2,1
ξ y = δ3x − xz − y,

c
T1
Dq3,1
ξ z = xy − z.

(4.2)

... .

For ξ ∈ (Tm,T], numerical techniques can be used to acquire the situation x(Tm); then, we have
c
Tm
Dq1,m
ξ x = δ1(y − x) + δ2yz,

c
Tm
Dq2,m
ξ y = δ3x − xz − y,

c
Tm
Dq3,m
ξ z = xy − z.

(4.3)

4.2. Discrete fractional derivative scheme

Throughout this investigation, we consider that ℓ = q1,κ = q2,κ = q3,κ. Our aim is to demonstrate
the chaotic behaviour on every sub-region. We employ the accurate discretisation by the fractional
derivative on the time scale [36] to prevent uncertainties. We suggest the discrete-time system (3.24)
analogue shown below:

c∇ℓξ∗,ℏx = δ1
(
y(ξ + (ℓ − 1)ℏ) − x(ξ + (ℓ − 1)ℏ)

)
+ δ2y(ξ + (ℓ − 1)ℏ)z(ξ + (ℓ − 1)ℏ),

c∇ℓξ∗,ℏy = δ3x(ξ + (ℓ − 1)ℏ) − x(ξ + (ℓ − 1)ℏ)z(ξ + (ℓ − 1)ℏ) − y(ξ + (ℓ − 1)ℏ),
c∇ℓξ∗,ℏz = x(ξ + (ℓ − 1)ℏ)y(ξ + (ℓ − 1)ℏ) − z(ξ + (ℓ − 1)ℏ,

(4.4)

where ℓ ∈ (0, 1] and ξ, ξ∗ ∈ Na+(1−ℓ)ℏ.

Assume that there is a nonnegative integer ϖ, Tκ = a + κℏ and ℓ signifies the piecewise constant
mapping stated by

ℓ =


ℓ0, ξ ∈

{
a, a + ℏ, ..., a +ϖℏ

}
;

ℓ1, ξ ∈
{
a +ϖℏ + ℏ, ..., a + 2ϖℏ

}
;

...

ℓm, ξ ∈
{
a +mℏ + ℏ, ..., a + (m + 1)ϖℏ

}
.

(4.5)
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For n ∈
{
0, ..., ϖ − 1

}
, we have

xn+1 = x0 +
ℏℓ0

Γ(ℓ0)

n∑
ȷ=0

Γ(n− ȷ+ℓ0)
Γ(n− ȷ+1)

{
δ1
(
y ȷ − x ȷ

)
+ δ2y ȷz ȷ

}
,

yn+1 = y0 +
ℏℓ0

Γ(ℓ0)

n∑
ȷ=0

Γ(n− ȷ+ℓ0)
Γ(n− ȷ+1)

{
δ3x ȷ − x ȷz ȷ − y ȷ

}
,

zn+1 = z0 +
ℏℓ0

Γ(ℓ0)

n∑
ȷ=0

Γ(n− ȷ+ℓ0)
Γ(n− ȷ+1)

{
x ȷy ȷ − z ȷ

}
.

(4.6)

For n ∈
{
ϖ, ..., 2ϖ − 1

}
, we have

xn+1 = xϖ + ℏℓ1

Γ(ℓ1)

n∑
ȷ=0

Γ(n− ȷ+ℓ1)
Γ(n− ȷ+1)

{
δ1
(
y ȷ − x ȷ

)
+ δ2y ȷz ȷ

}
,

yn+1 = yϖ + ℏℓ1

Γ(ℓ1)

n∑
ȷ=0

Γ(n− ȷ+ℓ1)
Γ(n− ȷ+1)

{
δ3x ȷ − x ȷz ȷ − y ȷ

}
,

zn+1 = zϖ + ℏℓ1

Γ(ℓ1)

n∑
ȷ=0

Γ(n− ȷ+ℓ1)
Γ(n− ȷ+1)

{
x ȷy ȷ − z ȷ

}
.

(4.7)

... .

Furthermore, let us note the complexities on [T0,T1], ..., (T2,T3], where T0 = a = 0 and Tκ ∈{
a, a + ℏ, ...

}
. The data are expressed by ℏ and the value of ℓκ has a significant impact on the system’s

state, as described by (4.4). The interactions of variable-order are often incredibly complex. The wind
turbine system (4.4) with a PMSG has a wide energetic range. To distinguish between chaotic regions,
we compute the Lyapunov exponents using the Jacobian matrix method [50].

Initially, the first sub-interval of the framework (4.4) can be configured as

xn+1 = x0 +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n− ȷ+ℓ)
Γ(n− ȷ+1)

{
δ1
(
y ȷ − x ȷ

)
+ δ2y ȷz ȷ

}
,

yn+1 = y0 +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n− ȷ+ℓ)
Γ(n− ȷ+1)

{
δ3x ȷ − x ȷz ȷ − y ȷ

}
,

zn+1 = z0 +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n− ȷ+ℓ)
Γ(n− ȷ+1)

{
x ȷy ȷ − z ȷ

}
.

(4.8)

The Jacobian matrix for the system (4.4) can be presented as

J(n) =


a11(n) a12(n) a13(n)
b21(n) b22(n) b23(n)
c31(n) c32(n) c33(n)

 , (4.9)

where a11(n) = b22(n) = c33(n) = 1 and J = I denotes an identity matrix.
The framework of tangent maps can be defined for every component, as follows:

a11(n + 1) = a11(0) +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n − ȷ + ℓ)
Γ(n − ȷ + 1)

[
δ1(b21( ȷ) − a11( ȷ)) + δ2b21( ȷ)c31( ȷ)

]
,
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a12(n + 1) = a12(0) +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n − ȷ + ℓ)
Γ(n − ȷ + 1)

[
δ1(b22( ȷ) − a12( ȷ)) + δ2b22( ȷ)c32( ȷ)

]
,

a13(n + 1) = a13(0) +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n − ȷ + ℓ)
Γ(n − ȷ + 1)

[
δ1(b23( ȷ) − a13( ȷ)) + δ2b23( ȷ)c33( ȷ)

]
,

b21(n + 1) = b21(0) +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n − ȷ + ℓ)
Γ(n − ȷ + 1)

[
δ3a11( ȷ) − a11( ȷ)c31( ȷ) − b21( ȷ)

]
,

b22(n + 1) = b22(0) +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n − ȷ + ℓ)
Γ(n − ȷ + 1)

[
δ3a12( ȷ) − a12( ȷ)c32( ȷ) − b22( ȷ)

]
,

b23(n + 1) = b23(0) +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n − ȷ + ℓ)
Γ(n − ȷ + 1)

[
δ3a13( ȷ) − a13( ȷ)c33( ȷ) − b23( ȷ)

]
,

c31(n + 1) = c31(0) +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n − ȷ + ℓ)
Γ(n − ȷ + 1)

[
a11( ȷ)b21( ȷ) − c31( ȷ)

]
,

c32(n + 1) = c32(0) +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n − ȷ + ℓ)
Γ(n − ȷ + 1)

[
a12( ȷ)b22( ȷ) − c32( ȷ)

]
,

c33(n + 1) = c33(0) +
ℏℓ

Γ(ℓ)

n∑
ȷ=0

Γ(n − ȷ + ℓ)
Γ(n − ȷ + 1)

[
a13( ȷ)b23( ȷ) − c33( ȷ)

]
. (4.10)

Then, all of the eigenvalues Ξ℘(n) of J(n) are calculated using the singular value decomposition
technique. Consequently, The approximate formula for the Lyapunov exponents spectrum is
ln |Ξ℘(n)|
n

, ℘ = 1, 2, 3.
If there is a non-negative Lyapunov exponent, we can effectively use this technique to determine the

chaotic regions for the second as well as other sub-intervals.
Suppose that (xn, yn, zn) = (x(nℏ), y(nℏ), z(nℏ)) along with the dynamical evaluation of the model

(4.4). Assume that m = 3, ℏ = 0.005, a = 0.3 and b = 0.8. The initial settings are x0 = 3, y0 = 3 and
z0 = 3 to analyse the dynamics on [T0,T1], ..., (T2,T3], where T0 = a = 0 and Tκ ∈ {a, a + ℏ, ...}. The
variable ℏ is expressed and the value of ℓ has a significant impact on the system’s state, as described
by (4.4). The complexities of VO are often incredibly challenging. Memristors have a rich spectral
response. According to Figure 4, varying φκ results in various chaotic attractors. But it is important
to note that the ICs also influence the chaos (xκϖ, yκϖ, zκϖ). This implies that not every IC can produce
chaos throughout all sub-intervals.

The adaptive nonlinear controllers of wind turbines with PMSG are being taken into account, and
a proposed approach focused on a FO nonlinear control scheme is being explored. The d-axis flux
is assumed to be zero to obtain the highest torque per ampere. As a result, the resonance frequency
and the q-axis power flow will be related linearly. As infinite memory components are impossible
to implement in MATLAB 2021 program, a finite truncation limit of 1000 is fixed to realize the FO
system (4.4). Figure 5 depicts the PMSG model’s configuration. To reach equilibrium at ξ = 20
seconds, the power flows ιq1 and ιd, along with the angular velocity ω, were all monitored. The efficacy
of the strategy described in this study is demonstrated by the similarity of the outcomes obtained
with a fuzzified guaranteed cost controller [51]. Inferential controllers offer faster performance in the
steady state than fuzzified controllers that meet the minimum requirements do. The presented fractional
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dynamic converters are classified as speed loop controller algorithm frames in the control mechanism.
Figure 6 depicts the velocity and power flow regulation with an unsettled interruption on the exterior. In
Figure 7, the attractor bifurcation reactions are examined, and the orders q1,q2 and q3 are diversified.
The bifurcation maps demonstrate how the FO significantly alters the structure’s complexity.

The findings demonstrate the value of fractional calculus in dynamical electrical circuits. We obtain
a strategy based on the framework that is smaller than the overall number of DEs while using FDEs.
To suppress chaotic oscillations in a dynamic framework that is frequently defined by three equations,
a control technique assumes that the operating parameters of the FO system are unknown even though
chaos is still observable. The scenario is comparable to a hyperchaotic scheme. It expands the potential
uses of the suggested chaotic mechanism. There is no doubt that the turbulent oscillations observed by
Rajagopal et al. [52] are consistent with those corresponding to the existing methodology for discrete
fractional operator and piecewise approaches. This further supports the validity of the ongoing project.
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Figure 4. Graphical view of the chaos in the VO attractors given by model (4.4).
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Figure 5. An adaptive learning system wherein guaranteed cost control was used to regulate
the angular velocity of the PMSG to the steady state at time ξ = 20 seconds.
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Figure 6. State variables of the quintessential chaotic attractor and the chaotic PMSG without
influence when φ = 0.95.
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(a) (b)

(c)

Figure 7. Bifurcation states for q1,q2 and q3.

5. Conclusions

In this article, a short-memory framework for fractional modelling of a chaotic PMSG in a wind
turbine system is presented. We provide explanations for innovative applications like the suppression
of chaotic behaviour and physical meaning. Aside from that, piecewise components representing
fractional VOs are also introduced. This report basically makes a significant contribution to the key
segments by utilising the short-memory FDE mentioned above, a turbulent turbine configuration with
a short memory is shown. The FO scheme and machine’s Lyapunov exponents must be deduced in
order to communicate the stability; thus, we used a novel technique to determine the expression of the
Lyapunov first derivative. The PMSG framework and the suggested control strategies were
incorporated into MATLAB for the available design experiments. The customised propellers’ pitch
angle and angular speed were calculated using dynamic programming, and predictive control was
employed to monitor the calculated principles in a bid to garner the most influence. By applying the
core principle of a numerical simulation of the tip speed ratio, pitch angle, drag coefficients, capacity
factor, static pressure, and propeller angular velocity, the function of turbulent perturbations has been
described. We looked into a few innovative effects and implications in the context of the findings for
the two-dimensional nonautonomous framework of a PMSG because (a) the system variable
dynamics are the same and disruption in the chaotic systems of the wind turbine system is identified,
and (b) the similarity reveals that the short-memory has quite strange chaotic behaviour compared to
the classical one. There are numerous unresolved issues that must be addressed. For example, despite
the analysis presented here, a precise innovation can be explored using the work presented in [53, 54].
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37. T. Abdeljawad, R. Mert, D. F. Torres, Variable order Mittag-Leffler fractional operators on isolated
time scales and application to the calculus of variations, In: Fractional derivatives with Mittag-
Leffler kernel, Springer: Cham, Switzerland, 2019, 35–47.

38. W. Deng, Short memory principle and a predictor–corrector approach for
fractional differential equations, J. Comput. Appl. Math., 206 (2007), 174–188.
https://doi.org/10.1016/j.cam.2006.06.008

39. M. Al. Qurashi, S. Rashid, F. Jarad, E. Ali, R. H. Egami, Dynamic prediction modelling and
equilibrium stability of a fractional discrete biophysical neuron model, Results Phys., 48 (2023),
106405. https://doi.org/10.1016/j.rinp.2023.106405

40. Z. Wang, H. Xia, Y. X. Li, X. N. Song, A new image encryption algorithm based
on the fractional-order hyperchaotic Lorenz system, Chinese Phys. B, 6 (2013), 010504.
https://doi.org/10.1088/1674-1056/22/1/010504

AIMS Mathematics Volume 8, Issue 8, 19097–19120.

http://dx.doi.org/https://doi.org/10.1002/mma.6378
http://dx.doi.org/https://doi.org/10.1016/j.cam.2020.112885
http://dx.doi.org/https://doi.org/10.1109/81.989176
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2004.02.054
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2005.04.037
http://dx.doi.org/https://doi.org/10.1016/j.physa.2019.121127
http://dx.doi.org/https://doi.org/10.1007/s11071-020-05572-z
http://dx.doi.org/https://doi.org/10.1016/j.sigpro.2010.05.001
http://dx.doi.org/https://doi.org/10.1016/j.cam.2006.06.008
http://dx.doi.org/https://doi.org/10.1016/j.rinp.2023.106405
http://dx.doi.org/https://doi.org/10.1088/1674-1056/22/1/010504


19120

41. F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrage, Stability and convergence of the difference
methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191
(2007), 12–20. https://doi.org/10.1016/j.amc.2006.08.162

42. X. J. Yang, Advanced local fractional calculus and its applications, Singapore: World Science
Publisher, 2012.

43. H. G. Sun, W. Chen, Y. Q. Chen, Variable-order fractional differential operators in anomalous
diffusion modeling, Phys. A, 388 (2009), 4586–4592. https://doi.org/10.1016/j.physa.2009.07.024

44. M. D. Ortigueira, D. Valrio, J. T. Machado, Variable order fractional systems, Commun. Nonlinear
Sci. Numer. Simul., 71 (2019), 231–243. https://doi.org/10.1016/j.cnsns.2018.12.003

45. M. Feckan, Y. Zhou, J. R. Wang, On the concept and existence of solution for impulsive
fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 3050–3060.
https://doi.org/10.1016/j.cnsns.2011.11.017

46. I. Petras, Fractional-order memristor-based Chua’s circuit, IEEE Trans. Circ. Syst. II, Express
Briefs, 57 (2010), 975–979. https://doi.org/10.1109/TCSII.2010.2083150

47. W. Deng, Smoothness and stability of the solutions for nonlinear fractional differential equations,
Nonlinear Anal., 72 (2010), 1768–1777. https://doi.org/10.1016/j.na.2009.09.018

48. M. S. Tavazoei, M. Haeri, Unreliability of frequency-domain approximation in recognising chaos
in fractional-order systems, IET Signal Process., 1 (2007), 171–181.

49. I. Petras, A note on the fractional-order Volta’s system, Commun. Nonlinear Sci. Numer. Simul.,
15 (2010), 384–393. https://doi.org/10.1016/j.cnsns.2009.04.009

50. G. C. Wu, D. Baleanu, Jacobian matrix algorithm for Lyapunov exponents of the
discrete fractional maps, Commun. Nonlinear Numer. Simul., 22 (2015), 95–100.
https://doi.org/10.1016/j.cnsns.2014.06.042

51. Y. Y. Hou, Controlling chaos in permanent magnet synchronous motor control
system via fuzzy guaranteed cost controller, Abstr. Appl. Anal., 2012 (2012), 650863.
https://doi.org/10.1155/2012/650863

52. K. Rajagopal, A. Karthikeyan, P. Duraisamy, Chaos suppression in fractional order permanent
magnet synchronous generator in wind turbine systems, Nonlinear Eng., 6 (2016), 79–87.
https://doi.org/10.1515/nleng-2016-0059

53. X. M. Gu, H. W. Sun, Y. L. Zhao, X. Zheng, An implicit difference scheme for time-fractional
diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021),
107270. https://doi.org/10.1016/j.aml.2021.107270

54. R. Garrappa, A. Giusti, F. Mainardi, Variable-order fractional calculus: a change
of perspective, Commun. Nonlinear Sci. Numer. Simul., 102 (2021), 105904.
https://doi.org/10.1016/j.cnsns.2021.105904

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 8, 19097–19120.

http://dx.doi.org/https://doi.org/10.1016/j.amc.2006.08.162
http://dx.doi.org/https://doi.org/10.1016/j.physa.2009.07.024
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2018.12.003
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2011.11.017
http://dx.doi.org/https://doi.org/10.1109/TCSII.2010.2083150
http://dx.doi.org/https://doi.org/10.1016/j.na.2009.09.018
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2009.04.009
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2014.06.042
http://dx.doi.org/https://doi.org/10.1155/2012/650863
http://dx.doi.org/https://doi.org/10.1515/nleng-2016-0059
http://dx.doi.org/https://doi.org/10.1016/j.aml.2021.107270
http://dx.doi.org/https://doi.org/10.1016/j.cnsns.2021.105904
http://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical modelling of the wind turbine 
	Short-memory principle
	Short-memory and fractional VO technique for modelling 
	Short-memory wind turbine aerodynamic model
	 Qualitative analysis of the FO wind turbine model

	Numerical schemes
	Piecewise fractional derivative scheme
	Discrete fractional derivative scheme

	Conclusions

