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ABSTRACT: Silver-modified  polyniobotungstate  based  on
Nb/W  mixed-addendum  polyoxometalate  with  formula
Ag9[P2W15Nb3O62]·21H2O  (Ag-Nb/W)  was  synthesized  and
then  characterized  by  various  analytical  and  spectral
techniques.  Ag-Nb/W  was  proven  to  be  an  efficient
photocatalyst  for  the  oxidative  ring  opening  of  2-
phenylimidazo[1,2-a]pyridine via the simultaneous cleavage of
C–C  and  C–N  bonds.  Under  visible  light  (430–440  nm)  and
with oxygen as an oxidant at room temperature, Ag-Nb/W can
catalyze  the  rapid  transformation  of  various  2-
phenylimidazo[1,2-a]pyridine  derivatives  to  produce  the
corresponding oxidative ring-opening product N-(pyridin-2-yl) amides in good isolated yields ranging from 65% to 78%. As a
heterogeneous photocatalyst, Ag-Nb/W showed excellent sustainability and recyclability in the recycling experiments. Infrared
(IR)  spectroscopy  and  X-ray  diffraction  (XRD)  analysis  indicated  that Ag-Nb/W  could  retain  its  integrity  after  catalysis.  A
possible mechanism involving the singlet oxygen for the catalytic reaction was proposed.
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 1    Introduction
Polyoxometalates  (POMs)  are  a  large  family  of  inorganic  and
anionic metal–oxygen clusters of early transition metal ions (Mo6+,
W6+,  V5+,  Nb5+,  and  Ta5+)  [1–4].  Owing  to  their  advantages  of
definite structures, adjustable elemental composition, and band gap,
reversible  multielectron  processes,  and  high  stability  under  redox
conditions  [5–9],  POMs  are  promising  candidates  in  the  field  of
photocatalysis,  including  in  the  photocatalytic  evolution  of
hydrogen  [10–12],  reduction  of  carbon  dioxide  [11–16],  and
degradation  of  organic  pollutants  [17–22].  In  particular,  POM
photocatalysis  has  attracted  sustained  attention  for  organic
chemical  conversion [23–27].  Several  POMs have shown potential
in organic reactions, including aerobic oxidation [28–30], and some
bond  formation  reactions,  including  the  formation  of  C−C,  C−N,
C−O  C−Si,  C−P,  and  C−F  bonds  [31–39].  However,  most  POMs

can  only  work  using  ultraviolet  light.  Thus,  designing  and
synthesizing  new  visible  light-promoted  POM  photocatalysts  and
exploring  their  potential  in  new  organic  reactions  is  of  great
significance.  C−C  and  C−N  bonds  are  the  most  widespread  and
fundamental bonds in organic compounds. Contrary to their highly
developed  formation,  their  selective  cracking  is  difficult  [40–42].
The  selective  catalytic  cleavage  of  C–C  bonds  or  C–N  bonds  for
chemical  transformations  is  an  important  topic  in  synthetic
chemistry  and  has  become  one  of  the  most  attractive  but
challenging tasks [42, 43]. Over the past few decades, chemists have
made  great  efforts  and  developed  a  variety  of  catalytic  systems  to
separately  cleave  C–C  or  C–N  bonds  [44, 45].  However,  the
cleavage of C–C and C–N bonds in a single organic transformation
has  remained  difficult.  Only  a  few  examples  of  the  simultaneous
cleavage  of  C–C  and  C–N  bonds  in  one  substrate  molecule  have
been  reported  so  far  [34–48].  In  addition,  these  reactions  require
harsh  conditions,  such  as  strong  oxidant  or  initiator  and  high
temperature (Schemes 1(a) and 1(b)) [47, 49].  Therefore, the rapid
and  simultaneous  cleavage  of  C–C  and  C–N  bonds  under  mild
conditions with high regioselectivity is still a challenge.

Herein, we report a new silver-modified polyniobotungstate (Ag-
Nb/W)  obtained  from  the  reaction  between  Nb/W  mixed-
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addendum  POM  [P2W15Nb3O62]9− and  Ag+ ion. Ag-Nb/W was
proven to be a  high-efficiency heterogeneous photocatalyst  for  the
regioselective  cleavage  of  C–C  and  C–N  bonds  in  2-
phenylimidazo[1,2-a]pyridine  under  extremely  mild  conditions,
namely,  in  an  O2 atmosphere  at  room  temperature  without  using
external oxidants and precious metals (Scheme 1(c)). To the best of
our  knowledge,  this  work  is  the  first  example  of  visible  light-
promoted simultaneous cleavage of C–C and C–N bonds catalyzed
by  a  POM  photocatalyst.  This  approach  coincides  with  the  social
demand for “green chemistry” and “sustainable development”.

 2    Experimental

 2.1    Materials and methods
The  precursor  K8H[P2W15(NbO2)3O59]·12H2O  was  synthesized  as
previously  described  [50].  All  other  reagents  were  obtained
commercially  and  used  without  further  purification.  Fourier
transform infrared (FT-IR) spectroscopy analysis in attenuated total
refraction  (ATR)  mode  was  performed  with  a  Perkin  Elmer
Spectrum  400  FT-IR/FT-FIR  Spectrometer  equipped  with  ATR
objective lens in the range of 400–4000 cm−1 at room temperature.
Powder  X-ray  diffraction  (PXRD)  measurements  were  conducted
on  a  Panalytical  X’Pert3  Powder  diffractometer  with  graphite
monochromatized Cu Kα radiation at 170 K. Thermal analyses was
facilitated  on  a  Netzsch  449C  thermal  analyzer.  The  sample  was
heated  to  1000  °C  with  a  heating  rate  of  5  °C/min  under  an  N2
atmosphere.  X-ray  photoelectron  spectroscopy  (XPS)  was
conducted  on  a  Thermo  Fisher  Scientific  ESCALAB250Xi  X-ray
photoelectron spectroscope. High-resolution mass spectra (HRMS)
were  recorded  on  a  Bruker  Mass  spectrometer  using  electrospray
ionization-time of flight (ESI-TOF). 1H NMR spectra were recorded
on a Bruker AVANCE III HD 600 MHz spectrometer.

 2.2    Synthesis of Ag-Nb/W
K8H[P2W15(NbO2)3O59]·12H2O  (0.20  g,  0.04  mmol)  and  AgNO3
(0.35  g,  2.06  mmol)  were  dissolved in  20  mL of  water.  Nitric  acid
(1 M) was then added to adjust the pH of the reaction solution to
1.0–2.0,  and  the  mixture  was  further  stirred  at  70  °C  for  40  min.
After  cooling  to  room  temperature,  the  reaction  solution  was
filtered  and  allowed  to  evaporate.  Bright  yellow  crystals  were
obtained  within  1  week.  Yield:  0.21  g  (96.5%  based  on
K8H[P2W15(NbO2)3O59]·12H2O).  Anal.  Calcd.  (%)  for Ag-Nb/W:
Ag 4.17, P 0.27, W 11.86, Nb 1.20; found Ag 4.02, P 0.26, W 11.44,
Nb  1.16.  IR  (KBr  disks):  1612  (w),  1079  (s),  943  (s),  908  (s),

709 (vs) cm−1.

 3    Results and discussion

 3.1    Synthesis considerations
Ag-Nb/W was synthesized by the simple reaction of Nb/W mixed-
addendum  Dawson-type  precursor  (K8H[P2W15(NbO2)3O59]·
12H2O) and AgNO3 in a mild aqueous solution under conventional
conditions.  Details  of  the  experiment  are  shown  in  the  Electronic
Supplementary  Material  (ESM).  Owing  to  its  low  solubility  in
water, the yellow crystal product of Ag-Nb/W was obtained with a
high yield close to 100% using a wide range of pH values (0.5–5.0)
adjusted with nitric acid. However, single crystals suitable for single-
crystal  measurement  can  only  be  obtained  from  a  solution  of  pH
1.0–2.0.

 3.2    Structural descriptions

R3̄
Single-crystal  XRD  analysis  (Table  S1  in  the  ESM)  indicated  that
Ag-Nb/W crystallized  in  trigonal  symmetry,  space  group.  The
asymmetrical  unit  of Ag-Nb/W contained  one  Dawson  unit
[P2W15Nb3O62]9− ({P2W15Nb3}) and nine Ag+. As shown in Fig. 1(a),
each  {P2W15Nb3}  was  surrounded  and  coordinated  by  15  Ag+.
Three  kinds  of  crystallographically  distinct  silver  ions  were
observed:  Ag1  and  Ag3  are  five-coordinated,  and  Ag2  is  four-
coordinated (Fig. 1(b)). Each Ag1 was coordinated to two terminal
oxygen  atoms  bonded  with  Nb,  Ot(Nb),  and  three  coordination
water molecules (Ow) with the Ag–O bond length of 2.30 and 2.67
Å and Ag–Ow distances in the range of  2.345–2.294 Å. Each Ag2
connected  to  two  {P2W15Nb3}  through  two  (Nb)Ot–Ag–Ot(W)
bridges  with  Ag–O  bond  lengths  of  2.355  and  2.345  Å  and  one
water  molecule  with  Ag–Ow  distance  of  2.22  Å.  Each  Ag3  was
coordinated to one Ot(W), two Ob(W) with Ag–O distances of 2.57
and  2.58  Å,  and  two  coordinated  water  molecules  with  Ag–Ow
distances  of  2.42  and 2.38  Å.  Two {P2W15Nb3}  were  connected by
six Ag1, forming a sandwich structure (Fig. 1(c) and Fig. S1 in the
ESM). From another aspect, the six silver ions were coordinated by
six  Ot(Nb)  atoms  from  {P2W15Nb3}  and  twelve  coordinated  water
 

a

b

Figure 1    (a)  Combined  polyhedral/ball-and-stick  representation  of  the
asymmetrical unit, (b) three adjacent {P2W15Nb3} connected by Ag+ highlighting
the coordination of three kinds of Ag ions, (c) the sandwich dimer connected by
six Ag+ and (d) the 3D network structure view along the c axis in Ag-Nb/W.
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Scheme 1    Ring-opening  reactions  via  C–C  and  C–N  bond  cleavage  under
different conditions.

Li et al.

https://doi.org/10.26599/POM.2023.9140024
Polyoxometalates, 2023, 2, 9140024

2

https://doi.org/10.26599/POM.2023.9140024


molecules,  resulting  in  a  rare  silver-oxo  cluster  {Ag6(H2O)12}.  We
believe  that  the  coordination  environment  provided  by  the
{P2W15Nb3}  plays  an  important  role  in  the  formation  of
{Ag6(H2O)12}  cluster  in Ag-Nb/W.  Furthermore,  {Ag6(H2O)12}
cluster bonded to another six Ag2 through Ag1–O30–Ag2 bridges,
forming a {Ag12(H2O)18} cluster. In summary, each {P2W15Nb3} was
connected  to  six  surrounding  {P2W15Nb3}  by  twelve  Ag  ions,
forming a three-dimensional (3D) network structure (Fig. 1(d)).

 3.3    Properties
In  the  ultraviolet–visible  (UV–vis)  diffuse  reflection  spectroscopy
shown in Fig. 2(a),  the yellow solid sample of Ag-Nb/W exhibited
strong  absorption  in  the  visible  region,  indicating  its  potential
application  in  photocatalysis.  XPS  was  further  employed  to
determine  the  chemical  states  of  Ag  and  W  in Ag-Nb/W.  The
peaks with binding energies at 374.6 and 368.6 eV corresponded to
Ag+ 3d3/2 and  Ag+ 3d5/2 states,  respectively  (Fig.  2(b))  [51].  These
results  were  consistent  with  those  from  bond  valence  sum  (BVS)
analyses (Table S2 in the ESM). In addition, the W spectrum for Ag-
Nb/W showed  two  binding  energies  at  38.0  and  35.9  eV,  which

represent  the  electrons  of  W6+ states  (Figs.  S4  and S5  in  the  ESM)
[52].

 3.4    Photocatalytic performance
The  strong  adoption  in  the  visible  region  exhibited  by  the  yellow
solid  sample  of Ag-Nb/W (Fig.  2(a))  prompted  us  to  study  its
catalytic  activity  under  visible  light.  We  began  our  investigation
with 2-phenylimidazo[1,2-a]pyridine (1a) as the model substrate to
evaluate the catalyst and optimize the reaction conditions (Table 1).
In our initial study, the reaction of 2-phenylimidazo[1,2-a]pyridine
(0.2  mmol)  in  the  presence  of Ag-Nb/W (1.5  mol%)  in  ethanol
generated  the  desired  product  N-(pyridine-2-yl)benzamide  (2a)  in
17% yield after 1.5 h irradiation under blue-LEDs (Table 1, entry 1).
To  optimize  the  reaction  condition,  we  examined  the  effect  of
different  solvents  including  ethanol,  dichloromethane,  toluene,
acetone,  n-hexane,  tetrahydrofuran,  methanol,  and  acetonitrile
(entries  1–8)  on  the  reaction  and  found  that  acetonitrile  gave  the
highest yield of 2a (78%, entry 8). We then studied the effect of the
amount  of  catalyst  and  found  that  an  increase  in  catalyst  loading
did  not  lead  to  a  sustained  increase  in  the  reaction  yield  (entries
8–10). A good yield of 78% was obtained when the catalyst dosage
was 1.5 mol% (entry 8), which was considered to be the optimized
amount. Using the model substrate, we next examined the effect of
the  light  source,  namely,  10  W  LED  lamps  with  different
wavelength  bands  including  390–400,  410–420,  and  440–450  nm
(entries 11–13) and a solar simulator (300 W Xe lamp) (entry 14).
The  results  revealed  that  430–440  nm  was  the  best  light  source,
leading to the desired product 2a in good isolated yield (78%, entry
8)  after  1.5  h.  Finally,  the  optimized  reaction  conditions  were
established as follows: substrate (0.2 mmol), Ag-Nb/W (1.5 mol%),
and solvent acetonitrile (2 mL) were irradiated by a blue LED light
(10  W,  430–440  nm)  and  stirred  under  O2 (1  atm)  at  room

 

Figure 2    (a) Diffuse reflectance spectrum of Ag-Nb/W (inset: photograph of the
crystal sample). (b) XPS spectrum of Ag signals for Ag-Nb/W.

 

Table 1    Optimization of reaction conditionsa

N

N

N

H
N

O

Ag-Nb/W

1a 2a

Solvent (2 mL)

O2 (1 atm), rt

Entry Cat. Light source (nm) Solvent Time (h) Yield (%)b

1 1.5 mol% Ag-Nb/W 430–440 Ethanol 1.5 17

2 1.5 mol% Ag-Nb/W 430–440 Dichloromethane 1.5 13

3 1.5 mol% Ag-Nb/W 430–440 Toluene 1.5 Trace

4 1.5 mol% Ag-Nb/W 430–440 Acetone 1.5 31

5 1.5 mol% Ag-Nb/W 430–440 n-Hexane 1.5 Trace

6 1.5 mol% Ag-Nb/W 430–440 Tetrahydrofuran 1.5 70

7 1.5 mol% Ag-Nb/W 430–440 Methanol 1.5 15

8 1.5 mol% Ag-Nb/W 430–440 Acetonitrile 1.5 78

9 1 mol% Ag-Nb/W 430–440 Acetonitrile 1.5 70

10 2.0 mol% Ag-Nb/W 430–440 Acetonitrile 1.5 74

11 1.5 mol% Ag-Nb/W 390–400 Acetonitrile 1.5 69

12 1.5 mol% Ag-Nb/W 410–420 Acetonitrile 1.5 76

13 1.5 mol% Ag-Nb/W 440–450 Acetonitrile 1.5 67

14c 1.5 mol% Ag-Nb/W Sunlight Acetonitrile 1.5 55
a 1a (0.2 mmol), Ag-Nb/W (1.5 mol%) and solvent (2 mL) under 10 W LED light for entries 1–8, 11–13, stirred at room temperature, and in O2 for 1.5 h.
b Isolated yield. c Irradiated by a 300 W Xe lamp (Perfectlight, Microsolar 300) with a cut-off filter of AM-1.5G.
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temperature for 1.5 h.
Using  the  optimized  reaction  conditions  (Table  1,  entry  8),  we

investigated  the  substrate  scope  for  the  photocatalytic  oxidation
ring-opening  reaction  of  2-phenylimidazo[1,2-a]pyridine
derivatives  (Table  2).  The  results  showed  that Ag-Nb/W was
efficient  for  various  substrates  with  either  electron  withdrawing
groups  (−F,  −Cl,  −Br)  or  electron  donating  groups  (−CH3,
−OCH3).  The  corresponding  oxidative  ring-opening  products  N-
(pyridine-2-yl)benzamide  derivative  (2a–2v)  could  be  obtained  in
moderate-to-good isolated yields (65% to 78%).

When  2-phenylimidazo[1,2-a]pyridine  bearing  electron-
donating groups (−CH3, −OCH3) and electron-withdrawing groups
(−F, −Cl, −Br) were loaded on pyridyl, the corresponding oxidative
ring-opening  products  were  obtained  in  moderate-to-good  yields
(2b–2l).  When  the  substituent  was  on  the  phenyl  of  2-
phenylimidazo[1,2-a]pyridine,  the  corresponding  products  were
produced in 67%–75% yields (2m–2s). To our surprise, the design
of the functional group in different positions of pyridyl or phenyl of
2-phenylimidazo[1,2-a]pyridine, including ortho-, meta-, and para-
almost  had  no  influence  on  the  yields  of  the  target  products.
Moderate-to-good  yields  (68%–75%)  were  obtained  for  electron
withdrawing  (−Cl)  and  electron  donating  groups  (−CH3)  at
different positions of the pyridyl ring such as ortho, meta, and para
positions  (2f–2h, 2b–2d).  When  the  substituents  were  on  the
benzene  ring,  the  corresponding  products  were  also  obtained  in
good yields (2m–2s). The yields of the corresponding ring-opened
products  were  not  affected  in  any  way  when  the  substituents
simultaneously replaced H on the pyridine ring and any position on
the benzene ring (2t–2v).

We  performed  a  set  of  control  experiments  to  further
understand the reaction mechanism (Table 3). The results indicated
that the catalytic activities of the precursors {P2W15Nb3} and AgNO3
were  far  lower  than  that  of Ag-Nb/W (entries  1  and  2).  The
catalytic  activity  of  the  mixture  {P2W15Nb3}+AgNO3 (entry  3)  was

better  than  that  of  any  single  constituent,  indicating  a  synergy
between them. Without any catalyst, only 21% yield of 2a (entry 4)
could be obtained. In the absence of light, 2a was not produced in
the reaction,  indicating that  light  is  necessary for  the experimental
process  (entry  5).  When  oxygen  was  replaced  by  air  or  nitrogen,
only  minimal  or  none 2a can  be  obtained  (entries  6  and  7),
indicating that oxygen is necessary for the reaction.

We examined the ring-opening reaction of 2-phenylimidazo[1,2-
a]pyridine  by  adding  free  radical  scavenger  2,2,6,6-
tetramethylpiperidinyl-oxy  and  superoxide  radical  scavenger  4-
benzoquinone  under  standard  experimental  conditions  (Table  3,
entries 8 and 9). The results showed that 75% and 73% of 2a were
isolated,  implying  the  reaction  is  not  carried  out  by  a  free  radical
mechanism.  When  α-terpinene  was  introduced  into  the  reaction,
the yield of 2a was inhibited and almost no ring-opening products
were  obtained (entry  10).  The  oxidation product  of  terpinene  was
detected by ESI-HRMS (Scheme 2 and Fig. S12 in the ESM). These
results indicated that the reaction is carried out by a singlet oxygen
process.

Basing  on  our  experimental  results  and  a  previous  report  [45],
we proposed a reaction mechanism for the oxidative ring opening
of  2-phenylimidazo[1,2-a]pyridine  (1a)  as  shown  in Scheme  3.
First, the reaction starts from the transformation of ground state Ag-
Nb/W to  excited  state Ag-Nb/W* under  the  irradiation  of  visible
light. Ag-Nb/W* then reacts with ground state triplet oxygen (3O2)
by energy transfer to obtain singlet oxygen (1O2). The reaction of 1a
with 1O2 generates  an  unstable  four-membered  peroxide
intermediate A,  which  is  possibly  converted  to  ring-opening
product B.  Subsequently,  the  C–H  bond  of  the  aldehyde
intermediate (B) breaks, and the singlet oxygen is inserted to form
peroxy acid (C). C reacts with one molecule B to form intermediate
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Scheme 2    Singlet oxygen quenching experiment.

 

Table 2    Substrate scopesa
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a  Reaction  conditions:  substrate  1  (0.2  mmol),  Ag-Nb/W  (1.5  mol%),
acetonitrile (2 mL), 10 W blue LED (430–440 nm), using O2  balloon at
room temperature for 1.5 h. Isolated yields were given.

 

Table 3    Control experimentsa

N

N

N

H
N

O
Standard conditions

1a 2a

Entry Varied condition Yield (%)b

1 P2W15Nb3 31

2 AgNO3 29

3 P2W15Nb3 + AgNO3 37

4c — 21

5d 1.5 mol% Ag-Nb/W —

6 Air instead of O2 21

7 N2 instead of O2 none

8 TEMPO 75

9 BQ 73

10 α-Terpinene —
a All reactions were performed using 1a (0.2 mmol), Ag-Nb/W (1.5 mol%)
and acetonitrile (2 mL) under 10 W LED (430–440 nm), stirred at room
temperature in O2 for 1.5 h. bIsolated yield. c Without any catalyst. d Dark.

Li et al.

https://doi.org/10.26599/POM.2023.9140024
Polyoxometalates, 2023, 2, 9140024

4



D and  then  decomposes  to  form  carboxylic  acid  compound E.
Finally,  intermediate E decarboxylates  to  release  CO2,  and  then
aromatic  cyclizes  to  produce  the  active  species F,  which  could  be
isomerized to form the ring-opening product 2a.  Intermediates A,
B, C, and F were detected by HRMS (Figs. S8–S11 in the ESM).

We  also  evaluated  the  stability  and  reusability  of Ag-Nb/W.
After  the  catalytic  reaction, Ag-Nb/W was  isolated  by
centrifugation, washed with ethanol, air-dried at room temperature
for 24 h, and reused for the next round. No reduction in yield was
observed after the 8th run (Fig. 3(a)). The PXRD patterns and FT-
IR  spectrum  of  the  recovered Ag-Nb/W remained  unchanged
(Fig.  3(b) and  Fig.  S3  in  the  ESM),  indicating  that Ag-Nb/W is
stable and the crystal lattice is mainly retained after catalysis.  After
Ag-Nb/W was  removed  from  the  reaction  system  during  the
reaction, no increase in 2a yield was observed (Fig. S6 in the ESM),
implying the heterogeneous nature of the catalyst system.

 4    Conclusions
A purely inorganic photocatalyst Ag-Nb/W based on Nb/W mixed-
addendum POM and Ag ions was synthesized at a high yield under
simple  and  mild  reaction  conditions. Ag-Nb/W can  efficiently
catalyze  the  oxidative  ring  openings  of  2-phenylimidazo[1,2-
a]pyridine  via  the  simultaneous  cleavage  of  C–C  and  C–N  bonds
under  visible  light  using  O2 as  an  oxidant.  Mechanistic
investigations  suggested  that  a  singlet  oxygen  process  is  the
underlying mechanism of the catalytic reaction. As a heterogeneous
photocatalyst, Ag-Nb/W shows  good  stability  and  reusability  and
could  be  reused  eight  times  without  any  reduction  in  its  catalytic
activity.  This  work  provides  a  feasible  method  for  designing  new
visible  light-induced  polyoxometalate  photocatalysts  to  be  used  in

organic reactions involving the cleavage of C–C and C–N bonds.

 Electronic  Supplementary  Material:  Supplementary  material
(crystallographic data, TG curve, IR spectra, XPS spectra, and NMR
spectra  for  all  products)  is  available  in  the  online  version  of  this
article at https://doi.org/10.26599/POM.2023.9140024.
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