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ABSTRACT

In hydrogen evolution reaction, inefficient mass transfer caused by bubble adhesion on electrode, bubble dispersion in
electrolyte and slow H, diffusion, has greatly impeded the reaction process. Existing techniques can only resolve bubble
adhesion or bubble dispersion problems. Strategy that simultaneously solve bubble adhesion, bubble dispersion and poor
hydrogen diffusion problems is rarely reported. Recently, an article reported a new electrode with special wettability
design, which can efficiently promote bubble transfer and dissolved H, diffusion. This design can simultaneously solve
above mentioned three mass transfer issues and improve electrode efficiency. We summarize the remaining challenges of
this work and outlook potential approaches to promote mass transfer in gas-evolution reactions.
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Electrocatalytic hydrogen evolution reaction (HER) is considered
as an effective method to produce green hydrogen, which will play
significant role in low-carbon future [1-3]. Typically, HER in acid
media includes three critical steps (Fig. 1(a)) [4,5]: i) H* transfer
from electrolyte to electrode interface; ii) electrocatalytic reactions
at electrode surface; iii) mass transfer of H,, including dissolved H,
diffusion and gaseous bubble motion. The majority of studies have
focused on step 2 and designing elegant electrocatalysts to
improve HER efficiency [6, 7]. However, especially at large current
density, the performance of HER is greatly impeded by inefficient
mass transfer of H,, i.e., bubble adhesion on electrode (Fig. 1(b)),
bubble dispersion in the vicinity of electrode (Fig. 1(c)), and poor
dissolved H, diffusion (Fig.1(d)) [8]. The adhered hydrogen
bubbles on electrode surface will isolate catalytic active sites from
the electrode and block electrolyte diffusion [9], and the dispersed
bubbles in the vicinity of electrode will occupy the electrolyte
volume and cause additional ohmic resistance as well [10].
Meanwhile, the critical concentration of dissolved H, required for
bubble nucleation is ~310 times larger than the saturation
concentration at room temperature and pressure [11], which will
cause large concentration overpotential [12].

Active bubble detaching methods have been developed to
remove bubbles from electrode surface, such as flow cell [13],
magnetic field [14], ultrasonic field [15] and super-gravity field
[16]. But these active bubble detaching methods not only require
additional equipment and energy input, but also leave bubble
dispersion and poor dissolved H, diffusion problems.

Given the typical bubble formation procedures of nucleation,
propagation and adhesion, aerophobicity-based passive bubble
detaching methods were designed to promote bubble detachment.
For example, Sun et al. reported a kind of superaerophobic
electrode which can offer a rapid removal of small gas bubbles and
constant working area, resulting in promoted electrocatalytic
performance [17]. Although without extra equipment and energy
input, these superaerophobic electrodes still cannot resolve the
bubble dispersion and poor H, diffusion issues. In 2016, Yu et al.
reported a “transporting strategy”, i.e., utilizing aerophilic conical
electrode to achieve directional bubble transportation and
collection during HER [18]. This directional transportation ability
is benefitted from geometry gradient of cone shape and large
bubble adhesive force of aerophilic electrode surface. With this
strategy, bubble dispersion has been well resolved, but bubble
adhesion and H, diftusion problems still exist.

Recent reporting in Science Advances
(https://www.science.org/doi/10.1126/sciadv.add6978), Cunming
Yu, Lei Jiang and their colleagues have developed a
superaerophilic/superaerophobic cooperative electrode to enhance
mass transfer through simultaneously solving bubble adhesion,
bubble dispersion and poor hydrogen diffusion problems as
shown in Fig.2 [19]. The electrode was composed of
superaerophilic (SAL) stripes and superaerophobic (SAB)
electrocatalytic region (Fig. 2(a)). The SAL stripes were covered by
gas cushion and acted as gas channel to transport H,. At
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Step 1: H* diffusion and adsorption Step 2: Electrocatalytic reaction Step 3: H, mass transfer
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Figure1 Schematics of HER process in acid electrolyte and H, related mass transfer issues. (a) HER process in acid electrolyte. (b) Bubble adhesion, (c) bubble
dispersion and (d) poor dissolved H, diffusion issues in HER.
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Figure2 Superaerophilic/superaerophobic cooperative electrode. (a) Schematic of flat Pt electrode with SAL stripes. (b) Schematic of H, diffusion of non-contacted
bubbles. The dissolved H, can diffuse out the reaction system through superaerophilic (SAL) stripes. (c) Schematic of bubble transfer of contacted bubble. As growing
up, the bubble contact SAL stripes and be timely transferred. (d, e) Simulated H, concentration distribution at flat Pt electrode without (d) and with (e) SAL stripes. (f)
Optical images of bubble transfer process on electrode with SAL stripes. (g) LSV plots of Ti-based superaerophobic (SAB) Pt electrode and Ti-based SAL/SAB Pt. (h)
Comparison of the current densities of the Ti-based SAL/SAB Pt electrode with various 2-dimentional electrode. (i) Stability test of Ti-based SAL/SAB Pt electrode in 4

M H,SO,. (a) -(i) Adapted with permission from Ref. [19], © 2023 The Authors, some rights reserved; exclusive licensee American Association for the
Advancement of Science.

beginning of HER, H, bubbles will not contact SAL stripes, but the The enhancement of H, diffusion was verified by finite element
dissolved H, molecules can directly diffuse to ambient air through modelling. As shown in Fig. 2(d), electrode without SAL stripes
gas cushion at SAL stripes, which is connected with ambient air showed extremely high dissolved H, concentration (~0.66 M) at
(Fig. 2(b)). When bubbles grow up and contact with the SAL electrode surface. After introducing SAL stripes (Fig. 2(e)), the H,
stripes, H, bubbles will be rapidly transferred through SAL stripes, diffusion distance was dramatically decreased to achieve a much
owing to the asymmetric Laplace pressure between electrocatalytic lower H, concentration compared to the electrode without SAL
region and SAL stripes. Consequently, bubble adhesion and direct stripes. Fast bubble transfer in milliseconds can be directly
H, bubbles releasing in electrolyte is greatly avoided (Fig.2(c)). observed in Fig 2(f). Benefitted from above mentioned
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enhancements, the Ti-based SAL/SAB cooperative Pt electrode
achieved -10 mA-cm™ at overpotential of 19 mV, while for Ti-
based SAB Pt electrode, the required overpotential was —-49 mV
(Fig. 2(g)). With optimizing electrolyte concentration, the Ti-
based SAL/SAB Pt electrode achieved ultrahigh current density
(-1,867 mA-cm™) at overpotential of -500 mV, which is almost
the best in recent reported 2-dimentional electrode. And the Ti-
based SAL/SAB Pt electrode exhibited stable HER in 4 M H,SO,
for over 10 hours.

Remaining challenges in this research are experimental
evidence of dissolved H, diffusion and stability at large current
density. At the moment, the enhanced H, diffusion is verified
through finite element modelling and without direct experimental
investigation. To further elucidate the intrinsic mechanism of
dissolved H, diffusion on SAL/SAB cooperative electrode, more in-
situ experimental evidence needs to be explored. And stability
performance at 500 mA-cm? is far below the industrial level,
which also need to be improved in future.

With the development of bubble super-wettability system,
wettability design has showed great potential in gas-involved
electrode [20,21]. There are several research directions can be
explored to promote bubble related mass transfer in gas-evolution
reaction: 1) exploring catalysts with special micro/nano structure
to delay bubble nucleation and accelerate bubble detachment;
2) designing single or multi-wettability pattern to promote bubble
transfer or dissolved molecules diffusion; 3) developing new
methods to fabricate stable catalysts and superaerophilic coatings.
In  addition, the  feasibility = of  applying  the
superaerophilic/superaerophobic cooperative strategy in other gas-
involved reactions need to be explored in future researches.
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