
 

Energy-efficient multiuser and multitask computation
offloading optimization method
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Abstract: For  dynamic  application  scenarios  of  Mobile  Edge  Computing  (MEC),  an  Energy-efficient  Multiuser  and

Multitask Computation Offloading (EMMCO) optimization method is  proposed.  Under the consideration of  multiuser

and  multitask  computation  offloading,  first,  the  EMMCO  method  takes  into  account  the  existence  of  dependencies

among different tasks within an implementation, abstracts these dependencies as a Directed Acyclic Graph (DAG), and

models  the  computation  offloading  problem  as  a  Markov  decision  process.  Subsequently,  the  task  embedding

sequence in the DAG is fed to the RNN encoder-decoder neural network with combination of the attention mechanism,

the  long-term  dependencies  among  different  tasks  are  successfully  captured  by  this  scheme.  Finally,  the  Improved

Policy  Loss  Clip-based  PPO2  (IPLC-PPO2)  algorithm  is  developed,  and  the  RNN  encoder-decoder  neural  network  is

trained  by  the  developed  algorithm.  The  loss  function  in  the  IPLC-PPO2  algorithm  is  utilized  as  a  preference  for  the

training  process,  and  the  neural  network  parameters  are  continuously  updated  to  select  the  optimal  offloading

scheduling  decisions.  Simulation  results  demonstrate  that  the  proposed  EMMCO  method  can  achieve  lower  latency,

reduce energy consumption, and obtain a significant improvement in the Quality of Service (QoS) than the compared

algorithms under different situations of mobile edge network.
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1    Introduction

Numerous  mobile  implementations,  such  as  virtual
reality, the Internet of vehicles, and smartphone online
gaming,  have  evolved  with  the  rapid  development  of
the mobile Internet and the popularity of smart devices.
However,  these  implementations  are  frequently
computation-intensive  and  latency-sensitive.  Most
mobile  terminals  are  unable  to  provide  the  desired
computing  services  for  the  aforementioned  landscape
due  to  their  limited  computing  capabilities  and  short
battery  lives.  By offloading tasks  with  a  large  amount
of  data  to  remote  cloud  servers  for  execution,  Mobile

Cloud Computing  (MCC) can  effectively  decrease  the
computational  workload  on  mobile  terminals  and
prolong  their  battery  lives[1].  Objectively,  because  of
the negative impacts of the dynamic network workload
and  transmission  distance,  there  inevitably  exists  a
communication  latency,  which  is  insufficient  to  meet
the  demands  of  the  implementations  for  a  rapid
response.  Mobile  Edge  Computing  (MEC)  is  a  new
computing paradigm that  can effectively address these
issues[2].  By  deploying  relatively  resource-rich  edge
servers  close  to  mobile  terminals,  MEC  provides
computing  services  for  computation-intensive  and
latency-sensitive implementations. Theoretically, MEC
can efficiently  supplement  the  insufficiency of  limited
computing  capabilities  of  mobile  terminals,  while
drastically  reducing  the  system  latency  and  energy
consumption,  thus  improving  the  Quality  of  Service
(QoS).  Under  the  MEC  scenario,  offloading
computation  tasks  to  MEC  servers  necessitates  data
transmission  via  wireless  links.  When  a  large  number
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of  mobile  terminals  are  actively  offloading  their
computation  tasks  to  the  MEC  servers,  wireless  links
are  prone  to  network  congestion,  which  easily  slows
down  the  data  transmission  ratio  and  causes  a  time
delay.  Throughout  the  multiuser  and  multitask
computation offloading process, elements, such as edge
network overload and link congestion, not only prolong
the  service  response  time,  but  frequently  result  in
resource  overload  on  MEC  servers,  which  further
decreases  the  QoS.  Consequently,  in  practical
applications,  some  tasks  should  undertake  offloading
computing,  whereas  others  examine  computation
locally  in  response  to  the  stochastic  MEC  edge
network.  This  is  a  feasible  technology  route  for
achieving higher QoS.

A  large  number  of  works[3−29] have examined  this
issue  from  several  perspectives,  including  the
computation  offloading  methods  based  on  dynamic
offloading  and  the  Stackelberg  game,  the  schemes  of
multiuser  and  multitask  offloading,  the  optimization
methods  based  on  heuristic  algorithms  or  genetic
algorithms,  the  methods  of  dependent  task  offloading,
and the computation methods based on Reinforcement
Learning (RL). To treat the task offloading issue in the
dynamic  MEC  with  limited  computational  resources
and reduce  costs,  studies[3−5] investigated  computation
offloading  methods  from  the  perspective  of  dynamic
pricing  and  the  Stackelberg  game.  The  simulation
results demonstrate that these schemes can improve the
resource  utilization  of  the  system  and  always  achieve
higher  system  utility.  Under  the  consideration  of
multiuser and multitask offloading, through abstracting
the  task  allocation  and  offloading  scheduling  as  an
optimization  problem,  the  works[6−15] studied
algorithms  and  methods  for  computation  offloading.
The  experimental  results  show  that  these  methods
enable to reduce the computational cost and latency for
all  users.  By  using  optimization  methods  based  on
heuristic  algorithms  or  genetic  algorithms,  the
studies[10−12, 16−21] can  effectively  manage  the
workloads  on  edge  servers  under  the  tight  constraints
of  low  latency  and  a  fast  response  time.  Considering
the  dependent  task  offloading,  the  works[22−24]

presented  several  intelligent  computation  offloading
schemes,  which  enable  to  capture  the  long-term
dependency  among  tasks  and  select  the  optimal
offloading manner for tasks. By combining deep neural
networks  and  reinforcement  learning  algorithms,
studies[25−29] proposed efficient computation offloading
schemes  adapting  to  various  dynamic  scenarios.
Experiment results indicate that these methods are able
to  achieve  the  optimal  solution  in  latency  and  energy
consumption.  However,  the  above  studies  do  not
consider  either  the  dependencies  among  different
computation tasks[3−21, 25−29] or various implementation
scenarios  during  the  offloading  process[10−12, 16−21],
which do not suitably meet practical applications.

This paper,  by integrating deep neural  networks and
reinforcement  learning,  proposes  an  optimization
model for adaptive computation offloading problems in
stochastic  MEC  networks,  and  presents  an  Energy-
efficient  Multiuser  and  Multitask  Computation
Offloading (EMMCO) optimization method. Our main
contributions are as follows:

(1)  First,  by  mining  the  objective  dependencies
among  different  computation  tasks  within  an
implementation, these dependencies are abstracted as a
Directed  Acyclic  Graph  (DAG).  As  a  result,  the
computation  offloading  problem  is  modeled  as  a
Markov  Decision  Process  (MDP)  by  creating  a
reasonable  state  space,  action  space,  and  reward
function.

(2) Furthermore, the MDP is converted into an RNN
encoder-decoder  neural  network  prediction  procedure.
This  implies  that  the  task  embedding  sequence  from
the  DAG  is  used  as  the  input  of  the  RNN  encoder-
decoder  neural  network.  In  combination  with  the
attention mechanism, the RNN encoder-decoder neural
network effectively obtains the long-term dependencies
among multiple tasks. This scheme facilitates obtaining
more  appropriate  multitask  offloading  scheduling
decisions.

(3)  Finally,  an  Improved  Policy  Loss  Clip-based
PPO2  (IPLC-PPO2)  algorithm  is  developed  by
improving the PPO2 reinforcement learning algorithm.
The presented algorithm is employed to train the RNN
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encoder-decoder  neural  network.  The  loss  function  in
the  IPLC-PPO2 algorithm acts  as  a  preference  for  the
training  process,  which  continuously  updates  the
parameters  in  the  neural  network.  Consequently,  the
above  significantly  determines  the  final  optimal
multitask offloading scheduling decisions.

The  rest  of  this  paper  is  organized  as  follows.  In
Section 2, we review some related work. In Section 3,
we  describe  the  problem  model  and  problem
formulation.  In  Section  4,  the  proposed  EMMCO
method  is  described  in  detail.  In  Section  5,  extensive
simulation  experiments  are  presented  to  evaluate  the
performance of  the EMMCO method.  Finally,  Section
6 concludes this paper.

2    Related work

This  section  focuses  on  the  latest  studies  on  mobile
edge  computation  offloading  issues.  Reference  [13]
proposed  a  decentralized  algorithm  for  balancing
computation  offloading  decisions.  This  algorithm  can
minimize  the  cost  by  determining  whether  to  offload
tasks  to  the  edge  servers.  Considering  the  multiuser
computation  offloading  problem  in  the  uncertain
wireless  network  environment,  Ref.  [14]  designed  a
distributed computation offloading algorithm to obtain
the  Nash  equilibrium  of  the  game.  Reference  [15]
presented  a  genetics-based  intelligent  offloading
algorithm.  This  algorithm  can  lower  the  overhead  of
the  system  during  the  offloading  decision  evaluation
process.  The  above  studies[13−15] mainly  focus  on  the
computation  offloading  process  for  independent  tasks
and do not consider the extensive internal dependencies
among tasks.  Considering the mobility during the task
offloading  process,  Ref.  [16]  concentrated  on  the
offloading  decision  and  resource  allocation  problem
among multiple users served by a single base station, it
proposed  a  heuristic  mobility-aware  offloading
algorithm to obtain an approximate optimal offloading
scheme.  By  designing  a  weight  cost  model  based  on
latency  and  energy  consumption,  Ref.  [17]
implemented  a  genetic  algorithm  based  dynamic
computation  offloading  model,  which  can  optimize
both  latency  and  energy  consumption.  Reference  [18]
investigated  the  problem  of  joint  computation

offloading and transmission scheduling in mobile edge
computing.  In  order  to  characterize  the  dynamic
management  of  the  system  that  has  potential  network
uncertainty, it created a queuing model. Besides, it also
designed  an  MOTM  method  for  jointly  deciding  on
computation  offloading  schemes,  transmission
scheduling  rules,  and  pricing  rules.  In  two-user  MEC
networks,  Ref.  [19]  examined  the  effects  of  inter-user
task  dependencies  on  resource  allocation  and
computation  offloading  decisions.  it  then  proposed  an
efficient  algorithm to optimize resource allocation and
computation  offloading  decisions.  This  algorithm  can
reduce the weighted sum of device energy consumption
and  task  execution  time.  Considering  the
heterogeneous  communication  modes  and  computing
capabilities  of  network  computing  points,  Ref.  [20]
proposed  a  distributed  multi-hop  computing  task
offloading  framework  based  on  an  improved  genetic
algorithm  to  reduce  the  task  computation  delay  and
improve  the  global  resource  utilization.  By
decomposing the computation offloading problem into
a  multitask  problem,  Ref.  [21]  presented  a  DTOS-
LBBD  method.  This  method  addressed  the  dynamic
computation  offloading  problem  and  overcame  the
difficulties  of  computation  offloading  and  resource
allocation.  The  above  studies[16−21] focus  on  using
heuristic  algorithms  to  resolve  the  computation
offloading  problem,  but  they  are  mainly  conducted  to
address  static  optimization  problems.  However,  the
MEC  system’s  computation  offloading  problem  is
essentially  a  mixed-integer  nonlinear  programming
problem,  it  is  critical  to  identify  computation
offloading  strategies  that  may  be  applied  to  dynamic
scenarios.

Considering  dependent  task  offloading  in  mobile
edge  works,  Ref.  [22]  proposed  an  intelligent
Computational  Offloading  scheme  for  Dependent  IoT
Application (CODIA), which has good performance in
convergence,  latency,  and  energy  consumption.
Reference  [23]  designed  a  dependent  task  offloading
framework  for  multiple  mobile  applications,  named
COFE, which assigned the offloaded tasks to the MEC
and  cloud  adaptively  to  improve  the  user  experience.
Reference [24] presented an intelligent task offloading
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scheme leveraging off-policy reinforcement learning to
achieve  the  optimal  solution  in  latency  and  energy
consumption  under  various  scenarios.  Due  to  their
flexibility in adapting to numerous dynamic scenarios,
deep  reinforcement  learning  algorithms  have  recently
gained  popularity  in  mobile  edge  computation
offloading.  Reference  [25]  designed  a  computation
offloading  method  based  on  meta-reinforcement
learning. This method is able to adapt to various MEC
environments  within  a  small  number  of  samples  and
gradient  updates.  Considering  a  binary  offloading
strategy,  Ref.  [26]  presented  a  Deep  Reinforcement
learning  based  Online  Offloading  (DROO)  algorithm.
The  DROO  algorithm  can  significantly  lower  the
computational  complexity  by  training  the  deep  neural
network and learning from experience.  Reference [27]
implemented a reinforcement learning based offloading
scheme  for  IoT  devices.  This  scheme  selects  edge
devices  and  offloading  rates  according  to  the  current
battery  level,  the  previous  wireless  transmission  rate,
and  the  predicted  collected  energy.  Without  being
aware  of  the  MEC  system  model,  the  scheme  allows
IoT  devices  to  optimize  offloading  decisions.
Regarding  intelligent  computation  offloading  in  ultra-
dense  networks,  Ref.  [28]  developed  a  DQN-based
online  computation  offloading  algorithm.  This
algorithm overcomes the  high-dimensional  problem in
the  state  space  and  does  not  require  a  priori
information.  Reference  [29]  proposed  an  RL-based
distribution  offloading  algorithm,  which  combines
Long  Short-Term  Memory  (LSTM),  dueling  Deep  Q-
Network  (DQN),  and  double-DQN  techniques.  This
RL-based  algorithm can  significantly  reduce  the  long-
term  cost  compared  with  several  existing  algorithms.
The  above  studies[25−29] aim  to  examine  the
computation  offloading  optimization  problem  using
deep  neural  networks  and  reinforcement  learning
algorithms. Motivated by them, we investigate models,
algorithms,  and  methods  for  handling  computation
offloading  problems  in  the  MEC  environment  by
improving  the  PPO2 reinforcement  learning  algorithm
and  combining  the  improved  IPLC-PPO2  algorithm
with the RNN encoder-decoder neural network.

3    Problem modeling

3.1    Problem description

The users, edges, and cloud layers are three main layers
that  constitute  the  computation  offloading  framework
for the mobile edge network[30]. The user layer is made
up  of  various  terminal  devices,  the  edge  layer  is
organized with base stations and MEC servers that are
close  to  the  users,  and  the  cloud  layer  is  the  remote
data  center.  In  MEC  edge  networks,  the
implementations  with  multitasks  running  on  terminal
devices  include  numerous  computation-intensive  and
latency-sensitive  computation  tasks.  These
computation  tasks  are  not  independent  of  each  other,
but  have  rather  significant  dependencies,  particularly
for  implementations  in  multiuser  and  complicated
domains,  such  as  autonomous  driving,  AR/VR,  and
cloud  gaming.  These  pose  specific  challenges  for  the
efficient  offloading  of  computation  tasks  in  edge
networks.  The  analysis  reveals  that  these  computation
tasks  frequently  have  strong  dependencies  on  one
another  rather  than  being  completely  independent  of
one  another.  Therefore,  we  abstract  the  dependencies
among  the  computation  tasks  as  a  Directed  Acyclic
Graph (DAG). In the task scheduling process, starting a
task depends on the completion of computing all of its
predecessor  tasks.  Based  on  this,  the  analysis  reveals
that  there  are  primarily  three  types  of  dependencies
among  tasks,  namely  one-to-one,  one-to-many,  and
many-to-many, which are represented in Fig.  1.  In the
DAGs  in Fig.  1,  the  vertices  represent  tasks,  and  the
edges  represent  the  dependencies  among  tasks.  Each
task embedding point contains three vectors: the vector
containing  the  task  index  and  estimated  task  cost,  the
index vector of the task immediately before it, and the
index  vector  of  the  task  immediately  after  it.  All  task
embedding  points  in  DAG  yield  a  task  embedding
 

Task

Dependencies among tasks

 
Fig. 1    Structure of directed acyclic graph.
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sequence.  Additionally,  we  primarily  cover  the
multiuser  and  multitask  offloading  models  and
methods  in  this  section  under  two  computing
paradigms:  using  local  resources  to  compute  the  tasks
and  migrating  the  tasks  to  a  nearby  MEC  server  for
computing.

n

T = {t1, t2, . . . , ti, . . . , tn} A1 : n = {a1,a2, . . . ,ai, . . . ,

an} n

ai = 0

ai = 1

N = {1,2, . . . , i, . . . ,n}
di

ci

Assume  that  the  implementation  on  the  terminal
device  contains  computation  tasks,  represented  as

.  Let 
 denote  the  scheduling  decisions  of  computation

tasks.  represents  that  the  task  is  computed
locally, and  indicates that the task is migrated to
the  MEC  server  for  computing. 
notes the set of task IDs,  means the task’s data size,
and  depicts the CPU clock cycles required to execute
the task.

fl

The local computation time primarily depends on the
computation time of the task. Let  denote the terminal
device’s CPU clock speed; then, the computation time
of  the  task  at  the  terminal  device  can be  calculated  as
follows:
 

T l
i =

ci

fl
(1)

When  the  task  is  computed  locally,  the  energy
consumption is primarily generated by the computation
process  of  the  terminal  device.  The  energy  consumed
by local computing is calculated as follows:
 

El
i = ρ f ςl T l

i (2)

ρ f ςl
ρ ς

where  indicates  the  computing  power  of  the
terminal device,  shows the power coefficient, and  is
a constant.

Three main factors contribute to the time required to
migrate  the  task  to  the  MEC  server  for  execution:
uplink  transmission  time,  which  is  the  wireless  link
transmission  time  produced  by  sending  the  task  from
the  terminal  device  to  the  MEC  server;  MEC  server
computation  time,  which  is  the  time  required  by  the
edge  server  to  execute  the  task;  and  downlink
transmission  time,  which  is  the  wireless  link
transmission  time  produced  by  transmitting  the
computation  result  from  the  MEC  server  back  to  the
terminal device.

Supposing  that  the  CPU  clock  speed  of  the  MEC

foserver  is ,  when  the  task  is  migrated  to  the  MEC
server for computing, the time generated by each of the
aforementioned three phases is calculated as follows:
 

T up
i =

di

Rup (3)
 

T com
i =

ci

fo
(4)

 

T down
i =

dr
i

Rdown (5)

T up
i

ti T com
i

ti T down
i ti dr

i

Rup

Rdown

where  means  the  uplink transmission time of  task
,  denotes  the  MEC  server  computation  time  of

task ,  denotes the result return time of task , 
denotes  the  data  size  of  the  received  result, 
expresses  the  uplink  transmission  rate,  and 
represents the downlink transmission rate.

The energy consumption generated by migrating the
task to the MEC server for  computing is  calculated as
follows:
 

Eo
i =PwsT up

i +P jT com
i +PwrT down

i =

Pws di

Rup +P j
ci

fo
+Pwr dr

i

Rdown (6)

P j

Pws

Pwr

where  denotes  the  computing  power  of  the  MEC
server,  indicates  the  wireless  sending  power,  and

 denotes the wireless receiving power.

3.2    Task completion time and energy consumption

Considering the dependencies among multiple tasks, as
depicted in Fig. 1, the start execution time of a task is
influenced  by  the  completion  time  of  all  its
predecessors.  Consequently,  the  time  required  to
execute  all  tasks  in  the  system  and  dependencies  are
closely tied.
3.2.1    Task completion time in local computing

ti

ti

When task  is computed locally, the computation start
time  is  the  maximum  of  all  predecessor  task
completion  time.  Therefore,  the  completion  time  of
task  computed locally is determined as the sum of the
computation  start  time  and  local  computation  time,
which is calculated as follows:
 

FT l
i = max

t j∈pre(ti)
{max{FT l

j,FT down
j }}+T l

i (7)

pre(ti)

ti FT l
j

where  represents the set of predecessors of task
,  denotes the completion time of the predecessor
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t j FT down
j

t j

task  computed  locally,  and  indicates  the
completion time of the predecessor task  in offloading
computing,  whose  calculation  process  is  given  in
Section 3.2.2.
3.2.2    Task  completion  time  in  offloading

computing
ti

t j

t j t j

t j

ti

When  task  is  offloaded  to  the  MEC  server  for
computing,  it  consists  of  three  phases:  upload,
computation, and result return. First, before the upload
phase  of  the  task  to  the  MEC  server,  all  its
predecessors  must  be  uploaded.  The  upload  start  time
depends  on  two  aspects:  if  the  predecessor  task  is
computed  locally,  it  must  wait  for  the  completion  of
the task  local computing; if the predecessor task  is
offloaded  to  the  MEC  server  for  computing,  it  must
wait for the completion of the task  upload. Therefore,
the upload completion time of task  is the sum of the
upload  start  time  and  uplink  transmission  time,  which
is calculated as follows:
 

FT up
i = max

t j∈pre(ti)
{max{FT l

j,FT up
j }}+T up

i (8)

ti
ti

ti

Subsequently,  before  the  computation  phase  of  the
task  on  the  MEC  server,  all  its  predecessors  must  be
computed. The computation start time depends on two
aspects:  the  completion  of  task  upload  and  the
computation  completion  of  all  predecessors  of  task .
Therefore,  the  completion  time  of  the  computation
phase of  is the sum of the computation start time and
MEC  server  computation  time,  which  is  calculated  as
follows:
 

FT com
i =max{FT up

i , max
t j∈pre(ti)

FT com
j }+T com

i (9)

ti

ti

Finally,  the  result  return  phase  of  task  can  only
begin after  its  computation phase has been completed.
Therefore,  the  completion  time  of  the  result  return
phase of  is the sum of the result return start time and
result return time, which is calculated as follows:
 

FT down
i = FT com

i +T down
i (10)

3.2.3    Total time and total energy consumption
ti

FT l
i ti

FT down
i

In conclusion, the completion time of task  computed
locally  is ,  and  the  completion  time  of  task  in
offloading  computing  is .  Consequently,  the
total  completion  time of  all  tasks  can  be  calculated  as

follows:
 

Ttotal =max
i∈N
{max{FT l

i ,FT down
i }} (11)

ti
El

i ti
Eo

i

The energy consumption of  task  computed locally
is ,  and  the  energy  consumption  of  task  in
offloading computing is . Therefore, the total energy
consumption of all tasks can be calculated as follows:
 

Etotal =
∑

i∈N,ai=0

El
i +

∑
i∈N,ai=1

Eo
i (12)

3.3    Problem formulation

The  energy  consumption  and  latency  can  be  used  to
evaluate  the  effectiveness  of  a  scheduling  decision[31].
Hence, QoS is defined as a comprehensive indicator of
energy  consumption  and  latency,  as  shown  in  the
following:
 

QA1:n = λt

∑n
i=1 T l

i −Ttotal∑n
i=1 T l

i

+λe

∑n
i=1 El

i −Etotal∑n
i=1 El

i

(13)

λt λe

λt,λe ∈ [0,1] λt +λe = 1

where  and  denote the weights of the impact of the
latency and energy consumption on QoS, respectively,

,  and .  Usually,  the  scheduling
decision is preferable if the QoS value is higher.

Based  on  the  above,  the  optimization  problem  of
maximizing  the  system’s  QoS  can  be  expressed  as
follows:
 

arg max QA1:n (14)
 

s.t., ai ∈ {0, 1} , ∀i ∈ N (15)
 

λt,λe ∈ [0,1] (16)
 

λt +λe = 1 (17)

Constraint  (15)  represents  the  task  scheduling
decision. The optimization problem of Formula (14) is
a  mixed  integer  nonlinear  programming  problem,
which  is  an  NP-hard  problem[31].  It  is  challenging  to
find  an  optimal  solution  for  these  problems  within  an
acceptable time complexity.

The main symbols used in the paper are summarized
in Table 1.

4    Proposed method

In  this  section,  we  take  the  following  strategy  to
resolve  the  defined  optimization  problem,  namely,
Formula  (14).  First,  we transform Formula  (14)  into  a
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deep  reinforcement  learning  problem  and  model  the
offloading problem as an MDP. Then we use a DAG to
represent  the  task  embedding  sequence  with
dependencies  in  the  multiuser  and  multitask
implementations,  input  the  sequence  to  the  RNN
encoder-decoder  neural  network,  and  obtain  the
appropriate  task  scheduling  decisions.  Finally,  we
develop  the  IPLC-PPO2  algorithm  by  improving  the
PPO2  reinforcement  learning  algorithm,  which  is
utilized  to  train  the  RNN  encoder-decoder.  By
iteratively  optimizing  the  neural  network  parameters
with the loss function in the IPLC-PPO2 algorithm, the
optimal  task  scheduling  decisions  are  finally
conducted.

4.1    Prediction process for task scheduling decision

A  typical  deep  reinforcement  learning  model  is  the

⟨S ,A,R⟩ S A

R

Markov decision model, and the goal of reinforcement
learning is  to  maximize  the  reward of  the  MDP[32].  In
this study, we define the Markov model represented by
the  triplet,  where  denotes  the state  space, 
expresses the action space, and  represents the reward
function.

tiBecause the scheduling decision of task  depends on
the  scheduling  decisions  of  all  its  predecessors,  the
state  space  is  defined  as  a  combination  of  DAG  and
partial  scheduling  decisions,  as  illustrated  in  the
following:
 

S := {s|s = (G,A1:i)} (18)

G

A1:i

t1 ti

where  denotes  a  DAG  consisting  of  a  task
embedding  sequence,  and  indicates  the  set  of
scheduling decisions from task  to .

ai = 0

ai = 1

Because  denotes  that  the  task  is  computed
locally and  means that the task is migrated to the
MEC  server  for  computing,  the  action  space  can  be
expressed as follows:
 

A := {0,1} (19)

Because  our  optimization  objective  is  to  maximize
the  QoS  of  the  system,  as  shown  in  Eq.  (13),  the
reward function is defined as follows:
 

R (si,ai) =λt

1
n
∑n

i=1 T l
i − (FTi−FTi−1)∑n

i=1 T l
i

+

λe

1
n
∑n

i=1 El
i −Ei∑n

i=1 El
i

(20)

t = [t1, t2, . . . , ti, . . . , tn]

A1:n

In  addition,  the  computation  offloading  problem  is
abstracted  as  a  prediction  problem  for  an  RNN
encoder-decoder  neural  network;  that  is,  the  task
embedding sequence  in the DAG
that corresponds to the task dependencies is input to the
RNN  encoder-decoder  neural  network.  On  the  one
hand,  the  encoder  combined  with  the  attention
mechanism  can  efficiently  mine  the  dependencies
between  tasks;  on  the  other  hand,  the  decoder  can
approximate  the  policy  and  value  functions  of  the
MDP.  The  task  scheduling  decision  sequence  is
then achieved and output according to the values of the
policy function.

As shown in Fig. 2, the RNN encoder-decoder neural

 

Table 1    Definition of notations.

Symbol Definition
ai tiScheduling decision of task 
di tiData size of task 
dr

i tiData size of the received result of task 
ci tiCPU clock cycles required to execute task 
fl Local CPU clock speed
fo CPU clock speed of MEC server
T l

i tiLocal computation time of task 
El

i tiEnergy consumption for local computing of task 
T up

i tiUplink transmission time of task 
T com

i tiMEC server computation time of task 
T down

i tiResult return time of task 
Eo

i tiEnergy consumption of offloading computing for task 

Rup Uplink transmission rate

Rdown Downlink transmission rate
P j Computing power of the MEC server

Pws Wireless sending power

Pwr Wireless receiving power
pre(ti) tiSet of predecessors of task 
FT l

i tiCompletion time of local computing for task 
FT up

i tiUpload completion time of task 
FT com

i tiMEC server computation completion time of task 
FT down

i tiCompletion time of offloading computing for task 
Ttotal Total completion time of all tasks
Etotal Total energy consumption of all tasks
QA1:n QoS of the system
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network  architecture  consists  of  two  RNN  networks:
one serves as the encoder and the other as the decoder.
The  encoder  receives  the  input  sequence  and  uses
forward  propagation  to  output  the  final  hidden  state.
The decoder initializes its hidden state using the output
state  of  the  encoder,  and  outputs  the  target  sequence.
The  following  is  a  detailed  description  of  the  task-
scheduling decision-making process.

c

t = [t1, t2, . . . , ti, . . . , tn]

ti

hi

c c

In the encoding process, combined with the attention
mechanism,  the  encoder  assigns  different  attentions  to
the information encoded at  each time step in the input
sequence  by  generating  a  context  vector .  Long-term
dependencies among tasks can be effectively captured,
and  information  loss  in  the  input  sequence  can  be
prevented.  The  encoding  process  is  as  follows:  The
task embedding sequence  serves
as  the  encoder’s  input,  a  vector  is  fed  into  the
encoder at each time step, and the hidden layer state 
is  the  output.  Finally,  the  weighted  average  sum  of
each  hidden  layer  state  in  the  encoder  is  calculated  to
obtain the output of the encoder . The context vector 
encodes  all  the  information  of  the  input  sequence,
which is calculated as follows:
 

c =
∑n

i=1
α jihi (21)

 

α ji =
e fscore(d j−1,hi)∑n

k=1 e fscore(d j−1,hk)
(22)

 

hi = fenc (hi−1, ti|θenc) (23)

α ji

θenc

where  expresses the weight of each hidden layer of
the  encoder,  which  is  determined  by  normalization
using  the  SoftMax  function,  and  denotes  the
parameter in the encoder.

In  the  decoding  process,  the  decoder  decodes  using

c

d j−1

a j−1 c

the  obtained  context  vector .  At  each  time  step,  the
hidden layer  node of  the  decoder  has  three inputs:  the
hidden layer state  of the previous time step, output

 of  the  previous  time  step,  and  context  vector .
The decoder hidden layer state is defined as follows:
 

d j = fdec
(
d j−1,a j−1, c|θdec

)
(24)

θdecwhere  denotes the parameter in the decoder.

d j d j

π
(
a j|s j

)
d j v

(
s j
)

a j = arg maxa jπ(a j|s j)

Finally, after obtaining the decoder hidden layer state
,  by  adding  a  fully  connected  layer  on  and  using

the  SoftMax  function,  the  output  is  converted  into  a
probability  distribution  of  the  scheduling
decision;  by  adding  another  fully  connected  layer  on

, the output is used to represent the state value .
The  goal  is  to  generate  an  output  sequence  with  the
highest probability; the higher the probability, the more
reasonable  the  output  sequence.  Consequently,  the
scheduling decision of a task can be obtained based on

.

4.2    IPLC-PPO2 algorithm

The Proximal Policy Optimization (PPO) algorithm[33]

has  excellent  performance  in  deep  reinforcement
learning.  The  PPO2  method[33],  one  of  the  most
popular  reinforcement  learning  algorithms,  improves
the PPO algorithm by merging the policy loss function,
value loss  function,  and policy entropy.  By improving
the  policy  loss  function,  we  overcome  the
shortcomings  of  the  PPO2  algorithm’s  sluggish
learning  rate  and  low  learning  stability.  Furthermore,
we  develop  the  IPLC-PPO2  algorithm.  The  following
is  a  detailed  discussion  of  the  improved  policy  loss
function.

[
1

1+ε
,

1
1−ε

]
ε

v

First,  because  of  the  insufficiencies  of  the  clip
function  in  the  PPO2  algorithm  described  above,  the
learning  rate  is  sluggish  and  the  learning  stability  is
low when many policy updates are conducted using the
same  set  of  data[34].  Thus,  limiting  the  policy

probability ratio to the interval  is expected

to increase the change range of the new policy, where 
is  a  hyperparameter,  thus  speeding  up  the  algorithm’s
learning  rate;  by  adding  a  constant  to  the  clip
function in the PPO2 algorithm, the policy probability
ratio  beyond  the  clipping  range  is  relimited  to  the
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Fig. 2    Architecture  of  RNN  encoder-decoder  neural
network.
 

  Meini Pan et al.:   Energy-efficient multiuser and multitask computation offloading optimization method 83

 



[
1

1+ε
,

1
1−ε

]
interval ,  expecting  that  the  policies  will

not  deviate  from  the  correct  optimization,  thus
improving the algorithm’s learning stability.

The  improved  clip  function  is  shown  in  the
following:
 

clip (rt (θ)) =


1− v
1−ε rt (θ) ⩾

1
1−ε , v, ε ∈ (0,1)

1+ v
1+ε

rt (θ) ⩽
1

1+ε
, v, ε ∈ (0,1)

rt (θ) , otherwise

(25)

 

rt (θ) =
πθ (at |st)
πθold (at |st)

(26)

rt (θ)

πθ (at |st)

πθold (at |st)

ε

v

rt (θ)

where  expresses  the  policy  probability  ratio,
 denotes the probability distribution of the new

policy,  and  represents  the  probability
distribution  of  the  old  policy.  is  used  to  ensure  that
when  numerous  policy  updates  are  performed,  the
distance between the new policy and old policy is  not
great.  Constant  in  the  clip  function  is  used  to
rerestrict  from  outside  the  clipping  range  to  the
clipping range.

The  following  proof  is  provided  to  confirm  the
validity and accuracy of clip function improvement:
 (

1
1−ε −

1
1+ε

)
πθold (at |st) =

2ε
1−ε2

πθold (at |st) (27)

and
 

[(1+ε)− (1−ε)]πθold (at |st) = 2επθold (at |st) (28)

ε ∈ (0,1)
2ε

1−ε2
πθold (at |st)>2επθold (at |st)when , , therefore,

 (
1

1−ε −
1

1+ε

)
πθold (at |st) >

[(1+ε)− (1−ε)]πθold (at |st) (29)

By substituting the improved clip  function from Eq.
(25) into the policy loss function, the improved policy
loss function is represented in the following:
 

LCLIP(θ) = E

 n∑
t=1

min
(
rt(θ)Ât,clip(rt(θ)) Ât

) (30)

Âtwhere  denotes  the  estimate  of  the  advantage
function.

The  advantage  function  is  calculated  using  the
generalized advantage estimation method[35],  as shown
in  the  following,  which  has  the  advantage  of  greatly
lowering the estimated variance of the policy gradient:

 

Ât =

n−t+1∑
k=0

(γλ)k (rt+k +γvπ (st+k+1)− vπ (st+k)) (31)

γ

λ (0 < λ < 1)

rt

t vπ (st)

t

where  denotes  the  discount  factor  to  reduce  the
variance,  expresses the parameter that can
make a trade-off between the bias and the variance, and
thus  estimating  the  final  policy  gradient,  indicates
the  reward  at  time  step ,  and  denotes  the  state
value at time step .

LVF (θ)

LVF (θ)

vπ (st)

v̂π (st)

The  value  loss  function  is  then  estimated
using  the  method  in  Ref.  [33].  denotes  the
squared loss between the sampled state value  and
the estimated state value ,  which is  calculated as
follows:
 

LVF (θ) = E
[∑n

t=1
(vπ (st)− v̂π (st))

2]
(32)

LCLIP (θ) LVF (θ)

S [πθ] (st)

Finally, to improve the training efficiency, the policy
loss  function  and  value  loss  function 
are  further  integrated;  that  is,  Eqs.  (30)  and  (32)  are
combined, and the entropy function  is  added
to ensure efficient scheduling policy exploration. Thus,
the  objective  function  shown  in  the  following  is
obtained:
 

LIPLC-PPO2(θ) =E
[
LCLIP(θ)− c1LVF(θ)+

c2S [πθ](st)
]

(33)

c1 c2where  denotes  the  loss  coefficient  and  indicates
the entropy coefficient.

Based  on  the  above,  the  IPLC-PPO2  algorithm  is
proposed, as shown in Algorithm 1.

θ

O (l · k)

Compared  with  the  original  PPO2  algorithm,  the
IPLC-PPO2  algorithm  can  effectively  improve  the
learning  stability  and  accelerate  the  learning  rate  to
obtain  more  efficient  exploration.  Therefore,  we  train
the  RNN  encoder-decoder  network  using  the  IPLC-
PPO2 algorithm. The parameter  of the RNN encoder-
decoder  neural  network  is  continuously  updated  using
the  loss  function  in  the  IPLC-PPO2  algorithm.  The
training  objective  is  to  select  the  optimal  scheduling
decision  for  each  task  in  the  DAG  to  optimize  the
QoS.  In  terms  of  time  complexity,  Lines  5–11  in
Algorithm  1,  which  represent  the  update  phase  in  the
iterative  process,  account  for  the  majority  of  the  time
overhead. Therefore, the time complexity of the IPLC-
PPO2 algorithm is .
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4.3    EMMCO method

Dtrain

Di

A1:n

[vπ (s1) ,vπ (s2) , . . . ,vπ (sn)]

[r1,r2, . . . ,rn]

A1:n[
Â1, Â2, . . . , Ân

]
[v̂π (s1) , v̂π (s2) , . . . , v̂π (sn)]

Di

LIPLC-PPO2 (θ)

θ A1:n

θ

Based  on  the  above  research,  we  further  propose  the
EMMCO  method,  whose  pseudocode  is  shown  in
Algorithm 2. First, in the initialization phase, two RNN
encoder-decoder  neural  networks  are  initialized  with
the same randomly generated parameters. They are the
sampling neural network and updating neural network.
Thereafter,  in  each  iteration,  the  sampling  neural
network  samples  a  randomly  selected  set  of  DAGs
from the  training dataset  and stores  the  sampled
data  in  the  set ,  including  the  scheduling  decision
sequence ,  sampled  state  value  sequence

,  reward  sequence
 obtained by the environment based on the

scheduling  decision  sequence ,  advantage
estimation sequence , and estimated state
value  sequence .  The  mini-
batch Stochastic Gradient Descent (SGD) method[36] is
used  to  select  a  portion  of  samples  from  randomly
and  nonrepeatedly  to  optimize  the  objective  function

 to  update  the  neural  network  parameter
.  Finally,  the  task  scheduling  decision  sequence 

for each DAG in the test dataset is predicted based on
the updated network parameter ,  which further yields

Dtest

the  total  latency,  total  energy  consumption,  and  total
evaluation  of  QoS  for  the  computation  process  of  all
DAGs in the test dataset .

O (l · k ·m)

The  time  overhead  of  the  EMMCO  method  is
primarily generated by the update phase of the iterative
process, that is, at line 17 of Algorithm 2, when calling
Algorithm  1  to  update  the  neural  network  parameter.
The  time  complexity  of  the  EMMCO  method  is

.

 

Algorithm 1　IPLC-PPO2 algorithm
θold θold1: Input:  //input  the  parameter  of  sampling  neural

network
θ θ2: Output:  //output  the  parameter  of  updating  neural

network
θold θ

πθold πθ

3: Initialize: Two  neural  networks  with  and  for  the  old
policy ,  and  new  policy  with  randomly  generated  initial
values;
θold ← θ4: ;

episode = 1 l5: for  to  do
πθold T

πθold Di

6:　　Run policy  in environment for  timesteps and store
the sampled data on policy  in ; // sampling phase

epoch = 1 k7:　　for  to  do
LIPLC-PPO2 (θ)

m Di

8:　　　Optimize the objective function  as shown
in  Eq.  (33)  by  taking  mini-batch  stochastic  gradient  descent
using  sampled mini-batches from ; // update phase
9:　　end for

θold ← θ10:　　 ; // update the neural network parameter
11: end for
θ← θold12: ;

θ13: return 
 

 

Algorithm 2　EMMCO method
Dtrain Dtest Dtrain

Dtest

1: Input:  and  //input the training dataset  and the
test dataset 

T,E, and Q2: Output:  //output  the  total  latency,  total  energy
consumption,  and  total  evaluation  of  QoS  for  the  computation
process of all DAGs in the test dataset

θold θ πθold πθ

3: Initialize: Two  RNN encoder-decoder  neural  networks  with
 and  for  the  old  policy ,  and  the  new  policy  with

randomly generated initial values;
θold ← θ4: ;

episode = 1 l5: for  to  do

Dtrain6:　　for each DAG in  do // sampling phase

sampleepisode = 1 T7:　　　for  to  do
A1:n

[vπ (s1) ,vπ (s2) , . . . ,vπ (sn)]
[r1,r2, . . . ,rn] πθold

8:　　　　Sample the  scheduling  decision  sequence ,
sample state value sequence , and reward
sequence  on policy ;

A1:n [vπ (s1) ,vπ (s2) , . . . ,vπ (sn)] [r1,r2, . . . ,rn]
Di

9:　　　　Store ,  and 
in ;
10:　　　end for

11:　　end for

τ ∈ Di12:　　for  do

[Â1, Â2, . . . ,

Ân]
13:　　　Compute advantage  estimation  sequence 

 according to Eq. (31);
[v̂π (s1) , v̂π (s2) , . . . ,

v̂π (sn)] v̂π (st) =
∑n−t+1

k=0 γ
krt+k

14:　　　Compute estimated  state  values 
 following the equation ;

[Â1, Â2, . . . , Ân] [v̂π (s1) , v̂π (s2) , . . . , v̂π (sn)] Di15:　　　Store  and  in ;
16:　　end for

θold ← IPLC-PPO2(θold)17:　　 ; // call Algorithm 1 to update the
neural network parameter
18: end for

Dtest19: for each DAG in  do // calculation phase
A1:n

a j = arg maxa jπθold (a j |s j)
20:　　Compute  following  the  equation

;
Ttotal Etotal

QA1:n

21:　　Compute  according  to  Eq.  (11),  compute 
according to Eq. (12), and compute  according to Eq. (13);

T ← T +Ttotal E← E+Etotal Q← Q+QA1:n22:　　 , , ;
23: end for

T,E,Q24: return 
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5    Experimental results and analysis

The  experimental  environment  in  this  paper  employs
Python  3.7  and  TensorFlow  1.15.0.  The  operating
system  of  the  hardware  device  is  Windows  10,  the
memory  of  the  hardware  device  is  32  GB,  and  the
processor of the hardware device is Intel Core i7-9700
CPU@3.00  GHz.  The  user  terminal  is  not  currently
considered to offload tasks to the cloud for computing
in the MEC network environment,  since it  is  expected
that  the  cloud  is  far  from  the  user  terminals.  Suppose
there are 100 user terminals, each of which generates a
computation-intensive  implementation.  There  are
enough MEC servers and computing resources to meet
the  computing  requirements  of  numerous  multitask
implementations.  The  terminal  devices’ CPU  clock
speed is set to 1 GHz, whereas the MEC servers’ CPU
clock speed is set to 10 GHz, which is ten times that of
the terminal devices. The wireless sending power is set
to  1.258  W and  the  wireless  receiving  power  is  set  to
1.181 W.

5.1    Experimental parameters setting

The  simulation  data  consist  of  a  set  of  DAGs  that
represent  different  implementations  and  are  generated
using a  simulator.  The characteristics  of  the  generated
DAGs  can  be  modified  by  changing  the  simulator’s
parameters. The number of tasks in each DAG is set to
{10,  20,  30,  40,  50,  60,  70,  80,  90,100}  and  the  data
size of a single task is defined as [5, 50] KB.

Table 2 displays the settings of the key experimental

parameters,  which  are  set  after  50  experiments  by
taking their average values.

The  RNN  encoder-decoder  neural  network  is
implemented  via  TensorFlow.  In  particular,  both  the
encoder and decoder are set as two-layer LSTM neural
networks  with  256  hidden  units. Table  3 shows  the
important parameters used during the training process.

5.2    Effectiveness of EMMCO method

The  EMMCO  method  evolves  from  the  proximal
policy  optimization  algorithm.  The  average  reward,
policy entropy, policy loss, and value loss are the four
metrics  utilized  to  evaluate  the  proximal  policy
optimization algorithm[37]. Here, we also employ these
four  indicators  to  validate  the  effectiveness  of  the
EMMCO method.  The experimental  results  are shown
in Fig.  3.  It  can be seen from Fig.  3a that  the average
reward  shows  a  sharp  growth  trend  at  the  beginning
and  gradually  tends  to  be  stable  and  flat  when  the
number of episodes are greater than 500. In Fig. 3b, the
policy  entropy  gradually  decreases  during  the  training
process as the policy becomes more and more certain,
and the final entropy curve tends to be flat. As for Fig.
3c,  the  policy  loss  curve  starts  to  level  out  after  the
number of episodes are greater than 400, and the policy
loss  value  gradually  tends  to  be  zero.  For Fig.  3d,  the
value loss tends to be zero after the number of episodes
are greater than 300. With combination of Figs. 3a−3d,
we  can  find  that  the  entire  training  process  starts  to
stabilize  after  episodes  are  greater  than  500,  which

 

Table 2    Experimental parameters.

Parameter Description Value
n Number of tasks {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
di tiData size of task [5, 50] KB
dr

i tiData size of task received result of [5, 50] KB

ci tiCPU clock cycles required to execute task 
[
107,108

]
 cycles

fl Local CPU clock speed 1 GHz
fo CPU clock speed of MEC server 10 GHz

Rup Uplink transmission rate {3, 5, 7, 9, 11, 13, 15, 17, 19} Mbps

Rdown Downlink transmission rate {3, 5, 7, 9, 11, 13, 15, 17, 19} Mbps
Pws Wireless sending power 1.258 W
Pwr Wireless receiving power 1.181 W
ρ Power coefficient in local computing 1.25×10−26

ς Constant in local computing 3
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shows  that  the  EMMCO  method  is  able  to  avoid
updating the policy drastically and prevent the training
process from falling in local optimum too early. These
experimental  results  demonstrate  that  the  proposed
EMMCO  method  has  good  convergence  and  relative
practicality.

λt

λe

λt λe

λt λe

λt = λe = 0.5

Additionally, to analyze the influence of different 
and  on the  experiment  results  of  EMMCO method,
nine  groups  values  of  and  are  designed  to
compare  values  of  the  latency,  energy  consumption,
and  QoS  values  generated  by  EMMCO  method.  The
experimental  results  are  shown  in Table  4.  It  can  be
seen  that  the  QoS  indicators  corresponding  to  nine
groups of  and  are decreasing. Therefore, in order
to  ensure  the  fairness  of  the  following  comparative
experiments,  we  take  a  compromise  parameter  value,
that is, .

5.3    Efficiency of EMMCO method

In this  section,  to  verify its  efficiency of  the proposed
EMMCO  method,  six  typical  computation  offloading
algorithms and an RL-based algorithm are examined to
take  a  comparison  and  analysis.  The  seven  compared
algorithms  include  all  local  execution,  all  offload
execution,  random  scheduling  algorithm,  round-robin
scheduling  algorithm,  greedy  algorithm[38],  earliest

 

Table  3    Training  parameters  of  RNN  encoder-decoder
neural network.

Parameter Value
Encoder type LSTM
Decoder type LSTM

Number of encoder layers 2
Number of decoder layers 2

Number of encoder hidden units 256
Number of decoder hidden units 256

vConstant  in clip function 1.1
εConstant  in clip function 0.2

c1Loss coefficient 0.5
c2Entropy coefficient 0.01

Learning rate 5×10−4
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Fig. 3    Effectiveness of the EMMCO method. (a) The average reward of the EMMCO method during the training process; (b)
The policy entropy of the EMMCO method during the training process; (c) The policy loss of the EMMCO method during the
training process; and (d) The value loss of the EMMCO method during the training process.
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completion  time  algorithm[39],  and  DDQN-based
algorithm[29].  Six  typical  computation  offloading
algorithms are set  up to indicate the advantages of the
reinforcement  learning  mechanism  used  in  the
proposed  EMMCO method  in  solving  the  model.  The
DDQN-based  algorithm  combines  LSTM,  DQN,  and
double-DQN  techniques  to  handle  the  task  offloading
problem  without  considering  the  inner  long
dependency among tasks. The DDQN-based algorithm
is  set  up to  demonstrate  the  benefit  of  considering the
long-dependency  among  tasks.  Primarily,  here  the
simulation  experiments  take  into  account  two
application cases, one is the workload, i.e., the different
numbers of the offloading tasks; the other is the effects
of  the  wireless  networks,  namely,  the  different  data
transmission rates.
5.3.1    Experimental  results  under  different

numbers of tasks
First,  at  the  data  transmission  rate  of  7  Mbps,  the
numbers of tasks are set to {10, 20, 30, 40, 50, 60, 70,
80,  90,  100}  to  evaluate  the  latency,  energy
consumption, and QoS metrics of each algorithm under
the scenario of multitasks offloading.

Figures  4 and 5 show  the  latency  and  energy
consumption yielded by each algorithm under different
numbers  of  tasks,  respectively.  As  can  be  seen  from
Figs.  4 and 5,  the  latency  and  energy  consumption
generated by all local execution are always the highest
under  different  task  numbers,  which  is  due  to  the
limited computing capabilities of the terminal devices.
When the task data size gets large, the terminal device
will not be capable of meeting the computing resources
required  for  computing  tasks,  resulting  in  significant

latency  and  energy  consumption.  The  latency  and
energy  consumption  yielded  by  all  offload  execution
and the DDQN-based algorithm are similar. The values
of  energy  consumption  of  both  are  lower,  but  their
latency  costs  are  too  high.  Therefore,  it  can  be
considered  that  because  the  DDQN-based  algorithm
does not take into account the long-dependency among
tasks,  it  cannot  achieve  a  better  balance  between
latency  and  energy  consumption  in  the  learning
process.  Random scheduling  algorithm obtains  similar
latency and energy consumption results as round-robin
scheduling  algorithm,  although  their  values  of  energy
consumption  are  at  a  moderate  level,  their  values  of
latency  are  higher.  In  contrast,  because  the  greedy
algorithm  and  the  earliest  completion  time  algorithm
only take into account latency minimization, they both
yield  lower  latency,  but  their  values  of  energy
consumption  are  higher  and  second  only  to  all  local
execution.  The  latency  and  energy  consumption  are
well-balanced  by  the  proposed  EMMCO  method.  In

 

λt λe

Table 4    Experiment results of the EMMCO method under
different  and .

λt λeValues of  and Latency (ms) Energy consumption (J) QoS
λt = 0.1,λe = 0.9 541.83 1 092.32 0.71
λt = 0.2,λe = 0.8 541.83 1 092.32 0.66
λt = 0.3,λe = 0.7 541.83 1 092.32 0.61
λt = 0.4,λe = 0.6 541.83 1 092.32 0.55
λt = 0.5,λe = 0.5 541.83 1 092.32 0.50
λt = 0.6,λe = 0.4 480.40 1 435.73 0.47
λt = 0.7,λe = 0.3 472.81 1 543.66 0.43
λt = 0.8,λe = 0.2 465.73 1 632.07 0.41
λt = 0.9,λe = 0.1 461.55 1 880.28 0.37
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Fig. 4    Comparison of latency of algorithms under different
numbers of tasks.
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Fig. 5    Comparison  of  energy  consumption  of  algorithms
under different numbers of tasks.
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terms  of  latency,  the  EMMCO  method  obtains  an
acceptable  latency  close  to  those  of  the  greedy
algorithm  and  the  earliest  completion  time  algorithm;
with  respect  to  energy  consumption,  the  EMMCO
method gets a desired energy consumption value which
is  close  to  those  of  all  offload  execution  and  the
DDQN-based algorithm.

Figure 6 shows the QoS of  all  compared algorithms
under  different  numbers  of  tasks.  Clearly,  all  local
executions  have  a  QoS  of  zero.  This  is  because,  as
shown  in  Eq.  (13),  all  local  executions  are  utilized  as
the  baseline  algorithm  to  evaluate  the  QoS.
Additionally, the value of QoS of the EMMCO method
is  higher  than  those  of  the  other  compared  algorithms
under  various  numbers  of  tasks,  which  illustrates  that
the  EMMCO  method  achieves  a  promising  QoS,
resulting from the goal of maximizing QoS.
5.3.2    Experimental  results  under  different  data

transmission rates
Next,  when the number of tasks is  10,  we set  the data
transmission  rates  to  {3  Mbps,  5  Mbps,  7  Mbps,
9  Mbps,  11  Mbps,  13  Mbps,  15  Mbps,  17  Mbps,
19 Mbps} to evaluate the latency, energy consumption,
and  QoS  metrics  of  all  compared  algorithms  under
different data transmission rates.

Figure 7 shows the latency yielded by the algorithms
under  different  data  transmission  rates.  In Fig.  7,  the
values  of  latency  produced  by  all  local  executions
remain constant as the data transmission rate increases,
which  is  because  such  algorithms  do  not  involve  task
offloading.  In contrast,  all  the other  algorithms have a
decreasing  trend  in  latency,  this  is  due  to  the  great

reduction  in  data  transmission  time.  When  the  data
transmission  rates  are  {3  Mbps,  5  Mbps},  the  latency
yielded  by  all  offload  execution  is  the  largest;  while
when  the  data  transmission  rate  is  greater  than
11 Mbps, the latency produced by all offload execution
is close to the minimum. This case is  because that  the
latency yielded by all offload execution mainly results
from the  data  transmission  time,  that  is,  the  algorithm
is  most  impacted  by  the  data  transmission  rate.
Additionally, the random scheduling algorithm obtains
similar  latency  as  the  round-robin  scheduling
algorithm,  and their  values  of  latency are  both  greater
than  those  of  the  greedy  algorithm  and  the  earliest
completion time algorithm. When the data transmission
rates  are  {11  Mbps,  13  Mbps,  15  Mbps,  17  Mbps,
19  Mbps},  the  values  of  latency  generated  by  the
EMMCO  method  and  the  DDQN-based  algorithm  are
almost  the  same,  which  reaches  the  optimal  value.
Based  on  the  above,  with  the  premise  of  optimizing
both  latency  and  energy  consumption,  the  EMMCO
method  can  obtain  the  lowest  latency  in  most  cases,
which  shows  that  the  EMMCO  method  has  certain
feasibility and relative advantages.

Figure 8 shows the energy consumption generated by
the  compared  algorithms  under  different  data
transmission  rates.  The  energy  consumption  produced
by  all  local  execution  is  always  the  highest  and  the
energy consumption produced by all offload execution
is  always  the  lowest.  Horizontally,  as  the  data
transmission  rate  increases,  the  values  of  energy
consumption produced by all  algorithms except for all
local  execution  decrease,  owing  to  the  reduced  data
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Fig. 6    Comparison  of  QoS  of  algorithms  under  different
numbers of tasks.
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transmission  time.  Besides,  the  random  scheduling
algorithm  obtains  similar  energy  consumption  as  the
round-robin  scheduling  algorithm,  and  the  greedy
algorithm  obtains  similar  energy  consumption  as  the
earliest  completion  time  algorithm,  but  all  four
heuristic  algorithms  have  relatively  high  energy
consumption.  The  EMMCO  method  has  a  tolerated
energy  consumption  under  most  data  transmission
rates. When the data transmission rate is greater than 9
Mbps,  the  values  of  energy  consumption  of  the
EMMCO  method  and  the  DDQN-based  algorithm  are
near the optimal value.

Figure 9 shows the QoS of  all  compared algorithms
under  different  data  transmission  rates.  The  value  of
QoS  of  all  local  execution  is  zero  under  all  data
transmission rates, while the values of QoS of the other
algorithms increase as the data transmission rate rises.
This is because the values of data transmission time of
other  algorithms  are  shorter,  which  degrades  energy
consumption and improves QoS. Evidently,  the values

of QoS of the EMMCO method is higher than those of
the compared algorithms, which precisely results from
the  optimization  goal  of  the  proposed  method.  This
result  proves  the  relative  efficiency  of  the  proposed
EMMCO method.

6    Conclusion

The  computation  offloading  of  implementations  under
the  stochastic  application  scenarios  in  MEC  networks
is  a  challenging  issue.  In  this  paper,  we  addressed  on
computation  offloading  with  an  energy-efficient
multiuser  and  multitask  computation  offloading
optimization  method.  By  considering  the  existence  of
dependencies  between  multitasks  within  a  specific
implementation,  we  represented  these  dependencies
with  a  DAG  and  modeled  the  computation  offloading
problem  as  an  MDP.  Then  the  task  embedding
sequence  in  the  DAG  is  input  to  the  RNN  encoder-
decoder  neural  network.  With  combination  of  the
attention mechanism, the RNN network can efficiently
capture  the  long-term  dependencies  between  different
tasks  and  the  appropriate  task  offloading  scheduling
decisions are determined. To further select the optimal
scheduling  decisions,  the  IPLC-PPO2  algorithm  is
developed.  The  loss  function  in  the  IPLC-PPO2
algorithm is  employed as  a  preference for  the  training
process  to  constantly  update  the  neural  network
parameters,  as  a  result,  the  optimization  computation
offloading  decisions  are  done.  The  simulation  results
show that the proposed EMMCO method obtains lower
latency,  degrades  energy  consumption,  and  gets  a
higher QoS than that of the compared algorithms. This
case  proves  that  the  proposed  EMMCO  method  has
relative adaptability and higher efficiency.

However, there are still some limitations that require
further  research.  Our  presenting  scheme  assumes  that
there exist enough resources on the MEC servers. This
is  not  an  exact  scenario  in  the  actual  MEC  world.  A
practical  manner  needs  to  be  developed.  We  will
further examine the computation offloading methods of
joint  resource  allocation  and  edge  server  workloads
balancing in mobile edge computing.
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