

Energy-efficient multiuser and multitask computation
offloading optimization method

Meini Pan, Zhihua Li, and Junhao Qian*

Abstract: For dynamic application scenarios of Mobile Edge Computing (MEC), an Energy-efficient Multiuser and

Multitask Computation Offloading (EMMCO) optimization method is proposed. Under the consideration of multiuser

and multitask computation offloading, first, the EMMCO method takes into account the existence of dependencies

among different tasks within an implementation, abstracts these dependencies as a Directed Acyclic Graph (DAG), and

models the computation offloading problem as a Markov decision process. Subsequently, the task embedding

sequence in the DAG is fed to the RNN encoder-decoder neural network with combination of the attention mechanism,

the long-term dependencies among different tasks are successfully captured by this scheme. Finally, the Improved

Policy Loss Clip-based PPO2 (IPLC-PPO2) algorithm is developed, and the RNN encoder-decoder neural network is

trained by the developed algorithm. The loss function in the IPLC-PPO2 algorithm is utilized as a preference for the

training process, and the neural network parameters are continuously updated to select the optimal offloading

scheduling decisions. Simulation results demonstrate that the proposed EMMCO method can achieve lower latency,

reduce energy consumption, and obtain a significant improvement in the Quality of Service (QoS) than the compared

algorithms under different situations of mobile edge network.

Key words: Mobile Edge Computing (MEC); computation offloading; Reinforcement Learning (RL); optimization model

1 Introduction

Numerous mobile implementations, such as virtual
reality, the Internet of vehicles, and smartphone online
gaming, have evolved with the rapid development of
the mobile Internet and the popularity of smart devices.
However, these implementations are frequently
computation-intensive and latency-sensitive. Most
mobile terminals are unable to provide the desired
computing services for the aforementioned landscape
due to their limited computing capabilities and short
battery lives. By offloading tasks with a large amount
of data to remote cloud servers for execution, Mobile

Cloud Computing (MCC) can effectively decrease the
computational workload on mobile terminals and
prolong their battery lives[1]. Objectively, because of
the negative impacts of the dynamic network workload
and transmission distance, there inevitably exists a
communication latency, which is insufficient to meet
the demands of the implementations for a rapid
response. Mobile Edge Computing (MEC) is a new
computing paradigm that can effectively address these
issues[2]. By deploying relatively resource-rich edge
servers close to mobile terminals, MEC provides
computing services for computation-intensive and
latency-sensitive implementations. Theoretically, MEC
can efficiently supplement the insufficiency of limited
computing capabilities of mobile terminals, while
drastically reducing the system latency and energy
consumption, thus improving the Quality of Service
(QoS). Under the MEC scenario, offloading
computation tasks to MEC servers necessitates data
transmission via wireless links. When a large number

 • Meini Pan and Zhihua Li are with the School of Artificial

Intelligence and Computer Science, Jiangnan University,
Wuxi 214122, China. E-mail: shirley1014@aliyun.com;
zhli@jiangnan.edu.cn.

 • Junhao Qian is with the School of IoT Engineering, Jiangnan
University, Wuxi 214122, China. E-mail: qjhao@jiang
nan.edu.cn.

 * To whom correspondence should be addressed.
 Manuscript received: 2023-03-31; accepted: 2023-04-20

Intelligent and Converged Networks ISSN 2708-6240
2023, 4(1): 76−92 DOI: 10.23919/ICN.2023.0007

© All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

mailto:shirley1014@aliyun.com
mailto:zhli@jiangnan.edu.cn
mailto:qjhao@jiang<linebreak/>nan.edu.cn
mailto:qjhao@jiang<linebreak/>nan.edu.cn
https://doi.org/10.23919/ICN.2023.0007
https://creativecommons.org/licenses/by-nc-nd/3.0/igo/

of mobile terminals are actively offloading their
computation tasks to the MEC servers, wireless links
are prone to network congestion, which easily slows
down the data transmission ratio and causes a time
delay. Throughout the multiuser and multitask
computation offloading process, elements, such as edge
network overload and link congestion, not only prolong
the service response time, but frequently result in
resource overload on MEC servers, which further
decreases the QoS. Consequently, in practical
applications, some tasks should undertake offloading
computing, whereas others examine computation
locally in response to the stochastic MEC edge
network. This is a feasible technology route for
achieving higher QoS.

A large number of works[3−29] have examined this
issue from several perspectives, including the
computation offloading methods based on dynamic
offloading and the Stackelberg game, the schemes of
multiuser and multitask offloading, the optimization
methods based on heuristic algorithms or genetic
algorithms, the methods of dependent task offloading,
and the computation methods based on Reinforcement
Learning (RL). To treat the task offloading issue in the
dynamic MEC with limited computational resources
and reduce costs, studies[3−5] investigated computation
offloading methods from the perspective of dynamic
pricing and the Stackelberg game. The simulation
results demonstrate that these schemes can improve the
resource utilization of the system and always achieve
higher system utility. Under the consideration of
multiuser and multitask offloading, through abstracting
the task allocation and offloading scheduling as an
optimization problem, the works[6−15] studied
algorithms and methods for computation offloading.
The experimental results show that these methods
enable to reduce the computational cost and latency for
all users. By using optimization methods based on
heuristic algorithms or genetic algorithms, the
studies[10−12, 16−21] can effectively manage the
workloads on edge servers under the tight constraints
of low latency and a fast response time. Considering
the dependent task offloading, the works[22−24]

presented several intelligent computation offloading
schemes, which enable to capture the long-term
dependency among tasks and select the optimal
offloading manner for tasks. By combining deep neural
networks and reinforcement learning algorithms,
studies[25−29] proposed efficient computation offloading
schemes adapting to various dynamic scenarios.
Experiment results indicate that these methods are able
to achieve the optimal solution in latency and energy
consumption. However, the above studies do not
consider either the dependencies among different
computation tasks[3−21, 25−29] or various implementation
scenarios during the offloading process[10−12, 16−21],
which do not suitably meet practical applications.

This paper, by integrating deep neural networks and
reinforcement learning, proposes an optimization
model for adaptive computation offloading problems in
stochastic MEC networks, and presents an Energy-
efficient Multiuser and Multitask Computation
Offloading (EMMCO) optimization method. Our main
contributions are as follows:

(1) First, by mining the objective dependencies
among different computation tasks within an
implementation, these dependencies are abstracted as a
Directed Acyclic Graph (DAG). As a result, the
computation offloading problem is modeled as a
Markov Decision Process (MDP) by creating a
reasonable state space, action space, and reward
function.

(2) Furthermore, the MDP is converted into an RNN
encoder-decoder neural network prediction procedure.
This implies that the task embedding sequence from
the DAG is used as the input of the RNN encoder-
decoder neural network. In combination with the
attention mechanism, the RNN encoder-decoder neural
network effectively obtains the long-term dependencies
among multiple tasks. This scheme facilitates obtaining
more appropriate multitask offloading scheduling
decisions.

(3) Finally, an Improved Policy Loss Clip-based
PPO2 (IPLC-PPO2) algorithm is developed by
improving the PPO2 reinforcement learning algorithm.
The presented algorithm is employed to train the RNN

 Meini Pan et al.: Energy-efficient multiuser and multitask computation offloading optimization method 77

encoder-decoder neural network. The loss function in
the IPLC-PPO2 algorithm acts as a preference for the
training process, which continuously updates the
parameters in the neural network. Consequently, the
above significantly determines the final optimal
multitask offloading scheduling decisions.

The rest of this paper is organized as follows. In
Section 2, we review some related work. In Section 3,
we describe the problem model and problem
formulation. In Section 4, the proposed EMMCO
method is described in detail. In Section 5, extensive
simulation experiments are presented to evaluate the
performance of the EMMCO method. Finally, Section
6 concludes this paper.

2 Related work

This section focuses on the latest studies on mobile
edge computation offloading issues. Reference [13]
proposed a decentralized algorithm for balancing
computation offloading decisions. This algorithm can
minimize the cost by determining whether to offload
tasks to the edge servers. Considering the multiuser
computation offloading problem in the uncertain
wireless network environment, Ref. [14] designed a
distributed computation offloading algorithm to obtain
the Nash equilibrium of the game. Reference [15]
presented a genetics-based intelligent offloading
algorithm. This algorithm can lower the overhead of
the system during the offloading decision evaluation
process. The above studies[13−15] mainly focus on the
computation offloading process for independent tasks
and do not consider the extensive internal dependencies
among tasks. Considering the mobility during the task
offloading process, Ref. [16] concentrated on the
offloading decision and resource allocation problem
among multiple users served by a single base station, it
proposed a heuristic mobility-aware offloading
algorithm to obtain an approximate optimal offloading
scheme. By designing a weight cost model based on
latency and energy consumption, Ref. [17]
implemented a genetic algorithm based dynamic
computation offloading model, which can optimize
both latency and energy consumption. Reference [18]
investigated the problem of joint computation

offloading and transmission scheduling in mobile edge
computing. In order to characterize the dynamic
management of the system that has potential network
uncertainty, it created a queuing model. Besides, it also
designed an MOTM method for jointly deciding on
computation offloading schemes, transmission
scheduling rules, and pricing rules. In two-user MEC
networks, Ref. [19] examined the effects of inter-user
task dependencies on resource allocation and
computation offloading decisions. it then proposed an
efficient algorithm to optimize resource allocation and
computation offloading decisions. This algorithm can
reduce the weighted sum of device energy consumption
and task execution time. Considering the
heterogeneous communication modes and computing
capabilities of network computing points, Ref. [20]
proposed a distributed multi-hop computing task
offloading framework based on an improved genetic
algorithm to reduce the task computation delay and
improve the global resource utilization. By
decomposing the computation offloading problem into
a multitask problem, Ref. [21] presented a DTOS-
LBBD method. This method addressed the dynamic
computation offloading problem and overcame the
difficulties of computation offloading and resource
allocation. The above studies[16−21] focus on using
heuristic algorithms to resolve the computation
offloading problem, but they are mainly conducted to
address static optimization problems. However, the
MEC system’s computation offloading problem is
essentially a mixed-integer nonlinear programming
problem, it is critical to identify computation
offloading strategies that may be applied to dynamic
scenarios.

Considering dependent task offloading in mobile
edge works, Ref. [22] proposed an intelligent
Computational Offloading scheme for Dependent IoT
Application (CODIA), which has good performance in
convergence, latency, and energy consumption.
Reference [23] designed a dependent task offloading
framework for multiple mobile applications, named
COFE, which assigned the offloaded tasks to the MEC
and cloud adaptively to improve the user experience.
Reference [24] presented an intelligent task offloading

 78 Intelligent and Converged Networks, 2023, 4(1): 76−92

scheme leveraging off-policy reinforcement learning to
achieve the optimal solution in latency and energy
consumption under various scenarios. Due to their
flexibility in adapting to numerous dynamic scenarios,
deep reinforcement learning algorithms have recently
gained popularity in mobile edge computation
offloading. Reference [25] designed a computation
offloading method based on meta-reinforcement
learning. This method is able to adapt to various MEC
environments within a small number of samples and
gradient updates. Considering a binary offloading
strategy, Ref. [26] presented a Deep Reinforcement
learning based Online Offloading (DROO) algorithm.
The DROO algorithm can significantly lower the
computational complexity by training the deep neural
network and learning from experience. Reference [27]
implemented a reinforcement learning based offloading
scheme for IoT devices. This scheme selects edge
devices and offloading rates according to the current
battery level, the previous wireless transmission rate,
and the predicted collected energy. Without being
aware of the MEC system model, the scheme allows
IoT devices to optimize offloading decisions.
Regarding intelligent computation offloading in ultra-
dense networks, Ref. [28] developed a DQN-based
online computation offloading algorithm. This
algorithm overcomes the high-dimensional problem in
the state space and does not require a priori
information. Reference [29] proposed an RL-based
distribution offloading algorithm, which combines
Long Short-Term Memory (LSTM), dueling Deep Q-
Network (DQN), and double-DQN techniques. This
RL-based algorithm can significantly reduce the long-
term cost compared with several existing algorithms.
The above studies[25−29] aim to examine the
computation offloading optimization problem using
deep neural networks and reinforcement learning
algorithms. Motivated by them, we investigate models,
algorithms, and methods for handling computation
offloading problems in the MEC environment by
improving the PPO2 reinforcement learning algorithm
and combining the improved IPLC-PPO2 algorithm
with the RNN encoder-decoder neural network.

3 Problem modeling

3.1 Problem description

The users, edges, and cloud layers are three main layers
that constitute the computation offloading framework
for the mobile edge network[30]. The user layer is made
up of various terminal devices, the edge layer is
organized with base stations and MEC servers that are
close to the users, and the cloud layer is the remote
data center. In MEC edge networks, the
implementations with multitasks running on terminal
devices include numerous computation-intensive and
latency-sensitive computation tasks. These
computation tasks are not independent of each other,
but have rather significant dependencies, particularly
for implementations in multiuser and complicated
domains, such as autonomous driving, AR/VR, and
cloud gaming. These pose specific challenges for the
efficient offloading of computation tasks in edge
networks. The analysis reveals that these computation
tasks frequently have strong dependencies on one
another rather than being completely independent of
one another. Therefore, we abstract the dependencies
among the computation tasks as a Directed Acyclic
Graph (DAG). In the task scheduling process, starting a
task depends on the completion of computing all of its
predecessor tasks. Based on this, the analysis reveals
that there are primarily three types of dependencies
among tasks, namely one-to-one, one-to-many, and
many-to-many, which are represented in Fig. 1. In the
DAGs in Fig. 1, the vertices represent tasks, and the
edges represent the dependencies among tasks. Each
task embedding point contains three vectors: the vector
containing the task index and estimated task cost, the
index vector of the task immediately before it, and the
index vector of the task immediately after it. All task
embedding points in DAG yield a task embedding

Task

Dependencies among tasks

Fig. 1 Structure of directed acyclic graph.

 Meini Pan et al.: Energy-efficient multiuser and multitask computation offloading optimization method 79

sequence. Additionally, we primarily cover the
multiuser and multitask offloading models and
methods in this section under two computing
paradigms: using local resources to compute the tasks
and migrating the tasks to a nearby MEC server for
computing.

n

T = {t1, t2, . . . , ti, . . . , tn} A1 : n = {a1,a2, . . . ,ai, . . . ,

an} n

ai = 0

ai = 1

N = {1,2, . . . , i, . . . ,n}
di

ci

Assume that the implementation on the terminal
device contains computation tasks, represented as

. Let
 denote the scheduling decisions of computation

tasks. represents that the task is computed
locally, and indicates that the task is migrated to
the MEC server for computing.
notes the set of task IDs, means the task’s data size,
and depicts the CPU clock cycles required to execute
the task.

fl

The local computation time primarily depends on the
computation time of the task. Let denote the terminal
device’s CPU clock speed; then, the computation time
of the task at the terminal device can be calculated as
follows:

T l
i =

ci

fl
(1)

When the task is computed locally, the energy
consumption is primarily generated by the computation
process of the terminal device. The energy consumed
by local computing is calculated as follows:

El
i = ρ f ςl T l

i (2)

ρ f ςl
ρ ς

where indicates the computing power of the
terminal device, shows the power coefficient, and is
a constant.

Three main factors contribute to the time required to
migrate the task to the MEC server for execution:
uplink transmission time, which is the wireless link
transmission time produced by sending the task from
the terminal device to the MEC server; MEC server
computation time, which is the time required by the
edge server to execute the task; and downlink
transmission time, which is the wireless link
transmission time produced by transmitting the
computation result from the MEC server back to the
terminal device.

Supposing that the CPU clock speed of the MEC

foserver is , when the task is migrated to the MEC
server for computing, the time generated by each of the
aforementioned three phases is calculated as follows:

T up
i =

di

Rup (3)

T com
i =

ci

fo
(4)

T down
i =

dr
i

Rdown (5)

T up
i

ti T com
i

ti T down
i ti dr

i

Rup

Rdown

where means the uplink transmission time of task
, denotes the MEC server computation time of

task , denotes the result return time of task ,
denotes the data size of the received result,
expresses the uplink transmission rate, and
represents the downlink transmission rate.

The energy consumption generated by migrating the
task to the MEC server for computing is calculated as
follows:

Eo
i =PwsT up

i +P jT com
i +PwrT down

i =

Pws di

Rup +P j
ci

fo
+Pwr dr

i

Rdown (6)

P j

Pws

Pwr

where denotes the computing power of the MEC
server, indicates the wireless sending power, and

 denotes the wireless receiving power.

3.2 Task completion time and energy consumption

Considering the dependencies among multiple tasks, as
depicted in Fig. 1, the start execution time of a task is
influenced by the completion time of all its
predecessors. Consequently, the time required to
execute all tasks in the system and dependencies are
closely tied.
3.2.1 Task completion time in local computing

ti

ti

When task is computed locally, the computation start
time is the maximum of all predecessor task
completion time. Therefore, the completion time of
task computed locally is determined as the sum of the
computation start time and local computation time,
which is calculated as follows:

FT l
i = max

t j∈pre(ti)
{max{FT l

j,FT down
j }}+T l

i (7)

pre(ti)

ti FT l
j

where represents the set of predecessors of task
, denotes the completion time of the predecessor

 80 Intelligent and Converged Networks, 2023, 4(1): 76−92

t j FT down
j

t j

task computed locally, and indicates the
completion time of the predecessor task in offloading
computing, whose calculation process is given in
Section 3.2.2.
3.2.2 Task completion time in offloading

computing
ti

t j

t j t j

t j

ti

When task is offloaded to the MEC server for
computing, it consists of three phases: upload,
computation, and result return. First, before the upload
phase of the task to the MEC server, all its
predecessors must be uploaded. The upload start time
depends on two aspects: if the predecessor task is
computed locally, it must wait for the completion of
the task local computing; if the predecessor task is
offloaded to the MEC server for computing, it must
wait for the completion of the task upload. Therefore,
the upload completion time of task is the sum of the
upload start time and uplink transmission time, which
is calculated as follows:

FT up
i = max

t j∈pre(ti)
{max{FT l

j,FT up
j }}+T up

i (8)

ti
ti

ti

Subsequently, before the computation phase of the
task on the MEC server, all its predecessors must be
computed. The computation start time depends on two
aspects: the completion of task upload and the
computation completion of all predecessors of task .
Therefore, the completion time of the computation
phase of is the sum of the computation start time and
MEC server computation time, which is calculated as
follows:

FT com
i =max{FT up

i , max
t j∈pre(ti)

FT com
j }+T com

i (9)

ti

ti

Finally, the result return phase of task can only
begin after its computation phase has been completed.
Therefore, the completion time of the result return
phase of is the sum of the result return start time and
result return time, which is calculated as follows:

FT down
i = FT com

i +T down
i (10)

3.2.3 Total time and total energy consumption
ti

FT l
i ti

FT down
i

In conclusion, the completion time of task computed
locally is , and the completion time of task in
offloading computing is . Consequently, the
total completion time of all tasks can be calculated as

follows:

Ttotal =max
i∈N
{max{FT l

i ,FT down
i }} (11)

ti
El

i ti
Eo

i

The energy consumption of task computed locally
is , and the energy consumption of task in
offloading computing is . Therefore, the total energy
consumption of all tasks can be calculated as follows:

Etotal =
∑

i∈N,ai=0

El
i +

∑
i∈N,ai=1

Eo
i (12)

3.3 Problem formulation

The energy consumption and latency can be used to
evaluate the effectiveness of a scheduling decision[31].
Hence, QoS is defined as a comprehensive indicator of
energy consumption and latency, as shown in the
following:

QA1:n = λt

∑n
i=1 T l

i −Ttotal∑n
i=1 T l

i

+λe

∑n
i=1 El

i −Etotal∑n
i=1 El

i

(13)

λt λe

λt,λe ∈ [0,1] λt +λe = 1

where and denote the weights of the impact of the
latency and energy consumption on QoS, respectively,

, and . Usually, the scheduling
decision is preferable if the QoS value is higher.

Based on the above, the optimization problem of
maximizing the system’s QoS can be expressed as
follows:

arg max QA1:n (14)

s.t., ai ∈ {0, 1} , ∀i ∈ N (15)

λt,λe ∈ [0,1] (16)

λt +λe = 1 (17)

Constraint (15) represents the task scheduling
decision. The optimization problem of Formula (14) is
a mixed integer nonlinear programming problem,
which is an NP-hard problem[31]. It is challenging to
find an optimal solution for these problems within an
acceptable time complexity.

The main symbols used in the paper are summarized
in Table 1.

4 Proposed method

In this section, we take the following strategy to
resolve the defined optimization problem, namely,
Formula (14). First, we transform Formula (14) into a

 Meini Pan et al.: Energy-efficient multiuser and multitask computation offloading optimization method 81

deep reinforcement learning problem and model the
offloading problem as an MDP. Then we use a DAG to
represent the task embedding sequence with
dependencies in the multiuser and multitask
implementations, input the sequence to the RNN
encoder-decoder neural network, and obtain the
appropriate task scheduling decisions. Finally, we
develop the IPLC-PPO2 algorithm by improving the
PPO2 reinforcement learning algorithm, which is
utilized to train the RNN encoder-decoder. By
iteratively optimizing the neural network parameters
with the loss function in the IPLC-PPO2 algorithm, the
optimal task scheduling decisions are finally
conducted.

4.1 Prediction process for task scheduling decision

A typical deep reinforcement learning model is the

⟨S ,A,R⟩ S A

R

Markov decision model, and the goal of reinforcement
learning is to maximize the reward of the MDP[32]. In
this study, we define the Markov model represented by
the triplet, where denotes the state space,
expresses the action space, and represents the reward
function.

tiBecause the scheduling decision of task depends on
the scheduling decisions of all its predecessors, the
state space is defined as a combination of DAG and
partial scheduling decisions, as illustrated in the
following:

S := {s|s = (G,A1:i)} (18)

G

A1:i

t1 ti

where denotes a DAG consisting of a task
embedding sequence, and indicates the set of
scheduling decisions from task to .

ai = 0

ai = 1

Because denotes that the task is computed
locally and means that the task is migrated to the
MEC server for computing, the action space can be
expressed as follows:

A := {0,1} (19)

Because our optimization objective is to maximize
the QoS of the system, as shown in Eq. (13), the
reward function is defined as follows:

R (si,ai) =λt

1
n
∑n

i=1 T l
i − (FTi−FTi−1)∑n

i=1 T l
i

+

λe

1
n
∑n

i=1 El
i −Ei∑n

i=1 El
i

(20)

t = [t1, t2, . . . , ti, . . . , tn]

A1:n

In addition, the computation offloading problem is
abstracted as a prediction problem for an RNN
encoder-decoder neural network; that is, the task
embedding sequence in the DAG
that corresponds to the task dependencies is input to the
RNN encoder-decoder neural network. On the one
hand, the encoder combined with the attention
mechanism can efficiently mine the dependencies
between tasks; on the other hand, the decoder can
approximate the policy and value functions of the
MDP. The task scheduling decision sequence is
then achieved and output according to the values of the
policy function.

As shown in Fig. 2, the RNN encoder-decoder neural

Table 1 Definition of notations.

Symbol Definition
ai tiScheduling decision of task
di tiData size of task
dr

i tiData size of the received result of task
ci tiCPU clock cycles required to execute task
fl Local CPU clock speed
fo CPU clock speed of MEC server
T l

i tiLocal computation time of task
El

i tiEnergy consumption for local computing of task
T up

i tiUplink transmission time of task
T com

i tiMEC server computation time of task
T down

i tiResult return time of task
Eo

i tiEnergy consumption of offloading computing for task

Rup Uplink transmission rate

Rdown Downlink transmission rate
P j Computing power of the MEC server

Pws Wireless sending power

Pwr Wireless receiving power
pre(ti) tiSet of predecessors of task
FT l

i tiCompletion time of local computing for task
FT up

i tiUpload completion time of task
FT com

i tiMEC server computation completion time of task
FT down

i tiCompletion time of offloading computing for task
Ttotal Total completion time of all tasks
Etotal Total energy consumption of all tasks
QA1:n QoS of the system

 82 Intelligent and Converged Networks, 2023, 4(1): 76−92

network architecture consists of two RNN networks:
one serves as the encoder and the other as the decoder.
The encoder receives the input sequence and uses
forward propagation to output the final hidden state.
The decoder initializes its hidden state using the output
state of the encoder, and outputs the target sequence.
The following is a detailed description of the task-
scheduling decision-making process.

c

t = [t1, t2, . . . , ti, . . . , tn]

ti

hi

c c

In the encoding process, combined with the attention
mechanism, the encoder assigns different attentions to
the information encoded at each time step in the input
sequence by generating a context vector . Long-term
dependencies among tasks can be effectively captured,
and information loss in the input sequence can be
prevented. The encoding process is as follows: The
task embedding sequence serves
as the encoder’s input, a vector is fed into the
encoder at each time step, and the hidden layer state
is the output. Finally, the weighted average sum of
each hidden layer state in the encoder is calculated to
obtain the output of the encoder . The context vector
encodes all the information of the input sequence,
which is calculated as follows:

c =
∑n

i=1
α jihi (21)

α ji =
e fscore(d j−1,hi)∑n

k=1 e fscore(d j−1,hk)
(22)

hi = fenc (hi−1, ti|θenc) (23)

α ji

θenc

where expresses the weight of each hidden layer of
the encoder, which is determined by normalization
using the SoftMax function, and denotes the
parameter in the encoder.

In the decoding process, the decoder decodes using

c

d j−1

a j−1 c

the obtained context vector . At each time step, the
hidden layer node of the decoder has three inputs: the
hidden layer state of the previous time step, output

 of the previous time step, and context vector .
The decoder hidden layer state is defined as follows:

d j = fdec
(
d j−1,a j−1, c|θdec

)
(24)

θdecwhere denotes the parameter in the decoder.

d j d j

π
(
a j|s j

)
d j v

(
s j
)

a j = arg maxa jπ(a j|s j)

Finally, after obtaining the decoder hidden layer state
, by adding a fully connected layer on and using

the SoftMax function, the output is converted into a
probability distribution of the scheduling
decision; by adding another fully connected layer on

, the output is used to represent the state value .
The goal is to generate an output sequence with the
highest probability; the higher the probability, the more
reasonable the output sequence. Consequently, the
scheduling decision of a task can be obtained based on

.

4.2 IPLC-PPO2 algorithm

The Proximal Policy Optimization (PPO) algorithm[33]

has excellent performance in deep reinforcement
learning. The PPO2 method[33], one of the most
popular reinforcement learning algorithms, improves
the PPO algorithm by merging the policy loss function,
value loss function, and policy entropy. By improving
the policy loss function, we overcome the
shortcomings of the PPO2 algorithm’s sluggish
learning rate and low learning stability. Furthermore,
we develop the IPLC-PPO2 algorithm. The following
is a detailed discussion of the improved policy loss
function.

[
1

1+ε
,

1
1−ε

]
ε

v

First, because of the insufficiencies of the clip
function in the PPO2 algorithm described above, the
learning rate is sluggish and the learning stability is
low when many policy updates are conducted using the
same set of data[34]. Thus, limiting the policy

probability ratio to the interval is expected

to increase the change range of the new policy, where
is a hyperparameter, thus speeding up the algorithm’s
learning rate; by adding a constant to the clip
function in the PPO2 algorithm, the policy probability
ratio beyond the clipping range is relimited to the

Encoder Decoder

v (s1) π (a1|s1) v (s
n
) π (a

n
|s
n
)

h1 h2 h
n

c

d
n

d
n

d2

d2d1

d1h1

t1 t2
a1 a

n−1 a
n

h2

… …

…

…

…

…

…

h
n

t
n

Fig. 2 Architecture of RNN encoder-decoder neural
network.

 Meini Pan et al.: Energy-efficient multiuser and multitask computation offloading optimization method 83

[
1

1+ε
,

1
1−ε

]
interval , expecting that the policies will

not deviate from the correct optimization, thus
improving the algorithm’s learning stability.

The improved clip function is shown in the
following:

clip (rt (θ)) =


1− v
1−ε rt (θ) ⩾

1
1−ε , v, ε ∈ (0,1)

1+ v
1+ε

rt (θ) ⩽
1

1+ε
, v, ε ∈ (0,1)

rt (θ) , otherwise

(25)

rt (θ) =
πθ (at |st)
πθold (at |st)

(26)

rt (θ)

πθ (at |st)

πθold (at |st)

ε

v

rt (θ)

where expresses the policy probability ratio,
 denotes the probability distribution of the new

policy, and represents the probability
distribution of the old policy. is used to ensure that
when numerous policy updates are performed, the
distance between the new policy and old policy is not
great. Constant in the clip function is used to
rerestrict from outside the clipping range to the
clipping range.

The following proof is provided to confirm the
validity and accuracy of clip function improvement:
 (

1
1−ε −

1
1+ε

)
πθold (at |st) =

2ε
1−ε2

πθold (at |st) (27)

and

[(1+ε)− (1−ε)]πθold (at |st) = 2επθold (at |st) (28)

ε ∈ (0,1)
2ε

1−ε2
πθold (at |st)>2επθold (at |st)when , , therefore,

 (
1

1−ε −
1

1+ε

)
πθold (at |st) >

[(1+ε)− (1−ε)]πθold (at |st) (29)

By substituting the improved clip function from Eq.
(25) into the policy loss function, the improved policy
loss function is represented in the following:

LCLIP(θ) = E

 n∑
t=1

min
(
rt(θ)Ât,clip(rt(θ)) Ât

) (30)

Âtwhere denotes the estimate of the advantage
function.

The advantage function is calculated using the
generalized advantage estimation method[35], as shown
in the following, which has the advantage of greatly
lowering the estimated variance of the policy gradient:

Ât =

n−t+1∑
k=0

(γλ)k (rt+k +γvπ (st+k+1)− vπ (st+k)) (31)

γ

λ (0 < λ < 1)

rt

t vπ (st)

t

where denotes the discount factor to reduce the
variance, expresses the parameter that can
make a trade-off between the bias and the variance, and
thus estimating the final policy gradient, indicates
the reward at time step , and denotes the state
value at time step .

LVF (θ)

LVF (θ)

vπ (st)

v̂π (st)

The value loss function is then estimated
using the method in Ref. [33]. denotes the
squared loss between the sampled state value and
the estimated state value , which is calculated as
follows:

LVF (θ) = E
[∑n

t=1
(vπ (st)− v̂π (st))

2]
(32)

LCLIP (θ) LVF (θ)

S [πθ] (st)

Finally, to improve the training efficiency, the policy
loss function and value loss function
are further integrated; that is, Eqs. (30) and (32) are
combined, and the entropy function is added
to ensure efficient scheduling policy exploration. Thus,
the objective function shown in the following is
obtained:

LIPLC-PPO2(θ) =E
[
LCLIP(θ)− c1LVF(θ)+

c2S [πθ](st)
]

(33)

c1 c2where denotes the loss coefficient and indicates
the entropy coefficient.

Based on the above, the IPLC-PPO2 algorithm is
proposed, as shown in Algorithm 1.

θ

O (l · k)

Compared with the original PPO2 algorithm, the
IPLC-PPO2 algorithm can effectively improve the
learning stability and accelerate the learning rate to
obtain more efficient exploration. Therefore, we train
the RNN encoder-decoder network using the IPLC-
PPO2 algorithm. The parameter of the RNN encoder-
decoder neural network is continuously updated using
the loss function in the IPLC-PPO2 algorithm. The
training objective is to select the optimal scheduling
decision for each task in the DAG to optimize the
QoS. In terms of time complexity, Lines 5–11 in
Algorithm 1, which represent the update phase in the
iterative process, account for the majority of the time
overhead. Therefore, the time complexity of the IPLC-
PPO2 algorithm is .

 84 Intelligent and Converged Networks, 2023, 4(1): 76−92

4.3 EMMCO method

Dtrain

Di

A1:n

[vπ (s1) ,vπ (s2) , . . . ,vπ (sn)]

[r1,r2, . . . ,rn]

A1:n[
Â1, Â2, . . . , Ân

]
[v̂π (s1) , v̂π (s2) , . . . , v̂π (sn)]

Di

LIPLC-PPO2 (θ)

θ A1:n

θ

Based on the above research, we further propose the
EMMCO method, whose pseudocode is shown in
Algorithm 2. First, in the initialization phase, two RNN
encoder-decoder neural networks are initialized with
the same randomly generated parameters. They are the
sampling neural network and updating neural network.
Thereafter, in each iteration, the sampling neural
network samples a randomly selected set of DAGs
from the training dataset and stores the sampled
data in the set , including the scheduling decision
sequence , sampled state value sequence

, reward sequence
 obtained by the environment based on the

scheduling decision sequence , advantage
estimation sequence , and estimated state
value sequence . The mini-
batch Stochastic Gradient Descent (SGD) method[36] is
used to select a portion of samples from randomly
and nonrepeatedly to optimize the objective function

 to update the neural network parameter
. Finally, the task scheduling decision sequence

for each DAG in the test dataset is predicted based on
the updated network parameter , which further yields

Dtest

the total latency, total energy consumption, and total
evaluation of QoS for the computation process of all
DAGs in the test dataset .

O (l · k ·m)

The time overhead of the EMMCO method is
primarily generated by the update phase of the iterative
process, that is, at line 17 of Algorithm 2, when calling
Algorithm 1 to update the neural network parameter.
The time complexity of the EMMCO method is

.

Algorithm 1　IPLC-PPO2 algorithm
θold θold1: Input: //input the parameter of sampling neural

network
θ θ2: Output: //output the parameter of updating neural

network
θold θ

πθold πθ

3: Initialize: Two neural networks with and for the old
policy , and new policy with randomly generated initial
values;
θold ← θ4: ;

episode = 1 l5: for to do
πθold T

πθold Di

6:　　Run policy in environment for timesteps and store
the sampled data on policy in ; // sampling phase

epoch = 1 k7:　　for to do
LIPLC-PPO2 (θ)

m Di

8:　　　Optimize the objective function as shown
in Eq. (33) by taking mini-batch stochastic gradient descent
using sampled mini-batches from ; // update phase
9:　　end for

θold ← θ10:　　 ; // update the neural network parameter
11: end for
θ← θold12: ;

θ13: return

Algorithm 2　EMMCO method
Dtrain Dtest Dtrain

Dtest

1: Input: and //input the training dataset and the
test dataset

T,E, and Q2: Output: //output the total latency, total energy
consumption, and total evaluation of QoS for the computation
process of all DAGs in the test dataset

θold θ πθold πθ

3: Initialize: Two RNN encoder-decoder neural networks with
 and for the old policy , and the new policy with

randomly generated initial values;
θold ← θ4: ;

episode = 1 l5: for to do

Dtrain6:　　for each DAG in do // sampling phase

sampleepisode = 1 T7:　　　for to do
A1:n

[vπ (s1) ,vπ (s2) , . . . ,vπ (sn)]
[r1,r2, . . . ,rn] πθold

8:　　　　Sample the scheduling decision sequence ,
sample state value sequence , and reward
sequence on policy ;

A1:n [vπ (s1) ,vπ (s2) , . . . ,vπ (sn)] [r1,r2, . . . ,rn]
Di

9:　　　　Store , and
in ;
10:　　　end for

11:　　end for

τ ∈ Di12:　　for do

[Â1, Â2, . . . ,

Ân]
13:　　　Compute advantage estimation sequence

 according to Eq. (31);
[v̂π (s1) , v̂π (s2) , . . . ,

v̂π (sn)] v̂π (st) =
∑n−t+1

k=0 γ
krt+k

14:　　　Compute estimated state values
 following the equation ;

[Â1, Â2, . . . , Ân] [v̂π (s1) , v̂π (s2) , . . . , v̂π (sn)] Di15:　　　Store and in ;
16:　　end for

θold ← IPLC-PPO2(θold)17:　　 ; // call Algorithm 1 to update the
neural network parameter
18: end for

Dtest19: for each DAG in do // calculation phase
A1:n

a j = arg maxa jπθold (a j |s j)
20:　　Compute following the equation

;
Ttotal Etotal

QA1:n

21:　　Compute according to Eq. (11), compute
according to Eq. (12), and compute according to Eq. (13);

T ← T +Ttotal E← E+Etotal Q← Q+QA1:n22:　　 , , ;
23: end for

T,E,Q24: return

 Meini Pan et al.: Energy-efficient multiuser and multitask computation offloading optimization method 85

5 Experimental results and analysis

The experimental environment in this paper employs
Python 3.7 and TensorFlow 1.15.0. The operating
system of the hardware device is Windows 10, the
memory of the hardware device is 32 GB, and the
processor of the hardware device is Intel Core i7-9700
CPU@3.00 GHz. The user terminal is not currently
considered to offload tasks to the cloud for computing
in the MEC network environment, since it is expected
that the cloud is far from the user terminals. Suppose
there are 100 user terminals, each of which generates a
computation-intensive implementation. There are
enough MEC servers and computing resources to meet
the computing requirements of numerous multitask
implementations. The terminal devices’ CPU clock
speed is set to 1 GHz, whereas the MEC servers’ CPU
clock speed is set to 10 GHz, which is ten times that of
the terminal devices. The wireless sending power is set
to 1.258 W and the wireless receiving power is set to
1.181 W.

5.1 Experimental parameters setting

The simulation data consist of a set of DAGs that
represent different implementations and are generated
using a simulator. The characteristics of the generated
DAGs can be modified by changing the simulator’s
parameters. The number of tasks in each DAG is set to
{10, 20, 30, 40, 50, 60, 70, 80, 90,100} and the data
size of a single task is defined as [5, 50] KB.

Table 2 displays the settings of the key experimental

parameters, which are set after 50 experiments by
taking their average values.

The RNN encoder-decoder neural network is
implemented via TensorFlow. In particular, both the
encoder and decoder are set as two-layer LSTM neural
networks with 256 hidden units. Table 3 shows the
important parameters used during the training process.

5.2 Effectiveness of EMMCO method

The EMMCO method evolves from the proximal
policy optimization algorithm. The average reward,
policy entropy, policy loss, and value loss are the four
metrics utilized to evaluate the proximal policy
optimization algorithm[37]. Here, we also employ these
four indicators to validate the effectiveness of the
EMMCO method. The experimental results are shown
in Fig. 3. It can be seen from Fig. 3a that the average
reward shows a sharp growth trend at the beginning
and gradually tends to be stable and flat when the
number of episodes are greater than 500. In Fig. 3b, the
policy entropy gradually decreases during the training
process as the policy becomes more and more certain,
and the final entropy curve tends to be flat. As for Fig.
3c, the policy loss curve starts to level out after the
number of episodes are greater than 400, and the policy
loss value gradually tends to be zero. For Fig. 3d, the
value loss tends to be zero after the number of episodes
are greater than 300. With combination of Figs. 3a−3d,
we can find that the entire training process starts to
stabilize after episodes are greater than 500, which

Table 2 Experimental parameters.

Parameter Description Value
n Number of tasks {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
di tiData size of task [5, 50] KB
dr

i tiData size of task received result of [5, 50] KB

ci tiCPU clock cycles required to execute task
[
107,108

]
 cycles

fl Local CPU clock speed 1 GHz
fo CPU clock speed of MEC server 10 GHz

Rup Uplink transmission rate {3, 5, 7, 9, 11, 13, 15, 17, 19} Mbps

Rdown Downlink transmission rate {3, 5, 7, 9, 11, 13, 15, 17, 19} Mbps
Pws Wireless sending power 1.258 W
Pwr Wireless receiving power 1.181 W
ρ Power coefficient in local computing 1.25×10−26

ς Constant in local computing 3

 86 Intelligent and Converged Networks, 2023, 4(1): 76−92

shows that the EMMCO method is able to avoid
updating the policy drastically and prevent the training
process from falling in local optimum too early. These
experimental results demonstrate that the proposed
EMMCO method has good convergence and relative
practicality.

λt

λe

λt λe

λt λe

λt = λe = 0.5

Additionally, to analyze the influence of different
and on the experiment results of EMMCO method,
nine groups values of and are designed to
compare values of the latency, energy consumption,
and QoS values generated by EMMCO method. The
experimental results are shown in Table 4. It can be
seen that the QoS indicators corresponding to nine
groups of and are decreasing. Therefore, in order
to ensure the fairness of the following comparative
experiments, we take a compromise parameter value,
that is, .

5.3 Efficiency of EMMCO method

In this section, to verify its efficiency of the proposed
EMMCO method, six typical computation offloading
algorithms and an RL-based algorithm are examined to
take a comparison and analysis. The seven compared
algorithms include all local execution, all offload
execution, random scheduling algorithm, round-robin
scheduling algorithm, greedy algorithm[38], earliest

Table 3 Training parameters of RNN encoder-decoder
neural network.

Parameter Value
Encoder type LSTM
Decoder type LSTM

Number of encoder layers 2
Number of decoder layers 2

Number of encoder hidden units 256
Number of decoder hidden units 256

vConstant in clip function 1.1
εConstant in clip function 0.2

c1Loss coefficient 0.5
c2Entropy coefficient 0.01

Learning rate 5×10−4

0.36

(a) (b)

(c) (d)

0.34

A
v
e
ra

g
e
 r

e
w

a
rd

0.32

0.30

0.25

0.20

P
o
lic

y
 e

n
tr

o
p
y

0.15

0.10

0.05

0
10

0
20

0
30

0
40

0
50

0

Number of episodes

60
0

70
0

80
0

90
0

10
000

10
0

20
0

30
0

40
0

50
0

Number of episodes

60
0

70
0

80
0

90
0

10
00

0.06

0.07

0.05

0.04

0.03

P
o
lic

y
 l
o
s
s

0.02

0.01

0

0.20

0.15

V
a
lu

e
 l
o
s
s

0.10

0.05

0

0
10

0
20

0
30

0
40

0
50

0

Number of episodes

60
0

70
0

80
0

90
0

10
000

10
0

20
0

30
0

40
0

50
0

Number of episodes

60
0

70
0

80
0

90
0

10
00

Fig. 3 Effectiveness of the EMMCO method. (a) The average reward of the EMMCO method during the training process; (b)
The policy entropy of the EMMCO method during the training process; (c) The policy loss of the EMMCO method during the
training process; and (d) The value loss of the EMMCO method during the training process.

 Meini Pan et al.: Energy-efficient multiuser and multitask computation offloading optimization method 87

completion time algorithm[39], and DDQN-based
algorithm[29]. Six typical computation offloading
algorithms are set up to indicate the advantages of the
reinforcement learning mechanism used in the
proposed EMMCO method in solving the model. The
DDQN-based algorithm combines LSTM, DQN, and
double-DQN techniques to handle the task offloading
problem without considering the inner long
dependency among tasks. The DDQN-based algorithm
is set up to demonstrate the benefit of considering the
long-dependency among tasks. Primarily, here the
simulation experiments take into account two
application cases, one is the workload, i.e., the different
numbers of the offloading tasks; the other is the effects
of the wireless networks, namely, the different data
transmission rates.
5.3.1 Experimental results under different

numbers of tasks
First, at the data transmission rate of 7 Mbps, the
numbers of tasks are set to {10, 20, 30, 40, 50, 60, 70,
80, 90, 100} to evaluate the latency, energy
consumption, and QoS metrics of each algorithm under
the scenario of multitasks offloading.

Figures 4 and 5 show the latency and energy
consumption yielded by each algorithm under different
numbers of tasks, respectively. As can be seen from
Figs. 4 and 5, the latency and energy consumption
generated by all local execution are always the highest
under different task numbers, which is due to the
limited computing capabilities of the terminal devices.
When the task data size gets large, the terminal device
will not be capable of meeting the computing resources
required for computing tasks, resulting in significant

latency and energy consumption. The latency and
energy consumption yielded by all offload execution
and the DDQN-based algorithm are similar. The values
of energy consumption of both are lower, but their
latency costs are too high. Therefore, it can be
considered that because the DDQN-based algorithm
does not take into account the long-dependency among
tasks, it cannot achieve a better balance between
latency and energy consumption in the learning
process. Random scheduling algorithm obtains similar
latency and energy consumption results as round-robin
scheduling algorithm, although their values of energy
consumption are at a moderate level, their values of
latency are higher. In contrast, because the greedy
algorithm and the earliest completion time algorithm
only take into account latency minimization, they both
yield lower latency, but their values of energy
consumption are higher and second only to all local
execution. The latency and energy consumption are
well-balanced by the proposed EMMCO method. In

λt λe

Table 4 Experiment results of the EMMCO method under
different and .

λt λeValues of and Latency (ms) Energy consumption (J) QoS
λt = 0.1,λe = 0.9 541.83 1 092.32 0.71
λt = 0.2,λe = 0.8 541.83 1 092.32 0.66
λt = 0.3,λe = 0.7 541.83 1 092.32 0.61
λt = 0.4,λe = 0.6 541.83 1 092.32 0.55
λt = 0.5,λe = 0.5 541.83 1 092.32 0.50
λt = 0.6,λe = 0.4 480.40 1 435.73 0.47
λt = 0.7,λe = 0.3 472.81 1 543.66 0.43
λt = 0.8,λe = 0.2 465.73 1 632.07 0.41
λt = 0.9,λe = 0.1 461.55 1 880.28 0.37

6000 All local
All offload
Random scheduling
Round-robin scheduling
Greedy algorithm
Earliest completion time algorithm
DDQN-based algorithm
EMMCO method

5000

4000

3000

L
a
te

n
c
y
 (

m
s
)

2000

1000

0
10 20 30 40

Number of tasks

50 60 70 80 90 100

Fig. 4 Comparison of latency of algorithms under different
numbers of tasks.

40 000

30 000

20 000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

10 000

0
10 20 30 40 50

Number of tasks

60 70 80 90 100

All local
All offload
Random scheduling
Round-robin scheduling
Greedy algorithm
Earliest completion time algorithm
DDQN-based algorithm
EMMCO method

Fig. 5 Comparison of energy consumption of algorithms
under different numbers of tasks.

 88 Intelligent and Converged Networks, 2023, 4(1): 76−92

terms of latency, the EMMCO method obtains an
acceptable latency close to those of the greedy
algorithm and the earliest completion time algorithm;
with respect to energy consumption, the EMMCO
method gets a desired energy consumption value which
is close to those of all offload execution and the
DDQN-based algorithm.

Figure 6 shows the QoS of all compared algorithms
under different numbers of tasks. Clearly, all local
executions have a QoS of zero. This is because, as
shown in Eq. (13), all local executions are utilized as
the baseline algorithm to evaluate the QoS.
Additionally, the value of QoS of the EMMCO method
is higher than those of the other compared algorithms
under various numbers of tasks, which illustrates that
the EMMCO method achieves a promising QoS,
resulting from the goal of maximizing QoS.
5.3.2 Experimental results under different data

transmission rates
Next, when the number of tasks is 10, we set the data
transmission rates to {3 Mbps, 5 Mbps, 7 Mbps,
9 Mbps, 11 Mbps, 13 Mbps, 15 Mbps, 17 Mbps,
19 Mbps} to evaluate the latency, energy consumption,
and QoS metrics of all compared algorithms under
different data transmission rates.

Figure 7 shows the latency yielded by the algorithms
under different data transmission rates. In Fig. 7, the
values of latency produced by all local executions
remain constant as the data transmission rate increases,
which is because such algorithms do not involve task
offloading. In contrast, all the other algorithms have a
decreasing trend in latency, this is due to the great

reduction in data transmission time. When the data
transmission rates are {3 Mbps, 5 Mbps}, the latency
yielded by all offload execution is the largest; while
when the data transmission rate is greater than
11 Mbps, the latency produced by all offload execution
is close to the minimum. This case is because that the
latency yielded by all offload execution mainly results
from the data transmission time, that is, the algorithm
is most impacted by the data transmission rate.
Additionally, the random scheduling algorithm obtains
similar latency as the round-robin scheduling
algorithm, and their values of latency are both greater
than those of the greedy algorithm and the earliest
completion time algorithm. When the data transmission
rates are {11 Mbps, 13 Mbps, 15 Mbps, 17 Mbps,
19 Mbps}, the values of latency generated by the
EMMCO method and the DDQN-based algorithm are
almost the same, which reaches the optimal value.
Based on the above, with the premise of optimizing
both latency and energy consumption, the EMMCO
method can obtain the lowest latency in most cases,
which shows that the EMMCO method has certain
feasibility and relative advantages.

Figure 8 shows the energy consumption generated by
the compared algorithms under different data
transmission rates. The energy consumption produced
by all local execution is always the highest and the
energy consumption produced by all offload execution
is always the lowest. Horizontally, as the data
transmission rate increases, the values of energy
consumption produced by all algorithms except for all
local execution decrease, owing to the reduced data

0.5

0.4

0.3

Q
o
S

0.2

0.1

0

10 20 30 40 50

Number of tasks

60 70 80 90 100

All local
All offload
Random scheduling
Round-robin scheduling
Greedy algorithm
Earliest completion time algorithm
DDQN-based algorithm
EMMCO method

Fig. 6 Comparison of QoS of algorithms under different
numbers of tasks.

1600

1400

1200

1000

800

L
a
te

n
c
y
 (

m
s
)

600

400

200

0
3 5 7 9

Data transmission rate (Mbps)

11 13 15 17 19

All local
All offload
Random scheduling
Round-robin scheduling
Greedy algorithm
Earliest completion time algorithm
DDQN-based algorithm
EMMCO method

Fig. 7 Comparison of latency of algorithms under different
data transmission rates.

 Meini Pan et al.: Energy-efficient multiuser and multitask computation offloading optimization method 89

transmission time. Besides, the random scheduling
algorithm obtains similar energy consumption as the
round-robin scheduling algorithm, and the greedy
algorithm obtains similar energy consumption as the
earliest completion time algorithm, but all four
heuristic algorithms have relatively high energy
consumption. The EMMCO method has a tolerated
energy consumption under most data transmission
rates. When the data transmission rate is greater than 9
Mbps, the values of energy consumption of the
EMMCO method and the DDQN-based algorithm are
near the optimal value.

Figure 9 shows the QoS of all compared algorithms
under different data transmission rates. The value of
QoS of all local execution is zero under all data
transmission rates, while the values of QoS of the other
algorithms increase as the data transmission rate rises.
This is because the values of data transmission time of
other algorithms are shorter, which degrades energy
consumption and improves QoS. Evidently, the values

of QoS of the EMMCO method is higher than those of
the compared algorithms, which precisely results from
the optimization goal of the proposed method. This
result proves the relative efficiency of the proposed
EMMCO method.

6 Conclusion

The computation offloading of implementations under
the stochastic application scenarios in MEC networks
is a challenging issue. In this paper, we addressed on
computation offloading with an energy-efficient
multiuser and multitask computation offloading
optimization method. By considering the existence of
dependencies between multitasks within a specific
implementation, we represented these dependencies
with a DAG and modeled the computation offloading
problem as an MDP. Then the task embedding
sequence in the DAG is input to the RNN encoder-
decoder neural network. With combination of the
attention mechanism, the RNN network can efficiently
capture the long-term dependencies between different
tasks and the appropriate task offloading scheduling
decisions are determined. To further select the optimal
scheduling decisions, the IPLC-PPO2 algorithm is
developed. The loss function in the IPLC-PPO2
algorithm is employed as a preference for the training
process to constantly update the neural network
parameters, as a result, the optimization computation
offloading decisions are done. The simulation results
show that the proposed EMMCO method obtains lower
latency, degrades energy consumption, and gets a
higher QoS than that of the compared algorithms. This
case proves that the proposed EMMCO method has
relative adaptability and higher efficiency.

However, there are still some limitations that require
further research. Our presenting scheme assumes that
there exist enough resources on the MEC servers. This
is not an exact scenario in the actual MEC world. A
practical manner needs to be developed. We will
further examine the computation offloading methods of
joint resource allocation and edge server workloads
balancing in mobile edge computing.

Acknowledgment

This work was supported by the Smart Manufacturing

4000

3000

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 (

J
)

2000

1000

3 5 7 9

Data transmission rate (Mbps)

11 13 15 17 19

All local

All offload

Random scheduling

Round-robin scheduling

Greedy algorithm

Earliest completion time algorithm

DDQN-based algorithm

EMMCO method

Fig. 8 Comparison of energy consumption of algorithms
under different data transmission rates.

0.8

0.6

0.4

0.2

Q
o
S

0

−0.2

−0.4

3 5 7 9

Data transmission rate (Mbps)

11 13 15 17 19

All local
All offload
Random scheduling
Round-robin scheduling
Greedy algorithm
Earliest completion time algorithm
DDQN-based algorithm
EMMCO method

Fig. 9 Comparison of QoS of algorithms under different
data transmission rates.

 90 Intelligent and Converged Networks, 2023, 4(1): 76−92

New Model Application Project Ministry of Industry
and Information Technology (No. ZH-XZ-18004), the
Future Research Projects Funds for the Science and
Technology Department of Jiangsu Province (No.
BY2013015-23), the Fundamental Research Funds for
the Ministry of Education (No. JUSRP211A 41), the
Fundamental Research Funds for the Central
Universities (No. JUSRP42003), and the 111 Project
(No. B2018).

References

 Z. Chen, L. Zhang, Y. Pei, C. Jiang, and L. Yin, NOMA-
based multi-user mobile edge computation offloading via
cooperative multi-agent deep reinforcement learning,
IEEE Trans. Cognit. Commun. Netw., vol. 8, no. 1,
pp. 350–364, 2022.

[1]

 S. Nath and J. Wu, Deep reinforcement learning for
dynamic computation offloading and resource allocation
in cache-assisted mobile edge computing systems,
Intelligent and Converged Networks, vol. 1, no. 2,
pp. 181–198, 2020.

[2]

 G. Mitsis, E. E. Tsiropoulou, and S. Papavassiliou, Price
and risk awareness for data offloading decision-making in
edge computing systems, IEEE Syst. J., vol. 16, no. 4,
pp. 6546–6557, 2022.

[3]

 Z. Tong, X. Deng, J. Mei, L. Dai, K. Li, and K. Li,
Stackelberg game-based task offloading and pricing with
computing capacity constraint in mobile edge computing,
J. Syst. Architect., vol. 137, p. 102847, 2023.

[4]

 K. Zhang, X. Gui, D. Ren, T. Du, and X. He, Optimal
pricing-based computation offloading and resource
allocation for blockchain-enabled beyond 5G networks,
Comput. Netw., vol. 203, p. 108674, 2022.

[5]

 G. Zhang, S. Zhang, W. Zhang, Z. Shen, and L. Wang,
Joint service caching, computation offloading and resource
allocation in mobile edge computing systems, IEEE Trans.
Wirel. Commun., vol. 20, no. 8, pp. 5288–5300, 2021.

[6]

 Y. Chen, X. Zhou, W. Wang, H. Wang, Z. Zhang, and Z.
Zhang, Delay-optimal closed-form scheduling for multi-
destination computation offloading, IEEE Wirel. Commun.
Lett., vol. 10, no. 9, pp. 1904–1908, 2021.

[7]

 C. Wang, F. R. Yu, C. Liang, Q. Chen, and L. Tang, Joint
computation offloading and interference management in
wireless cellular networks with mobile edge computing,
IEEE Trans. Veh. Technol., vol. 66, no. 8, pp. 7432–7445,
2017.

[8]

 E. F. Maleki and L. Mashayekhy, Mobility-aware
computation offloading in edge computing using
prediction, in Proc. of the 2020 IEEE 4th Int. Conf. on Fog
and Edge Computing (ICFEC), Melbourne, Australia,

[9]

2020, pp. 69–74.
 H. Tout, A. Mourad, N. Kara, and C. Talhi, Multi-persona
mobility: Joint cost-effective and resource-aware mobile-
edge computation offloading, IEEE/ACM Trans. Netw.,
vol. 29, no. 3, pp. 1408–1421, 2021.

[10]

 R. Ezhilarasie, M. S. Reddy, and A. Umamakeswari, A
new hybrid adaptive GA-PSO computation offloading
algorithm for IoT and CPS context application, J. Intell.
Fuzzy Syst., vol. 36, no. 5, pp. 4105–4113, 2019.

[11]

 M. Babar, M. S. Khan, A. Din, F. Ali, U. Habib, and K. S.
Kwak, Intelligent computation offloading for IoT
applications in scalable edge computing using artificial
bee colony optimization, Complexity, vol. 2021,
p. 5563531, 2021.

[12]

 S. Jošilo and G. Dán, Computation offloading scheduling
for periodic tasks in mobile edge computing, IEEE/ACM
Trans. Netw., vol. 28, no. 2, pp. 667–680, 2020.

[13]

 L. Tang and S. He, Multi-user computation offloading in
mobile edge computing: A behavioral perspective, IEEE
Netw., vol. 32, no. 1, pp. 48–53, 2018.

[14]

 M. Merluzzi, N. di Pietro, P. Di Lorenzo, E. C. Strinati,
and S. Barbarossa, Discontinuous computation offloading
for energy-efficient mobile edge computing, IEEE Trans.
Green Commun. Netw., vol. 6, no. 2, pp. 1242–1257,
2022.

[15]

 W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, and H. Duan,
Mobility-aware multi-user offloading optimization for
mobile edge computing, IEEE Trans. Veh. Technol.,
vol. 69, no. 3, pp. 3341–3356, 2020.

[16]

 S. Bi, L. Huang, and Y. J. A. Zhang, Joint optimization of
service caching placement and computation offloading in
mobile edge computing systems, IEEE Trans. Wirel.
Commun., vol. 19, no. 7, pp. 4947–4963, 2020.

[17]

 C. Yi, J. Cai, and Z. Su, A multi-user mobile computation
offloading and transmission scheduling mechanism for
delay-sensitive applications, IEEE Trans. Mob. Comput.,
vol. 19, no. 1, pp. 29–43, 2020.

[18]

 J. Yan, S. Bi, Y. Zhang, and M. Tao, Optimal task
offloading and resource allocation in mobile-edge
computing with inter-user task dependency, IEEE Trans.
Wirel. Commun., vol. 19, no. 1, pp. 235–250, 2020.

[19]

 H. Liu, Z. Niu, J. Du, and X. Lin, Genetic algorithm for
delay efficient computation offloading in dispersed
computing, Ad Hoc Netw., vol. 142, p. 103109, 2023.

[20]

 H. A. Alameddine, S. Sharafeddine, S. Sebbah, S. Ayoubi,
and C. Assi, Dynamic task offloading and scheduling for
low-latency IoT services in multi-access edge computing,
IEEE J. Sel. Areas Commun., vol. 37, no. 3, pp. 668–682,
2019.

[21]

 H. Xiao, C. Xu, Y. Ma, S. Yang, L. Zhong, and G. M.
Muntean, Edge intelligence: A computational task
offloading scheme for dependent IoT application, IEEE
Trans. Wirel. Commun., vol. 21, no. 9, pp. 7222–7237,

[22]

 Meini Pan et al.: Energy-efficient multiuser and multitask computation offloading optimization method 91

https://doi.org/10.1109/TCCN.2021.3093436
https://doi.org/10.23919/ICN.2020.0014
https://doi.org/10.1109/JSYST.2022.3188997
https://doi.org/10.1016/j.sysarc.2023.102847
https://doi.org/10.1016/j.comnet.2021.108674
https://doi.org/10.1109/TWC.2021.3066650
https://doi.org/10.1109/TWC.2021.3066650
https://doi.org/10.1109/LWC.2021.3085480
https://doi.org/10.1109/LWC.2021.3085480
https://doi.org/10.1109/TVT.2017.2672701
https://doi.org/10.1109/TNET.2021.3066558
https://doi.org/10.3233/JIFS-169970
https://doi.org/10.3233/JIFS-169970
https://doi.org/10.1109/TNET.2020.2968209
https://doi.org/10.1109/TNET.2020.2968209
https://doi.org/10.1109/MNET.2018.1700119
https://doi.org/10.1109/MNET.2018.1700119
https://doi.org/10.1109/TGCN.2021.3125543
https://doi.org/10.1109/TGCN.2021.3125543
https://doi.org/10.1109/TVT.2020.2966500
https://doi.org/10.1109/TWC.2020.2988386
https://doi.org/10.1109/TWC.2020.2988386
https://doi.org/10.1109/TMC.2019.2891736
https://doi.org/10.1109/TWC.2019.2943563
https://doi.org/10.1109/TWC.2019.2943563
https://doi.org/10.1016/j.adhoc.2023.103109
https://doi.org/10.1109/JSAC.2019.2894306
https://doi.org/10.1109/TWC.2022.3156905
https://doi.org/10.1109/TWC.2022.3156905

2022.
 J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang,
Efficient dependent task offloading for multiple
applications in MEC-cloud system, IEEE Trans. Mob.
Comput., vol. 22, no. 4, pp. 2147–2162, 2023.

[23]

 J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya, and N.
Georgalas, Dependent task offloading for edge computing
based on deep reinforcement learning, IEEE Trans.
Comput., vol. 71, no. 10, pp. 2449–2461, 2022.

[24]

 J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas,
Fast adaptive task offloading in edge computing based on
meta reinforcement learning, IEEE Trans. Parallel
Distrib. Syst., vol. 32, no. 1, pp. 242–253, 2021.

[25]

 L. Huang, S. Bi, and Y. J. A. Zhang, Deep reinforcement
learning for online computation offloading in wireless
powered mobile-edge computing networks, IEEE Trans.
Mob. Comput., vol. 19, no. 11, pp. 2581–2593, 2020.

[26]

 M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W.
Zhuang, Learning-based computation offloading for IoT
devices with energy harvesting, IEEE Trans. Veh.
Technol., vol. 68, no. 2, pp. 1930–1941, 2019.

[27]

 X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis,
Performance optimization in mobile-edge computing via
deep reinforcement learning, in Proc. of the 2018 IEEE
88th Vehicular Technology Conf. (VTC-Fall), Chicago, IL,
USA, 2019, pp. 1–6.

[28]

 M. Tang and V. W. S. Wong, Deep reinforcement learning
for task offloading in mobile edge computing systems,
IEEE Trans. Mob. Comput., vol. 21, no. 6, pp. 1985–1997,
2022.

[29]

 B. M. Amine, F. Farha, and H. Ning, Convergence of
computing, communication, and caching in Internet of
Things, Intell. Conver. Netw., vol. 1, no. 1, pp. 18–36,
2020.

[30]

 S. Chu, Z. Fang, S. Song, Z. Zhang, C. Gao, and C. Xu,[31]

Efficient multi-channel computation offloading for mobile
edge computing: A game-theoretic approach, IEEE Trans.
Cloud Comput., vol. 10, no. 3, pp. 1738–1750, 2022.
 Y. Liao, L. Shou, Q. Yu, Q. Ai, and Q. Liu, Joint
offloading decision and resource allocation for mobile
edge computing enabled networks, Comput. Commun.,
vol. 154, pp. 361–369, 2020.

[32]

 J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, Proximal policy optimization algorithms, arXiv
preprint arXiv: 1707.06347, 2017.

[33]

 Z. Zhang, X. Luo, T. Liu, S. Xie, J. Wang, W. Wang, Y.
Li, and Y. Peng, Proximal policy optimization with mixed
distributed training, in Proc. of the 2019 IEEE 31st Int.
Conf. on Tools with Artificial Intelligence (ICTAI),
Portland, OR, USA, 2019, pp. 1452–1456.

[34]

 J. Schulman, P. Moritz, S. Levine, M. Jordan, and P.
Abbeel, High-dimensional continuous control using
generalized advantage estimation, arXiv preprint arXiv:
1506.02438, 2018.

[35]

 I. Loshchilov and F. Hutter, SGDR: Stochastic gradient
descent with warm restarts, arXiv preprint arXiv:
1608.03983, 2017.

[36]

 D. Zhao, D. Liu, F. L. Lewis, J. C. Principe, and S.
Squartini, Special issue on deep reinforcement learning
and adaptive dynamic programming, IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 6, pp. 2038–2041, 2018.

[37]

 S. Suzuki, M. Fujiwara, Y. Makino, and H. Shinoda,
Radiation pressure field reconstruction for ultrasound
midair haptics by greedy algorithm with brute-force
search, IEEE Trans. Haptics, vol. 14, no. 4, pp. 914–921,
2021.

[38]

 G. Patel, R. Mehta, and U. Bhoi, Enhanced load balanced
min-min algorithm for static meta task scheduling in cloud
computing, Procedia Comput. Sci., vol. 57, pp. 545–553,
2015.

[39]

Meini Pan received the BEng degree from
Jiangnan University, China in 2020. She is
currently a master student at the School of
Artificial Intelligence and Computer
Science, Jiangnan University. Her research
interests include mobile edge computing
and computation offloading optimization.

Zhihua Li recieved the PhD degree from
Jiangnan University, China in 2009. He is
now a professor at the School of Artificial
Intelligence and Computer Science,
Jiangnan University. His research interests
include network technology,
parallel/distributed computing, information
security, edge computing, and mobile

computing.

Junhao Qian received the MEng degree
from Jiangnan University, China in 1998.
He is now a full professor at the School of
IoT Engineering, Jiangnan University. His
research interests include edge computing,
cloud computing, and agricultural IoT
engineering technology.

 92 Intelligent and Converged Networks, 2023, 4(1): 76−92

https://doi.org/10.1109/TMC.2021.3119200
https://doi.org/10.1109/TMC.2021.3119200
https://doi.org/10.1109/TC.2021.3131040
https://doi.org/10.1109/TC.2021.3131040
https://doi.org/10.1109/TPDS.2020.3014896
https://doi.org/10.1109/TPDS.2020.3014896
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1109/TMC.2019.2928811
https://doi.org/10.1109/TVT.2018.2890685
https://doi.org/10.1109/TVT.2018.2890685
https://doi.org/10.1109/TMC.2020.3036871
https://doi.org/10.23919/ICN.2020.0001
https://doi.org/10.1109/TCC.2020.2994145
https://doi.org/10.1109/TCC.2020.2994145
https://doi.org/10.1016/j.comcom.2020.02.071
https://doi.org/10.1109/TNNLS.2018.2818878
https://doi.org/10.1109/TNNLS.2018.2818878
https://doi.org/10.1109/TOH.2021.3076489
https://doi.org/10.1016/j.procs.2015.07.385

