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Gliomas are the most common primary brain tumors in adults and carry a dismal
prognosis for patients. Current standard-of-care for gliomas is comprised of
maximal safe surgical resection following by a combination of chemotherapy
and radiation therapy depending on the grade and type of tumor. Despite decades
of research efforts directed towards identifying effective therapies, curative
treatments have been largely elusive in the majority of cases. The development
and refinement of novel methodologies over recent years that integrate
computational techniques with translational paradigms have begun to shed
light on features of glioma, previously difficult to study. These methodologies
have enabled a number of point-of-care approaches that can provide real-time,
patient-specific and tumor-specific diagnostics that may guide the selection and
development of therapies including decision-making surrounding surgical
resection. Novel methodologies have also demonstrated utility in
characterizing glioma-brain network dynamics and in turn early investigations
into glioma plasticity and influence on surgical planning at a systems level.
Similarly, application of such techniques in the laboratory setting have
enhanced the ability to accurately model glioma disease processes and
interrogate mechanisms of resistance to therapy. In this review, we highlight
representative trends in the integration of computational methodologies
including artificial intelligence and modeling with translational approaches in
the study and treatment of malignant gliomas both at the point-of-care and
outside the operative theater in silico as well as in the laboratory setting.
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1 Introduction

Cancer mortality continues to rise as management of other chronic diseases improves
(ReFaey et al., 2021). Within brain cancer, gliomas comprise the most common subset of
primary malignant brain tumors in adults (Ostrom et al., 2021). These tumors are uniformly
fatal for the vast majority of patients afflicted with this disease process despite current
standard-of-care therapy typically including maximal, safe cytoreductive surgery and a
combination of chemotherapy and radiation therapy tailored to the grade and genetic
makeup of the subtype of glioma in question (Sanai and Berger, 2018; Molinaro et al., 2020;
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Hervey-Jumper et al., 2023). For high-grade gliomas including
glioblastoma, the cornerstone adjuvant therapy continues to be
the Stupp protocol (Stupp et al., 2005). Though improvements in
long-term survival have been observed with advances in surgical
technique and chemotherapy in low-grade gliomas, prognosis
remains dismal overall and particularly devastating in patients
harboring high-grade gliomas (Sanai and Berger, 2018; Ostrom
et al., 2021).

Investigations into the tumorigenesis and growth of gliomas as
well as factors contributing to treatment failure over recent years
have underscored several disease features that may be implicated in
the refractory nature of the disease. It is now clear that within
glioblastoma there is significant heterogeneity at multiple levels of
the disease process that may affect response to therapies (Bonavia
et al., 2011; Saygin et al., 2019; Garcia et al., 2021; Mitchell et al.,
2021). These include heterogeneity at the cellular and molecular
level within the tumor and locoregional heterogeneity in different
regions of the tumor and surrounding microenvironment. In
addition, there is suspected to be a component of heterogeneity
in response to therapy at a patient and population level that may be
influenced by a complex interplay of comorbid medical conditions,
medications, and other patient factors that is poorly understood
(Gimple et al., 2019; Saygin et al., 2019; Mitchell et al., 2021).
Plasticity and dynamic evolution inherent to glioblastoma further
complicates the development of targeted therapies due to a subset of
stem-like cells within the tumor referred to as glioma stem cells or
brain tumor-initiating cells (BTICs) which have been shown to play
a key role in treatment resistance and ultimately disease progression
(Saygin et al., 2019; Prager et al., 2020; Andersen et al., 2021). This
subset of cells leverages various mechanisms at the cellular and
molecular level including resistance mechanisms and enhanced
migration to produce differential responses to current therapies
and enable tumor recurrence (Gimple et al., 2019; Bhargav et al.,
2020; Prager et al., 2020; Garcia et al., 2021).

Overcoming practical limitations of surgical and medical
therapies and improving clinical decision-making as to when and
which therapies to administer has been an area of growing interest in
light of novel technologies. With regards to surgical therapies, extent
of resection has been historically limited by the ability of the
neurosurgeon to accurately differentiate between normal brain
and glioma in order to determine whether the boundaries of the
resection may be pushed safely. Moreover, given the invasive nature
of gliomas and consequent spread into eloquent regions of brain
crucial for preserving acceptable quality of life, groups have also
focused efforts on developing models to better define glioma-
network boundaries to optimize onco-functional balance (Duffau
andMandonnet, 2013; Lara-Velazquez et al., 2017; Sanai and Berger,
2018). In this review, we highlight disruptive point-of-care as well as
systems- and laboratory-level methodologies and advances as an
update on emerging trends in the study and treatment of gliomas.

2 Integrated point-of-care
methodologies

A longstanding obstacle in the development and translation of
effective therapeutics for glioma has been in part, achieving a high-
fidelity recapitulation of the human disease process and

microenvironment. Although laboratory modeling of glioma has
continued to evolve in sophistication and accuracy, a true
understanding of disease features at a molecular, cellular, and
tissue level is lacking (Gomez-Oliva et al., 2020; Garcia et al.,
2021; Mariappan et al., 2021). As a result, in recent years, efforts
have been directed towards devising strategies to utilize the
operating room as an extension of the laboratory for both
mechanistic study of glioma pathophysiology and diagnostics
summarized in Figure 1.

Understanding in situ metabolic processes and response to
therapeutics in real-time has been a goal of investigation but has
been limited by disease modeling. A decade’s-old paradigm is
currently being revisited in this regard with the use of
intraoperative microdialysate systems for real-time data capture
at the time of surgery and in the immediate postoperative period
(Roslin et al., 2003; Marcus et al., 2010; Wibom et al., 2010;
Goodman, 2011). Previously, groups have employed cerebral
microdialysis to simultaneously deliver chemotherapeutic agents
and to assess therapeutic response via select biomarkers as well
as to identify markers of response to adjuvant therapies (Roslin et al.,
2003; Wibom et al., 2010; Goodman, 2011; Bjorkblom et al., 2020;
Pierce et al., 2021). Björkblom et al. treated ten patients with
recurrent glioma after second-line chemotherapy had been
exhausted using an implanted microdialysis catheter that
administered cisplatin (Bjorkblom et al., 2020). Serial samples
were obtained of the interstitial fluid and serum that identified
correlation of survival with certain response patterns including low
levels of lactic acid, glyceric acid, and cysteine in tumor samples and
low levels of ketohexoses and glycerol-3-phosphate in serum
samples (Bjorkblom et al., 2020). Wiborn et al. use a similar
paradigm to identify characteristic metabolomic patterns in
patients with glioblastoma undergoing radiation therapy (Wibom
et al., 2010). Ongoing clinical trials (NCT04692337, NCT04047264)
aim to utilize a similar paradigm but with the incorporation of real-
time, in situ and subsequent rapid assessment of potential
therapeutic biomarkers and metabolomics. Advances in
microelectrode and catheter technology including the
development of lower profile instruments as well as those that
can simultaneously sample brain interstitial fluid and neural
activity hold promise for a more integrated, real-time assessment
of molecular- and network-level changes in gliomas (Rajani et al.,
2021; Stangler et al., 2023). Stangler et al. demonstrate that an
integrated microperfusion-EEG electrode is able to detect
epileptiform activity as well as sample interstitial fluid in a pig
model with potential future implications of studying glioma-
neuronal integration and functional reorganization in situ
(Stangler et al., 2023).

Several novel point-of-care diagnostic methodologies have also
been developed in recent years with the goal of providing real-time,
clinically actionable feedback to the neurosurgeon which has
historically not been possible (Ji et al., 2013; Kut et al., 2015;
Shankar et al., 2015; Orringer et al., 2017; Pirro et al., 2017;
Juarez-Chambi et al., 2019). The need for rapid and accurate
diagnosis is particularly important in the management of diffuse
gliomas where themargin between normal brain and tumor-invaded
tissue is increasingly obscured or in situations where the differential
diagnosis based on preoperative evaluation and imaging is
equivocal. Kut et al. developed a methodology to use optical
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coherence tomography (OCT), which has previously been used in
other clinical settings including ophthalmology to delineate glioma
tissue from normal brain in vivo and ex vivo brain tumor models
(Kut et al., 2015). In subsequent studies, this group incorporated
artificial intelligence-assisted models including one that employs
deep convolutional neural networks using intraoperatively obtained
human brain and glioma specimens to further validate the clinical
translation potential of this approach (Juarez-Chambi et al., 2019;
Wang et al., 2023). In one study, they demonstrate 100% sensitivity
and 85% specificity thresholds in detecting glioma-infiltrated tissue
as well as significantly increased processing speeds compared to
prior iterations of the technology (Juarez-Chambi et al., 2019). The
authors note that this initial computational framework exhibited a
misclassification rate of approximately 15% and acknowledge that
future modifications may need to incorporate a more sophisticated
algorithm that accounts for glioma subtypes (Juarez-Chambi et al.,
2019). Though this technology holds promise, in-human, real-time
testing is yet to be conducted and will also require optimization of a
handheld OCT probe that may be used intraoperatively (Juarez-
Chambi et al., 2019). Similarly, in their initial study, Ji et al.
demonstrate the utility of a novel imaging technique, stimulated
Raman scattering (SRS) microscopy was able to delineate brain
tumor-infiltrated tissue from normal brain tissue in vivo and ex vivo
xenograft murine models of glioma as well as in human surgical
specimens (Ji et al., 2013). Orringer et al. later developed a portable
microscope with the capability of performing SRS microscopic
analysis intraoperatively (Orringer et al., 2017). In a cohort of
101 neurosurgical patients, they report κ > 0.89 concordance of
SRS microscopy and histopathologic diagnosis as well as 90%
accuracy in delineating tumor subtypes (Orringer et al., 2017).

Hollon et al. further optimize this technology in combination
with an artificial intelligence-based screening workflow,
DeepGlioma, to classify the molecular subtypes of diffuse glioma
(Hollon et al., 2023). They report that this screening test, validated
through a multicenter, prospective, international patient cohort
undergoing SRS imaging, predicted the WHO molecular
classification of diffuse gliomas with an accuracy of 93.3% in
under 90 s (Hollon et al., 2023).

In addition to diagnostic applications, other point-of-care
methodologies aim to characterize heterogeneity in gliomas to
enable true personalized medicine approaches to therapy. As
aforementioned and discussed in detail elsewhere (Saygin et al.,
2019; Lathia et al., 2020), it is well known that one of the key
challenges in the development of successful targeted therapies for
glioma lies in the multiple layers of heterogeneity inherent to the
disease process which encompasses the genetics and epigenetics,
metabolic profile, and immune landscape, among others (Gimple
et al., 2019; Bhargav et al., 2020; Garcia et al., 2021; Himes et al.,
2021). All of these differences have been shown to have a significant
impact on response to therapy in prior studies (Gimple et al., 2019;
Prager et al., 2020; Comba et al., 2021; Medikonda et al., 2021).
Several methods have emerged in the last few years that include the
use of mass spectrometry, liquid biopsy, or other high-throughput
assays with the potential for rapid intraoperative application and
“fingerprinting”. In a series of studies led by Cooks, a proof-of-
concept high-throughput methodology is validated for rapid
intraoperative molecular classification of gliomas using
desorption electrospray mass spectrometry whereby an
intraoperative smear of tumor tissue can be analyzed and yield
accurate output of molecular tumor characteristics (Pirro et al.,

FIGURE 1
Emerging methodologies for the study and treatment of glioma at the point-of-care. Rapid, intraoperative techniques that enable improved
delineation of the tumor margin and patient-specific “fingerprinting” may facilitate the development of effective therapies. Intraoperative experimental
paradigms such as real-timemicrodialysis has the potential to identify patient-specific biomarkers and improve our understanding of treatment response
and recurrence. P, perfusate; D, dialysate.
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2017; Chen et al., 2021; Morato et al., 2022). This is achieved by
subjecting sample-derived oncometabolites and membrane-
phospholipids, in one iteration of this technology, to produce a
molecular fingerprint with accuracies of >85% and total assay time
of <5 min (Chen et al., 2021). Groups have also worked to optimize
older technologies such as polymerase-chain reaction-based assays
to characterize molecular characteristics of gliomas in an
intraoperative setting and in a clinically actionable timeframe
(Shankar et al., 2015; Djirackor et al., 2021; Muralidharan et al.,
2021). Liquid biopsy remains a significant area of active
investigation as a means to monitor glioma response to therapy
at the point-of-care which may be limited by lack of specificity and
low-mutational burden observed in a certain subset of gliomas
(Bettegowda et al., 2014; Miller et al., 2019). Panditharatna et al.
develop a platform that utilizes patient-derived plasma and
cerebrospinal fluid samples from which circulating tumor DNA
is extracted (Panditharatna et al., 2018). They use a multiplex
platform to detect driver mutations in patients with diffuse
midline glioma undergoing treatment to assess treatment
response and disease progression (Panditharatna et al., 2018).
They demonstrate that the plasma-based detection of the
H3K27M mutation correlated with treatment response to
radiation therapy on MRI (Panditharatna et al., 2018). Similar
platforms are being developed for adult diffuse gliomas
(Panditharatna et al., 2018). A detailed overview of this
technology and potential hurdles to clinical application can be
found elsewhere (Mair and Mouliere, 2022). Recent evidence has
also highlighted the critical role of the glioma microenvironment
and immune landscape with regards to therapy resistance and the
need to characterize this aspect of the disease process in order to
improve the efficacy of immunotherapies (Fecci and Sampson, 2019;
Himes et al., 2021; Medikonda et al., 2021). To this end, groups have
sought to develop a workflow at the point-of-care to identify
personalized neoantigen profiles to develop patient-specific
vaccination strategies (Johanns et al., 2019; Dunn et al., 2020;
Dunn et al., 2022; Schaettler et al., 2022). Johanns et al. describe
the treatment of a patient with glioblastoma where the group’s
immunogenomics pipeline for neoantigen determination and
characterized reviewed in detail by Dunn et al. was implemented
as a proof-of-concept (Johanns et al., 2019; Dunn et al., 2020; Dunn
et al., 2022).

3 Novel modeling approaches of
systems-level processes

Beyond advances in understanding the biological basis of glioma
disease progression and recurrence at the molecular, cellular, and
tissue level, new evidence suggests that gliomas also leverage
systems-level processes (Hadjiabadi et al., 2018; Stoecklein et al.,
2020; Young et al., 2020; Krishna and Hervey-Jumper, 2022; Krishna
et al., 2023; Winkler et al., 2023). In recent years, this has led to the
development of entirely new fields of study including cancer
neuroscience to better understand the implications of glioma-
induced systems-level changes in the human brain (Winkler
et al., 2023). Progress in this realm has been historically hindered
by the inadequacy of computational models to capture systems-level
dynamics, and this continues to be an ongoing challenge. In this

section, we briefly highlight recent advances in our understanding of
these processes and the tools that have enabled us to do so with an
eye towards future directions.

The study of brain connectomics in the context of glioma has
gained traction recently due to its potential paradigm-shifting
implications for both neurosurgical care and new therapies. With
the completion of the Human Connectome Project, groups have
developed more accurate methodologies to recreate patient-specific
white matter representations of large-scale brain networks that
subserve higher order function (Glasser et al., 2016; Maier-Hein
et al., 2017; Hadjiabadi et al., 2018; Briggs et al., 2022; Dadario et al.,
2023). The Quicktome platform is one such tool that is approved by
the Federal Drug Administration for network analysis that employs
machine-learning parcellation scheme of functional connectivity as
opposed to previous anatomy-based schemes which may yield
distorted models in the setting of glioma-infiltrated brain (Morell
et al., 2022). Morell et al. leverage this platform in a retrospective
study of patients with gliomas to characterize the impact of these
tumors on large-scale networks (Morell et al., 2022). They find that
certain networks such as the central executive network, default mode
network, and the dorsal attention networks are affected more
frequently and describe a significant correlation between
preoperative deficits and network involvement (Morell et al.,
2022). With this new modeling approach, groups have proposed
a shift towards connectome-based glioma surgery where the extent
of surgical resection is not only determined by the boundaries of
tumor and surrounding tissue changes observed on neuroimaging,
but also the networks and are areas of network convergence involved
to maximize removal of glioma-infiltrated brain (Duffau, 2014;
Sarubbo and Duffau, 2021). This approach suggests that
connectome-based surgery may be crucial in preserving higher-
order functions that are currently poorly understood and escapes
detection of conventional methods of mapping function including
brain mapping and functional imaging (Duffau, 2014; Dadario et al.,
2021; Sarubbo and Duffau, 2021; Yeung et al., 2021). Though this
methodology is yet to be widely adopted, emerging evidence may
further inform the philosophy behind achieving oncofunctional
balance through neurosurgical care of patients with gliomas.

Early laboratory studies have begun to provide potential
biological substrates for the aforementioned systems-level
changes which may have implications for a new generation of
therapeutics focused on slowing or ameliorating network
disruptions and thereby improving overall functional outcome
and recovery (Venkatesh et al., 2015; Venkatesh et al., 2019;
Krishna et al., 2023). These studies suggest that glioma cells
integrate with neural elements and brain circuitry via synaptic
and paracrine crosstalk as well as the development of structural
changes that enable integration into the surrounding
microenvironment and networks (Venkatesh et al., 2015;
Venkatesh et al., 2019; Krishna et al., 2023). In depth discussion
of these emerging mechanisms can be found in excellent reviews by
Krishna and Hervey-Jumper (2022) and Winkler et al. (2023). As
these mechanisms are further elucidated, preclinical modeling of
gliomas and therapy development must incorporate the study of
network level changes in addition to conventional models that
account for traditional hallmarks of cancer and progression.
Currently, high-fidelity, high-throughput preclinical models and
proxies that can recapitulate patient-specific representations of
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glioma-neuronal integration are lacking and will be an area of future
investigation. Areas of investigation and potential implications are
depicted in Figure 2.

As large datasets become increasingly available and accessible
ranging from radiographic data to genomic data, other subfields in
mathematical oncology applied to glioma continue to evolve as well.
Various modeling approaches have been successfully employed to
forecast and represent different aspects of the glioma disease process
including disease heterogeneity, development and evolution of
treatment resistance, growth, and invasion (Rockne et al., 2019).
Tripathi et al. develop a mathematical model that characterizes the
invasion profile of IDH-wild-type glioblastoma in a cohort of
101 patients which suggests theoretical threshold for benefit of
supramarginal resection (Tripathi et al., 2021). They note that
supramarginal resection of tumors quantified as moderately or
highly diffuse in their model is significantly correlated with
overall survival and observe a lower threshold-based benefit for
supramarginal resection in nodular tumors (Tripathi et al., 2021).
Similar radiomics and radiogenomics methodologies have been used
to characterize spatial heterogeneity in gliomas that incorporates
predictions of cell density, growth kinetics, and growth patterns with
implications of patient counseling, patient-specific adjuvant therapy
plans, and surgical planning (Hu et al., 2015; Hu et al., 2017; Yang
et al., 2019; Hu et al., 2020; Massey et al., 2020; Whitmire et al.,
2020).

4 Developments in laboratory-based
modeling and therapy development

The emergence of new concepts in our understanding of glioma
heterogeneity and mechanisms of resistance has necessitated

increased sophistication of preclinical modeling. In particular,
improved understanding of sex differences, evolutionary
dynamics and plasticity of BTICs, and the robust immune
landscape inherent to glioma biology has driven advances in
laboratory modeling (Yang et al., 2019; Garcia et al., 2021; Himes
et al., 2021; Mitchell et al., 2021). Garcia et al. describe a
methodology for the functional characterization of BTICs which
involves the creation of orthotopic murine models in a sex-specific
manner (Garcia et al., 2021). In addition, they describe several high-
throughput in vitro assays that can be used to characterize features of
BTICs that are known to affect survival such as markers of stemness,
response to novel therapeutics, and migration capacity (Garcia et al.,
2021). Still, there exists a gap between laboratory-based
interrogation of glioma in animal models and translating these
findings with reliability. The majority of existing preclinical
models lack validation in patients which persists as a major
limitation. Wong and Shah et al. develop a microfluidic device
that addresses this gap with regards to the migration of BTICs
(Wong et al., 2021). In this study, they subject patient-derived BTICs
to a migration assay using a microfluidic device and show that
quantitative measurement of in vitro migration as well as
proliferation capacity can be used to predict progression-free
survival with 86% accuracy in a retrospective cohort of
28 patients (Wong et al., 2021). Other groups have also
developed microfluidic, tumor-on-a-chip systems to interrogate
drug efficacy as well as novel drug delivery approaches including
nanoparticle-based therapies (Fan et al., 2016; Xiao et al., 2019; Chen
et al., 2020; Liu et al., 2021). The latter employs techniques such as
surface plasmon resonance that can assess target-specificity and
binding interactions (Schneider et al., 2015; Bhargav et al., 2020).
Nevertheless, such systems suffer from the same limitation.
Moreover, the use of conventional culture-based systems cannot

FIGURE 2
Modeling the glioma-neural interface and its implications. Technological advances in computing have enabled the modeling of large-scale brain
networks and methodology to study network disruption by glioma. This may help uncover and preserve higher order functions and has the potential to
impact the current surgical paradigm. At the cellular and molecular level, understanding network disruption and glioma-neural integration may yield
novel therapeutics targeting neural regulation of cancer and network remodeling.
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accurately model intratumoral heterogeneity as a single clonal
population of BTICs is selected in the culture process (Lathia
et al., 2020; Mitchell et al., 2021). Jacob et al. recently developed
a patient-derived organoidmodel of glioblastoma requiring minimal
processing that recapitulates heterogenous cell populations which
may offer higher fidelity therapy interrogation (Jacob et al., 2020).
They note that with their process, the cytoarchitecture of the surgical
sample is also minimally disrupted which may aid in maintaining
the mechanical properties of the tumor–another component of
glioma heterogeneity that may impact malignancy (Jacob et al.,
2020). Abdullah et al. achieve a similar model of low-grade glioma
which holds promise for more nuanced drug development
(Abdullah et al., 2022).

5 Discussion

With recent discoveries in glioma biology, glioma-network
integration, and heterogeneity, more questions than answers are
generated and the challenge of developing effective therapies persists;
however, the evolution of computational technologies and computing
capacity has opened several doors to tackle this challenge. Artificial
intelligence, mathematical modeling, and analysis of large, often
patient-specific data sets will be a critical component of
methodologies in studying and treating glioma. The representative
trends and advances described in this review hold great promise to
disrupt existing paradigms in disease modeling and clinical translation.
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