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Abstract: This experiment investigated the impacts of feeding a maternal low-CP concentration diet having iso-essential amino acids on 
newborn suckling piglet’s intestinal microbial composition and function. Forty randomly selected purebred Bamei sows were divided into 
two groups and fed a low dietary CP (12%, LP) or a normal CP (14%, CON) diet, respectively, but formulated to contain similar (iso-) 
essential amino acid concentrations per current recommendations. At 21 days, 12 piglets were randomly selected from each treatment and 
euthanized with jejunum content samples collected. The 16S rRNA gene sequencing was combined as an integrated approach for evaluating 
the functional impact of maternal CP concentrations on piglet intestinal microbiome. Even though piglets demonstrated similar 0 to 21 
d ADG among treatments, the jejunum relative weight, villus width, crypt depth and muscular thickness were increased (P<0.05), while 
villus height, and villus height/crypt depth were reduced (P<0.05) for the material LP compared to the maternal fed CON diet. Maternal CP 
concentrations can modify the intestinal microbial composition of Bamei suckling piglets. The relative abundances of the bacterial species 
Escherichia-Shigella, Actinobacillus, Clostridium_sensu_stricto_1, Veillonella, and Turicibacter were increased (P<0.05) in the maternal 
LP fed diet compared with the maternal fed CON diet microbiota metabolites. Overall, LP diet contributed to improve piglet intestinal 
histomorphology, microbial composition and function.
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Düşük Proteinli Maternal Diyet ile Besleme Qinghai Bamei Domuz 
Yavrularının Jejunal Yapısını ve Mikrobiyal Fonksiyon Yanıtını Etkiler

Öz: Bu çalışmada, izo-esansiyel amino asitlere sahip düşük CP konsantreli maternal bir diyetle beslenmenin, yeni doğmuş süt emen domuz 
yavrularının bağırsak mikrobiyal bileşimi ve işlevi üzerindeki etkileri araştırıldı. Rastgele seçilen kırk safkan Bamei domuzu iki gruba ayrıldı 
ve sırasıyla düşük CP (%12, LP) ve normal CP (%14, CON) diyetle beslendi. Ancak, her iki diyet de güncel tavsiyelere göre benzer (izo-) 
esansiyel amino asit konsantrasyonlarını içerecek şekilde formüle edildi. Her iki diyet grubundan 21. günde rastgele 12 domuz yavrusu 
seçildi, ötenazi yapıldı ve jejunum içerikleri toplandı. 16S rRNA gen sekans entegreli bir yaklaşım ile maternal CP konsantrasyonlarının 
domuz yavrularının bağırsak mikrobiyomu üzerindeki fonksiyonel etkisi değerlendirildi. Her iki diyet grubundaki domuz yavruları, 0 ile 
21. günler arası benzer ADG göstermiş olsa da, CON diyetine kıyasla maternal LP diyeti ile beslenenlerde jejunum relatif ağırlığı, villus 
genişliği, kript derinliği ve kas kalınlığı artmış (P<0.05), villus yüksekliği ve villus yüksekliği/kript derinliği azalmıştı (P<0.05). Maternal CP 
konsantrasyonları, süt emen Bamei domuz yavrularının bağırsak mikrobiyal bileşimini değiştirebilir. Maternal CON diyetle beslenenlere 
kıyasla maternal LP ile beslenenlerde Escherichia-Shigella, Actinobacillus, Clostridium_sensu_stricto_1, Veillonella ve Turicibacter bakteri 
türlerinin relatif yoğunlukları artmıştı (P <0.05). Genel olarak, LP diyeti, domuz yavrularının bağırsak histomorfolojisinin, mikrobiyal 
bileşimin ve işlevinin iyileştirilmesine katkıda bulunmuştur.
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Introduction
The Bamei is a local swine breed in the Qinghai Province 
of the People’s Republic of China. Even though Bamei is 
a slow growing breed, Bamei swines are known for their 
high meat quality and distinctive flavor [1,2]. The Qinghai 
plateau has used both natural and artificial selection 
practices for developing Bamei pigs that show a strong 
adaptability to the plateau, have high fat deposition, 
and good meat quality characteristics. However, Bamei’s 
lower growth rate combined with the plateau’s low feed 
quality/digestibility are important constraints limiting the 
Qinghai’s growth potential of the Bamei swine industry [3].

The gastrointestinal tract’s microbial ecosystem is dynamic 
and complex with the composition known to vary widely 
across healthy individuals [4]. In the human and animal 
gastrointestinal tract there is a large and diverse microbial 
community playing a vital role in host health [5], mucosal 
immunological environment maturation [6,7] and assisting 
with intestinal barrier integrity [8]. Over the last decade, 
numerous studies have reported that the intestinal 
microbiome composition plays an important role in 
regulating the metabolic health of both rodents and humans [9]. 
A recent study conducted on rodents suggests the major 
dietary factors regulating intestinal microbiome taxonomic 
composition are protein and carbohydrate intake [10].

The intestinal microbiome is in a continual state of flux 
and highly susceptible to numerous environmental 
factors, especially dietary nutrient supply. Reducing CP by 
2 to 4 percentage units by adding crystalline amino acids 
(AA) to meet NRC (2012) nutrient recommendations 
has increased nitrogen utilization, reduced feed costs and 
nitrogen excretion, while promoting intestinal health and 
meat quality with similar growth performance [11,12]. Many 
studies demonstrate dietary CP concentrations versus CP 
source, have a greater impact on intestinal microbiota 
composition [13,14]. Previous studies have focused on 
changes in large intestinal microbiota, while ignoring 
the bacteria’s role for the small intestine [15]. Moderate 
diet protein restriction may alter intestinal microbiota 
composition while improving adult pig ileal barrier 
function [16,17]. Chen reported that decreasing dietary CP 
concentration 3 % units reduced ileal Streptococcus spp., 
while increasing Lactobacillus spp. and Bifidobacterium 
spp. [18]. These ileal microbiota alterations improved 
intestinal stem cell proliferation and altered tight junction 
protein distribution resulting in similar intestinal barrier 
function. Therefore, feeding dietary LP concentrations has 
advanced while maintaining essential amino acid supply 
and has been applied to swine production. The purpose 
of this study was to explore the effects of low protein diet 
on the structure and function of intestinal microflora 
of Qinghai Bamei pigs, to lay a foundation for further 

exploration of the effects of maternal dietary intervention 
on jejunal microbiota composition and function to 
provide ideas for efficient breeding of Qinghai Bamei pigs.

Material and Methods
Ethical Approval

All procedures involving the use of animals were approved 
by the Animal Care Committee of Qinghai University, 
China (QHDX-17-02-12-06). Animal slaughtering was 
approved by the National Administration of Slaughtering 
and Quarantine regulations (Qinghai, China).

Animals and Diets

Forty (40) purebreds Huzhu Bamei well body condition 
(score 4) sows were sourced through the Qinghai Province 
Huzhu County Bamei Pig Seed Breeding Farm (Huzhu, 
China) having similar body weight (BW), health status, 
and 3 to 4 years of age being randomly assigned to one 
of two treatments (20/treatment). The LP treatment diet 
(12% CP) was balanced for the five EAA Lys, Met, Thr, 
Trp, and Val for their standardized ileal digestibility (SID) 
concentrations and then decreased CP by 2% compared 
to a control (CON; 14% CP) diet balanced for the same 
SID EAA according to Chinese feeding standards for 
a 90 kg heavy body conditioned sow. The complete diet 
composition is given in Table 1. After 5 d of facility and diet 

Table 1. Ingredient and nutrient composition of maternal diets (DM basis) 
containing 12% (LP) or 14% crude protein (CON). DM basis) %

Items
Groups

LP CON
Ingredient composition
Corn 50.60 44.90
Soybean meal 4.50 9.80
Rapeseed meal 2.50 2.70
Wheat bran 37.78 38.14
Lys 0.34 0.20
Met 0.07 0.05
Thr 0.15 0.10
Trp 0.02 0.01
Val 0.04 0.10
4% premixb 4.00 4.00
Nutrient concentrations, calculated via formulation
DE (MJ/kg) a 11.72 11.72
CPb 12.04 12.04
Lys 0.81 0.81
Met+Cys 0.33 0.33
Thr 0.35 0.35
Trp 0.08 0.08
Val 0.26 0.26
Total Ca 0.62 0.62
Total P 0.51 0.51
Solt 3.20 3.20
a DE=digestible energy; b CP=crude protein; b The premix during pregnancy provided 
the following per kilogram of diets: Vit. A: 3.52 kIU; Vit. E: 20 kIU; Vit. D3: 0.76 kIU; 
Vit. K3: 2.6 mg; Vit. B2: 9.52 mg; Vit. B3: 24 mg; Vit. B5: 45 mg; Cu: 4 mg; Fe: 10 mg; 
Zn: 40 mg; Mn: 16 mg; Ca: 15 %; Total P: 1.8%; NaCl: 8%; Water: 10 %
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acclimation, the sows were fed the assigned treatment diet 
while skipping one estrous cycle (21 days) during natural 
estrus and then mated. The newborn piglets were housed 
with their mothers prior to weaning with litter size, live 
birth %, birth weights, and diarrhea rates being published 
previously [19]. Throughout the study all the sows had ad 
libitum access to feed and fresh water.

Sample Collection

Randomly, 12 piglets were selected from each treatment 
group, fasted for 12-h, weighed, and euthanized with 
50 mg/kg sodium pentobarbital on day 21 of age. The 
small intestine was ligated at the pylorus, duodenum, 
jejunum, and ileum and dissected. The ligated jejunum 
was weighed. The jejunal contents were sampled at 
approximately the half-way point of the jejunal length, 
placed into 1.5 mL sterile polypropylene tubes, and stored 
in liquid nitrogen until analyses were conducted for 
intestinal microbiome. An approximate 1.5 cm jejunal 
tissue sample was collected, washed, and placed in 4% 
paraformaldehyde for histomorphometric analysis at the 
same time.

Histomorphometric Analysis

Jejunal tissue samples fixed in 4% paraformaldehyde 
were embedded in paraffin (5 µm) and stained with HE 
(hematoxylin-eosin). In each jejunal section, 12 intact villi 
were randomly selected from each piglet. The jejunum 
villus height, villus width, crypt depth, and muscular layer 
thickness were measured using an image analysis system 
(Caseviewer 2.0 software, 3DHISTECH, Hungary).

gDNA Extraction, 16S rRNA Gene Sequencing and 
Microbial Function Prediction

The jejunal content samples were extracted to harvest total 
bacterial DNA using the PowerSoil® DNA Isolation Kit (MO 
BIO Laboratories, Inc., Carlsbad, CA, USA) according to 
the manufacturer’s instructions. The DNA samples were 
stored at -80°C until outsourced for analyzing the 16S 
rRNA gene sequencing by BIOMARKER (Beijing, China). 
The 16S rRNA gene sequence (Illumina HiSeq 2500) 
was used to measure microbial diversity and bacterial 
community composition. The extracted DNA was used as 
a template and PCR was performed using barcode primers 
located on both sides of the V3-V4 hypervariable region  
of the bacterial 16S rRNA gene. The primer sequences used 

were: 338F: 5’-ACTCCTACGGGAGGCAGCA-3’ and 
806R: 5’-GGACTACHVGGGTWTCTAAT-3’. Amplification 
was performed for 30 cycles using a DNA thermal Cycler 
(Bio-Rad, Hercules, CA, USA). The first cycle was at  
98°C for 2 min followed by 30 subsequent cycles of 98°C 
x 30 s, 50°C x 30 s, then 72°C x 1 min, and the last cycle at 
72°C for 7 min.

Statistical Analyses

All data were checked for outliers before any statistical 
analyses were conducted. Data were either plotted or the 
box and whisker plots and the Shapiro Wilk Test were 
used to verify that the data were normally distributed 
(P>0.15). All data were subjected to least squares analysis 
of variance (ANOVA) for a completely random design 
(CRD; Steel and Torrie, 1980) having 2 treatments using 
SPSS 21 software (SPSS Inc., Chicago, IL, USA). Least 
squares means were separated using the Least Significant 
Difference (LSD) and significant was declared at P<0.05.

The OTU were rarified based on several metrics for alpha 
diversity analysis including OTU rank curves, rarefaction, 
and Shannon, along with Shannon, Chao1, Simpson, 
and ACE calculated indices. Principal Coordinates 
Analysis (PCoA) and unweighted pair group method  
with arithmetic mean (UPGMA) were performed 
using QIIME based weighted UniFrac distance for beta 
diversity analysis [20]. Finally, PICRUSt [21] was used to 
predict microbial function. Bacterial domains, phyla, 
and genera were compared using Wilcoxon rank-
sum test, with the FDR adjusted P value <0.05 being 
considered as significantly different. Finally, Spearman’s 
rank correlations among jejunal microbiome changes, 
histomorphometric, and shifted metabolome were 
calculated to examine functional impacts of material LP 
diet concentrations on the small intestinal microbiome.

Results
Piglet Performance

Piglet birth BW (day 0) was greater for sows fed LP 
compared with piglet birth BW for sows fed CON 
(P>0.05), while 21 d piglet BW tended (P<0.05) to be 
greater for piglets from sows fed LP compared with sows 
fed CON (Table 2). However, these initial and final piglet 
BW differences did not affect piglet ADG, which was 
similar among both treatments (P>0.05).

Table 2. Piglet body weight (BW) and average daily gain (ADG) when feeding maternal diets containing 12% (LP) or 
14% crude protein (CON)

Items LP CON SDM P-value

Piglet BW, kg

Day 0 0.90 0.88 0.02 0.020

Day 21 3.85 3.78 0.09 0.067

ADG, 0 - 21, g/d 135.8 134.0 1.38 <0.37
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Jejunal Morphology

Intestinal HE staining demonstrated that piglets nursing 
sows fed a maternal LP diet demonstrated reduced 
(P<0.05) villus height and ratio of villus height to crypt 
depth, while jejunum relative weight, villus width, crypt 
depth, and muscle thickness were increased (P<0.05) 
compared with piglets from sows fed the maternal CON 
diet (Table 3).

The Diversity and Composition of Jejunal Microbiota

The 16S RNA jejunal microbiota samples after data 
filtering, quality control, and low-confidence singletons 
removal resulted in an average of 42.718 reads being 
obtained for the 21 d samples. The Good’s coverages 
exceeded 99% demonstrating excellent sequence accuracy 
and reproducibility (Table 4). Of the 482 total OTU 
numbers, 452 OTU were detected in both groups. Based 
on the Shannon (P<0.001), and Simpson (P=0.001) indices 
piglets from the maternal fed LP diet demonstrated more 
diversity and greater evenness compared with piglets 
from the material fed CON diet. The Chaol (P=0.519) and 
Ace (P=0.435) indices were similar for piglets from the 
maternal fed LP compared with the maternal fed CON. 
Taxonomic analysis revealed the predominant phyla 
Firmicutes and Proteobacteria being 67.21% and 24.97%, 
respectively of total reads identifying 16 bacterial phyla 
(Fig. 1-A). At the genus level, 232 genera were identified 
in the jejunal samples. The predominant genera were 
Lactobacillus (51.11%), Escherichia-Shigella (9.00%), 
Actinobacillus (7.41%), Clostridium_sensu_stricto_1 (5.60%), 
Romboutsia (4.35%), and Buchnera (3.54%), respectively 

(Fig. 1-B). Furthermore, using a PCoA plot illustrated 
microbial community dissimilarity and revealed distinct 
structures between piglets from the maternal fed LP 
compared with maternal fed CON (Fig. 1-C). The PCoA 
plot uses a weighted method for UniFrac similarity, which 
revealed PC1 and PC2 explained 55.61% and 13.98% of 
sample variation, respectively. Similarly, the jackknifed 
beta diversity and hierarchical clustering analysis via 
the Unweighted Pair-group Method with Arithmetic 
Mean (UPGMA) demonstrated that different piglets 
fed different maternal CP diets were clustered in their 
individual groups (Fig. 1-D). In addition, piglets from 
maternal fed CON diets in the PCoA plot were clustered 
into two subgroups and UPGMA hierarchical clustering 
analysis, which was attributed to individual variations of 
jejunum microbiome profiles.

Differences in Jejunal Bacterial Community 
Composition

Relative phylum abundances of Firmicutes, Proteobacteria, 
Bacteroidetes, and unknown were > 1% for both treatments 
(Table 5). Firmicutes relative abundance was decreased 
(P=0.002) and Proteobacteria (P=0.001) was increased 
for piglets from the maternal LP treatment compared 
with piglets from the sows fed maternal CON. Thirty-two 
(32) specific genera demonstrated relative abundances 
>0.1%. The relative bacterial community abundances of 
Escherichia-Shigella (P=0.050), Actinobacillus (P=0.050), 
Clostridium_sensu_stricto_1 (P=0.003), Veillonella 
(P=0.015), and Turicibacter (P=0.011) were higher, and 
Lactobacillus was lower (P<0.001) for piglets from the 

Table 4. Alpha diversity measures of bacterial communities by 21-day old suckling piglets when feeding maternal 
diets containing 12% (LP) or 14% crude protein (CON)

Items LP CON SDM P-Value

Chao1 218.08 208.89 33.48 0.519

Ace 216.58 205.47 33.66 0.435

Shannon 2.72 1.67 0.68 <0.001

Simpson 0.16 0.45 0.13 0.001

Coverage 0.9996 0.9996 <0.001 0.898

Table 3. Jejunum weight and tissue morphology by 21-day old suckling piglets when feeding maternal diets 
containing 12% (LP) or 14% crude protein (CON)

Items LP CON SDM P-value

Jejunum weight, g 123.22 109.95 17.12 0.074

Jejunum relative weight, % 3.42 3.17 0.30 0.048

Villus height, µm 318.58 385.44 17.99 <0.001

Villus width, µm 96.44 83.43 3.62 <0.001

Crypt depth, µm 150.15 99.01 6.58 <0.001

Villus height: Cryptdepth 2.13 4.62 0.19 <0.001

Muscular thickness, µm 65.17 60.75 2.24 <0.001



Research Article
727

ZHANG, CUI, ZHANG,
REN, CHEN, JIN, JIA

Fig 1. Classification of the bacterial community composition) by 21-day old suckling Bamei piglets when feeding 
maternal diets containing 12% (LP) or 14% crude protein (CON). A- Phylum level, B- genus level, C- PCoA plot, 
D- UPGMA tree. The relative abundance of the top 10 phylum and genus of jejunal microbiome composition 
profiles revealed by 16S rRNA sequencing (each color represents one bacterial). PCoA plot and UPGMA tree using 
the weighted unifrac similarity method

Table 5. Phylum-level taxonomic composition of the jejunal bacterial communities by 21-day old suckling piglets 
when feeding maternal diets containing 12% (LP) or 14% crude protein (CON)

Phylum LP CON SDM P-value

Firmicutes 0.51169 0.83253 0.17449 0.002
Proteobacteria 0.39987 0.09948 0.15060 0.001
Bacteroidetes 0.02626 0.02173 0.03188 0.299
Chlamydiae 0.00004 0.00804 0.01304 0.686
Epsilonbacteraeota 0.01906 0.00739 0.02340 0.166
Cyanobacteria 0.00210 0.00414 0.00565 0.773
Fusobacteria 0.00397 0.00372 0.00485 0.525
Actinobacteria 0.00452 0.00332 0.00593 0.356
Patescibacteria 0.00176 0.00111 0.00204 0.817
Acidobacteria 0.00110 0.00032 0.00140 0.840
Tenericutes 0.00070 0.00014 0.00112 0.544
Cloacimonetes 0.00009 0.00010 0.00035 0.544
Chloroflexi 0.00048 0.00007 0.00072 0.312
Verrucomicrobia 0.00008 0.00005 0.00020 0.356
Planctomycetes 0.00024 0.00002 0.00037 0.908
Gemmatimonadetes 0.00022 0.00002 0.00056 0.470
Unknown 0.02785 0.01781 0.02738 0.156
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maternal fed LP treatment compared with piglets from the 
maternal fed CON treatment (genus level; Table 6). The 
receiver operating characteristic curve (ROC) predicted 
different microorganisms for piglets from maternal fed 
LP compared to maternal fed CON piglets for inducing 
jejunal development. The area under the curve (AUC) 
judged via diagnosis test [22] that Lactobacillus is the 
most likely biomarker (0.9< AUC <1.0) for piglets from 
both treatments, while Clostridium_sensu_stricto_1 and 
Turicibacter are more likely biomarkers (0.8< AUC <0.9) 
for piglets from maternal fed LP sows.

Predicted Function of Jejunal Microbiota

The PICRUSt analyzed pathway compositions for evaluating 
jejunal bacterial community functional capacity is a 
functional-gene-count matrix. Second level KEGG (levels) 
metabolism pathway analysis via global and overview 
maps demonstrated that biosynthesis of other secondary 
metabolites was enriching amino acid, cofactors, and 
vitamins metabolism (P<0.05), while lipid and nucleotide 
metabolism were decreased (P<0.05) for piglets when 
maternal sows were fed LP diet compared with piglets 
from the maternal fed CON (Fig. 2).

Table 6. Genus-level taxonomic composition of the jejunal bacterial communities by 21-day old suckling piglets when feeding maternal 
diets containing 12% (LP) or 14% crude protein (CON)

Genus LP CON SDM P-value

Lactobacillus 0.25881 0.76331 0.13670 <0.001

Escherichia-Shigella 0.15483 0.02514 0.12003 0.050

Actinobacillus 0.12509 0.02318 0.07921 0.050

Buchnera 0.05169 0.01920 0.05861 0.488

Romboutsia 0.06841 0.01856 0.06543 0.166

Clostridium_sensu_stricto_1 0.09503 0.01698 0.07304 0.003

Acinetobacter 0.01295 0.00957 0.01571 0.248

Prevotella_7 0.00384 0.01020 0.02064 0.436

Chlamydia 0.00004 0.00804 0.01298 0.686

Helicobacter 0.01813 0.00691 0.02292 0.094

Veillonella 0.02581 0.00659 0.01388 0.015

Turicibacter 0.00703 0.00440 0.01058 0.011

Rickettsia 0.01763 0.00407 0.01963 0.686

Uncultured_bacterium_f_Muribaculaceae 0.00853 0.00352 0.00993 0.326

Fusobacterium 0.00326 0.00329 0.00419 0.644

Pseudomonas 0.00922 0.00300 0.01422 0.106

Terrisporobacter 0.01388 0.00331 0.01267 0.299

Bacteroides 0.00514 0.00264 0.00618 0.184

Enterobacter 0.00117 0.00237 0.00358 0.603

Megasphaera 0.01073 0.00276 0.01537 0.386

Streptococcus 0.00261 0.00183 0.00164 0.149

Pasteurella 0.00642 0.00150 0.00635 0.194

Uncultured_bacterium_f_Lachnospiraceae 0.00161 0.00105 0.00270 0.795

Epulopiscium 0.00100 0.00116 0.00153 0.225

Citrobacter 0.00164 0.00093 0.00206 0.453

Prevotellaceae_UCG-001 0.00160 0.00064 0.00226 0.149

Lachnoclostridium 0.00174 0.00070 0.00185 0.100

Uncultured_bacterium_f_Clostridiales_vadinBB60_group 0.00295 0.00067 0.00352 0.260

Wolbachia 0.00205 0.00058 0.00233 0.624

Acidaminococcus 0.00419 0.00065 0.00800 0.386

Sutterella 0.00240 0.00023 0.00299 0.356

Others 0.05272 0.03520 0.01200 0.150

Unknown 0.02785 0.01781 0.02738 0.156
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Correlations Between Intestinal Microbial Species and 
Jejunum Morphological Traits

Numerous correlations via Spearman’s correlation analyses 
(P<0.05, Fig. 3) were investigated between the different 
genera (n=6) relative abundances and morphological 
parameters (n=7). Clostridium_sensu_stricto_1 was 
positively correlated with villus width, crypt depth, and 
muscular thickness, while being negatively correlated 
with villus height, and ratio of villus height: crypt depth. 
Escherichia-Shigella was positively correlated with muscular 

thickness and negatively correlated with villus height. 
Turicibacter was positively correlated with crypt depth 
and muscular thickness, while Veillonella was positively 
correlated with villus width. Lactobacillus was positively 
correlated with villus height, and villus height: crypt 
depth, and negatively correlated with jejunum weight, 
villus width, crypt depth, and muscular thickness.

Discussion
The small intestine has an important role in defense 
against health challenges in addition to nutrient 
digestion and absorption. The main nutrient digestion and 
absorption site is the jejunum [23]. Maternal suckled milk 
enters the piglet’s gastrointestinal tract, thereby promoting 
crypt cell proliferation and proliferation. Suckling piglet 
jejunal development directly affects post-weaning growth 
performance [24]. In this study, reducing maternal dietary 
protein concentrations by 2% units resulted in similar 
21 d ADG. The small intestinal growth rate before and 
after birth of the piglet is greater than the whole body [25]. 
The small intestine relative weight 24 h after birth is 50% 
greater than at birth [26]. Intestinal crypt depth increases 
40% and villus height increases 35% within 3d [27]. These 
crypt stem cells divide and differentiate to form intestinal 
epithelial cells that gradually migrate to the villi tip for 
nutrient absorption [28]. Through this process, the digestive 
and absorption functions of intestinal epithelial cells are 
gradually improved [29].

After the piglet’s birth, there are 2 sources of gut microbes 
with one being the maternal microbes, which are vertically 
passed, while the 2nd source is environmental, which are 
horizontally passed. The combined data using Bamei piglets 
demonstrated that maternal dietary LP concentrations 

Fig 3. Correlations between differential genera and morphological 
traits at the jejunum by 21-day old suckling Bamei piglets when feeding 
maternal diets containing 12% (LP; N=12) or 14% crude protein (CON; 
N=12). Each row in the graph represents a genus, each column represents 
a morphological trait, and each lattice represents a Spearman correlation 
coefficient between a genus and a morphological trait. Red represents 
a positive correlation, while blue represents a negative correlation. 
*Significant correlation between the LP and CON groups (P<0.05)

Fig 2. Predicted microbial functions using PICRUSt by 21-day old suckling piglets when feeding maternal 
diets containing 12% (LP) or 14% crude protein (CON) when bacteria differed
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resulted in significant changes in intestinal microbiome 
composition compared with CON piglets. Alpha diversity 
metrics (Shannon and Simpson index) demonstrated 
a higher piglet bacterial diversity from sows fed lower 
maternal dietary CP concentrations compared with piglets 
from sows fed the CON CP concentrations, suggesting 
that altering CP concentration has a direct impact on 
jejunal microbial composition of Bamei suckling piglets. 
In agreement with previous pig studies [30,31], the Bamei 
piglet’s dominant jejunum core microbiome was the phyla 
Firmicutes, Proteobacteria, and Bacteroidetes. The dominant 
genus level Bamei suckling piglet jejunum bacteria 
were: Lactobacillus, Escherichia-Shigella, Actinobacillus, 
Buchnera, Romboutsia, and Clostridium_sensu_stricto_1. 
The bacterial community diversity and richness are known 
to be influenced by dietary intervention [32].

The correlation analysis between intestinal bacteria 
(Clostridium_sensu_stricto_1, Lactobacillus, and Turicibacter) 
and intestinal histomorphology demonstrated that feeding  
a maternal LP diet can induce shifting abundance changes 
in the piglet’s intestinal microbiome. Equally important, 
dietary interventions may not always alter the piglet’s 
bacterial species and abundance but may alter the 
intestinal histomorphology produced by these bacterial 
species thru influencing their metabolism and physiology. 
Lactobacilli are beneficial bacterial members of the small 
intestinal microbiota that were reduced for piglets from 
sows fed the LP diet. The intestinal bacterial environment 
can protect the intestine from toxic dietary ingredients [33]. 
The reduction of Lactobacillus spp. abundance may result 
from decreased oligosaccharide ingestion (less soybean 
meal inclusion), which reduces nutrient availability, 
which relates to reduced piglet weight [34]. These results 
indicate that maternal dietary LP concentration alters 
Bamei piglets’ intestinal microbiota through altering 
the beneficial bacterial colony structure [35]. Therefore, 
it is reasonable to hypothesize that intestinal microbiota 
differences are the result of early dietary intervention, 
host-microbe interactions, and/or host physiological  
state. The most important host-microbe interaction 
may occur on or at the intestinal barrier. These data 
demonstrated that dietary CP concentrations altered 
the intestinal microbiome composition and associated 
function in Bamei piglets. This could be an exciting 
research field with the potential to solve many important 
problems.
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