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Colostrum is one of the most important factors influencing the health and
development of mammalian neonates. It is well-established that leukocytes,
including polymorphonuclear neutrophils (PMN), migrate from the mother to the
infant via colostrum uptake. In this study, for the first time, we studied the ability
of ovine colostral-derived PMN to extrude neutrophil extracellular traps (NETs)
against the abortive apicomplexan parasite Neospora caninum. Although this cell
population plays a significant role in the transmission of maternal innate immunity
to neonates, little is known about colostral PMN activities in sheep. However,
this cell population is a significant source of the transfer of maternal immunity
to the neonate. Colostral PMN continues to exert immunological e�ects even
after transitioning into the colostrum. The present study aimed to investigate
the extrusion of NETs by ovine colostral PMN exposed to the apicomplexan
parasite, N. caninum, which is known to cause devastating reproductive disorders
in cattle, small ruminants, wildlife animals, and dogs. The present study is the
first to demonstrate that ovine colostral PMN can produce NETs after stimulation
with vital N. caninum tachyzoites. Ovine colostrum-derived NETs were detected
by chromatin staining and antibody-based immunofluorescence staining of
NET-specific structures, including neutrophil elastase (NE) and global histones (H1,
H2A/H2B, H3, H4), as well as scanning electron microscopy (SEM) analysis.
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1. Introduction

Colostrum is of vital importance for the health of mammalian neonates (1), not only

because of the nutritional properties of this first milk immediately after birth (2) but also

due to its role in transferring maternal immunity to neonates (3, 4). This transmission of

maternal immunity can be attributed to immunoglobulin uptake via the intestine from the

colostrum as well as the uptake of colostral leukocytes from the neonatal intestine (5–7).

In the past, it was believed that colostral leukocytes, mainly polymorphonuclear

neutrophils (PMN), entered the colostrum accidentally or via mammary gland

inflammation. Currently, it is common knowledge that PMN actively migrates into

this mammary secretion during colostrogenesis (8). These alive PMN then migrate after

colostrum uptake through the intestinal epithelium into the bloodstream of a newborn

(9, 10) and thereafter spread rapidly throughout the entire organism, accumulating
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particularly in the lymphatic tissue (4, 11, 12). Consequently, it

has been determined that colostral PMN passed from the mother

to the newborn has a pivotal role in regulating and promoting

the maturation of the neonate’s immune system (10–14). Neonates

that have not absorbed sufficient PMN through colostrum uptake
exhibit significantly less effective immune defenses and higher
susceptibility to various diseases (12, 14). Despite these facts, little
is still known about colostral PMN activities in sheep. Neither
the quantity of these cells in ovine colostrum nor their potential
effector mechanisms have been determined. To date, the release of

neutrophil extracellular traps (NETs) in colostrum-derived PMN
has only been studied in canine PMN (4), indicating that this
research topic is still in its infancy when compared to NET

investigations of mammalian blood PMN (15–17).

NETs are secreted, decondensed nuclear chromatin laced with

granular and cytoplasmic proteins that are formed by activated

PMN (15, 17, 18). The effect of NETs is based on their structural

scaffolding: chromatin contributes to the immobilization of

pathogens, while contained antimicrobial proteins can themselves

contribute to the deactivation of pathogens (15). NETosis can be

triggered by various stimulants, including not only intact pathogens

but also parts thereof (19, 20). The first component of the NET

cascade is always the activation of the Raf/MEK/ERK system,

which leads to the formation of a multimeric NADPH-oxidase

(NOX) complex. This simultaneously leads to the formation

of reactive oxygen species (ROS). As this process continues, a

loss of integrity of the intracellular membranes occurs, releasing

granular neutrophil elastase (NE). Afterward, this enzyme has

to reach the PMN nucleus to initiate hypercitrullination of

histones and subsequent chromatin decondensation. As a result,

the decondensed chromatin can no longer be contained by the cell,

and it bursts into the extracellular space. The number of NETs

formed depends, among other variables, on the stimulus and can

be determined using various methods. In addition to fluorescence

microscopic or electron microscopic imaging, measuring the free

DNA is also a viable option (21).

Neospora caninum is a common apicomplexan protozoan

that causes abortion in several vertebrate species (22). The main

final and definitive host of this apicomplexan parasite is the

domestic dog (Canis familiaris), but other wild canids (e.g.,

wolves and coyotes) can also act as final hosts. After gamogony

and a massive intracellular release of oocysts into the lumen

of the canine small intestine, unsporulated oocysts are excreted

through defecation. Numerous herbivorous animals (such as cattle,

sheep, goats, New World camelids, and wild cervids) can ingest

the exogenous sporulated oocysts when grazing, thus becoming

infected as intermediate hosts. In the intermediate host, rapidly

replicating tachyzoites are formed, which can cross the placental

barrier and infect the fetus. This fetal infection can lead to abortion,

especially during the first two trimesters of ovine gestation

(23). It is known that blood-derived PMN has lethal effects on

another apicomplexan parasite, Toxoplasma gondii, in cattle and

sheep (24).

To investigate whether ovine colostrum-derived PMN undergo

NETosis after stimulation with various potent NET elicitors,

including the abortiveN. caninum parasite described above, we first

isolated PMN from ovine colostrum and then incubated them with

the abovementioned elicitors.

2. Materials and methods

2.1. Parasites

N. caninum tachyzoites of the Nc1 strain were cultured in

plastic T-25 cm2 tissue culture flasks (Greiner) either in either

primary bovine umbilical vein endothelial cells (BUVEC) or

permanent African green monkey kidney epithelial cells (MARC-

145). Living, floating N. caninum tachyzoites were collected after

3–5 days of culture from infected host cell layer supernatants,

pelleted [400× g, 12min at room temperature (RT)], washed three

times in sterile PBS, counted in a Neubauer counting chamber

(Marienfeld-Superior, Germany), and resuspended in sterile RPMI

1640 medium (Gibco, Berlin) until further use, as previously

reported (16). For comparative reasons, heat-inactivated and frozen

parasites were also used to stimulate ovine colostral PMN. The

parasites were heat-inactivated at 65◦C for 10min and stored

at−80◦C in 1% DMSO-cell-culture media.

2.2. Isolation of ovine colostrum-derived
PMN

In total, 30 healthy Merino ewes (n = 30) of different

parties were included in the present study. All sheep had

physiological gestation lengths and gave birth to mature lambs.

All udders of the mammary glands were free from the clinical

signs of inflammation or tumorous degeneration. The level of

colostrum was macroscopically within the normal physiological

range. All animals were regular patients of the Clinic for

Obstetrics Gynaecology and Andrology of Small and Large

Animals of the Justus Liebig University Giessen in Germany.

All samples were remnant volumes from routine diagnostics (file

number kTV 8-2017).

Colostrum samples were collected as soon as possible after

parturition of the first lamb, and colostrum was manually milked

from both sides of the udder by stroking the teats with the

fingers. The obtained colostrum samples were macroscopically

within the normal physiological range. The desired PMN were

obtained using density gradient centrifugation, and according to

Demattio et al. (4), the exact procedure is shown in the following

paragraph: After collection, all samples were filtered using sterile

40µm nylon filters. The equivalent of the sample volume was

supplemented with sterile, cold phosphate buffer saline (PBS). This

was followed by centrifugation at 600 × g for 20min at 4◦C.

After centrifugation, the fat-containing supernatant was poured

off, and the cell pellet was carefully resuspended in cold, sterile

PBS. Centrifugation was then repeated twice at 600 × g for 20min

at 4◦C. After each centrifugation step. The cells were washed

with PBS. The remaining pellet was then resuspended in 1ml of

sterile PBS.

This cell suspension was carefully pipetted onto 250 µl

Biocoll
R©
separating solution and centrifuged at 800× g for 45min

at 20◦C. Afterward, the supernatant was decanted, and the PMN

and erythrocyte fractions remained at the bottom.

To lyse erythrocytes, the cell pellet was dissolved in 25ml

of sterile, double-distilled water and mixed gently for 40 s to
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disrupt erythrocytes, as reported in a previous study (4). To restore

adequate osmolarity, 4ml of sterile10 × Hanks balanced solution

(HBSS; Biochrom AG, Berlin) was added.

2.3. Counting of ovine colostral PMN

To determine the quantity of ovine colostral PMN, cells from

15 healthy Merino sheep ewes (n = 15) were manually milked and

isolated in the procedure described above. All isolated colostrum-

derived PMNs were stained with 250ml of Turk’s solution (Merck,

Berlin) and counted in a Neubauer haemocyte counting chamber.

The results were obtained in cells per milliliter and compared using

a t-test.

2.4. Scanning electron microscopy analysis

Isolated ovine colostral PMN were co-cultured with vital

N. caninum tachyzoites for 180min. Only the cells of one ewe

were used for the analysis to avoid cross-reactions of PMN

from different animals. For this purpose, a PMN-to-parasite ratio

of 1:3 was chosen, according to Villagra-Blanco et al. (16). In

each experimental set, 50,000–150,000 cells were used, depending

on how many cells could be obtained from the corresponding

colostrum sample. The co-culture of cells took place on sterile

glass coverslips (10mm diameter; Thermo Fischer Scientific),

which were previously pre-coated with 0.01% poly-L-lysine (Sigma-

Aldrich). Samples were incubated at 37◦C for 180min under

5% CO2 atmosphere conditions. After this incubation, cells were

carefully pre-fixed with 2.5% glutaraldehyde (Merck) and thereafter

post-fixed with 1% osmium tetroxide solution (Merck). The cells

were then cleaned in purified water, dried at a critical point using

CO2 treatment, and sputtered with gold particles. After these

preparatory measures, the cells were imaged using a Philips CL30

scanning electron microscope (SEM). SEM imaging analysis was

carried out at the Institute of Anatomy and Cell Biology at Justus

Liebig University Giessen, Giessen, Germany. As a positive control

for ovine NET induction, one-third of the samples were incubated

with calcium ionophore A23187 (Merck) instead of N. caninum

tachyzoites. As negative controls, cells were isolated, incubated,

and processed in the same way but without the addition of any

potential stimulant.

2.5. Neospora caninum

tachyzoites-induced colostral NETs
visualized using immunofluorescence
microscopy analysis

Ovine colostral PMN (n= 5, from different animals on different

days) were co-cultured with vitalN. caninum tachyzoites (37◦C, 5%

CO2 atmosphere), ionophores A23187 (Merck), and without any

stimulation as the negative control for 180min. This was conducted

on sterile glass coverslips (15mm in diameter, Thermo Fischer

Scientific) pre-coated with 0.01% poly-L-lysine (Sigma-Aldrich).

After incubation, the cells were fixed in a 1% paraformaldehyde

solution (Merck) and stored at 4◦C until further processing. DAPI

was used to visualize released NET structures in colostral PMN.

To visualize NET-specific proteins/histones, immunofluorescence

microscopy analysis was performed with specific antibodies against

neutrophil elastase (NE) and global histones (i.e., H1, H2A/H2B,

H3, H4). For this purpose, the samples were washed three times

with sterile PBS solution (Sigma-Aldrich) and then blocked with

2% bovine serum albumin (BSA; Sigma-Aldrich) containing 0.3%

Triton-X-100 (Thermo Fischer Scientific) for 60min at room

temperature (RT). The samples were then immersed in a solution

containing primary antibodies (PAN-histone, 1:200, Chemico ind.

# MAB3422 and NE, 1:200 ABCAM #ab68672) for 20min at RT.

Following this procedure, the samples were washed for another

three times with sterile PBS and then incubated with secondary

antibodies (Alexa 488 goat anti-mouse IgG #A110011, Alexa 405

goat anti-rabbit IgG #A31556, 1:500, both Invitrogen) for 120min

at RT, which was protected from light. As a positive control, the

same procedure was performed on cells incubated with calcium

ionophore A23187 (Merck) instead of vitalN. caninum tachyzoites.

As a negative control, PMN was served without stimulation

and subjected to the same treatment. After another washing

step, the glass coverslips were mounted with Fluoromount-G
R©

(Thermo Fischer Scientific). NET structures were visualized using

an inverted IX81 epifluorescence microscope equipped with an

XM10 digital camera (both Olympus).

2.6. Characterization of di�erent NET
phenotypes in colostral PMN

For the characterization and quantification of different NET

phenotypes in ovine colostral PMN, such as spread NETs

(sprNETs), which are in long filaments, diffuse NETs (diffNETs),

which are over a larger area, and aggregated NETs (aggNETs),

which are the largest, the protocols previously described byMuñoz-

Caro et al. (25) were followed in this study. Ovine colostrum-

derived PMNs were stimulated and subsequently analyzed by

immunofluorescence microscopy, as described above. For optical

quantification, five randomly selected fields of view were examined

and evaluated as percentages, following the criteria outlined by

Muñoz-Caro et al. (25) and Grob et al. (26).

2.7. Phagocytosis test

A commercial phagocytosis test assay (pHrodoTM

BioParticlesTM Phagocytosis Kit for Flow Cytometry Analysis,

Invitrogen) was used to evaluate the phagocytosis capacity of ovine

colostral PMN. Cells were isolated as described above and then

resuspended in 400 µl of sterile PBS in the final step.

One to two × 104 cells were used for each phagocytosis assay.

The buffers (A and B), part of the commercial kit, were brought

to RT to perform the phagocytosis assay. The cell suspension

was divided into four sets of 100 µl each. Buffer B had 20

µl of pHrodoTM BioParticles dissolved in it, after which it was

added to preparations 3 and 4. Adequate mixing was ensured by

vortexing for 30 s. Accordingly, preparations 1 and 2 served as
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TABLE 1 Average number of PMN with standard deviation in sheep colostrum from parturition to 12h post-partum (p. p.).

Time
point

Immediately p. p. 4 h p. p. 8 h p. p. 12h p. p.

Mammary
complex

Left Right Left Right Left Right Left Right

PMN/ml 22,229± 17,008 18,467± 14,683 15,957± 8,508 15,374± 7,913 14,839± 8,372 13,110± 5,696 13,319± 8,228 15,529± 5,234

negative controls. While mixtures 1 and 3 were placed on ice,

mixtures 2 and 4 were incubated at 37◦C for 15min. After this

incubation time, all preparations were placed on ice to prevent

PMN phagocytosis. Lysis buffer A (100 µl) was added and, after

mixing, incubated at RT for 5min. Following this, 1ml of buffer

B was added. The mixture was incubated again at RT for 5min.

After this incubation, centrifugation was performed at 350 × g

for 5min at RT. The supernatant was carefully removed, and the

cell pellet was resuspended in 0.5ml of washing buffer provided

using the phagocytosis assay kit. Since the evaluation of the

samples could not be done immediately, the cells were fixed at

this point. A commercial cell fixation kit (BD Cytofix/Cytoperm

Fixation/Permeabilization Kit, Berlin, BD) was used for this

purpose. The washing buffer was available in 10× concentration

and diluted 1:10 with distilled water. The cell suspension was

centrifuged at 500 × g for 5min at RT. The supernatant was

carefully poured off, and cells were resuspended in the Fix-Perm
R©

solution (Thermo Fischer Scientific). This was followed by 20min

of incubation at 4◦C. After this, another centrifugation (5min, 500

× g at RT) was performed. The supernatant was removed, and

the cells were rewashed as described above. The fixed cells were

resuspended in 250 µl washing buffer and analyzed at another time

point using a flow cytometer (BD Accuri C6Plus) allocated at the

Institute of Parasitology of the Justus Liebig University Giessen,

Giessen, Germany.

2.8. Statistics

The total number of cells from different animals was compared

bymeans of a t-test using GraphPad Prism
R©
8 software (SanDiego,

CA, USA). For the evaluation of statistical significance, a level of α

= 0.05 was used here. The results with p-values lower than or equal

to 0.05 were assessed as statistically significant.

3. Results

3.1. The number of ovine colostral PMN
during the first 12h postpartum

The presence of PMN was observed in all collected ovine

colostrum samples (n = 15). The concentration of PMN largely

fluctuated among the investigated animals. Although statistically

significant differences (p < 0.001) were observed in the number of

cells between certain individual animals, no significant difference

(p = 0.1) between the animals was observed overall. Additionally,

there was no significant difference in the number of PMN between

the examined complexes (p = 0.3) (please refer to Table 1). The

average standard deviation of mean cell counts for all animals was

approximately 66%. The number of PMN in the colostrum did not

change significantly over the first 12 h post-partum (p= 0.07).

3.2. Neospora caninum-tachyzoites
induced NETosis in ovine colostral PMN

The SEM analysis was used for ultrastructural visualization

of N. caninum-induced colostral NETosis. Suicidal NETosis was

detected by SEM analysis in ovine colostrum-derived PMN exposed

to live, as well as heat-inactivated (killed), N. caninum tachyzoites

for 180min, which triggered the formation of both thick and

thin chromatin strands from dead colostral PMN (Figure 1).

Additionally, SEM analysis demonstrated that not all colostral

PMN responded to the stimulation as described above with NET

formation. Some non-activated cells with smooth cell surfaces were

observed as well. Other colostral PMNs already seemed clearly

activated, which was shown by their rough and uneven surfaces.

Some tachyzoites appeared to be loosely covered by excreted

NET filaments, while other tachyzoites were completely enveloped

within them.

N. caninum-induced colostrum-derived NET formation was

further visualized by immunofluorescence microscopy analysis

(Figure 2). In this study, the colocalisation of PAN histones (i.e.,

H1, H2A/H2B, H3, and H4) and NE on effaced DNA was identified

as classical NET-specific components, thereby confirming the

induction of ovine colostral NETosis.

Moreover, N. caninum-tachyzoites triggered the formation

of different NET phenotypes in exposed colostral PMN. Thus,

different NET phenotypes were found in samples after incubation

with N. caninum tachyzoites for 180 min.

None of the negative controls showed NETosis.

3.3. Phagocytosis test

Evaluation of the phagocytosis test revealed that PMN from

ovine colostrum (n = 3) clearly demonstrated activation and

phagocytosis. Thus, it can be concluded that, even after passing

through the colostrum, the maternal PMN did not die but instead

continued to retain its immunological properties. It is exemplary

that Figure 3 illustrates the colostral PMN phagocytosis rate of one

sheep. A significant difference can be observed between samples 1

and 2 compared to samples 3 and 4, which did not contain marked

bacteria (positive control). Sample 1 exhibited slightly higher

phagocytosis levels due to the higher reaction temperature. The

reduction of phagocytosis in sample 2, with bacteria on ice, shows
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FIGURE 1

SEM analysis display of ovine colostral PMN. Image (A) shows some N. caninum tachyzoites covered by chromatin fibers just loosely on the lower
part of the image, while in the upper part, a complete capture of the Tachyzoites can be observed. The cell in the upper image region has become
the complete suicidal NETosis. Image (B) shows a chromatin fiber catching some Tachyzoites and a massively activated PMN indicated by a white
arrow head. In image (C), a highly activated PMN sending a chromatin fiber to already covered Tachyzoites is observable. If this is a case of vital
NETosis cannot be said for sure. The image (D) shows some tachyzoites sticking together by chromatin fibers.

that the effect observed in 1 is real and not an artifact because cells

phagocytise bacteria in a larger amount in warmer environments.

3.4. Inactivated Neospora

caninum-tachyzoites do not hamper ovine
colostral-derived NETs release

The use of heat-inactivated tachyzoites (i.e., incubation at

60◦C for 10min) yielded no changes in the NET formation

reactions of exposed ovine colostral PMN. These PMN reacted to

heat-inactivated (killed) tachyzoites with the formation of NET

structures in the same way as they reacted to living parasites.

Therefore, it can be assumed that neither intactness of the parasite

nor parasite motility is a prerequisite for the formation of NETs by

colostrum-derived PMN.

4. Discussion

The importance of colostrum for mammalian neonates, not

only in sheep but also in other animal species, can hardly be

overestimated. This first milk is crucial, not only with regard to

the nutritive supply for the newborn but also for the transfer of

maternal immunity. This immunological transfer occurs through

a number of routes. A well-established transfer mechanism

is through the absorption of maternal immunoglobulins (27).

However, colostrum contains more than immunoglobulins (7,

28), i.e., maternal leukocytes (14, 29) to properly protect

neonates after colostrum uptake. It has long since established

that leukocytes of the innate immune system, including PMN

contained in colostrum, transfer not only passive protection to

the neonates but also perform immunological tasks thereafter in

the neonate body (10, 12–14, 29). For example, Langel et al. (14)

described how calves that received cell-containing colostrum had

a significantly more effective immune response than calves that

received cell-free, but otherwise identical, colostrum. The cell-

free-fed group was also more susceptible to frequent neonatal

diseases (14).

However, it has not been clear to date whether PMN in

colostrum can still release NETs as an effector mechanism against

invasive parasites. The present study clearly demonstrates that these

cells are indeed able to fulfill immunological functions, even after

incubation in the colostrum.
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FIGURE 2

Immunofluorescence images of Neospora caninum-triggered ovine colostral NETs (magnification 400x). Images (A, E, I) show the fluorescence
signal of the anti-histone antibodies; images (B, F, J) show the corresponding signals of the DNA dye (DAPI). Images (C, G, K) show the fluorescence
of anti-NE (neutrophil elastase) signals and images (D, H, L) show the merge. Rows (A–D) show the control approach with unstimulated PMN. Rows
(E–H, I–L) show PMN from di�erent animals stimulated with vital N. caninum tachyzoites.

FIGURE 3

The graph shows the values of phagocytosis activity in percentages
of ovine colostral PMN. The values shown in one are the values of
PMN incubated with opsonized bacteria at 37◦C (positive control).
The values shown in two are the values illustrated for the cells with
opsonized bacteria on ice. Values under three and four are the
colostral PMN without bacteria at 37◦C (3) and on ice (5).

N. caninum forms tachyzoites in the intermediate host, such

as those used to stimulate the cells in the present study. Thus, it

can be assumed that colostral PMN and N. caninum tachyzoites

may encounter each other in the gut (or throughout the rest of

the neonate’s organism) when replicating in host endothelial cells

of vessels or organs. Therefore, the detection of NETosis may

well be an established defense mechanism against this parasite in

ovine neonates.

Vital and suicidal NETosis processes are highly efficient early

innate defenses of activated PMN to immobilize and eliminate

invading pathogens (21) by extruding web-like extracellular

structures. These NETs consist of basic DNA structures,

citrullinated global histones (H1, H2A/H2B, H3, H4), NE,

and various antimicrobial peptides/proteins/enzymes, including,

among others, α-defensin, lactoferrin, pentraxin, cathelicidin

(LL37), cathepsin G, and calprotectin (20, 30, 31). NETosis

is generally considered to be a common defense mechanism

against apicomplexan parasites as well, i.e., Eimeria bovis (32, 33),

Toxoplasma gondii (34–36), Cryptosporidium parvum (15, 37), B.

besnoiti (38), and N. caninum (16). However, all these previous

studies only investigated PMN isolated from peripheral animal

blood, and to the best of our knowledge, the assessment of ovine

colostral PMN capacities to extrude NETs against tachyzoites of N.

caninum is unique to date.

Further evidence that PMN secreted into the colostrum are

still present alive and fulfilling their usual immunological functions

was demonstrated here: their NET formation capacities and

their persisting phagocytosis capacity, as demonstrated by the

commercial phagocytosis assays. As such, colostral PMN samples
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without phagocytic particles and colostral PMN samples on ice

showed no phagocytic activity. This control condition highlights

that the results can be attributed to true phagocytosis rather than

a measurement error.

Extracting PMN from colostrum is more difficult than

extracting it from peripheral blood or bone marrow, as the fat

content of ovine colostrum is much higher, and PMN is relatively

diminished in numbers, as already reported for canine colostrum

PMN isolation (4).

The number of ovine colostral PMN did not differ much

between udder sides, and instead, marked differences were

observed between individual animals, as indicated by the relatively

high standard deviation (66% of the observed values). Gonzalez and

Santos (7) reported PMN to be 3–26% of all leukocytes present in

bovine colostrum, and in line with these findings, we observed a

similarly large range in the percentage of PMN in individual ovine

colostrum samples.

The relatively low variation in the number of PMN in samples

collected immediately after birth and 12 h after parturition differs

from previous research examining immunoglobulins. These post-

partum concentrations decreased at a very rapid rate and to a large

extent (39). Although immunoglobulins accumulate in the udder

sides over a long period of time after birth, a similar mechanism for

PMN seems unlikely, as their short lifespan renders accumulation

in the colostrum as rather impossible. It remains unclear whether

there is an intestinal barrier that prevents the uptake of colostral

leukocytes in sheep. The minor decrease in the number of PMN

in the colostrum after birth may indicate that the time in which
these cells influence the immune system of neonates is longer than
just the initial period. While a local benefit in the intestinal lumen
could be presumed, detailed analyses of these cells and their defense
mechanisms in lambs after adequate colostrum uptake are required.

With regard to different N. caninum-triggered NET
phenotypes, no clear tendency toward a certain type was
found here. These phenotypes have already been described for

other protozoan parasites, i.e., Trypanosoma brucei brucei (26)
and the closely related apicomplexan parasite Besnoitia besnoiti by

Zhou et al. (40). The interaction of N. caninum-tachyzoites with

colostral PMN triggered mainly aggNETs and diffNETs after 3 h of

co-cultivation. Some sprNETs were also detected, but to a much

lesser extent. In colostral PMN incubated with vital N. caninum

tachyzoites, diffNETs and aggNETs occurred in equal measure,

but only sprNETs occurred in a significantly lesser measure in

comparison to the former two. Interestingly, positive controls

using Ca++ ionophores showed a slight tendency toward aggNETs

(data not shown). However, these observations differ from other

reports in the literature. For instance, Grob et al. (26) found that

bovine PMN from peripheral blood after stimulation with vital and

motile T. b. brucei trypomastigotes resulted primarily in aggNETs.

Other studies with large and highly motile multicellular parasites,

i.e., Haemonchus contortus- (25), Dirofilaria immitis- (25), and

Angiostrongylus vasorum-larvae (26), demonstrated a variation

depending on the size and motility of these stimulating parasites

and the phenotypes of NETs formed.

To date, colostrum quality has been evaluated only in terms

of immunoglobulin content (41). However, leukocytes also appear

important for colostrum quality, as recently reported for canids,

where colostrum-derived PMN reacted with NETosis against N.

caninum (4). If the functions of this leukocyte population are

similar to those reported previously for cattle (14), it needs further

investigations, and more attention should be directed to this aspect

of ovine colostrum and the implications of maternal PMN transfer

on the outcome of neonatal-associated parasitosis as well as other

invasive pathogens. To the best of our knowledge, this study

represents the second report in the literature on colostrum-derived

NETosis. Therefore, we call for further research on this neglected

immunological topic, as colostral NETosis might improve neonatal

protection in domestic/wild animals and humans. For this reason,

it would be interesting to conduct a similar study on other

animal species.
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