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Genomic landscape of
clinically advanced KRAS
wild-type pancreatic
ductal adenocarcinoma
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Daniel J. Zaccarini2, Richard Huang3, Natalie Danziger3,
Tyler Janovitz3, Alina Basnet1, Abirami Sivapiragasam1,
Stephen Graziano1 and Jeffrey S. Ross2,3

1Upstate Cancer Center, Upstate Medical University, Syracuse, NY, United States, 2Department of
Pathology, Upstate Medical University, Syracuse, NY, United States, 3Foundation Medicine,
Cambridge, MA, United States
Introduction: KRAS mutation is a common occurrence in Pancreatic Ductal

Adenocarcinoma (PDA) and is a driver mutation for disease development and

progression. KRAS wild-type PDAmay constitute a distinct molecular and clinical

subtype. We used the Foundation one data to analyze the difference in Genomic

Alterations (GAs) that occur in KRAS mutated and wild-type PDA.

Methods: Comprehensive genomic profiling (CGP) data, tumor mutational burden

(TMB), microsatellite instability (MSI) and PD-L1 by Immunohistochemistry (IHC)

were analyzed.

Results and discussion: Our cohort had 9444 cases of advanced PDA. 8723

(92.37%) patients had KRAS mutation. 721 (7.63%) patients were KRAS wild-type.

Among potentially targetable mutations, GAs more common in KRAS wild-type

included ERBB2 (mutated vs wild-type: 1.7% vs 6.8%, p <0.0001), BRAF (mutated

vs wild-type: 0.5% vs 17.9%, p <0.0001), PIK3CA (mutated vs wild-type: 2.3% vs

6.5%, p <0.001), FGFR2 (mutated vs wild-type: 0.1% vs 4.4%, p <0.0001), ATM

(mutated vs wild-type: 3.6% vs 6.8%, p <0.0001). On analyzing untargetable GAs,

the KRAS mutated group had a significantly higher percentage of TP53 (mutated

vs wild-type: 80.2% vs 47.6%, p <0.0001), CDKN2A (mutated vs wild-type: 56.2%

vs 34.4%, p <0.0001), CDKN2B (mutated vs wild-type: 28.9% vs 23%, p =0.007),

SMAD4 (mutated vs wild-type: 26.8% vs 15.7%, p <0.0001) and MTAP (mutated vs

wild-type: 21.7% vs 18%, p =0.02). ARID1A (mutated vs wild-type: 7.7% vs 13.6%, p

<0.0001 and RB1(mutated vs wild-type: 2% vs 4%, p =0.01) were more prevalent

in the wild-type subgroup. Mean TMBwas higher in the KRASwild-type subgroup

(mutated vs wild-type: 2.3 vs 3.6, p <0.0001). High TMB, defined as TMB > 10

mut/mB (mutated vs wild-type: 1% vs 6.3%, p <0.0001) and very-high TMB,

defined as TMB >20 mut/mB (mutated vs wild-type: 0.5% vs 2.4%, p <0.0001)

favored the wild-type. PD-L1 high expression was similar between the 2 groups
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(mutated vs wild-type: 5.7% vs 6%,). GA associated with immune checkpoint

inhibitors (ICPIs) response including PBRM1 (mutated vs wild-type: 0.7% vs 3.2%,

p <0.0001) and MDM2 (mutated vs wild-type: 1.3% vs 4.4%, p <0.0001) were

more likely to be seen in KRAS wild-type PDA.
KEYWORDS

pancreatic ductal adenocarcinoma, KRAS mutation, KRAS wild-type pancreatic cancer,
genomic alterations, targeted therapy
Introduction

Pancreatic Ductal Adenocarcinoma (PDA) is the most

common pancreatic neoplasm comprising 90% of the

malignancies arising from the organ (1). The incidence of PDA

has been on the rise over the past decade and is projected to be the

second leading cause of cancer related mortality in the United

States by 2030. Despite the improvement in 5-year survival from

5.26% in 2000 to nearly 10% in 2020, the overall prognosis

remains grim (2). The median survival of patients with PDA is

only 3-5 months despite all the advances in therapy, necessitating

the need for further research (3).

Somatic mutation testing for alterations like BRCA, KRAS,

HER2, PALB2 and mismatch repair proteins, for PDA patients is

recommended in the NCCN guidelines (4). Around 10% of PDA

patients express alterations that are potentially targetable (5). PDA

can be highly heterogenous in both biology and clinical behavior

(6). KRAS mutation is a common occurrence in PDA and is

identified in more than 90% of the sequenced cases. KRAS

mutation occurs early in the development of PDA and is a key

oncologic driver in this disease (7). KRAS wild-type PDA, although

relatively less frequent, appears to have distinctive characteristics,

both genetically and clinically. Treatment resistant PDA may

feature selection of KRAS wild-type cancer cells that confer a

survival advantage, making them more aggressive and resistant to

targeted therapy (8). Thus, KRAS mutated and wild-type PDA may

represent contrasting molecular subtypes and this distinction has

important implications in assessing patients’ clinical course (7, 9).

Their response to treatments like immune checkpoint inhibitors

(ICPIs) therapy may also be different, as KRAS mutations have

shown to affect the immune-microenvironment (10). Modern

approaches for the treatment of PDA have moved towards

personalized care and identifying therapeutic molecular targets

that have the potential to impact the selection of treatment lines

(11). This is evident from the results of the recently published

results of CodeBreaK 100, that solidified the anti-cancer activity of

sotorasib in this disease (12). In this study, we utilized a large

database (13), to provide a descriptive analysis of the differences in

genomic alterations (GAs) between KRAS mutated and wild-type

PDAs (14) and characterize the GAs that occur in the less common

KRAS wild-type PDAs.
02
Methodology

General

Approval for this study, including a waiver of informed consent,

was obtained from the Western Institutional Review Board

(Protocol No. 20152817). A retrospective database search of a

CLIA-certified and CAP-accredited reference molecular

laboratory was performed for 9,444 PDA tissue samples. All

PDA cases were clinically advanced, either inoperable or

metastatic. The patient age and gender, routine histology and

immunohistochemical staining results and confirmation of the

diagnosis, were extracted from medical records and pathology

reports. All PDA cases submitted to Foundation Medicine and

sequenced using the FoundationOne CDx assay from January 1,

2018, to December 31, 2020, were eligible for inclusion in this study.

Only cases with adequate tissue sample size, DNA extraction

amounts of 50 ng or greater, tissues with a minimum of 20%

tumor nuclear area versus benign nuclear area either before or after

pathologist-guided macro-enrichment were included. In addition,

cases with low tumor purity on sequencing or inadequate

sequencing coverage depth as described in the FoundationOne

CDx US FDA approval were excluded from the study (14).
Sample sequencing

Comprehensive genomic profiling (CGP) of all 9,444 PDA

FFPE tissue samples was performed on extracted DNA using

hybridization-capture- adaptor ligation–based libraries

(FoundationOneCDx, Foundation Medicine, Inc.). All samples

forwarded for DNA extraction contained a minimum of 20%

tumor nuclei. The samples were assayed using all coding exons

from 324 cancer related genes, plus select introns from at least 31

genes frequently rearranged in cancer. The PDA specimens were

evaluated for all classes of GAs including base substitutions,

insertions, deletions, copy number alterations (amplifications and

homozygous deletions), and for select gene fusions/rearrangements,

as previously described (14–16). The bioinformatics processes used

in this study included Bayesian algorithms to detect base

substitutions, local assembly algorithms to detect short insertions
frontiersin.org
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and deletions, a comparison with process-matched normal control

samples to detect gene copy number alterations and an analysis of

chimeric read pairs to identify gene fusions as previously described.

To help visualize the sequencing data results, an oncoprint plot was

generated with the online tools of the cbio portal as described by

Gao et al (17) and Cerami et al (18). Tumor mutational burden was

determined on 0.83–1.14 Mb of sequenced, as previously described.

In this study, mutational burden scores were defined by mutation/

Mb. Assessment of microsatellite instability was performed from

DNA sequencing at least 95 loci, as previously described. Each

microsatellite locus had repeat length of 7–39 bp. The next-

generation sequencing based “microsatellite instability score” was

translated into categorical “microsatellite instability high”,

“microsatellite instability intermediate”, or “microsatellite stable”

by unsupervised clustering of specimens for which microsatellite

instability status was previously assessed via gold standard methods

(19, 20).
PD-L1 immunohistochemistry

PD-L1 expression was determined on subsets of the tumors

using the DAKO 22C3 assay with low-positive tumor cell scoring

defined as 1%-49% staining and high-positive tumor cell scoring

defined as 50% staining (21). Anti-PD-L1 staining was done using

the Dako 22C3 IHC kit, following the instructions provided in the

kit protocol. Results were scored using the widely used tumor

proportional score system (TPS) (22).
Statistical analysis

Chi-square test and Mann Whitney U test were used in the

statistical comparisons of the 2 groups. Statistical significance was

defined as p < 0.05.
Results

8723/9444 (92.37%) of the PDA featured KRAS mutation. 721

(7.63%) patients were KRAS wild-type. Males were more prevalent

in both groups [KRASmutated: 52/48% (M/F), KRAS wild-type 61/

39% (M/F)]. The median age was similar in both groups [KRAS

mutated: 67 years, KRAS wild-type: 65 years]. The average GA/

tumor was 4.88 for KRAS mutated and 4.47 for KRAS wild

type (Table 1).

The descriptive analysis of the various GAs in our cohort,

divided into targetable and untargetable GAs is shown in Table 1.

Among potentially targetable mutations, GAs more common in

KRAS wild-type included ERBB2 (mutated vs wild-type: 1.7% vs

6.8%, p <0.0001), BRAF (mutated vs wild-type: 0.5% vs 17.9%, p

<0.0001), PIK3CA (mutated vs wild-type: 2.3% vs 6.5%, p <0.001),

FGFR2 (mutated vs wild-type: 0.1% vs 4.4%, p <0.0001), ATM

(mutated vs wild-type: 3.6% vs 6.8%, p <0.0001). KRAS G12C

comprised 1.6% of the mutated group. On analyzing untargetable
Frontiers in Oncology 03
TABLE 1 Descriptive analysis of the patient characteristics and various
GAs.

KRAS
Wild-type

KRAS Mutated P Value

Cases 721 8,723

Males/Females 61%/39% 52%/48% <.0001

Median age 65 67 NS

Mean age 63.7 65.9 <.0001

GA/tumor 4.47 4.88 NS

Top Untargetable GA

TP53 47.6% 80.2% <.0001

CDKN2A 34.4% 56.2% <.0001

CDKN2B 23.0% 28.9% =.0007

SMAD4 15.7% 26.8% <.0001

MTAP 18.0% 21.7% =.02

CDK6 1.9% 2.7% NS

ARID1A 13.6% 7.7% <.0001

RB1 4.0% 2.0% =.001

Top Potentially Targetable GA

EGFR SV <1% <1% NS

ERBB2 6.8% 1.7% <.0001

ALK Fusion 1.0% 0% NS

BRAF 17.9% 0.5% <.0001

PIK3CA 6.5% 2.3% <.0001

FGFR1 1.2% 1.6% NS

FGFR2 4.4% 0.1% <.0001

PTEN 7.2% 1.2% <.0001

KRAS G12C 0% 1.6% <.0001

BRCA1 1.8% 1.2% NS

ATM 6.8% 3.6% <0001

BRCA2 2.5% 2.9% NS

ICPI Predictive GA

PBRM1 3.2% 0.7% <.0001

STK11 3.3% 2.5% NS

MDM2 4.4% 1.3% <.0001

CD274 amp <1% <1% NS

ICPI Predictive Biomarkers

MSI-High 1.7% <0.9% NS

Mean TMB 3.6 2.3 <.0001

Median TMB 2.5 1.3

TMB>10mut/mB 6.3% 1% <.0001

(Continued)
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GAs, the KRASmutated group had a significantly higher percentage

of TP53 (mutated vs wild-type: 80.2% vs 47.6%, p <0.0001),

CDKN2A (mutated vs wild-type: 56.2% vs 34.4%, p <0.0001),

CDKN2B (mutated vs wild-type: 28.9% vs 23%, p =0.007),

SMAD4 (mutated vs wild-type: 26.8% vs 15.7%, p <0.0001) and

MTAP (mutated vs wild-type: 21.7% vs 18%, p =0.02). ARID1A

(mutated vs wild-type: 7.7% vs 13.6%, p <0.0001) and RB1 (mutated

vs wild-type: 2% vs 4%, p =0.01) were more prevalent in the wild-

type subgroup.

Markers predictive of ICPIs therapy response were studied and

favored the wild-type subgroup. Mean tumor mutational burden

(TMB) was higher in the wild-type subgroup (mutated vs wild-type:

2.3 vs 3.6, p <0.0001). High TMB, defined as TMB > 10 mut/mB

(mutated vs wild-type 1% vs 6.3%, p <0.0001) and ultra-high TMB,

defined as TMB >20 mut/mB (mutated vs wild-type: 0.5% vs 2.4%, p

<0.0001) favored the wild-type. PD-L1 high was similar between the 2

groups (mutated vs wild-type: 5.7% vs 6%). GAs predictive of immune

checkpoint therapy (IO) response like PBRM1 (mutated vs wild-type:

0.7% vs 3.2%, p <0.0001) and MDM2 (mutated vs wild-type: 1.3% vs

4.4%, p <0.0001) were more likely to be seen in wild-type subtype.

Figures 1, 2 shows the long tail plots of the various GA in KRAS

wild-type and KRAS mutated PDA respectively.

Figure 3 demonstrates the distribution of the various KRAS

short variant alterations. Sample size is different from the cohort

used in our study and includes earlier versions of the Foundation

One CDx test with different/smaller bait sets.
Frontiers in Oncology 04
Figure 4 shows a case of metastatic PDA to the liver in a 51-

year-old man. The tumor was positive for CK7 and CA19-9 and

negative for CK20, HAS and TTF1. On comprehensive genomic

profiling this tumor was microsatellite (MS) stable and featured a

TMB of 8 mutations/MB. It had a KRAS G12Cmutation along other

short variant mutations in CDKN2A/B and TP53 along with

MDM2 amplification.

Figure 5 shows a case of metastatic PDA to the liver in a 75-

year-old woman. This tumor stained positively for CK7 and CA19-

9 and negatively for CK20 and CDX2. On comprehensive genomic

profiling, this tumor was KRAS wild-type, MS stable and featured a

low TMB of 1 mutation/Mb. There was major ERBB2 amplification

at 148 copies along with APC E468*, MAP2K4 Q316* and TP53

C275F short variant mutations, CCNE1 and CRKL amplification

and a CDK12 inversion exons 8-11.

Figures 4B, 5B were generated by the Foundation Medicine

“Curation Analysis Tool Interface” linked directly to the Integrative

Genomics Viewer (IGV) developed by the Broad Institute of the

Massachusetts Institute of Technology (23). All the GA and

mutations seen in both the cohorts are available in the

supplement (S1: KRAS Wild-Type, S2: KRAS mutated).
Discussion

In our study of PDAs, 93.37% had KRAS mutation, whereas

7.63% were wild-type. This is similar to other studies in literature

where KRAS mutation is noted in around in 85-90% of pancreatic

cancers (7, 24). The slightly higher frequency of KRASmutations in

the study cohort may reflect that all of the patients had relapsed and

refractory disease that was predominantly metastatic at the time of

sequencing reflecting the adverse prognostic influence associated

with KRAS mutation in PDA. Epidemiologic characteristics of our

cohort were consistent with those established for pancreatic cancer,

showing male preponderance and older age (25). KRAS mutated
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FIGURE 1

Long tail plot of GA in KRAS Wild-Type PDA.
TABLE 1 Continued

KRAS
Wild-type

KRAS Mutated P Value

TMB>20mut/Mb 2.4% <0.5% <.0001

PD-L1 IHC Low+ 21.8%
(257)

31.8% (3069) =.0007

PD-L1 IHC High+ 6.0% 5.7% NS
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PDA has been associated with a worse overall survival and may

respond poorly to gemcitabine based therapy (26). Wild-type KRAS

is reported in 8-12% of PDAs (27, 28). The possibility that this

group may have improved survival, increases the importance to

identify potential targets for precision therapies that could

potentially increase both the progression-free, and the overall

survivals for these patients (28). Voutsadakis et al., used publicly

available genomic cohorts (The Cancer Genome Atlas, the MSK-

IMPACT study, the pancreatic cancer sub-cohort of a pan-cancer
Frontiers in Oncology 05
study from China, and the pancreatic cancer cohort from the

American Association for Cancer Research project GENIE), along

with cBioportal and OncoKB knowledgebase, to characterize the

GAs that occur in PDA without commonly seen alterations such as

KRAS, TP53, CDKN2A and SMAD4. PDA without these

alterations constituted 5-10%. No major differences in GAs were

noted. The relatively limited sample size in the wild-type PDA

group could be an impediment to adequate analysis in such studies,

including our analysis (29).

The treatment of locally advanced, unresectable, and metastatic

PDA is centered around using various chemotherapeutic regimes.

Olaparib and Rucaparib, which are poly (adenosine diphosphate–

ribose) polymerase (PARP) inhibitors, are FDA approved in the 2nd

line setting and can also be utilized for maintenance in patients with

germline BRCA1 and BRCA2 mutations. There was benefit in terms

of progression free survival (PFS), but overall survival remained

unchanged (30, 31). Approvals such as pembrolizumab for

TMB>10 and Entrectinib and Larotrectinib for NTRK fusions can

be utilized in PDA. Overall, the utility of non-chemotherapeutic

systemic treatments remains limited (4). PDA is a complex disease in

terms of molecular and epigenetic changes, in which KRAS plays a

central role from origin to progression (32). Efforts at targeting KRAS

in pancreatic cancer have been unsuccessful so far. The mitogen-

activated protein kinase (MAPK) pathway is an important pathway

interconnected with KRAS. Attempts to target this with MAPK

inhibitors either with or without gemcitabine unfortunately did not

reveal any survival benefit (33). Blocking MEK and PI3K/AKT using

selumetinib was also not useful to improve survival (34). KRAS

vaccines like RAS peptide vaccines and those targeting mutant

KRAS were unsuccessful (28, 35). Tipifarnib, a drug that targets

RAS dependent growth failed to show any benefit in phase 3 trials

(36). Several agents have shown promising results in PDA cell lines

but the results remain exploratory (28). Sotorasib is a small molecule

irreversible inhibitor of KRAS G12C. The CodeBreaK100 showed

encouraging activity of this drug in advanced malignancies with
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FIGURE 2

Long Tail Plot of GA in KRAS mutated PDA.
FIGURE 3

Distribution of major KRAS short variant alterations in 13,953 PDAs.
Sample size is different from the cohort used in our study and
includes earlier versions of the Foundation One CDx test with
different/smaller bait sets.
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KRAS G12C mutation (37). KRAS G12C is seen in 1-2% of patients

with KRAS mutated PDA. The results from our cohort were

consistent with this (1.6%). The efficacy and safety of sotorosib in

pretreated KRAS G12C mutated PDA was reported in ASCO 2022.

The overall response rate was 21.1% from a cohort of 38 patients (38).

KRAS wild-type PDA had a higher frequency of ERBB2

genomic alterations (6.8%). Clinical studies of anti-HER2 drugs in

PDA have previously focused on ERBB2 amplification. A phase 2

study of traztuzumab, cetuximab and gemcitabine as a first line

strategy in metastatic PDA showed disease stabilization in 27% of

33 patients. Cetuximab and traztuzumab combination has also been

studied (39). Although the aforementioned studies were small, the

durable activity of the antibody drug conjugate, Trastuzumab

deruxtecan is well established. It is approved in Non-small cell

lung cancer (NSCLC) (55% objective response among 91 patients)

based on the DESTINY-Lung01 for patients with ERBB2 kinase

domain mutations (40) and in metastatic breast cancer for patients

with HER2 low expression by IHC (41). Trials are underway to

study the role of Trastuzumab deruxtecan in solid tumors including

PDA (42). BRAF mutation was significantly higher in wild-type

PDA (17.9%). This can be anticipated as BRAF and KRAS are

mutually exclusive in most cancers (43, 44). The FDA has approved

the combination of dabrafenib and trametinib in patients with

metastatic or unresectable sold tumors with BRAF V600Emutation.

They must have progressed through prior lines of treatment and

must have no other alternative options. This was based on the Phase
Frontiers in Oncology 06
2 ROAR basket study and the NCI-MATCH ECOG-ACRIN Trial

(EAY131) Subprotocol Z1F (45–47). BRAF mutation is historically

found in 3% of PDA and individual reports have shown good

response with BRAF andMEK inhibitor combination (48). PIK3CA

(6.5%), FGFR2 (4.4%) and ATM (6.8%) were the other targetable

GAs that were significantly higher in wild-type PDA. Increased Akt

signaling is an important effector in the PIK3 pathway. Activating

PIK3CAmutations in PDA have been reported in the range of 4% in

the past. Several trials evaluating various agents targeting the PIK3

pathway are currently underway, but most of them are early phase

(I/II) (49). FGFR alterations are reported in only 4-6% of PDAs. The

only approval for FGFR inhibitors are in metastatic urothelial

carcinoma (erdafitinib) and in cholangiocarcinoma (pemigatinib)

(50, 51). A recent case report showed durable response of >12

months with erdafitinib in a young male with relapsed FGFR

rearranged PDA. Incidentally, the patient in that particular case

was also KRAS wild-type (52). The authors mention that the

pathology revealed poorly differentiated adenocarcinoma, raising

the possibility of it being a cholangiocarcinoma, as FGFR GA is

more common in biliary tract cancers (52, 53). FGFR2 GAs, which

are mostly fusions, are found in 10-15% of intrahepatic

cholangiocarcinoma’s (53), compared to 4.4% in our KRAS wild-

type PDA cohort. However, the pathologic diagnosis in these cases

could be questioned, raising the suspicion that these could be

cholangiocarcinoma. ATM mutations are a part of the HRD

germline spectrum and may connote sensitivity to PARP
A B

FIGURE 5

(A) Hematoxylin and eosin: histology of the tumor. (B) ERBB2 amplification at 148 copies.
A B

FIGURE 4

(A) Hematoxylin and eosin: histology of the tumor. (B) IGV View of KRAS G12C mutation.
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inhibitors. Found in 1.7-3.3% of all PDAs, these are significantly

more common in KRAS wild-type and the results of early phase

clinical trials pertaining to this would have to be observed (54).

On analyzing the data on markers predictive of ICPIs therapy

response, several factors (higher mean TMB, higher percentage of

high and ultrahigh TMB) suggests that, as a group, the KRAS wild-

type PDA may be more responsive to ICPIs therapy than the KRAS

mutated PDA. Other predictors of ICPIs response like PBRM1 (55,

56) and MDM2 (57) were also higher, necessitating the need for

further research into this aspect.

Limitations of our study include the retrospective nature and the

confounding that may arise from it. The lack of clinical outcomes

data for our patients is another limitation. Subgroup analysis and

stratification of PDA by KRASmutation status in randomized clinical

trials can help overcome this. Some cases like those with FGFR2

alterations could have been intrahepatic cholangiocarcinoma and

may have been improperly diagnosed as PDA.

Overall, several targetable GAs and ICPIs positive predictive

markers were more frequent in KRAS wild-type PDA. This

combined with the fact that TP53 alterations were much lower in

KRAS wild-type PDA provides sound evidence that this distinct

molecular subtype of PDA has the potential to achieve a much

better survival outcome. The presence of TP53 alteration in itself is

an adverse prognostic marker in any malignancy (58) and long term

PDA survivors have consistently demonstrated absence of KRAS

and TP53 mutations (59, 60).

Conclusion

KRAS wild-type PDA has a higher frequency of several

targetable GAs and may thus provide more options for targeted

treatments. Response to ICPIs therapy may be better, given more

patients in this group had high TMB. Overall, lower frequency of

TP53 mutation suggests that physicians and academia should strive

to achieve longer survivals in KRAS wild-type PDA patients. Lack of

prospective clinical outcome data is a limitation of our study.
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