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Energy metabolism and
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working in decidualization
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One pivotal aspect of early pregnancy is decidualization. The decidualization

process includes two components: the differentiation of endometrial stromal

cells to decidual stromal cells (DSCs), as well as the recruitment and education

of decidual immune cells (DICs). At the maternal-fetal interface, stromal cells

undergo morphological and phenotypic changes and interact with trophoblasts

and DICs to provide an appropriate decidual bed and tolerogenic immune

environment to maintain the survival of the semi-allogeneic fetus without

causing immunological rejection. Despite classic endocrine mechanism by 17 b-
estradiol and progesterone, metabolic regulations do take part in this process

according to recent studies. And based on our previous research in maternal-fetal

crosstalk, in this review, we elaborate mechanisms of decidualization, with a

special focus on DSC profiles from aspects of metabolism and maternal-fetal

tolerance to provide some new insights into endometrial decidualization in

early pregnancy.

KEYWORDS

decidualization, energy metabolism, maternal-fetal crosstalk, decidual stromal cells,
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1 Introduction

Decidualization is histologically characterized by the appearance of larger and rounder

cells surrounding the spiral arteries (SAs) and eventually spreading most of the

endometrium. The transition from the proliferative stage to the secretory stage of the

endometrium leads to the differentiation of endometrial stromal cells (EnSCs) into a special

cell type called decidual stromal cells (DSCs) when EnSCs widely proliferate, getting larger

and rounder with more changes in nuclear morphology and phenotype (1–3). DSCs secrete

more prolactin (PRL), insulin-like growth factor binding protein 1 (IGFBP1), neuropeptide

and extracellular matrix than EnSCs, among which PRL and IGFBP1 are extensively

regarded as phenotypic markers of decidualization (4). DSCs are a distinct cell type

resulting from terminal differentiation and genetic reprogramming of EnSCs, including

downregulation of pro-inflammatory genes, as well as upregulation of genes that
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facilitating cellular proliferation, maternal-fetal tolerance and tissue

invasion (5). These transformations further establish a proper

environment for the subsequent placental formation and fetal

development. Decidualization results from a complex and well-

orchestrated differentiation program that involves all cellular

elements of the mucosa: stromal, glandular and immune cells (6).

Broadly defined, decidualization also includes accumulation of local

immune cells, secretory changes of the uterine glands, SA

remodeling, and extracellular matrix reconstruction (7).

In human, decidualization occurs in the luteal phase during

each menstrual cycle (“pre-decidualization”), induced by the

ovarian steroid hormones after ovulation regardless of fertilization

or pregnancy, and continues after implantation (“decidualization”)

(8). However, decidualization might vary in different physiological

contexts. In the menstrual cycle, decidualization is characterized by

direct communication between lymphocytes and stromal fibroblasts

and a moderate rise in cytotoxic potential of lymphocytes. While

during pregnancy, decidualization is tightly correlated with

dynamics of window of implantation (WOI). It initiates before

the opening of the WOI in a fraction of stromal fibroblasts and

spreads wider at the receptive state (9). 17 b-estradiol plus

progesterone (P4) or cyclic adenosine monophosphate (cAMP)

plus medroxyprogesterone acetate (MPA) are always used to

stimulate decidualization in vitro (10, 11). Despite the cardinal

endocrine mechanism by 17 b-estradiol and P4, as well as some

other hormones like prostaglandins (PGs), luteinizing hormone

(LH), follicle stimulating hormone (FSH), human chorionic

gonadotropin (HCG) and gonadotropin-releasing hormone (12–

15), metabolic and epigenetic regulation are also proved to be

involved in this process recently.

In mice, the receptive state of uterus maintains for a short time,

from gestation day (Gd) 4 to the afternoon of Gd 5 (16).

Consistently, embryos enter the uterine cavity at Gd 3.5 and

attach to the endometrium at Gd 4 (17). Subsequently,

decidualization is triggered by the attachment and relies on the

embryo implantation at Gd 4.5 to support embryo development

(16–18). Artificial stimulation like oil infusion and uterine scratch

can also induce decidualization when applied locally to pseudo-

pregnant mice (14, 15). At Gd 5.5, decidualization initiates from

stromal cells surrounding SAs, and forms a zone called the primary

decidual zone (PDZ). Stromal cells next to PDZ continue to

proliferate and differentiate into DSCs of the secondary decidual

zone at Gd 7.5. They spread throughout the whole endometrium

accompanied by trophoblast invasion (2, 12, 18).

Appropriate endometrial decidualization is essential for a

successful pregnancy. The decidua offers a nutritive and immune-

privileged microenvironment critical to embryo implantation,

placentation, trophoblast invasion, immunomodulation and

maintenance of pregnancy (19, 20). Shu-Wing Ng et al. proposed

that the foundation of a healthy pregnancy is laid at the time of

endometrial decidualization, prior to the establishment of

pregnancy, just like that fertile and nontoxic soil is an essential

premise for the growth of seeds (5). Impaired decidualization may

cause numerous pregnancy disorders, such as infertility, recurrent

spontaneous abortion (RSA), in vitro fertilization (IVF) failures,
Frontiers in Immunology 02
intrauterine growth restriction, preeclampsia, premature labor and

so on (21–23).

Both in humans and mice, decidualization is continuous and

consistent with trophoblast invasion. The underlying mechanisms

are still not clear to date. Although most studies related to

decidualization focus on the differentiation of DSCs, which are

the major cellular component of human decidua, the recruitment

and education of decidual immune cells (DICs), and the crosstalk

among DSCs, DICs and trophoblasts are also vital during

decidualization. Recently, dysregulation of metabolism in various

physiological and pathophysiological courses, such as

inflammation, angiogenesis, and cancer, are of great concern, and

also have been proved to be related to decidualization (24). In this

review, we will summarize the crosstalk of functional cells at the

maternal-fetal interface during decidualization with a special focus

on the metabolic and immune regulation on the initiation and

maintenance of decidualization.
2 Energy metabolism reprogramming
in DSC differentiation

Metabolism is regarded as a biological process of matter and

energy exchange compose of a series of orderly chemical reaction to

sustain biological activities, which enables organisms to grow,

reproduce, maintain their structures and respond to the

surrounding environment. Conceivably, decidualization is an

energy-expensive process for its multistep processes accompanied

by significant SA remodeling and extracellular matrix

reconstruction (25). Energy metabolism reprogramming,

including carbohydrate metabolism, lipid metabolism and amino

acid metabolism, are proved to be involved in DSC differentiation.
2.1 Carbohydrate metabolism and
DSC differentiation

Glucose utilization in the endometrial stroma is obviously

increased upon exposure to P4. While the fai lure of

decidualization and the subsequent embryo implantation may be

the results of improper glucose uptake or carbohydrate metabolism

in EnSCs (26, 27). The glucose metabolism initiates from an

adequate intracellular glucose uptake, which is mediated by a

family of glucose transporter (GLUT). The GLUT family has

eight isoforms, GLUT1-GLUT8, characterized by the presence of

12 membrane-spanning helices and several conserved sequence

motifs (28). In human endometrium, only GLUT1 and GLUT3

can be detected. Unlike the expression pattern of GLUT3, which is

changeless in all studied cell segments throughout the decidua but

especially higher in cluster of differentiation (CD)45 positive

leukocytes, expression level of GLUT1 stays low in the

proliferative stage but significantly increases in secretory phase

and in 6-9 weeks of gestation (27). An in vitro experiment also

showed that GLUT1 and glucose-6-phosphate dehydrogenase

(G6PD) were highly upregulated in decidualizing human EnSCs
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(HEnSCs) than non-decidualizing ones, while there was no

difference in GLUT3 expression between them (29). GLUT1

knockdown impairs glycolysis and HEnSC decidualization by

reducing the mRNA levels of decidualization markers (IGFBP1

and PRL) and aerobic glycolysis-related genes (lactate

dehydrogenase A (LDHA) and monocarboxylate transporter 4

(MCT4)), decreasing glucose uptake and lactate production, as

well as activating apoptotic pathways (30). GLUT1 is also found

as a functional protein cargo carried by endometrial stromal

extracellular vesicles (EVs). Addition of EVs to HEnSCs showed

an increased GLUT1 protein level without a concomitant increased

mRNA level, reflecting the incorporation of EVs with GLUT1 cargo

proteins directly into the HEnSC membrane. The internalization of

EVs carrying GLUT1 promotes glucose uptake in recipient

HEnSCs, resulting in boost in energy metabolism and

acceleration in decidualization program (31). Overall, stromal

GLUT1 may exert a critical role in decidualization and the

preparation of blastocyst implantation (32–34).

Glucose serves as a metabolic signal for decidualization. Low-

glucose environment suppresses the mRNA levels of PRL and

IGFBP1 of HEnSCs by not only downregulating Forkhead box

O1 (FOXO1) expression but also directly decreasing the histone

H3K27 acetylation levels of the promoter regions of PRL and

IGFBP1 (35). Of interest, as the only hormone that lowers blood

glucose in human body, insulin has also been found to associate

with decidualization. Decidualization is a highly energy-dependent

process requiring adequate glucose uptake. Insulin decreased both

mRNA and protein levels of GLUT1 in a dose-dependent manner in

decidualizing HEnSCs, inhibiting glucose uptake in high insulin

concentrations, which may have a negative impact on

decidualization by reducing energy production (36). A high

insulin pregnant mouse model showed a lower level of serum

estrogen (E2), P4, FSH and LH on Gd 6-8 and an impaired

function of endometrial angiogenesis compared to those in the

control, suggesting that hyperinsulinemia may impede

decidualization by disrupting reproductive hormones and

restraining SA remodeling (37). These observations indicate that

normal level of glucose is indispensable for decidualization. In

addition, uterus can store glucose as glycogen. Glycogen level

decreases in mouse uterine epithelium before implantation, but

dramatically increases in stroma during decidualization. Although

the role of glycogen in the decidua is unclear, it appears to be vital in

sustaining the decidualization process (38).

Decidualization is accompanied by altered expression of

enzymes involved in carbohydrate metabolism. In human, the

level phosphofructokinase 1 is higher while fructose

bisphosphatase 1 is lower in DSCs compared with EnSCs, leading

to the accumulation of fructose-1,6-bisphosphate (FBP) in DSCs.

This process can be promoted by E2 plus P4, or the supernatant of

primary trophoblast cells. In a spontaneous abortion-prone mouse

model, intraperitoneal injection of FBP increased FBP levels in both

uterus and plasma and induced a high percentage of

cyclooxygenase-2 (COX-2) + M2-like macrophages, regulatory T

cells (Tregs), and T helper 2 (Th2) cells, which improved

decidualization and trophoblast invasion (39).
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During decidualization, glycolysis-related genes, such as HK2

(converting glucose to G6P), G6PDH (catalyzing G6P for pentose

phosphate pathway (PPP)), LDH (producing lactate), and PDK1

(repressing pyruvate dehydrogenase (PDH) by phosphorylating

PDHE1) at implantation sites are significantly increased,

accompanied with hypoxia-inducible factor 1a, c-MYC and

PI3K-AKT signaling activation in mice at Gd 5, suggesting an

activated Warburg-like glycolysis effect but suppressed oxidative

metabolism in decidua during early pregnancy (40, 41). Moreover,

an enhanced lactate communication mediated by MCT4 (exporting

lactate) and MCT1 (importing lactate) promotes the proliferation of

the undifferentiated cells in mice by providing acidic extracellular

milieu (42). In contrast, Frolova’s team reported that inhibiting

glycolysis by a glyceraldehyde-3-phosphate dehydrogenase

inhibitor did not affect decidualization process of human and

mouse EnSCs in vitro (43). The ambiguous conclusion may be

due to compensatory effects of additional energy metabolic

pathways. However, blockade of G6PDH, which guided the rate-

limiting step in the PPP, led to lower expression of decidualization

markers in both human and mouse EnSCs and impaired

decidualization in mice (32, 43, 44). Complete endometrial repair

is one of the premises of stromal cell differentiation and normal

decidualization (45). Inhibiting glycolysis during endometrial repair

not only reduces the hypoxia signaling and endometrial cell

proliferation, but also disrupts inflammatory response in mouse

model. This reflects the significance of glycolysis for decidualization

in another way (46).
2.2 Lipid metabolism and
DSC differentiation

In addition to carbohydrate, lipid also acts as an important

source of energy for metabolism and homeostasis. Lipid

distributes regularly in the peri-implantation uterus so as to

supply raw material and energy for endometrial-decidual

transformation (47). An early study reported that saturated fatty

acids increased (43% to 64%) after induction of decidualization by

Concanavalin A in pseudo-pregnant murine uterus. Meanwhile,

polyunsaturated fatty acids (PUFAs) (15% to 10%) and sterols

(19% to 4%) were decreased (48). Lipid metabolic regulation is

implicated in the development of decidualization process. High-

fat/high-sugar-exposed mice had much lighter deciduomas and

obviously lower level of PRL-related protein than those intaking

standard mouse chow. Similarly, HEnSCs cultured with palmitic

acid had remarkably decreased level of PRL and IGFBP1.

Furthermore, levels of autophagy regulators acetyl CoA

carboxylase and ULK1 were higher in stimulated mouse uterine

horns than unstimulated horns, indicating an induction of

autophagy during decidualization. While autophagy was

impaired by excessive fatty acid exposure in EnSCs of both mice

and humans. Diet-induced obesity may impair EnSC

decidualization partly via impaired autophagy (49). Fatty acids

and the b-oxidation pathway also play a significant role

in oocyte and embryo development (50, 51). Carnitine
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palmitoyltransferase-1 (CPT1) serves as a rate-limiting enzyme in

fatty acid b-oxidation pathway to transfer acyl-CoA into the inner

mitochondrial membrane, and its knocking down and adding b-
oxidation inhibitor Ranolazine can impair decidualization of

HEnSCs. It was investigated in HEnSCs that the expression

levels of CPTA1 and CPT2 were upregulated in decidualizing

cells compared to non-decidualizing cells (29). In mice, CPTA1

knockdown impaired decidualization with a significant reduced

level of cell proliferation markers (proliferating cell nuclear

antigen and cyclinD3) (52). Pup number is also markedly

reduced under simultaneous inhibition of the b-oxidation
pathway and PPP, while it can be recovered after the end of

treatment period (53). Acting as lipid mediators, PGs play an

essential role in embryo implantation, maternal-fetal interface

construction and labor initiation (54). Interestingly, they can also

act as signaling molecules to regulate decidualization. In human,

15-hydroxyprostaglandin dehydrogenase (15-PGDH) is a

degrading enzyme of PG. PG transporter (PGT), a candidate

molecule of PG carriers, can help transport PG into cells.

Inhibiting 15-PGDH promotes a shift to a mesenchymal pattern

of trophoblasts and DSCs depending on the PGT-mediated

transport of PGE2, further promoting trophoblast differentiation

and decidualization (8). Additionally, endothelial-derived

prostacyclin and PGE2 can accelerate decidualization by

increasing intercellular cAMP in the perivascular stroma via a

paracrine mechanism, which can be induced by hemodynamic

forces. The enhanced PG-driven decidualization could also be

mediated by COX-2, PGE2 and prostacyclin (55). A recent single-

cell analysis study of human decidual cells also indicated that

PGE2-mediated decidualization depends upon PG-dependent

induction of PGE2 receptor 2 and protein kinase A (PKA) (56).

Metabolism of phospholipids is another important part of

lipid metabolism in cancer and pregnancy (57). Two lipid

phosphate phosphatases (LPP1 and LPP3), lysophosphatidic

acid (LPA) receptor LPAR1, sphingosine-1-phosphate (S1P)

receptor 3, and S1P phosphatase are highly expressed in

decidualized HEnSCs (10, 58). Decidualization was deficient in

sphingosine kinase-1–/– mice, suggesting that LPA and S1P

receptors, as well as their metabolizing enzymes play important

roles in decidualization (59–61). In mice, autotaxin-LPA-LPA3

signaling in embryo-epithelial interaction area induces

decidualization via heparin-binding epidermal growth factor

(HB-EGF)/COX-2-Bmp2/Wnt4 signaling pathways (62).

Consistently, Bmp2/Wnt4 signaling takes part in decidualization

and acts as downstream of HB-EGF signaling (63, 64).

Sphingolipids also participate in pregnancy. Serine palmitoyl-

transferase (SPT) is the first key enzyme of de novo sphingolipid

synthesis pathway. It is composed of three major subunits (Sptlc1,

Sptlc2, and Sptlc3) and two small subunits (Ssspta and Sssptb) (65,

66). During decidualization, the mRNA levels of three subunits of

the SPT holoenzyme (Sptlc1, Sptlc2, and Ssspta) were significantly

upregulated in mouse uterine stromal cells. Blocking the de novo

sphingolipid synthesis with a specific inhibitor of SPT impeded

the decidualization, suggesting that sphingolipid was an essential

lipid compound in decidualization (67).
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2.3 Amino acid metabolism and
DSC differentiation

Amino acids like arginine and leucine have influenced on the

embryo implantation and fetal growth in both humans and rodents

(68, 69). Arginine addition during early pregnancy induces embryo

implantation through activating the PI3K/PKB/mTOR/NO

s igna l ing pa thway in ra t s ( 69 ) . cAMP can induce

argininosuccinate synthase (Ass1) through PKA/phosphorylated

cAMP-response element binding protein signaling pathway to

supply ample L-arginine for mouse decidualization. While L-

arginine at high concentration downregulates Ass1 and

argininosuccinate lyase expression to maintain the homeostasis of

L-arginine (70). Tryptophan is also an essential amino acid for

pregnancy. Nearly 95% tryptophan enters kynurenine pathway,

during which indoleamine 2,3-dioxygenase (IDO) and tryptophan

2,3-dioxygenase are the rate-limiting enzymes (71). Tryptophan

(enters cells via solute carrier family 7, member 5) and its

metabolite kynurenine enhance HEnSC decidualization via aryl

hydrocarbon receptor (AHR) pathway, which is significantly

stimulated by gamma interferon (IFN-g) (72, 73). Moreover,

HCG regulated interleukin (IL) 4-induced gene 1 (IL4I1)

expression and secretion from human endometrial epithelial cells

through polyamine metabolism. Both IL4I1-catalyzed indole-3-

pyruvic acid and its metabolite indole-3-aldehyde from

tryptophan were able to induce in vitro decidualization of HEnSC

via AHR-epiregulin pathway (74). Recently, Tang et al. delineated

an activated glutamine (Gln) metabolism in decidualization. They

uncovered the fundamental support of Gln-glutamic acid (Glu)-a-
ketoglutarate (a-KG) metabolism flux for successful decidualization

through Gln-Glu-aKG-dependent H3K27 demethylation in

promotor regions of PRL and IGFBP1, while patients with RSA

exhibited impaired decidualization owing to deficient Gln

metabolism (75).

The influences of carbohydrate metabolism, lipid metabolism

and amino acid metabolism during decidualization are not

independent (Figure 1). Intake of w-3 PUFAs has positive effects

on pregnancy outcome (76). G-protein-coupled receptor 120, the

receptor of w-3 PUFAs, can facilitate decidualization by

upregulating GLUT1-mediated glucose uptake and G6PD-

mediated PPP of HEnSCs (77). In obese pregnant mice,

decidualization of endometrium is compromised with significant

decrease in key glycolytic enzyme (hexokinase2, pyruvate kinase M2

(PKM2) and LDHA) levels, indicating that disorders of lipid

metabolism may impair glycolysis of EnSCs and decidualization

(78). Additionally, blocked decidualization of HEnSCs by b-
oxidation inhibitor happened to resume after several days due to

a compensatory up-regulation of GLUT1 level and an enhancement

in glucose metabolism, suggesting a delicate relationship between

glucose and lipid metabolism during decidualization (53). Such

phenomena obviously exist, but our discoveries concerning it are

still limited.

Nevertheless, the energy metabolic profile of decidualization

still has many undiscovered fields to be explored. Notably,

substances involved in energy metabolism also mediate the
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communication between DICs and DSCs to favor decidualization.

For example, Daniele Croxatto et al. found that both IDO and PGE2

play important roles in DSC-mediated inhibition of natural killer

(NK) cell and dendritic cell (DC) function (79). Next, we will focus

on DICs and further elaborate possible mechanisms of the interplay

among DICs, DSCs and trophoblasts during decidualization.
3 DICs during decidualization

During decidualization, unique immune cell niches are found in

decidual bed, suggesting immune cells are involved in

decidualization process. A large number of immune cells are

recruited to the maternal-fetal interface and then called DICs.
Frontiers in Immunology 05
DICs, mainly including NK cells, T cells, macrophages and DCs,

account for 30%–40% of the total decidual cells in early pregnant

uterus. Great importance in immune tolerance has been attached to

DICs, while the roles of DICs in decidualization are nonnegligible.
3.1 NK cells and decidualization

NK cells increase dramatically during the secretory menstrual

phase and early pregnancy, constituting approximately 70% of

DICs. Unlike 90% of peripheral blood NK cells with a

CD56dimCD16+phenotype, most decidual NK cells (dNKs) have

a CD56brightCD16- phenotype with reduced cytotoxicity.

CD56brightCD16- NK cells are capable of producing various
FIGURE 1

Schematic mechanism of the energy metabolism during decidualization. (1) ATX-LPA-LPA3 signaling in the uterine epithelium induces
decidualization via HB-EGF/COX-2-Bmp2/Wnt4 signaling pathways. Three subunits of the SPT holoenzyme (Sptlc1, Sptlc2, and Ssspta) are
significantly up-regulated in mouse USCs, resulting in de novo synthesis of sphingolipids, to promote decidualization. (2) Glucose uptake is increased
and is indispensable for decidualization by activating the histone modification status of the promoters of PRL, IGFBP1 and FOXO1. The FBP level in
DSCs is significantly increased, which elevates IL-27 expression, triggering COX-2+ M2-like macrophages differentiation, Treg expansion, and Th2
bias to improve decidualization and trophoblast invasion. (3) cAMP enhances stromal cells proliferation through PKA/p-Creb/Ass1/L-Arg signaling
pathway. Tryptophan enters into cells via SLC7A5 and stimulates the expression of PRL and IGFBP1 through kynurenine pathway. Accumulated a-KG
derived from activated glutaminolysis contributes to ATP production and decidualization (4) The influences of carbohydrate metabolism, lipid
metabolism and amino acid metabolism on DSC differentiation are not independent. For example, GPR120, receptor of w-3 PUFAs, functions to
promote decidualization by upregulating GLUT1-mediated glucose uptake and G6PD-mediated PPP of HEnSCs in a ERK1/2 and AMPK pathway.
Endothelial-derived prostacyclin and PGE2 can accelerate decidualization by increasing intercellular cAMP in the endometrial perivascular stroma.
ATX, autotaxin; LPA, lysophosphatidic acid; HB-EGF, heparin-binding epidermal growth factor; COX-2, cyclooxygenase-2; Bmp2, bone
morphogenetic protein 2; SPT, serine palmitoyltransferase; USCs, uterine stromal cells; E2, estrogen; PRL, prolactin; IGFBP1, insulin growth factor
binding protein 1; FOXO1, Forkhead box O1; FBP, fructose-1;6-bisphosphate; DSCs, decidual stromal cells; PFK1, phosphofructokinase 1; FBP1,
fructose-bisphosphatase 1; Th, helper T cell; Treg, regulatory T cell; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A; p-Creb,
phosphorylated cAMP-response element binding protein; Ass1, Argininosuccinate synthase; Asl, Argininosuccinate lyase; L-Arg, L-Arginine; SLC7A5,
solute carrier family 7; member 5; IDO, indoleamine 2;3-dioxygenase; AHR, Aryl hydrocarbon receptor; CYP1A1, Cytochrome P450 1A1; CYP1B1,
Cytochrome P450 1B1; 2-OH E2, 2-hydroxy estradiol; 4-OH E2, 4-hydroxy estradiol; a-KG, a-ketoglutarate; Gln, glutamine; GLS1, glutaminase 1;
Glu, Gln-glutamic acid; GLUD1, Glu dehydrogenase 1; GPT2, glutamic-pyruvic transaminase 2; GOT2, glutamic-oxaloacetic transaminase 2; GPR120,
G-protein-coupled receptor 120; PUFA, Polyunsaturated fatty acids; GLUT1, glucose transporter-1; G6PD, glucose-6-phophate dehydrogenase; PPP,
pentose-phosphate pathway; HEnSCs, human endometrial stromal cells; ERK1/2, extracellular regulated protein kinases; AMPK, adenosine 5’-
monophosphate (AMP)-activated protein kinase; PGE2, prostaglandin E2; PGT, prostaglandin transporter.
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soluble factors, such as vascular endothelial growth factor (VEGF),

placental growth factor (PLGF), IL-8, IL-1b, CCL2/monocyte

chemoattractant protein 1 (80). NK cells play an important role

in trophoblast invasion and SA remodeling. Women with

antiphospholipid antibodies circulation have much lower absolute

levels of NK cells than healthy women and have a higher risk of

suffering from reproductive failures such as miscarriage,

preeclampsia, infertility and failure of IVF, which implies that the

lack of NK cells may be associated with insufficient preparation of

decidualized endometrium for embryo invasion (81). A single-cell

transcriptomics atlas of the maternal-fetal interface between 6-14

weeks of gestation identified three main dNK subsets with co-

expression of CD49A and CD9: dNK1, characterized by CD39,

CYP26A1 and B4GALNT1; dNK2, defined by ANXA1 and ITGB2;

and dNK3, with expression of ITGB2, CD160, KLRB1 and CD103,

but not CD127, among which dNK1 subset can be primed

metabolically through increased expression of glycolytic enzymes,

which is a crucial part of carbohydrate metabolism during

decidualization as mentioned above (6).

The phenotype and function of uterine NK cells (uNKs) are

regulated by a variety of cytokines, among which IL-15 plays a key

role in function reprogramming of uNKs (82). IL-15 is expressed at

all stages of human menstrual cycle and in first trimester decidua,

the level of which can be up-regulated by both PGE2 and IFN-g in
cultures of HEnSCs (83). Whereas transcription of IL-15 initiates

following the onset of decidualization and terminates on Gd11 in

mouse uterus (84). uNKs responding to IL-15 can upregulate the

expression of VEGF and PLGF, both related to potent pro-

angiogenic effects in vitro and in vivo (82). Upon induction with

IL-15, the proliferation, cytolytic capacity and IFN-g production

were also severely impaired in NK cells isolated from peripheral

blood of healthy donors (79). Compared to wild type mice, IL-15

deficiency mice had neither uNKs nor SA remodeling

at the blastocyst implantation sites, and lacked integrated

decidualization. The fact is that uNKs upregulate IL-15 and IL-

15Ra in stromal fibroblast for decidualization promoting, which in

turn provides a niche for uNK proliferation and recruitment,

mirroring the essential role of IL-15-responding uNKs during

decidualization (85). uNKs also actively and systematically

eliminate senescent EnSCs only upon decidualization, which

remodels and rejuvenates the endometrium for embryo

implantation (86). It was also showed that the isolated primary

dNKs secreted IL-25 time dependently, the level of which was

apparently increased following co-culture with HEnSCs, further

promoting the decidualization in vitro (87). This example may

provide another perspective that dNKs can facilitate decidualization

by interacting with EnSCs.
3.2 DCs and decidualization

Despite the magnitude of DCs in decidua is few (only account

for 1% of the DICs), DCs are the most prominent antigen

presenting cells for immune tolerance during pregnancy,

especially CD11c+ DCs (88). The number of DCs reached a

maximum in mouse uterus at Gd 5.5. This early accumulation
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has been connected to the transient inflammatory milieu of WOI

(89). Loss of DC alone directly leads to obstacle in decidualization

and embryo implantation. Moreover, DC depletion also impairs NK

cell differentiation and DSC proliferation, resulting in a reduced

breeding efficiency in mice (90). The above two points indicate the

irreplaceable function of DCs in addition to the classical

immunomodulatory effects during decidualization.
3.3 Macrophages and decidualization

Macrophages represent 10%-20% of the leukocytes at the

maternal-fetal interface (91). Macrophages are classified into two

groups: microbicidal and pro-inflammatory M1 or classically

activated macrophages, and anti-inflammatory M2 or

alternatively activated macrophages (92, 93). Macrophages are

distributed throughout mouse uteri before implantation, but they

are dispelled in the decidual zone after implantation, this variation

may protect developing blastocyst from inflammatory injury by

macrophages (94). Decidualization inducer MPA can drive a M2

differentiation in human monocytic cell line THP-1. The MPA-

stimulated M2 promote the decidualization of HEnSCs and the

invasion of trophoblasts (95). Macrophages also play a critical role

in supporting the extensive vascular network in corpus luteum and

production of P4. In macrophage-depleted mice, ovaries were

hemorrhagic with a highly irregular architecture and extensive

structural disruption in most corpora luteal. Meanwhile, plasma

P4 was reduced significantly. Adverse pregnancy outcomes can be

rescued by exogenous P4 or bone marrow-derived CD11b+F4/80+

monocytes/macrophages, suggesting that macrophages may

promote decidualization by maintaining normal structure of

corpus luteum and P4 levels (96). Decidual macrophages have

higher level of IL-27 receptor (IL-27R) than other decidual cells.

The co-culture of decidual macrophages and HEnSCs, especially IL-

27ove r HEnSCs, induces COX-2+M2-l ike macrophage

differentiation. In turn, COX-2+ decidual macrophages promote

decidualization and trophoblast invasion, thus preventing

pregnancy loss induced by the absence of the IL-27/IL-27RA

signal axis (39).
3.4 T cells and decidualization

CD3+ T cells appear to be relatively sparse in the human

decidua, accounting for 10%–20% of DICs. 30%–45% CD3+ T

cells are CD4+ T cells and 45%–75% are CD8+ T cells (97).

Developmental process of decidualization reduced the T cell

chemo-attractants production under inflammatory conditions due

to a gene-specific intrinsic inability to recruit T cells from the blood

independent of inflammatory signaling (98). In women with

antiphospholipid syndrome, prominently reduced absolute level

of T cells was found, which may be associated with insufficient

decidualization of endometrium for embryo invasion (81).

Pregnancy is recognized as a Th2-like predominant immunity

event (99–101), characterized by increased Th2-type cytokines

(IL-4, IL-10, IL-5 and IL-13) and decreased Th1-type cytokines
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1203719
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Meng et al. 10.3389/fimmu.2023.1203719
(tumor necrosis factor (TNF)-a, TNF-b, INF-g and IL-2). IGFBP7

functions as a decidualization modulator in EnSCs. Inhibition of

IGFBP7 shifts mouse uterine cytokines to Th1-type dominance and

represses decidualization, resulting in pregnancy failure (102). This

may indicate that Th2 bias existing at the maternal-fetal interface is

essential for decidualization.

Now the Th1/Th2 paradigm has been expanded into Th1/Th2/

Th17 and Treg paradigm (103, 104). Th1, Th2, and Th17 cells are

defined by their cytokine production (IFN-g, IL-4, and IL-17,

respectively). Tregs are defined by Foxp3 expression. They have

different but partly overlapping chemokine receptor profiles (105).

Tregs are significantly enriched in decidua and display a more

homogenous suppressive phenotype with more frequent expression

of Foxp3, human leukocyte antigen DR (HLA-DR), and cytotoxic T-

lymphocyte antigen 4 (CTLA-4) (104). However, the underlying

mechanisms of how do Tregs and Th17 cells function during

decidualization is not clear to date, which needs further investigation.
3.5 The crosstalk of DSCs, trophoblasts
and DICs during decidualization

Successful pregnancy is a very complex biological regulation

process, which not only requires the mother to tolerate the fetus as

an allograft, but also relies on well-developed placenta and decidua. A

complex and reciprocal interaction between the mother and fetus is

required to maintain the growth and development of the fetus in the

uterus until delivery. For example, DICs attempt to attack allogeneic

fetal placental trophoblasts by producing the Th1 type cytokine TNF-

a, while trophoblasts intend to defend themselves by producing the

Th2-type cytokines, in which situation, DSCs play an intermediary

role in reconciling the relationship between DICs and trophoblasts

and creating a harmonious Th2 bias microenvironment.

Maternal immune cells can be educated by embryonic

trophoblasts to develop a unique phenotype and maintain fetal

tolerance. Trophoblasts-derived thymic lymphopoietin (TSLP)

contributes to instructing DCs to secrete IL-10 and CCL17, so as

to induce Th2 bias at the maternal-fetal interface. TSLP-activated

decidual DCs induce proliferation and differentiation of CD4+

CD25+Foxp3+ Tregs through transforming growth factor beta 1

(TGF-b1). Then, decidual Tregs can promote invasiveness and

HLA-G expression of trophoblasts, leading to preferential

production of Th2 cytokines and reduced cytotoxicity in decidual

CD56brightCD16- NK cells (106). Trophoblasts also contribute to

the increased expression of T cell immunoglobulin and mucin

domain-containing protein 3 (Tim-3), programmed cell death

protein 1 and CTLA-4 on DICs to further develop a regulatory

phenotype for fetal tolerance in an HLA-C-restricted manner (107–

111). Tim-3/CTLA-4 pathways, in turn, might operate within the

functional immune-modulatory network not only to promote

maternal-fetal tolerance but also to improve trophoblast function

through DIC-trophoblast interaction dependent on IL-4 and IL-10

(112). DSCs provide fundamental decidual bed for the recruitment,

differentiation and maturation of DICs. DSC-derived CCL2

enhances proliferation and inhibits apoptosis of DICs. CCL2

induces Th2 bias by upregulating Th2 type transcription factor
Frontiers in Immunology 07
GATA-3 and downregulating Th1 type transcription factor T-bet.

Meanwhile, Th2 cytokines IL-4 and IL-10 in turn increase CCL2

production by DSCs (113), which forms a positive regulatory loop.

Additionally, CCL2 secreted by DSC inhibits NK cells cytotoxicity

by upregulating suppressors of cytokine signaling 3 (114). The

crosstalk of DSCs, trophoblasts and DICs also exists during

decidualization (Figure 2).

Cumulative evidence has suggested that stromal cells can

modulate immune cell phenotype and maintain normal functions

of immune cells in many ways, which in turn contribute to the

decidualization of EnSCs. The crosstalk between DSCs and DICs is

important for decidualization and pregnancy maintenance. In

human, differentiation from decidual CD34+ hematopoietic

precursors to mature CD56brightCD16−KIR+/− NK cells can be

obtained upon co-culture with DSCs in absence of added

cytokines (115). DSCs severely impaired cytolytic activity and

IFN-g production of dNKs (79). High level of autophagy in DSCs

facilitates the adhesion and retention of dNKs, further promoting

decidualization. Patients with unexplained spontaneous abortion

may display insufficient DSC autophagy and dNK residence, which

can be prevented by rapamycin, an autophagy inducer (116). A

single−cell RNA sequencing study found a unique insulin-like

growth factor 1 (IGF1) + stromal cell that may participate in the

initiation of decidualization. Meanwhile, amphiregulin (AREG)+

NK cells could accelerate decidualization and extra-villous

trophoblast (EVT) invasion by interacting with IGF1+ stromal

cells via AREG−IGF1 and AREG−CSF1 regulatory axe (117).

cAMP is a critical substance for efficient decidualization (118).

Decidualization-derived cAMP can not only promote FOXO1-

mediated CD56 upregulation in NK cells, but also promote VEGF

production and enhance vascular remodeling ability of NK cells

during the critical period of decidualization (119). TNF receptor 1

(TNFR1) expression is significantly upregulated among DSCs and

macrophages in RSA decidua, which mediates TNF-a-induced
excessive stromal senescence following decidualization through

TNFR1/p53/p16 pathway (120). DSC-derived IL-33 increases Th2

cytokine (IL-4, IL-13, and IL-10) with a concomitant decrease in

TNF-a of dNK cells through NF-kB signaling (121). Daniele

Croxatto et al. also found that DSCs mediated the inhibition of

DC differentiation and its function to induce allogeneic T cell

proliferation (79).

In mice, there is a subtle interaction between IL-33-producing

non-immune cells (myometrial fibroblasts, decidual endothelial and

stromal cells) and ST2+ immune cells during decidualization. IL-33

signaling promotes decidualization and vascularization in early

pregnancy, which in turn lays the foundation for optimal

outcomes at later stages of pregnancy (122). Jiang’s team first

reported the role of non-decidualized EnSCs on embryo

implantation in CD-1 mouse model at the post-implantation

stage by single-cell RNA-sequencing. The results showed that

EnSCs exhibited the most outgoing signals, whereas CD8+T cells

received most of the incoming signals at Gd 4.5 and 5.5. EnSCs

actively mediate maternal immune tolerance via intracellular

adhesion molecule 1, CXCL, activated leukocyte cell adhesion

molecule and gelatin signaling on CD8+T cells as well as NKG2D

and CD137 on uNKs to inhibit their cytotoxicity (123). Taken
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together, the interplay between stromal cells and immune cells is

tightly correlated with decidualization.

Trophoblasts are also critical in the complex interaction of

human decidualization. Trophoblasts, DSCs and sex hormones

jointly contribute to the high level of IDO, a tryptophan-

catabolizing enzyme, in macrophages during early pregnancy,

which triggers M2 polarization, promotes invasion-related

molecules (CXCL12 and Bmp2) expression and trophoblast

proliferation (124). Vasoactive intestinal peptide, a pleiotropic

peptide produced by trophoblasts, might participate in the

decidualization process by inducing differentiation markers and

increasing induced Tregs (iTregs) chemokine CCL5 production

(125, 126). In first trimester decidua, CD68+macrophages and DSCs

express arachidonate 5-lipoxygenase (ALOX5), a lipoxygenase

enzyme involved in the synthesis of proinflammatory

leukotrienes. EVT-derived proflin1 can promote stromal cell

decidualization via suppressing ALOX5 in human monocyte cell

line and primary HEnSCs. These showed a key role of HEnSC-EVT

crosstalk during decidualization (127).

Trophoblasts also promote the accumulation of FBP in DSCs

during decidualization. FBP increases IL-27 expression in DSCs
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in a PKM2/ERK1/2/c-FOS-dependent manner. On the one hand,

IL-27 tr iggers decidual COX-2+ M2-l ike macrophage

differentiation (39), on the other hand, IL-27 facilitates

decidualization by increasing the expression of E2 and P4

receptors via STAT3 phosphorylation (128). CD44 and its

isoform CD44v3 are transmembrane glycoproteins expressed

in EnSCs. CD44v3-knockdown led to downregulation of PRL

and IGFBP1, suppression of HEnSC proliferation and

decidualization, and inhibition of trophoblast outgrowth (129).

Additionally, abnormal elevation of IGF2BP3 (insulin-like

growth factor 2 mRNA-binding protein 3) in HEnSCs

impaired decidualization by inhibiting TGF-b1 pathway,

disrupting maternal-fetal cytokine crosstalk and suppressing

trophoblast invasion (130). In mice, EnSC-trophoblast

crosstalk can also be mediated by EVs. EnSCs secrete EVs in

HIF2a-Rab27b pathway during decidualization. Matrix

metalloproteinase-2, a prominent EV cargo protein, is a

pivotal mediator contributing to uterine decidualization and

ang iogene s i s p rograms (131) . Co l l e c t i ve l y , hea l thy

decidualization requires moderate and effective dialogue

between trophoblasts and decidual cells.
FIGURE 2

The crosstalk of DSCs, trophoblasts and DICs during decidualization. During decidualization, high level of autophagy in DSCs upregulates TNFRSF14.
The TNFSF14-TNFRSF14 signal contributes to the increased adhesion ability of DSCs by upregulating MMP9 expression, further facilitating the
residence of dNKs in decidua. Moreover, DSCs increase the expression of CD56 on NK cells by producing abundant cAMP. CD56bright dNKs can
promote vascular remodeling of trophoblast via VEGF-VEGFR2 interaction. DSCs also produce IL-33 to regulate decidualization by interacting with
ST2+ DICs and promoting type 2 responses. EnSCs mediate maternal immune tolerance via ICAM, CXCL, ALCAM and gelatin signaling on CD8+T
cells as well as NKG2D and CD137 on uNKs to inhibit their cytotoxicity. In addition to DSCs, EVT-secreted PFN1 promotes stromal cell
decidualization via the down-regulation of ALOX5. Trophoblasts mediate the recruitment of iTregs, one of the important components of DICs, in a
VIP/CCL5 pathway. Trophoblasts also promote the enrichment of FBP in DSCs, which can upregulate IL-27, further maintaining normal pregnancy
by inducing decidual COX-2+ M2 macrophage differentiation. DSCs, decidual stromal cells; DICs, decidual immune cells; TNFSFR14, tumor necrosis
factor (TNF) superfamily member receptor 14; TNFSF14, TNF superfamily member 14; MMP9, matrix metalloproteinase 9; dNKs, decidual natural
killer cells; cAMP, cyclic adenosine monophosphate VEGF, vascular endothelial growth factor; VEGFR2, vascular endothelial growth factor receptor2;
ICAM, intracellular adhesion molecule 1; CXCL, chemokine C-X-C motif ligand; ALCAM, activated leukocyte cell adhesion molecule; EVT,
extracellular villus trophoblast; PFN1, profilin 1; ALOX5, lipoxygenase arachidonate 5-lipoxygenase.
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4 Conclusion and prospects

Decidualization is a significant biological event including

intricate mechanisms. However, much less attention has been

given to decidua than trophoblasts. Ultimately, decidualization

acts as the “soil” for the “seed” (embryo implantation). EnSCs of

recurrent abortion patients show an aberrant response to

decidualization in vitro, manifested by attenuated PRL production

and prolonged and enhanced prokineticin 1 level. Some hypotheses

also suggest the endometrial selectivity of embryo by decidualized

EnSCs. For which, the inclination of miscarriage may be due to the

failure of embryo selection by abnormal decidualization (22, 132). A

strong signature of dysregulated decidual gene expression (e.g.,

decreased levels of IGFBP1, glycodelin, PRL and IL-15) also

emerged among women with severe preeclampsia compared with

those experienced normal pregnancies (133, 134).

In this review, we elaborate the crosstalk of functional cells at

the maternal-fetal interface during the decidualization process, with

a special focus on the metabolic profiles on the initiation and

maintenance of decidualization. Integrated differentiation of DSCs

as well as DICs and trophoblasts are significant components of

normal decidualization and subsequent healthy pregnancy.

Dysfunction of each part will result in pathological pregnancy.

Our understanding of how the trophoblasts, DSCs and DICs

network orchestrates crucial events during normal pregnancy and

pregnancy complications remains incomplete. Clues have also been

found on epigenetic regulation to immune cells together with

metabolism alteration, indicating there are abstruse association

among immune, metabolic and epigenetic approach accompanied

by differentiation of DSCs in the process of decidualization. It will

give us more hints in the future research in order to better

understand decidualization.
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