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Editorial on the Research Topic
Statistical methods for analyzing multiple environmental quantitative
genomic data

Phenotypic variation arises from the combined effects of genetic and environmental
factors, including interactions between them (Lynch and Walsh, 1998). Studying the
relationship between phenotypes, genotypes, and environments using sophisticated
statistical models becomes a crucial Research Topic in quantitative genetics (Crossa
et al., 2021). Recent advancements in high-throughput genotyping (Hu et al., 2021) and
phenotyping (Gill et al., 2022) measurement techniques have enabled the acquisition of
large-scale genomic, phenomic, and environmental data by quantitative geneticists. This
Research Topic highlights several novel statistical analytical tools that can effectively leverage
high-dimensional data to gain a deeper understanding of genotype-environment
interactions (GEI) (Elias et al., 2016; van Eeuwijk et al., 2016) and use them to predict
phenotype outcomes.

One important research direction in plant and animal breeding is genomic selection or
genomic prediction (GP) (Meuwissen et al., 2001), a molecular breeding technique that uses
genome-wide datasets to predict the genomic estimated breeding values (GEBV) or
genotypic values of individuals for economically important traits. Many quantitative
traits, such as yield, have a very complex genetic architecture (Doerge, 2002; Bernardo,
2016). Therefore, incorporating environmental data into the genomic prediction model and
properly describing gene-environment interactions (GEI) is crucial to provide promising
predictions of individual’s performance. Different strategies have been used to accounting
for GEI in GP models and it is still an area of active research (Jarquín et al., 2021). A natural
modelling approach includes extending GP mixed models to incorporate a covariance
relationship matrix between environments based on phenotypic information (Piepho, 1998;
Burgueño et al., 2012; Lado et al., 2016; Malosetti et al., 2016) or environmental covariates
(Jarquín et al., 2014). These can be included as either linear or non-linear kernels (Costa-
Neto et al., 2020). Models based on observed covariance among environments cannot
however predict the performance of individuals in untested environments (Heslot et al.,
2014). An alternative to predict the performance of individuals in untested environments is
to use environmental covariates in either partial-least squares regressions (Crossa et al., 1999;
Monteverde et al., 2019) or for genotype-specific reaction norms in random regression
models (Schaeffer, 2004; Buntaran et al., 2021) or P-splines (Bustos-Korts et al., 2021). Due
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to high availability of environmental covariates and their highly
correlated nature, not all environmental covariates are equally
informative (Bustos-Korts et al., 2015) and variable selection has
been proven useful in improving the performance (Neyhart et al.,
2022).

Conventional prediction models, such as reaction norm model
(Jarquín et al., 2014) or genomic best linear unbiased prediction
model (G-BLUP) for GEI, face particular challenges when used to
predict untested lines in new environments. As an improvement,
Montesinos-López et al. demonstrated the use of partial least squares
(PLS) regression approaches (Boulesteix and Strimmer, 2007) for
conducting multiple environmental genomic prediction in 14 real
data sets. The PLS method can simultaneously account for G, E and
GEI effects for genomic prediction, and the multiple case studies
have demonstrated that PLS can provide more accurate prediction
compared to conventional GP methods for lines in new
environments. Montesinos-López et al. further extended the PLS
approach to a multivariate PLS regression that can simultaneously
analyse multiple traits and it showed supervisor prediction
performance to single trait PLS as well as G-BLUP because the
MPLS approach can account for the correlation among traits and
can therefore borrow strength from each other during the analysis.

When incorporating more data into a genomic prediction
model, the numerical computation for parameter estimation may
become infeasible. To overcome this challenge, Manthena et al.
evaluated a series of dimensional reduction methods such as random
projection, random and deterministic sampling, and shrinkage
methods which were applied to reduce the dimension of the SNP
data ahead of the multiple environment GP analyses. The study
demonstrated that some of these methods were effective not only on
reducing the computational cost, but also can maintain and
sometimes even improve the predictability. However, the paper
also concludes that there is no dimensional reduction approach
which can constantly outperform other methods across data sets.
Future efforts are needed to develop more robust dimensional
reduction methods compile with the genomic prediction.
Additionally, dimension reduction can also be conducted guided
by linkage disequilibrium (LD) (Slatkin, 2008) or the correlation
structure among loci. Jin et al. developed a LD network approach to
model the correlation among genome-wide markers and cluster
them into LD blocks using an efficient sparse graphical learning
approach, and the dimension reduction within each LD block using
classical principal component analysis. Interestingly, this approach
is initially proposed for studying local adaptation using population
genomics (Jones et al., 2012) data, but can also be applicable as a tool
for dimensional reduction for GP data.

GP models such as reaction norm model and PLS are able to
predict outcomes on the basis of GEI, but they cannot be used to
identify genes that are associated with GEI. For the gene discovery
purpose, Onogi et al. developed a data driven approach named
Environmental Covariate Search Affecting Genetic Correlations
(ECGC). The ECGC firstly calculated the genetic covariance
between the pairwise environments, and then considered the
correlation coefficients as the “trait” in the genome-wide
association study to identify significant SNPs associated with the
environmental stimuli. The ECGC approach was applied on a large-
scale soybean data set, which yielded biological meaningful results.

As a conclusion, this Research Topic collects a series of modern
quantitative genomic methods that can effectively analyse large-
scale genomic, phenomic and environmental data sets, with the aim
to either predict individuals’ outcome of quantitative traits or to
identify important genes that are linked to genotype by environment
interactions. We are hopeful that these new analytical tools can
provide useful additions to the existing quantitative genetic methods
for analysing high dimensional biological data sets and can also
inspire new research development in this existing research area,
especially to meet challenges of big data arising in this post-
genomic era.
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