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Identification of a six-gene
signature to predict survival and
immunotherapy effectiveness
of gastric cancer

Qi Wang*, Biyuan Zhang, Haiji Wang, Mingming Hu, Hui Feng,
Wen Gao, Haijun Lu, Ye Tan, Yinying Dong, Mingjin Xu,
Tianhui Guo and Xiaomeng Ji

Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao,
Shandong, China
Background: Gastric cancer (GC) ranks as the fifth most prevalent malignancy

and the second leading cause of oncologic mortality globally. Despite staging

guidelines and standard treatment protocols, significant heterogeneity exists in

patient survival and response to therapy for GC. Thus, an increasing number

of research have examined prognostic models recently for screening high-risk

GC patients.

Methods:We studied DEGs between GC tissues and adjacent non-tumor tissues

in GEO and TCGA datasets. Then the candidate DEGs were further screened in

TCGA cohort through univariate Cox regression analyses. Following this, LASSO

regression was utilized to generate prognostic model of DEGs. We used the ROC

curve, Kaplan-Meier curve, and risk score plot to evaluate the signature’s

performance and prognostic power. ESTIMATE, xCell, and TIDE algorithm were

used to explore the relationship between the risk score and immune landscape

relationship. As a final step, nomogram was developed in this study, utilizing both

clinical characteristics and a prognostic model.

Results: There were 3211 DEGs in TCGA, 2371 DEGs in GSE54129, 627 DEGs in

GSE66229, and 329 DEGs in GSE64951 selected as candidate genes and

intersected with to obtain DEGs. In total, the 208 DEGs were further screened

in TCGA cohort through univariate Cox regression analyses. Following this,

LASSO regression was utilized to generate prognostic model of 6 DEGs.

External validation showed favorable predictive efficacy. We studied interaction

between risk models, immunoscores, and immune cell infiltrate based on six-

gene signature. The high-risk group exhibited significantly elevated ESTIMATE

score, immunescore, and stromal score relative to low-risk group. The

proportions of CD4+ memory T cells, CD8+ naive T cells, common lymphoid

progenitor, plasmacytoid dentritic cell, gamma delta T cell, and B cell plasma

were significantly enriched in low-risk group. According to TIDE, the TIDE scores,

exclusion scores and dysfunction scores for low-risk group were lower than

those for high-risk group. As a final step, nomogram was developed in this study,

utilizing both clinical characteristics and a prognostic model.
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Conclusion: In conclusion, we discovered a 6 gene signature to forecast GC

patients’OS. This risk signature proves to be a valuable clinical predictive tool for

guiding clinical practice.
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1 Introduction

Gastric cancer (GC) ranks as the fifth most prevalent malignancy

and the second leading cause of oncologic mortality globally (1).

There are several different types of GC, of which gastric

adenocarcinoma accounts for 90% of total cases. The tumor, node,

and metastasis (TNM) classification system and histological types are

the most common methods for evaluating prognosis judgement and

therapy guidance. Despite staging guidelines and standard treatment

protocols, significant heterogeneity exists in patient survival and

response to therapy for GC (2). Thus, an increasing number of

research have examined prognostic models recently for screening

high-risk GC patients. A large body of evidence suggests that immune

cell infiltration in cancer has a critical function in carcinogenesis and

progression, with much emphasis on predictive efficacy of

immunotherapy (3, 4). A genetic analysis of Cancer Genome Atlas

(TCGA) identified four distinct molecular subgroups of GC: Epstein-

Barr virus (EBV) positive, microsatellite instability, genomic stability,

and chromosomal instability (5). The EBV positive subtype presents

with abundant PD-L1 expression, and has intensively described as a

subset possibly profiting from immunotherapy (5). Infection with

EBV triggers immune responses, and alters immune-related

molecular components with immune cells recruitment (6).

Although EBV positive GC patients are potentially eligible for

immunotherapy theoretically, the efficacy of immune checkpoint

inhibitors (ICIs) has been equivocal (7, 8). PD-L1 is a widely

utilized prognostic biomarker for immunotherapy in variety of

malignancies (9). Nevertheless, only around 20% of GC patients

benefit from immunotherapy, and the immunological processes

implicated in the processes are yet unknown (10). Due to high GC

tumor heterogeneity, immune therapy can differ greatly from patient

to patient. Furthermore, ICIs’ high cost and limited availability

significantly restrict their clinical application. Thus, the need to

learn more about GC pathogenesis heterogeneity and to find new

immunotherapeutic targets and prognostic markers has attracted

increasing attention in recent years.

The current investigation utilized the Gene Expression Omnibus

(GEO) and TCGA databases to formulate a prognostic signature of

six genes for GC patients. At first, we explored differentially-

expressed genes (DEGs) from TCGA and GEO databases across

GC and adjacent non-tumor tissues. The gene ontology (GO)

enrichment analysis and Kyoto Encyclopedia of Genes and

Genomes (KEGG) indicated DEGs were potentially involved in

modulation of tumor immune microenvironment (TME). We
02
further screened survival-related signatures and constructed a six-

gene prognostic model among TCGA dataset. Based on the six-gene

signature, we examined the link between risk models, immunoscores,

immune cell infiltration, and cancer cell stemness. Overall, our study

explored a six-gene risk model that can potentially identify GC

patient’s risk and predict immunotherapy response.
2 Methods and materials

2.1 Data source

Based on TCGA (https://portal.gdc.cancer.gov/), 375 GC

samples and 32 non-tumor samples were downloaded, along with

their mRNA expression profiles. Three independent datasets were

obtained from GEO: GSE54129, GEO: GSE66229 (11), and GEO:

GSE64951 (12). We obtained external validation data from GEO:

GSE62254 (13). We examined the relationship across prognostic

model and immunotherapy response in four immunotherapeutic

cohorts: the IMvigor210 cohort (atezolizumab for locally advanced

or metastatic urothelial cancer), the GSE78220 (melanoma with

anti-PD-1 treatment), the GSE35640 (melanoma with MAGE-A3

immunotherapy), and GSE67501 (renal cell carcinoma with anti-

PD-1 immunotherapy). The “IMvigor210CoreBiologies” R

packages were utilized to retrieve the transcriptomic and clinical

IMvigor210 variables. A log2 transformation was conducted using

limma Bioconductor package to transform the expression data from

each database into fragments per kilobase of transcripts per million

mapped reads (FPKMs). Gene symbols identified by multiple

probes were computed based on their average expression levels.
2.2 Identification ferroptosis-related DEGs

By using limma Bioconductor package, DEGs between GC and

adjacent non-tumor tissues were detected among TCGA dataset,

GSE54129, GSE62259, and GSE64951. The threshold values in the

GSE54129, GSE66229, and GSE64951 were as follows: log2|fold

change| ≥1 and P-value<0.05. The generation of heatmap and

volcano plot was performed through the utilization of R

“pheatmap” package (14). We analyzed GO and KEGG

enrichment analyses to assess possible DEG functions (15, 16).

BiNGO plugin for Cytoscape was used to analyze GO enrichment

in DEGs.
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2.3 Prognostic model construction
and validation

Utilizing R “survival” package, a univariate Cox regression was

done on TCGA cohort to assess overall survival (OS) related genes.

Subsequently, we proceeded to generate a prognostic signature by

means of the least absolute shrinkage and selection operator

(LASSO) Cox regression method utilizing R “glmnet” package (17)

in TCGA cohort. Each GC patient’s risk score was determined

utilizing the following:

Risk score =o
n

i
coefficient� DEGs expression 

The GC patient cohorts were segregated into low-risk and high-

risk groups by means of the risk score median value. Subsequently,

the assessment and comparison of OS times across groups was

performed through Kaplan-Meier plot. Furthermore, prognostic

model was evaluated for its sensitivity and specificity utilizing R

“time ROC” package (18).
2.4 Immune landscape-risk
score relationship

Through gene expression data transformation, ESTIMATE is

capable of identifying the purity and activity of stromal and

immune cells within TME. R packages “estimate” (19) was

utilized to compare immunescores abundance in high-risk and

low-risk GC patients. By analyzing bulk samples using RNAseq

profiles, the xCell can estimate 64 immune cell types abundance. R
Frontiers in Oncology 03
“xCell” packages were utilized to analyze xCell scores (20). Each GC

patient’s tumor-infiltrating immune cells and risk score were

calculated relative to their abundance.

A total of eight transcripts were chosen for analysis based on their

relevance to immunological checkpoints; as CD274, CTLA4,

HAVCR2, LAG3, PDCD1, PDCD1LG2, TIGIT, and SIGLEC15. A

heatmap illustrating risk scores and immune-checkpoint-relevant

genes was generated utilizing R “pheatmap” package. We estimated

potentiality of immunotherapy response utilizing TIDE algorithm (21).
2.5 Nomogram development and validation

To guide clinical decision-making, we developed a predictive

nomogram combining predictive model risk score and clinical

characteristics. A P-value<0.05 was used to screen survival-related

clinical variables by univariate Cox analysis. After that, a nomogram

was created using multivariate survival analysis. Calibration curves

were utilized to plot nomogram predictions against measured rates.

ROC curves were utilized to evaluate prognostic model’s specificity

and sensitivity. We used R packages “rms”, “rmda”, and “time

ROC” to plot the nomogram, calibration curve, and ROC curves.
2.6 Statistical analyses

The statistical analyses were done utilizing R Studio (V. 1.4).

Students’ t-tests were used to determine the difference across

normal and tumor samples. The spherical or Fisher’s tests were

utilized when appropriate to determine if a correlation between risk

score and clinical parameters existed. The Kaplan-Meier plot was
FIGURE 1

Flow chart.
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utilized to assess survival time. All P values were 2-tailed at 0.05

significance level.
3 Results

3.1 Identifying DEGs that are related to a
worse prognosis

The study’s procedure flowchart is depicted in Figure 1. From

TCGA cohort, we obtained 3211 DEGs between GC tissues and

adjacent non-tumor tissues. Among these, 2700 genes were
Frontiers in Oncology 04
upregulated, while 511 genes were downregulated. The heatmap

and the volcano plot of DEGs are depicted in Figures 2A, B. Genes

involved in mismatch repair, IL-17 signaling pathway, cell cycle,

and base excision repair, were primarily upregulated. Pathways

including cAMP signaling, protein digestion and absorption, PPAR

signaling, Gastric acid secretion, and chemical carcinogenesis were

highly enriched in downregulated genes (Figure 2C). In the GO

functional analysis, the upregulated DEGs were chiefly enriched in

nuclear division, mitotic cell cycle checkpoint, and DNA

replication. In response to zinc ion, alcohol, and positive

regulation of ion transport, the downregulated DEGs were

enriched (shown in Figure 2D).
A B

DC

FIGURE 2

Genes differentially expressed in gastric cancer based on the TCGA database. (A) The heatmap shows differentially expressed genes in gastric cancer
based on the TCGA database. (B) Volcano plot of differentially expressed genes in gastric cancer from TCGA database. Up- and down-regulated
genes are indicated in red and blue, respectively. (C) Bubble graph for KEGG pathways. (D) Bubble graph for GO pathways.
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Under the cut-off threshold, there were 2371 genes in

GSE54129, 627 genes in GSE66229, and 329 genes in GSE64951

were selected as prospective genes and intersected with to obtain

DEGs (shown in Figure 3A). In total, the 208 DEGs were further

screened in TCGA dataset through univariate Cox regression

analysis (shown in Figure 3B). Functional enrichment analysis

was conducted to understand DEGs underlying mechanisms

among GC. The functional analyses revealed that DEGs were

largely enriched across IL-17 signaling pathways, cytokine

receptor binding, chemokine activity, cellular response to

chemokine and positive regulation of leukocyte chemotaxis

(shown in Figures 3C, D). We included 353 comprehensive

clinical data samples among TCGA cohort for subsequent

analysis and 13 genes were identified as predictive genes.
3.2 Prognostic model construction
and validation

The 353 GC patients from TCGA database were utilized as a

training set. In order to verify prognostic signature accuracy and

reliability, GEO GSE62254 was utilized as a validation cohort. Our
Frontiers in Oncology 05
study utilized TCGA dataset to establish a prognostic signature

utilizing LASSO regression. The above 13 genes were further

narrowed to 6 genes, namely, CTHRC1, MAMDC2, HSPB8,

EZH2, C7, and PSAPL1. Figures 4A–F shows the Kaplan-Meier

plots for these 6 genes. Based on LASSO regression analysis,

prognostic signature was developed (shown in Figures 5A, B).

Accordingly, risk scores were determined for each patient:

0.19×CTHRC1 + 0.06×MAMDC2 + 0.0005×HSPB8-0.13×EZH2 +

0.03*C7 + 0.15*PSAPL1. Based on validation and training sets, a risk

score has been assigned to each patient. Patients were classified into

high-risk and low-risk categories according to median risk score.

Figures 5C, D demonstrates that high-risk patients had a lower OS

rate than low-risk patients. Figure 5E shows that the prognostic

signature was well established at 1-, 3-, and 5-year AUCs of 0.62, 0.67,

and 0.69. Further validation of the proposed 6-gene prognostic model

was conducted. As shown in Figures 6A, B, the prognostic model

could determine the level of risk for GC patients based on Kaplan–

Meier survival plot of validation set. Survival times were significantly

shorter for high-risk scores patients than for those with low-risk

scores (HR 1.84, 95% CI 1.30-2.59, p<0.01). In the validation set, the

1-, 3- and 5-year AUC values for risk score model were 0.57, 0.61 and

0.61, respectively (Figure 6C).
A

B DC

FIGURE 3

Genes differentially expressed in gastric cancer based on the GEO database. (A) The heatmap shows differentially expressed genes in gastric cancer
based on the GSE54129, GSE64951, and GSE66229. (B) Venn diagram of differentially expressed genes. (C) Bubble graph of molecular function and
biological process. (D) DEGs were enriched by GO biological terms using Cytoscape’s BiNGO plugin.
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D E F
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FIGURE 4

Kaplan-Meier plot of the selected genes from the TCGA dataset. (A) Kaplan-Meier plot of CTHRC1. (B) Kaplan-Meier plot of EZH2. (C) Kaplan-Meier
plot of HSPB8. (D) Kaplan-Meier plot of C7. (E) Kaplan-Meier plot of MAMDC2. (F) Kaplan-Meier plot of PSAPL1.
A

B

D

E

C

FIGURE 5

Construction of GC prognostic signature in the TCGA dataset. (A) The selection of optimal predictive variables by 10-fold cross-validation. (B) LASSO
coefficients. (C) The risk plot between the high-risk and low-risk groups. (D) Analysis of overall survival between high-risk and low-risk groups.
(E) The receiver operating curve for overall survival over time.
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The predictive signature was stratified based on histopathological

grade, age, and TNM stage. Low-histologic grade patients with high-

risk groups had a HR of 1.68 (95% CI 0.96-2.92) (p=0.07, shown in

Figure 7A). Despite this, prognostic risk model correctly identified

short- and long-term survival groups for high-grade GC patients (HR

1.92, 95% CI 1.25-2.96, p=0.003, shown in Figure 7B). We further

conducted stratification analysis based on age, T, N, and clinical

staging. There was a significant correlation of risk scores with survival

was found in both groups (shown in Figures 7C-J). Among patients

with late M stage disease, the relationship was not noteworthy (HR

1.30, 95% CI 0.43-3.96, p=0.64, shown in Figures 7K, L).
3.3 Risk score-immune
landscape relationship

ESTIMATE, immune, and stromal scores were compared

between the two groups to investigate possible biological

mechanisms. The high expression of CTHRC1, MAMDC2,

HSPB8, C7 and PSAPL1 was correlated with higher ESTIMATE,

stromal and immune score, than low expression group (shown in

Figures 8A, C–F). The opposite results were observed in EZH2
Frontiers in Oncology 07
(Figure 8B). Moreover, our results showed high-risk patients had

significantly higher immune, ESTIMATE, and stromal scores than

low-risk (Figures 8G–I).

A heatmap shows immune cell infiltrate across TCGA cohort

groups (shown in Figure 9A). EZH2 expression had a significant

positive relationship with CD4+ memory T cell, CD8+ naive T cell,

CD8+ effector memory T cell, common lymphoid progenitor, mast

cell, gamma delta T cell, CD4+ Th1 and Th2 T cell, and a negative

relationship with common myeloid progenitor, eosinophil,

hematopoietic stem cell, and T cell NK. Research has shown

significant differences in CTHRC1, MAMDC2, HSPB8, and C7

expression levels among the activated myeloid dendritic cell, CD4+

memory T cell, CD8+ naive T cell, hematopoietic stem cell,

monocyte, gamma delta T cell, and B cell plasma. As shown in

Figure 9B, the proportions of activated myeloid dendritic cell, CD4+

memory T cell, myeloid dendritic cell, eosinophil, granulocyte-

monocyte progenitor, hematopoietic stem cell, macrophage,

macrophage M1, and monocyte were significantly elevated among

high-risk. We also noted a significant rise in relative fractions of

CD4+ memory T cells, CD8+ naive T cells, common lymphoid

progenitor, mast cell, plasmacytoid dendritic cell, regulatory T cells,

gamma delta T cell, and B cell plasma among low-risk group.
A B

C

FIGURE 6

Validation of prognostic signature for GC. (A) Risk plot between the high-risk and low-risk groups in the external validation dataset. (B) High-risk
versus low-risk survival analysis in the GSE62254. (C) Overall survival prediction curve based on GEO validation data.
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3.4 Survival-related gene signature related
to immune-checkpoint–relevant genes
and immunotherapeutic response among
GC patients

A heatmap illustrates survival-related gene expressions and

immune-checkpoint-relevant genes (As depicted in Figure 10A). A

notable association was observed across risk score and the expression

of CTLA4, HAVCR2, PDCD1, PDCD1LG2, and TIGIT, indicating

risk scores represent tumor-induced immunosuppression.

The TIDE score was used as a predictor of clinical outcome

after immune checkpoint blockade. Risk groups differed

significantly from low- and high-risk groups (depicted in

Figures 10B–D). The TIDE scores, exclusion scores and

dysfunction scores for low-risk were lower than high-risk group.

In addition, we identified prognostic signature for immune

checkpoint therapy response in the GSE78220, GSE35640,

GSE67501, and IMvigor210 cohort. As shown in Figures 11A–

D, there was a tendency for non-responders with higher risk

scores than responders.
Frontiers in Oncology 08
3.5 Nomogram validation and construction

According to survival-related gene signatures and clinical

characteristics, a prognostic nomogram was developed. Univariate

Cox regression analyses indicated that risk score, gender, age, clinical

stage, and T stage are independent prognostic factors (depicted in

Supplementary Table 1). Therefore, all of these factors were

incorporated into a nomogram for the purpose of predicting the 1-

and 3-year survival rates. Summing risk score and clinical parameters

based on nomogram, the survival rate was calculated (Figure 12A).

The nomogram calibration curves showed that 1-year and 3-year OS

were in accordance (Figure 12B). Nomogram results indicate AUCs

of 0.77 and 0.83 over 1- and 3-year periods (Figure 12C). Prognostic

nomogram demonstrated greater accuracy in survival outcome

predictions for GC patients.
4 Discussion

Over the past few years, the prognosis for GC patients has

primarily been determined by clinical parameters, such as TNM
A B D

E F G

I

H

J K L

C

FIGURE 7

Kaplan-Meier plot of stratified analyses of the prognostic signature for associations with clinical characteristics. (A) OS plot in G1+G2 patients. (B) OS
plot in G3 patients. (C) OS survival plot in patients older than 65 year-old. (D) OS survival plot in patients younger than 65 year-old. (E) OS survival
plot in T1+T2 stage. (F) OS survival plot in T3+T4 stage. (G) OS survival plot in N0 stage. (H) OS survival plot in N+ stage. (I) OS survival plot in stage I
+stage II. (J) OS survival plot in stage III+stage IV. (K) OS survival plot in M0 stage. (L) OS survival plot in M1 stage. (OS, overall survival; G, grade;
T, tumor; N, lymph node; M, metastasis).
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stage, serum tumor biomarkers, and pathological types.

Nevertheless, these factors are not useful for clinical decision-

making due to their limited predictive efficacy. As a result,

discovery of more efficacious biomarkers could make it easier for

physicians to make individual treatment decisions. With the

continuous evolution of sequencing technology, genomics could

potentially play a significant role in identifying predictive

biomarkers for various malignancies. There is little predictive

value in a single gene for the outcomes of GC patients. In

comparison to single gene models, multigene models are much

more predictive than single gene models.
Frontiers in Oncology 09
We studied DEGs between GC tissues and adjacent non-tumor

tissues in GEO and TCGA datasets. There were 3211 DEGs in

TCGA, 2371 DEGs in GSE54129, 627 DEGs in GSE66229, and 329

DEGs in GSE64951 selected as candidate genes and intersected with

to obtain DEGs. In total, the 208 DEGs were further screened in

TCGA cohort through univariate Cox regression analyses.

Following this, LASSO regression was utilized to generate

prognostic model of 6 DEGs. External validation showed

favorable predictive efficacy. As a final step, nomogram was

developed in this study, utilizing both clinical characteristics and

a prognostic model.
A B

D E F

G IH

C

FIGURE 8

ESTIMATE scores of the selected genes from the TCGA dataset. (A) ESTIMATE scores of CTHRC1. (B) ESTIMATE scores of EZH2. (C) ESTIMATE
scores of HSPB8. (D) ESTIMATE scores of C7. (E) ESTIMATE scores of MAMDC2. (F) ESTIMATE scores of PSAPL1. (G) Stromal score between the
high- and low-risk groups. (H) Immune score between the high- and low-risk groups. (I) ESTIMATE score between the high- and low-risk groups.
*p < .05, **p < .01, ***p < .001, and ns means not significant.
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The prognostic signature contains 6 biomarkers and categorizes

GC patients into high- and low-risk group. Among 6 genes in the

prognostic model, CTHRC1 was recognized as a novel gene

involved in tissue remodeling and found to be overexpressed in
Frontiers in Oncology 10
carcinogenesis and metastasis of several solid cancers, as breast

cancer (BC) (22) and non-small cell lung cancer (23). Gu (24) et al.

investigated the relation of CTHRC1 expression and clinical

features among GC patients. Patients with high CTHRC1
A B

FIGURE 9

Infiltration of immune cells among high-risk groups versus low-risk groups. (A) Proportional heatmap of immune cells. (B) Bar graph illustrating
differences in infiltrated immune cells in tumor microenvironments. *p < .05, **p < .01, ***p < .001, and ns means not significant.
A

B DC

FIGURE 10

Immunotherapy response of GC. (A) A heatmap of immune-checkpoint expression and risk scores. (B) A violin plot comparing ICB scores for high-
risk and low-risk. (C) A violin plot comparing Exclusion score for high-risk and low-risk. (D) A violin plot comparing Dysfunction score for high-risk
and low-risk. *p < .05, **p < .01, and ***p < .001.
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expression displayed poorer OS and disease-free survival (DFS)

than low CTHRC1 expression patients. CTHRC1 has been reported

to promoting cell migration and invasion through HIF-1a/CXCR4
signaling pathway in GC (25). Additionally, CTHRC1

overexpression induced tumor associated macrophage infiltration

via AnxA1/FPR1 and GRN/TNFRSF1A signaling pathway,

indicating CTHRC1 might be a promising predictive factor for

immunotherapy (26).

MAMDC2 was differentially expressed between normal tissues

and several solid tumors, including BC (27), head and neck

squamous cell carcinoma (28), and GC (29). Meng (30) et al.

identified MAMDC2 overexpression was significantly linked to

poor DFS of BC. There have been controversial results reported

in the literature (31). MAMDC2 was down-regulated in the BC
Frontiers in Oncology 11
cells. MAMDC2 Overexpression significantly suppressed

proliferation and induced cell apoptosis in vitro and in vivo.

There were contradictory reports on the involvement of

MAMDC2 in tumor progression in the literature. In this study,

high MAMDC2 expression patients experienced shorter OS than

low MAMDC2 expression. MAMDC2 expression was inversely

associated with CD4+ memory T cell, CD4+ effector memory T

cell, CD8+ effector T cells, plasmacytoid dentritic cell, B cell plasma,

CD4+ Th1 T cells, and gamma delta T cells. According to immune-

checkpoint–relevant transcripts, MAMDC2 was strongly correlated

to expression of PDCD1LG2, TIGIT, and SIGLEC15. Our findings

suggest that MAMDC2 overexpression may contribute to

immunological suppression in GC patients as well as a

poor prognosis.
A B

DC

FIGURE 11

Immunotherapy response to immune checkpoints in the GSE35640, GSE67501, GSE78220, and IMvigor210 cohort.(A) The violin plot comparing
responders and non-responders to immunotherapy in GSE35640. (B) The violin plot comparing responders and non-responders to immunotherapy
in GSE67501. (C) The violin plot comparing responders and non-responders to immunotherapy in GSE78220. (D) The violin plot comparing
responders and non-responders to immunotherapy in IMvigor210.
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The stress-related protein HSPB8 was first discovered in

human melanoma cells as a kinase of the H11 protein. HSPB8

Overexpression promoted proliferation, migration, and invasion

(32, 33). HSPB8 suppressed mitochondrial impairment and

aggravated proliferation and migration of A549 lung

adenocarcinoma cells (34). In GC, HSPB8 expression was

significantly linked to worse OS and recurrence-free survival (35).

Furthermore, immune cell infiltrate analysis indicated B cells,

CD4+T cells, and CD8+T cells were significantly different across

high HSPB8 expression group and low HSPB8 expression group in

bladder cancer (36).

The EZH2 methyltransferase is a core catalytic subunit of the

polycomb repressive complex 2. The EZH2 protein mediates

modifications in histone methylation that repress several tumor

suppressor genes, as DKKI, CDH1, and DAB2IP (37). Zhao (38)

et al. found EZH2 mediated EphB3 transcription through

H3K27me3 modification, and inhibited tumor proliferation and

metastasis by regulation E-cadherin and vimentin expression. Our

findings indicate that high EZH2 expression patients had

significantly longer OS than those with low EZH2 expression. The

proportions of CD8+ effector memory T cells, CD8+ naive T cells,

plasmacytoid dentritic cell, B cell plasma, CD4+ Th1 T cells, and
Frontiers in Oncology 12
gamma delta T cells were significantly elevated in low EZH2

expression patients, indicating EZH2 represented the activation

of TME.

C7 was the final component of the complement cascade and

essential for complement activation. Seol (39) et al. found C7

overexpression induced tumorsphere formation, and maintain

stemness of liver cancer cells. However, several studies reported

C7 displayed as a potential tumor suppressor and was related to

tumor progression and prognosis for certain cancers (40, 41). Our

findings suggested the high C7 expression patients had the trend to

live a longer OS. Additionally, there was significant differences in

the C7 expression levels across common lymphoid progenitor,

plasmacytoid dendritic cell, CD4+ memory T cell, CD8+ naive T

cell, gamma delta T cell, CD4+ Th1 T cell, and CD4+ Th2 T cell. The

C7 expression had notable direct correlation with the expression of

HAVCR2, PDCD1, PDCD1LG2, SIGLEC15, and TIGIT, indicating

risk score was indicative of the extent of immunosuppression

induced by tumors.

There was some literature about the oncogenic role of PSAPL1

in various solid cancers, including GC (42), BC (43), hepatocellular

carcinoma (44). Our study indicated high expression PSAPL1

patients had a worse OS than those of low expression PSAPL1.
A

B C

FIGURE 12

The assessment of a nomogram based on clinical characteristics and risk scores. (A) A nomogram based on the clinical parameters and risk model.
(B) An analysis of the calibration curves for the TCGA dataset at 1-year survival and 3-year survival. (C) Time-dependent receiver operating curve that
predicted overall survival.
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According to immune scores and immune cell infiltration, there was

no significant difference of stroma score, immune score,

ESTIMATE score, and immune cell infiltration regard to PSAPL1

expression in GC patients. Further studies are required to elucidate

PSAPL1 mechanisms in GC.

We studied interaction between risk models, immunoscores,

and immune cell infiltrate based on six-gene signature. The high-

risk group exhibited significantly elevated ESTIMATE score,

immunescore, and stromal score relative to low-risk group.

Utilizing abundance of tumor-infiltrating immune cells in each

GC patient, risk scores were calculated. As a result, we identified

that CD4+ memory T cells, CD8+ naive T cells, common lymphoid

progenitor, mast cell, plasmacytoid dentritic cell, B cell plasma,

regulatory T cells, gamma delta T cell, and B cell plasma relative

fractions were significantly enriched in low-risk group. A notable

correlation was observed between risk score and expression of

CTLA4, HAVCR2, PDCD1, PDCD1LG2, and TIGIT, indicating

risk scores represent tumor-induced immunosuppression.

According to TIDE, the TIDE scores, exclusion scores and

dysfunction scores for low-risk group were lower than those

for high-risk group. TIDE algorithm and immune-checkpoint-

relevant transcripts were consistent with xCell, suggesting

immunosuppressive microenvironments were more common

among high-risk GC patients.

This study may have major implications for patients with GC as

far as prognosis and treatment are concerned. To help with clinical

practice and risk classification, we offered a new signature. Low-risk

individuals had longer life periods and were more likely to benefit

from ICIs. In addition, we found a number of crucial genes

that could serve as GC treatment targets. Several previous studies

(45–47) constructed mRNA prognosis signatures in GC patients.

The AUC values of these studies ranged from 0.54 to 0.62, which

were inferior to the current study. We examined prognostic model

significance for other solid cancer in addition to researching

immunotherapy response and prognosis among GC patients.

Several limitations were identified in our study. Firstly, data on

mRNA expression and clinical information were downloaded from

an open-source database. The findings of these studies have not yet

been confirmed in clinical trials. The environment, genetics, and

epigenetics are also factors influencing GC. Further molecular

biological studies are necessary to verify involvement of the 6 DEGs

in GC progression. Finally, due to TCGA data unavailability, the risk

model was unable to provide the predictive value compared to a

number of widely used predictors, such as pathological grade and

treatment approach.

In conclusion, we discovered a 6 gene signature to forecast GC

patients’ OS. This risk signature proves to be a valuable clinical

predictive tool for guiding clinical practice. Moreover, the profile

revealed discernible variations in immune cell infiltration levels and

immunotherapy response among low- and high-risk groups. This

prognostic model thus offers a precise and impartial basis for

directing unique therapy choices for GC.
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