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Background: Cancer-associated fibroblasts (CAFs) are essential tumoral

components of gastric cancer (GC), contributing to the development,

therapeutic resistance and immune-suppressive tumor microenvironment (TME)

of GC. This study aimed to explore the factors related to matrix CAFs and establish

a CAF model to evaluate the prognosis and therapeutic effect of GC.

Methods: Sample information from the multiply public databases were retrieved.

Weighted gene co-expression network analysis was used to identify CAF-related

genes. EPIC algorithmwas used to construct and verify themodel. Machine-learning

methods characterized CAF risk. Gene set enrichment analysis was employed to

elucidate the underlying mechanism of CAF in the development of GC.

Results: A three-gene (GLT8D2, SPARC and VCAN) prognostic CAF model was

established, and patients were markedly divided according to the riskscore of

CAF model. The high-risk CAF clusters had significantly worse prognoses and

less significant responses to immunotherapy than the low-risk group.

Additionally, the CAF risk score was positively associated with CAF infiltration

in GC. Moreover, the expression of the threemodel biomarkers were significantly

associated with the CAF infiltration. GSEA revealed significant enrichment of cell

adhesion molecules, extracellular matrix receptors and focal adhesions in

patients at a high risk of CAF.
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Conclusion: The CAF signature refines the classifications of GC with distinct

prognosis and clinicopathological indicators. The three-gene model could

effectively aid in determining the prognosis, drug resistance and immunotherapy

efficacy of GC. Thus, this model has promising clinical significance for guiding

precise GC anti-CAF therapy combined with immunotherapy.
KEYWORDS

gastric cancer, cancer-associated fibroblasts, prognosis, weighted gene co-expression
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Introduction

Gastric cancer (GC) is the fifth most common cancer

worldwide, accounting for approximately 5.7% of all new cancer

cases in 2020. The highest incidence rates are found in Eastern Asia

(China, Japan, and Korea), followed by Eastern Europe and South

America (1–3). According to the World Health Organization

(WHO), there were an estimated 1.03 million new cases and

783,000 deaths from gastric cancer in 2020. Several risk factors

have been associated with an increased risk of developing gastric

cancer, including chronic Helicobacter pylori infection, tobacco

smoking, alcohol consumption, high-salt and low-fruit and

vegetable diets, and a family history of gastric cancer (3).

Regardless of the effect of gastroscopy screening and treatment to

improve the condition, progression and metastasis mainly lead to

the mortality in patients with GC. Gastric cancer often goes

undetected until it has reached an advanced stage, which makes it

difficult to treat. Symptoms such as abdominal pain, nausea, and

weight loss are often nonspecific and can be attributed to other

conditions, leading to delays in diagnosis. Besides, gastric cancer is a

complex disease with a range of histological subtypes and molecular

profiles, which makes treatment selection challenging. Additionally,

the tumor microenvironment can be hostile, with a range of

immune suppressive mechanisms that limit the efficacy of some

treatments (4, 5). Treatment options for gastric cancer are limited,

particularly for advanced disease. Surgery is the mainstay of

treatment for early-stage disease, but in advanced cases, systemic

therapy with chemotherapy, targeted agents, or immunotherapy

may be the only option. Tumor cells in GC tissues and their

immune and stromal environments constitute the tumor

microenvironment (TME). Overall, the challenge of treating and

managing gastric cancer lies in its complexity, late diagnosis, limited

treatment options, high relapse rate, and the presence of co-

morbidities. Increasing evidence reveals that tumor growth,

metastasis, immunosuppression and drug resistance are

significantly related to tumor matrix components in the TME (6–8).

The tumor microenvironment (TME) has emerged as a critical

factor in the diagnosis and clinical management of GC (9). There

has been significant progress in understanding the complex

interactions between tumor cells and the surrounding

microenvironment, including immune cells, stromal cells, and

extracellular matrix components. Recently, in terms of diagnosis,
02
several studies have shown that analysis of TME components such

as tumor-infiltrating lymphocytes (TILs), stromal cells, and

extracellular matrix components can provide prognostic

information in patients with gastric cancer. For example, high

levels of TILs have been associated with improved survival

outcomes in some studies, while high levels of stromal cells and

extracellular matrix components have been associated with poor

prognosis (10). In terms of treatment, several approaches targeting

the TME have been investigated in gastric cancer, including

immune checkpoint inhibitors, stromal-targeting agents, and

combination therapies. Immune checkpoint inhibitors such as

pembrolizumab and nivolumab have shown promising results in

clinical trials, particularly in patients with high levels of

programmed death-ligand 1 (PD-L1) expression or microsatellite

instability-high (MSI-H) tumors. Stromal-targeting agents such as

pegvorhyaluronidase alfa (PEGPH20) and trabectedin have also

shown efficacy in preclinical studies and early-phase clinical trials

(11). Recent studies have shown that targeting CAFs using small

molecule inhibitors or gene therapy can inhibit tumor growth in

gastric cancer (10–12). Additionally, targeting stromal cells could

improve the efficacy of chemotherapy and immunotherapy in GC

(12). Thus, the TME has become an important area of research in

GC, with significant progress made in understanding its role in

diagnosis and treatment. Further research is needed to identify

optimal biomarkers and treatment strategies that target the TME in

gastric cancer.

As a key component of the tumor matrix, cancer-associated

fibroblasts (CAFs) secrete several growth factors and cytokines,

which are important for promoting tumor progression and

migration (13, 14), stimulating epithelial-mesenchymal transition

(EMT) (15, 16) and inducing chemical resistance (17, 18) and

immunosuppression (19, 20). Additionally, the extracellular matrix

(ECM) promotes tumor cell migration ability and inhibit anti-

tumor leukocyte invasion. Moreover, CAFs can deposit and

recombine ECM, leading to tumor progression, immune evasion

and therapeutic resistance (21–24). Therefore, combining targeted

CAF-mediated immunosuppressive matrix microenvironments

with immunotherapy has the potential to improve the efficacy of

immune checkpoint inhibitors (25). For example, fibroblast

activating protein+ (FAP+) CAF depletion resulted in elevated

CD8+ T cell infiltration and lower macrophage concentration,

thus enhancing anti-CTLA-4 and anti-PD-1 therapeutic effects
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(26). However, in clinical practice, patients with metastatic

colorectal cancer did not respond well; therefore, CAF-targeting

drugs based on FAP+ failed the phase II trials (27, 28). Currently,

relevant studies on this CAF inhibition strategy in GC treatment are

lacking. Hence, exploring the matrix factors related to CAF in GC

has clinical significance.

Weighted gene co-expression network analysis (WGCNA) is a

powerful method for identifying co-expressed gene modules that

are associated with specific biological traits or conditions (29). Once

the network is constructed, modules or clusters of co-expressed

genes are identified using hierarchical clustering or other methods.

The modules are then analyzed for their relationship with different

biological traits or conditions using correlation analysis, regression

analysis, or other statistical methods (30). By analyzing gene

expression data from multiple samples, WGCNA can provide

insights into the underlying biological processes involved in

disease pathogenesis or treatment response, and can identify new

candidate genes or pathways for further investigation (31).

Currently, the significance of WGCNA lies in its ability to

identify co-expressed CAF-related gene modules that are

associated with specific biological traits or conditions (32, 33);

however, its use in GC for CAF and matrix infiltration remain

unexplored. In this study, for the first time, we examined the hub

modules most associated with matrix CAF penetration and used the

Least Absolute Shrinkage and Selection Operator (LASSO) Cox

regression analysis for further investigations. The results revealed

that the CAF model could be a promising new therapy in GC.
Methods

Data acquisition and processing

The RNA-seq data and corresponding prognosis data of 330

TCGA gastric adenocarcinomas (TCGA-STAD) were downloaded

from TCGA. In addition, normalized expression data and

clinicopathological profiles for all GC samples in the GSE15459,

GSE34942, GSE38749 and GSE84437 datasets from the GEO

database have been integrated and included.
Calculation of riskscore and immune
infiltration related to the CAF Model

The estimated immune and cancer cell proportion (EPIC)

algorithm, which is based on cell type deconvolution, the xCell

algorithm, which is based on gene feature enrichment and the

microenvironmental cell population counter (MCP-counter),

which is based on the gene expression and tumor immune

dysfunction and rejection (TIDE) algorithm, were used for CAF

infiltration analyses (34). Using expression data, the ESTIMATE

algorithm was used to estimate stromal cells and immune cells in

malignant tumor tissue and calculate the stromal score, which

indicates the level of stromal infiltration in each sample (35).

Moreover, CAF infiltration, co-expression network and hub genes

for matrix score were determined and identified using WGCNA
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(36, 37). Pearson correlation was used to compute the similarity

matrix between any pair of genes. Then, the adjacency matrix was

used for clustering and assessing the Pearson correlation between

CAF infiltration, quantified by MEs and EPIC, and the matrix score,

and selecting the most relevant modules for further analysis.
Chemotherapy and immunotherapy
response prediction

Using the Genomics of Cancer Drug Sensitivity (GDSC) (https://

www.cancerrxgene.org/) database, the half-maximal inhibitory

concentration (IC50) values of common drugs were estimated from

the transcriptome data of each GC sample. TIDE (Tumor Immune

Dysfunction and Exclusion) is a computational algorithm developed

by researchers at the Dana-Farber Cancer Institute to predict the

response of cancer patients to immune checkpoint inhibitors (ICIs)

(38). ICIs are a class of cancer immunotherapy drugs that can help

the immune system recognize and attack cancer cells. However, not

all patients respond to ICIs, and TIDE was developed to identify

patients who are unlikely to benefit from this treatment. TIDE works

by analyzing gene expression data from tumor samples and

predicting the likelihood of two types of immune dysfunction: T

cell dysfunction and T cell exclusion. Furthermore, differences in

TIDE score between CAF high or low-risk clusters were assessed

using unpaired t tests, and the predictive power of CAF risk

signatures was assessed using receiver operating characteristic

curves and area under the curve (AUC) values.
Statistical analysis

All statistical analyses were performed using R software and

SPSS software. The median CAF risk score was the cutoff for each

cohort to classify patients with GC (36, 37). Finally, the wilcoxon

test was used for pairwise comparisons. P value less than 0.05 was

considered statistically significant.
Immunohistochemistry staining analysis

IHC was implemented with an anti-SPARC antibody-N-

terminal at a 1:500 dilution per the manufacturer’s instructions

(39). Based on the IHC staining intensity and density, digital image

analysis is a powerful tool for quantifying IHC staining. It involves

the acquisition of high-resolution digital images of stained tissues

and the analysis of these images using specialized software. Several

parameters were measured, including staining intensity, percentage

of positive cells, and spatial distribution of staining.
Implementing cox regression and
nomogram establishment

Relevant data, including patient demographics, clinical

characteristics, treatment details, and survival outcomes, were
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collected from TCGA and GEO databases. The data was cleaned,

organized, and prepared for analysis, involving removing missing data,

creating new variables, and categorizing continuous variables. Cox

regression is a statistical method used to analyze survival data and

identify factors that are associated with survival outcomes. In R

language, the “coxph” function in the “survival” package was

implemented for Cox regression analysis. This function requires

specifying the outcome variable (time to event), the predictor

variables, and any relevant covariates. A nomogram is a graphical

representation of a statistical model that can be used to predict the

probability of an event. In R language, the “rms” package was used to

develop a nomogram based on the Cox regression model. This package

requires specifying the predictor variables and any relevant covariates,

as well as the time-to-event variable and censoring variable.
Results

Higher CAF infiltration suggests poorer
overall survival in patients with GC

EPIC, MCP counter and TIDE algorithms were used to multiply

and predict CAF infiltration, and the matrix score was calculated to

predict the prognostic value on overall survival (OS). The expression

level of CAF in the TCGA-STAD cohort and GEO datasets was

determined and Kaplan–Meier (KM) curves were drawn

(Figures 1A–H). A higher level of CAF infiltration was observed in

both cohorts and significantly correlated with poor OS in patients

with GC, highlighting the therapeutic potential of CAF in the

prognosis of patients with GC. Therefore, it is necessary to further

explore the correlation between CAF and GC matrix-related genes.
Co-expression model of CAF and
matrix scores and functional analysis
of hub genes

WGCNA of the two database samples revealed a total of eight

modules that were clustered in the GEO database, with the green
Frontiers in Oncology 04
module having the strongest relationship with CAF ratio (Cor = 0.8,

p = 4e-83) and matrix score (Cor = 0.82, p = 4e-90) (Figure 2A). For

TCGA, a total of 10 modules were co-polymerized, with the

magenta module exhibiting the strongest relationship with CAF

ratio (Cor = 0.93, p < 0.001) and matrix score (Cor = 0.85, p = 7e-

199) (Figure 2B). Subsequent analyses of the green module

(Figure 2C) and magenta module (Figure 2D) were performed.

The scatter plots showed a strong correlation between module

membership and gene significance for CAF and interstitial score.

Venn diagram of the intersection of the two hub gene sets

identified a total of 37 common genes, which were then analyzed

using GEO and KEGG (Figure 2E). Extracellular matrix

organization, collagen-containing extracellular matrix and

extracellular matrix structural constituent were the main enriched

BP, CC and MF terms, respectively (Figure 2F). Protein digestion

and absorption, focal adhesion and human papillomavirus infection

were the major pathways enriched in KEGG (Figure 2G).
Construction of a prognostic risk model
based on the matrix CAF

A total of 37 common hub genes were screened using univariate

Cox regression analysis, and 34 OS-related genes with p < 0.05 were

analyzed using LASSO regression (Figures 3A-C). Finally, three

genes were identified to construct the CAF risk model: CAF risk

score = GLT8D2 expression * 0.066 + SPARC expression * 0.087 +

VCAN expression * 0.061. Using this risk model, patients with GC

in each cohort were divided into high and low CAF risk groups,

with a bit risk score selected as the threshold. The KM curve showed

that for patients with GC, the OS of the high CAF risk group was

worse than that of the low CAF risk group in GEO (p = 0.010,

hazard ratio (HR) = 1.551, 95% confidence interval (CI): 1.11–

2.168) (Figure 3D) and TCGA (p < 0.001, HR = 1.553, 95% CI:

1.25–1.929) databases (Figure 3E). These results suggest that CAF

and stroma-related signature genes are key prognostic markers for

GC. To further verify the robustness of the CAF model as a

predictor of CAF permeability, Spearman correlation evaluated

CAF abundance prediction using CAF risk score, matrix score,
B C D

E F G H

A

FIGURE 1

Kaplan–Meier analysis revealed that higher CAF infiltration was associated with poorer overall survival in patients with gastric cancer (GC) in both the
GEO (A–D) and TCGA database (E–H).
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EPIC, MCP counter, xCell and TIDE (Figures 3F, G). The results

consistently showed that CAF risk scores in GEO (Figure 4F) and

TCGA (Figure 4G) databases were significantly positively correlated

with various CAF permeability scores.
Relationship between CAF risk assessment
and prognosis

We conducted CAF risk assessment analysis on patients from

sample sources in TCGA and GEO databases (Figures 4A, B),

observing that the prolongation of patients’ survival time was

associated with higher risk score AUCs, indicating that the CAF

model is effective in predicting patient survival in the long run.

Additionally, patients with high CAF risk had higher risk scores
Frontiers in Oncology 05
(Figures 4C, D) and shorter survival times than the low CAF risk

group (Figures 4E, F). The correlation heatmap shows the

distribution of key genes in the high and low groups (Figures 4G, H).
Association of CAF risk score with immune
cell aggregation

After studying the relationship between CAF expression and

prognosis, we shifted our focus to immune cells. Similar results were

observed in GC sample analysis using different algorithms. Using

CIBERSORT and TIMER algorithms, in immune cells in the high

CAF risk group, we found that the activity of T cell CD4+ memory

activated and macrophage, particularly CD8+ T cell, CD4+ T cell,

were significantly lower than that of the low CAF risk group
B

C

D

E

F

G

A

FIGURE 2

(A) The correlation between gene module eigengene and phenotype in the GEO database. (B) The correlation between gene module eigengene and
phenotype in TCGA database. (C) Scatter plots of the MM and GS of each gene in the green module in GEO database. (D) Scatter plots of the MM
and GS of each gene in the magenta module in TCGA database. (E) The intersection of GEO green and TCGA magenta module genes is presented
in the Venn diagram. (F) Functional enrichment analysis in GEO, with blue, yellow and green representing BP, MF and CC terms, respectively. The
color fill in the grey area represents the degree of enrichment. (G) Bubble diagram of functional enrichment analysis in TCGA.
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(Figure 5A). Meanwhile, we also analyzed the relationship between

race, T stage, event and CAF risk score. The high CAF risk group

was significantly associated with multiple factors (Figure 5B) and a

high TIDE score (Figure 5C). Moreover, the ROC curve showed a

reliable score (AUC = 0.813) (Figure 5D) for the high CAF risk

group also and a higher proportion of non-response to

immunotherapy (Figure 5E). These findings suggest that patients

with GC having high CAF risk could exhibit a worse

immunotherapy response.
GSEA of the CAF signature

Gene Set Enrichment Analysis (GSEA) was performed in the

GEO and TCGA datasets between high and low CAF risk groups to
Frontiers in Oncology 06
elucidate the functional enrichment of CAF characteristics. The

main KEGG enrichment signaling pathway of the high-risk group

genes was observed to be cell adhesion molecules, dilated

cardiomyopathy, ECM receptor interaction, focal adhesion and

hypertrophic cardiomyopathy (Figure 6A). Additionally, the

KEGG enrichment signaling pathways mainly included linoleic

acid metabolism, metabolism of xenobiotics by cytochrome P45,

olfactory transduction, oxidative phosphorylation and ribosome

(Figure 6B). These pathways were further examined to determine

their association with CAF risk score, revealing a positive

correlation between risk score and the rich integration of KEGG

pathways, including the WNT signaling pathway, b signaling

pathway, MAPK signaling pathway, prostate pathway and

pathways in cancer (Figures 6C-F, H). Spearman correlation

analysis revealed that the tumor mutation burden (TMB) was
A B

D E

F G

C

FIGURE 3

(A) Univariate Cox regression analysis. (B, C) LASSO regression analysis. (D, E) Survival analysis of the high CAF risk group and low CAF risk group in
GEO and TCGA, respectively. (F, G) Spearman correlation analysis on predictions of CAF risk score, matrix score, EPIC, MCP counter, xCell and TIDE
for CAF abundance.
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negatively associated with MCPcounter, xCell, TIDE, and other

activators (Figure 6G).
CAF and drug sensitivity analysis

To validate the efficacy of selected key signatures in treatment,

we performed the expression differences of the three hub genes

GLT8D2, SPARC and VCAN in GC fibroblasts and normal cells.

The expression levels of these genes were markedly high in the

fibroblasts (Figures 7A, B). We then conducted sensitivity tests for

different drugs in the CAF risk groups, with IC50 as the evaluation

criteria. Except for Gefitinib and Sorafenib, other drugs showed

higher sensitivity in the low CAF risk group, indicating an effective

treatment response (Figure 7C). Moreover, IHC revealed high

staining levels of SPARC (Weak, Medium, and Strong staining) in

GC tissues (Figure 7D).
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Prediction of clinical features using the
CAF model

Finally, univariate Cox regression analysis was used to

determine whether CAF was significantly correlated with T stage,

N stage, age, risk score and gender (Figure 8A). Multivariate

regression analysis was applied to verify if risk score had the

strongest association with CAF (p < 0.01, HR = 2.804; Figure 8B).

Then, we focused on risk score, T stage, age and total score to

construct a nomogram for prognosis prediction (Figure 8C).

Meanwhile, 1-, 3- and 5-year survival prediction curves were

drawn using the most significantly related factors, i.e., risk score,

T stage and age. as Additionally, ROC curve analysis was performed

for all factors (Figures 8D-G). The results showed that short-term

survival prediction was more effective for the predictive CAFmodel.

Finally, the DCA decision curve revealed that the model has a good

predictive effect (Figures 8H-J).
B

C D

E F

G H

A

FIGURE 4

Relationship between CAF risk assessment and prognosis. (A, B) CAF risk assessment analysis on patients from sample sources in TCGA and GEO
databases. (C-F) Patients with high CAF risk had higher risk scores and shorter survival times than the low CAF risk group. (G, H) The correlation
heatmap of the distribution of key genes.
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Discussion

Extensive fibrosis is common in GC, especially in

undifferentiated GC. Cancer-associated fibroblasts (CAFs) are a

major component of the tumor microenvironment and play a

critical role in the development, progression, and drug resistance

of gastric cancer. Massive infiltration of CAFs leads to TME

resistance to tumor lymphocyte invasion, thereby promoting GC

progression, immunosuppression and therapeutic resistance (40,

41). Various studies report CAFs are associated with poor prognosis

and aggressive tumor behavior in gastric cancer. Several studies

have shown that the expression of CAF-related markers such as a-
smooth muscle actin (a-SMA), fibroblast activation protein (FAP),

and platelet-derived growth factor receptor-a (PDGFR-a) can be

used as diagnostic and prognostic markers for gastric cancer. Thus,

improving stromal CAF-targeting therapies by developing new

molecular targets in cancers is vital (42, 43).
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In this study, we explored mutual CAF and matrix co-expression

networks in multiple GC queues using WGCNA and multiple

calculations. A three-gene (GLT8D2, SPARC and VCAN)

prognostic CAF model was developed and verified by machine-

learning algorithms. Moreover, markedly elevated TMB levels were

found in patients from CAFlow cluster suggesting that the CAF model

may serve as a biomarker for the immunotherapy stratification of GC.

Immunotherapy has shown promising findings in the treatment of

gastric cancer. However, the response rate to immunotherapy is

limited, and CAFs have been shown to play a role in this resistance.

CAFs can create a physical barrier that prevents T cells from reaching

cancer cells and can also secrete immunosuppressive cytokines and

growth factors that inhibit T cell function. Targeting CAFs has been

proposed as a strategy to overcome this resistance and enhance the

effectiveness of immunotherapy (44).

CAFs contribute to drug resistance in gastric cancer through

various mechanisms, including the secretion of cytokines and
A B

D EC

FIGURE 5

(A) Heat map of CAF risk score in relation to immune cells. (B) Heat map of the relationship between CAF risk score and race, T stage, event and
other factors. (C) Differences in TIDE scores in the high and low CAF risk groups. (D) ROC curve analysis. (E) The proportion of immune response
and TIDE score in the high and low CAF risk groups.
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growth factors that promote tumor growth and survival, the

activation of signaling pathways that promote drug resistance,

and the deposition of extracellular matrix proteins that create a

physical barrier to drug penetration. Targeting CAFs can overcome

drug resistance in gastric cancer and improve patient outcomes

(44). Importantly, this study is the first to reveal a negative

association between TMB levels and infiltration in patients with

CAF activators and GC. Therefore, we hypothesize that higher TMB

could produce a strong tumor-killing effect by regulating the weak

local microenvironment of stromal fibroblasts. However, further

studies are needed to clarify the interaction between TMB and CAF

infiltration (43).

In addition, our findings revealed that cell adhesion molecules,

ECM receptors and focal adhesion pathways were largely enriched

in the CAFhigh cluster, and single-sample GSEA also revealed that
Frontiers in Oncology 09
CAF risk scores were positively correlated with WNT, TGF-b and

MAPK enrichment scores. Moreover, TGF-b signaling has been

demonstrated to play a role in CAF activation (45–47), and

similarly, CAFs can regulate and maintain the stemness of GC

cells through TGF-b signalling (48). Pathological angiogenesis is

widely described as a key process that can expand cancer tissue and

GC cell invasion and metastasis (49–51). To ensure the robustness

of the model, we quantified CAF infiltration in GC using four

bioinformatics methods: EPIC, xCell, MCP counter and TIDE. The

expression of the three genes was significantly increased in

fibroblasts, demonstrating that these genes can act as specific

markers of CAF in GC. Therefore, the CAF model was

significantly associated with the infiltration of CAFs, so that the

CAF labelling could accurately assess CAF infiltration level in

samples with GC.
A B
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FIGURE 6

(A, B) Gene set enrichment analysis (GSEA) of KEGG gene sets between the high and low CAF risk groups. (C-F, H) Spearman correlation analysis
between enrichment of functional pathways and risk scores. (G) Spearman correlation analysis revealed the negative correlation between TMB and
CAF activator.
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Regarding the three hub genes, GLBT2 plays an important role

in pulmonary arterial hypertension (PAH) and participates in

immune processes and ECM functions as a hub gene,

highlighting its therapeutic potential in PAH (52). Additionally,

in the liver, GLT8D2 can positively regulate the expression of the

ApoB100 protein in hepatocytes, promote the stable secretion of

very low density lipoprotein and reduce the accumulation of

triglycerides in hepatocytes, thus reducing the incidence of non-

alcoholic fatty liver disease (NAFLD) (53). SPARC has been

previously reported as a potential target in GC (54, 55). The high

expression of VCAN can be used as an independent predictor to

indicate the adverse outcome of GC (56). It also exhibits a

significantly high expression in hepatocellular carcinoma induced

by hepatitis B, which is significantly correlated with poor prognosis

and immune suppression and can be used as a potential biomarker

for hepatocellular carcinoma. Nevertheless, the functions of these

genes in GC CAFs remains poorly explored. Therefore, future

explorations in vivo and in vitro are essential for understanding
Frontiers in Oncology 10
the potential role of GC-related CAFs in invasiveness, drug

resistance and immunosuppression.

Certain limitations exist in this study. First, we did not cross-

verify the true clinical value of the established CAFmodel. Second, no

animal experiments were conducted to verify the key role of CAF-

specific signatures in the progression of gastric cancer. Finally, our

model construction can only be considered as a guide for future CAF

studies in GC. CAFs act as an essential role in the TME of gastric

cancer, and have been shown to interact with immune cells, including

T cells, natural killer (NK) cells, and dendritic cells (9). CAFs can

modulate the immune response through the secretion of cytokines

and growth factors and can also affect the recruitment and function of

immune cells. Targeting CAFs can alter the tumormicroenvironment

and enhance the immune response to cancer cells (10). Several

therapeutic strategies targeting CAFs have been developed for the

treatment of gastric cancer, including the use of small molecule

inhibitors, monoclonal antibodies, and RNA interference-based

approaches (57). For example, targeting CAFs with the anti-fibrotic
B

C

D

A

FIGURE 7

(A, B) Expression difference of GLT8D2, SPARC and VCAN in gastric cancer (GC) fibroblasts and normal cells. (C) Susceptibility to different drugs in
high and low CAF risk groups. (D) IHC staining of SPARC in GC tissue.
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agent pirfenidone has been shown to increase the sensitivity of gastric

cancer cells to chemotherapy and immunotherapy.
Conclusion

In this study, the high infiltration of CAF in TME was

associated with a worse GC prognosis. Furthermore, three hub

genes, GLT8D2, SPARC and VCAN, were identified as prognostic

biomarkers of CAF, which were then used to establish a CAF model

based on these three genes. The infiltration, prognosis,

immunotherapy resistance and drug resistance of CAF in patients
Frontiers in Oncology 11
with GC were evaluated, which provided a new framework for

further exploration of CAF in GC. Targeting CAFs represents a

promising therapeutic strategy for enhancing the effectiveness of

immunotherapy and improving outcomes for patient with GC.
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FIGURE 8

(A) Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. (C) Nomogram of risk score, T stage and age. (D) 1-, 3- and 5-year
survival prediction of patients with GC based on the nomogram. (E-G) ROC curve analysis based on all factors. (H-J) DCA decision curve.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1158863
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2023.1158863
Ethics statement

The studies involving human participants were reviewed and

approved by ethics committee of Fudan University Shanghai

Cancer Center. The patients/participants provided their written

informed consent to participate in this study.

Author contributions

Conceptualization, data curation and formal analysis: LG, DD,

and CW. Funding acquisition: LG. Investigation and methodology:

LG, DD, and CW. Resources and supervision: DZ. Validation and

visualization: LG, DD, and CW. Original draft: LG and DD. Editing:

CW and DZ. All authors contributed to the article and approved the

submitted version.

Funding

This study was supported by grants from the Natural Science

Foundation of Shanghai (No. 21140902100).
Frontiers in Oncology 12
Acknowledgments

We are grateful to all patients for their dedicated participation

in the current study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

2. Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R, et al. Cancer incidence and
mortality in China, 2016. J Natl Cancer Center (2022) 2(1):1–9. doi: 10.1016/
j.jncc.2022.02.002

3. Kang W, Zeng H, Xiong J, Li Y, Jin P, Shao X, et al. Survival of patients with
gastric cancer surgically treated at the national cancer center of China from 2011 to
2018 according to stage at diagnosis. J Natl Cancer Center (2022) 2(3):132–8.
doi: 10.1016/j.jncc.2022.07.002

4. Lee JH, Kim HI, Kim MG, Ha TK, Jung MS, Kwon SJ. Recurrence of gastric
cancer in patients who are disease-free for more than 5 years after primary resection.
Surgery (2016) 159(4):1090–8. doi: 10.1016/j.surg.2015.11.002

5. Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol
(2020) 18(3):534–42. doi: 10.1016/j.cgh.2019.07.045

6. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to
the tumor microenvironment. Cancer Cell (2012) 21(3):309–22. doi: 10.1016/
j.ccr.2012.02.022

7. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and
metastasis. Nat Med (2013) 19(11):1423–37. doi: 10.1038/nm.3394

8. Xu W, Anwaier A, Liu W, Tian X, Su J, Shi G, et al. The unique genomic
landscape and prognostic mutational signature of Chinese clear cell renal cell
carcinoma. J Natl Cancer Center (2022) 2(3):162–70. doi: 10.1016/j.jncc.2022.07.001

9. Yang Y, Meng WJ, Wang ZQ. Cancer stem cells and the tumor
microenvironment in gastric cancer. Front Oncol (2021) 11:803974. doi: 10.3389/
fonc.2021.803974

10. Sun H, Wang X, Wang X, Xu M, Sheng W. The role of cancer-associated
fibroblasts in tumorigenesis of gastric cancer. Cell Death Dis (2022) 13(10):874.
doi: 10.1038/s41419-022-05320-8

11. Xu R, Yang L, Zhang Z, Liao Y, Yu Y, Zhou D, et al. Cancer-associated fibroblast
related gene signature in helicobacter pylori-based subtypes of gastric carcinoma for
prognosis and tumor microenvironment estimation in silico analysis. Front Med
(Lausanne) (2023) 10:1079470. doi: 10.3389/fmed.2023.1079470

12. Li X, Sun Z, Peng G, Xiao Y, Guo J, Wu B, et al. Single-cell RNA sequencing
reveals a pro-invasive cancer-associated fibroblast subgroup associated with poor
clinical outcomes in patients with gastric cancer. Theranostics (2022) 12(2):620–38.
doi: 10.7150/thno.60540

13. Kojima Y, Acar A, Eaton EN, Mellody KT, Scheel C, Ben-Porath I, et al.
Autocrine TGF-beta and stromal cell-derived factor-1 (SDF-1) signaling drives the
evolution of tumor-promoting mammary stromal myofibroblasts. Proc Natl Acad Sci
USA (2010) 107(46):20009–14. doi: 10.1073/pnas.1013805107

14. Tommelein J, Verset L, Boterberg T, Demetter P, Bracke M, De Wever O.
Cancer-associated fibroblasts connect metastasis-promoting communication in
colorectal cancer. Front Oncol (2015) 5:63. doi: 10.3389/fonc.2015.00063

15. Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, et al. IL-6 secreted by cancer-
associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of
gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget (2017) 8(13):20741–50.
doi: 10.18632/oncotarget.15119

16. Fiori ME, Di Franco S, Villanova L, Bianca P, Stassi G, De Maria R. Cancer-
associated fibroblasts as abettors of tumor progression at the crossroads of EMT and
therapy resistance. Mol Cancer (2019) 18(1):70. doi: 10.1186/s12943-019-0994-2

17. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, et al. Chemotherapy
activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by
IL-17A. J Exp Med (2013) 210(13):2851–72. doi: 10.1084/jem.20131195

18. Li J, Guan J, Long X, Wang Y, Xiang X. Mir-1-mediated paracrine effect of
cancer-associated fibroblasts on lung cancer cell proliferation and chemoresistance.
Oncol Rep (2016) 35(6):3523–31. doi: 10.3892/or.2016.4714

19. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, et al.
Suppression of antitumor immunity by stromal cells expressing fibroblast activation
protein-alpha. Science (2010) 330(6005):827–30. doi: 10.1126/science.1195300

20. Monteran L, Erez N. The dark side offibroblasts: cancer-associated fibroblasts as
mediators of immunosuppression in the tumor microenvironment. Front Immunol
(2019) 10:1835. doi: 10.3389/fimmu.2019.01835

21. Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to
epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol (2016) 22
(29):6619–28. doi: 10.3748/wjg.v22.i29.6619

22. Lakins MA, Ghorani E, Munir H, Martins CP, Shields JD. Cancer-associated
fibroblasts induce antigen-specific deletion of CD8 (+) T cells to protect tumor cells.
Nat Commun (2018) 9(1):948. doi: 10.1038/s41467-018-03347-0

23. Kaur A, Ecker BL, Douglass SM, Kugel CH, Webster MR, Almeida FV, et al.
Remodeling of the collagen matrix in aging skin promotes melanomametastasis and affects
immune cell motility. Cancer Discov (2019) 9(1):64–81. doi: 10.1158/2159-8290.CD-18-
0193

24. Gamradt P, de la Fouchardiere C, Hennino A. Stromal protein-mediated
immune regulation in digestive cancers. Cancers (Basel) (2021) 13(1):146–68.
doi: 10.3390/cancers13010146

25. Bai X, Ni J, Beretov J, Graham P, Li Y. Immunotherapy for triple-negative breast
cancer: a molecular insight into the microenvironment, treatment, and resistance. J
Natl Cancer Center (2021) 1(3):75–87. doi: 10.1016/j.jncc.2021.06.001
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.jncc.2022.02.002
https://doi.org/10.1016/j.jncc.2022.02.002
https://doi.org/10.1016/j.jncc.2022.07.002
https://doi.org/10.1016/j.surg.2015.11.002
https://doi.org/10.1016/j.cgh.2019.07.045
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1038/nm.3394
https://doi.org/10.1016/j.jncc.2022.07.001
https://doi.org/10.3389/fonc.2021.803974
https://doi.org/10.3389/fonc.2021.803974
https://doi.org/10.1038/s41419-022-05320-8
https://doi.org/10.3389/fmed.2023.1079470
https://doi.org/10.7150/thno.60540
https://doi.org/10.1073/pnas.1013805107
https://doi.org/10.3389/fonc.2015.00063
https://doi.org/10.18632/oncotarget.15119
https://doi.org/10.1186/s12943-019-0994-2
https://doi.org/10.1084/jem.20131195
https://doi.org/10.3892/or.2016.4714
https://doi.org/10.1126/science.1195300
https://doi.org/10.3389/fimmu.2019.01835
https://doi.org/10.3748/wjg.v22.i29.6619
https://doi.org/10.1038/s41467-018-03347-0
https://doi.org/10.1158/2159-8290.CD-18-0193
https://doi.org/10.1158/2159-8290.CD-18-0193
https://doi.org/10.3390/cancers13010146
https://doi.org/10.1016/j.jncc.2021.06.001
https://doi.org/10.3389/fonc.2023.1158863
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Gu et al. 10.3389/fonc.2023.1158863
26. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting
CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-
PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA (2013) 110
(50):20212–7. doi: 10.1073/pnas.1320318110

27. Hofheinz RD, al-Batran SE, Hartmann F, Hartung G, Jäger D, Renner C, et al.
Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial
of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie (2003) 26
(1):44–8. doi: 10.1159/000069863

28. Narra K, Mullins SR, Lee HO, Strzemkowski-Brun B, Magalong K, Christiansen
VJ, et al. Phase II trial of single agent Val-boroPro (Talabostat) inhibiting fibroblast
activation protein in patients with metastatic colorectal cancer. Cancer Biol Ther (2007)
6(11):1691–9. doi: 10.4161/cbt.6.11.4874

29. Su J, Tian X, Zhang Z, Xu W, Anwaier A, Ye S, et al. A novel amino acid
metabolism-related gene risk signature for predicting prognosis in clear cell renal cell
carcinoma. Front Oncol (2022) 12:1019949. doi: 10.3389/fonc.2022.1019949

30. Luo Z, Wang W, Li F, Songyang Z, Feng X, Xin C, et al. Pan-cancer analysis
identifies telomerase-associated signatures and cancer subtypes. Mol Cancer (2019) 18
(1):106. doi: 10.1186/s12943-019-1035-x

31. Langfelder P, Horvath S. WGCNA: an r package for weighted correlation
network analysis. BMC Bioinf (2008) 9:559. doi: 10.1186/1471-2105-9-559

32. Liu B, Chen X, Zhan Y, Wu B, Pan S. Identification of a gene signature for renal
cell carcinoma-associated fibroblasts mediating cancer progression and affecting
prognosis. Front Cell Dev Biol (2020) 8:604627. doi: 10.3389/fcell.2020.604627

33. Liu B, Zhan Y, Chen X, Hu X, Wu B, Pan S. Weighted gene co-expression
network analysis can sort cancer-associated fibroblast-specific markers promoting
bladder cancer progression. J Cell Physiol Feb (2021) 236(2):1321–31. doi: 10.1002/
jcp.29939

34. Xu W, Anwaier A, Liu W, Tian X, Zhu WK, Wang J, et al. Systematic genome-
wide profiles reveal alternative splicing landscape and implications of splicing regulator
DExD-box helicase 21 in aggressive progression of adrenocortical carcinoma.
Phenomics (2021) 1(6):243–56. doi: 10.1007/s43657-021-00026-x

35. Anwaier A, Zhu S-X, Tian X, Xu WH, Wang Y, Palihati M, et al. Large-Scale
proteomics data reveal integrated prognosis-related protein signatures and role of
SMAD4 and RAD50 in prognosis and immune infiltrations of prostate cancer
microenvironment. Phenomics (2022) 2(6):404–18. doi: 10.1007/s43657-022-00070-1

36. Wang S, Fan G, Li L, He Y, Lou N, Xie T, et al. Integrative analyses of bulk and
single-cell RNA-seq identified cancer-associated fibroblasts-related signature as a
prognostic factor for immunotherapy in NSCLC. Cancer Immunol Immunother
(2023). doi: 10.1007/s00262-023-03428-0

37. Zhai X, Chen X, Wan Z, Ge M, Ding Y, Gu J, et al. Identification of the novel
therapeutic targets and biomarkers associated of prostate cancer with cancer-associated
fibroblasts (CAFs). Front Oncol (2023) 13:1136835. doi: 10.3389/fonc.2023.1136835

38. Chowdhury S, Castro S, Coker C, Hinchliffe TE, Arpaia N, Danino T.
Programmable bacteria induce durable tumor regression and systemic antitumor
immunity. Nat Med (2019) 25(7):1057–63. doi: 10.1038/s41591-019-0498-z

39. Nagaraju GP, Sharma D. Anti-cancer role of SPARC, an inhibitor of
adipogenesis. Cancer Treat Rev (2011) 37(7):559–66. doi: 10.1016/j.ctrv.2010.12.001

40. Abe A, Nagatsuma AK, Higuchi Y, Nakamura Y, Yanagihara K, Ochiai A. Site-
specific fibroblasts regulate site-specific inflammatory niche formation in gastric
cancer. Gastric Cancer (2017) 20(1):92–103. doi: 10.1007/s10120-015-0584-y

41. Ham IH, Lee D, Hur H. Role of cancer-associated fibroblast in gastric cancer
progression and resistance to treatments. J Oncol (2019) 2019:6270784. doi: 10.1155/
2019/6270784
Frontiers in Oncology 13
42. Lavie D, Ben-Shmuel A, ErezN, Scherz-Shouval R. Cancer-associated fibroblasts in
the single-cell era. Nat Cancer (2022) 3(7):793–807. doi: 10.1038/s43018-022-00411-z

43. Wang B, Du C, Li L, Xie Y, Hu C, Li Z, et al. New substituted molecular
classifications of advanced gastric adenocarcinoma: characteristics and probable
treatment strategies. J Natl Cancer Center (2022) 2(1):50–9. doi: 10.1016/
j.jncc.2021.11.004

44. Luo H, Xia X, Huang LB, An H, Cao M, Kim GD, et al. Pan-cancer single-cell
analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the
tumor microenvironment. Nat Commun (2022) 13(1):6619. doi: 10.1038/s41467-022-
34395-2

45. Yeung TL, Leung CS, Wong KK, Samimi G, Thompson MS, Liu J, et al. TGF-
beta modulates ovarian cancer invasion by upregulating CAF-derived versican in the
tumor microenvironment. Cancer Res (2013) 73(16):5016–28. doi: 10.1158/0008-
5472.CAN-13-0023

46. Zheng L, Xu C, Guan Z, Su X, Xu Z, Cao J, et al. Galectin-1 mediates TGF-beta-
induced transformation from normal fibroblasts into carcinoma-associated fibroblasts
and promotes tumor progression in gastric cancer.Am J Transl Res (2016) 8(4):1641–58.

47. Ishimoto T, Miyake K, Nandi T, Yashiro M, Onishi N, Huang KK, et al.
Activation of transforming growth factor beta 1 signaling in gastric cancer-associated
fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability
to induce invasiveness of gastric cancer cells. Gastroenterology (2017) 153(1):191–204
e16. doi: 10.1053/j.gastro.2017.03.046

48. Hasegawa T, Yashiro M, Nishii T, Matsuoka J, Fuyuhiro Y, Morisaki T, et al.
Cancer-associated fibroblasts might sustain the stemness of scirrhous gastric cancer
cells via transforming growth factor-beta signaling. Int J Cancer (2014) 134(8):1785–95.
doi: 10.1002/ijc.28520

49. Chen CN, Hsieh FJ, Cheng YM, Cheng WF, Su YN, Chang KJ, et al. The
significance of placenta growth factor in angiogenesis and clinical outcome of human
gastric cancer. Cancer Lett (2004) 213(1):73–82. doi: 10.1016/j.canlet.2004.05.020

50. Hoff PM, Machado KK. Role of angiogenesis in the pathogenesis of cancer.
Cancer Treat Rev (2012) 38(7):825–33. doi: 10.1016/j.ctrv.2012.04.006

51. Forma A, Tyczynska M, Kedzierawski P, Gietka K, Sitarz M. Gastric
carcinogenesis: a comprehensive review of the angiogenic pathways. Clin J
Gastroenterol (2021) 14(1):14–25. doi: 10.1007/s12328-020-01295-1

52. Bai Z, Xu L, Dai Y, Yuan Q, Zhou Z. ECM2 and GLT8D2 in human pulmonary
artery hypertension: fruits from weighted gene co-expression network analysis. J
Thorac Dis (2021) 13(4):2242–54. doi: 10.21037/jtd-20-3069

53. Wei HS, Wei HL, Zhao F, Zhong LP, Zhan YT. Glycosyltransferase GLT8D2
positively regulates ApoB100 protein expression in hepatocytes. Int J Mol Sci (2013) 14
(11):21435–46. doi: 10.3390/ijms141121435

54. Niu X, Ren L, Hu A, Zhang S, Qi H. Identification of potential diagnostic and
prognostic biomarkers for gastric cancer based on bioinformatic analysis. Front Genet
(2022) 13:862105. doi: 10.3389/fgene.2022.862105

55. Hashimoto I, Kimura Y, Oue N, Hiroshima Y, Aoyama T, Rino Y, et al.
Identification of a biomarker combination for survival stratification in pStage II/III
gastric cancer after curative resection. Cancers (Basel) (2022) 14(18):4427–39.
doi: 10.3390/cancers14184427

56. Li W, Han F, Fu M, Wang Z. High expression of VCAN is an independent
predictor of poor prognosis in gastric cancer. J Int Med Res (2020) 48
(1):300060519891271. doi: 10.1177/0300060519891271

57. Mak TK, Li X, Huang H, Wu K, Huang Z, He Y, et al. The cancer-associated
fibroblast-related signature predicts prognosis and indicates immune
microenvironment infiltration in gastric cancer. Front Immunol (2022) 13:951214.
doi: 10.3389/fimmu.2022.951214
frontiersin.org

https://doi.org/10.1073/pnas.1320318110
https://doi.org/10.1159/000069863
https://doi.org/10.4161/cbt.6.11.4874
https://doi.org/10.3389/fonc.2022.1019949
https://doi.org/10.1186/s12943-019-1035-x
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.3389/fcell.2020.604627
https://doi.org/10.1002/jcp.29939
https://doi.org/10.1002/jcp.29939
https://doi.org/10.1007/s43657-021-00026-x
https://doi.org/10.1007/s43657-022-00070-1
https://doi.org/10.1007/s00262-023-03428-0
https://doi.org/10.3389/fonc.2023.1136835
https://doi.org/10.1038/s41591-019-0498-z
https://doi.org/10.1016/j.ctrv.2010.12.001
https://doi.org/10.1007/s10120-015-0584-y
https://doi.org/10.1155/2019/6270784
https://doi.org/10.1155/2019/6270784
https://doi.org/10.1038/s43018-022-00411-z
https://doi.org/10.1016/j.jncc.2021.11.004
https://doi.org/10.1016/j.jncc.2021.11.004
https://doi.org/10.1038/s41467-022-34395-2
https://doi.org/10.1038/s41467-022-34395-2
https://doi.org/10.1158/0008-5472.CAN-13-0023
https://doi.org/10.1158/0008-5472.CAN-13-0023
https://doi.org/10.1053/j.gastro.2017.03.046
https://doi.org/10.1002/ijc.28520
https://doi.org/10.1016/j.canlet.2004.05.020
https://doi.org/10.1016/j.ctrv.2012.04.006
https://doi.org/10.1007/s12328-020-01295-1
https://doi.org/10.21037/jtd-20-3069
https://doi.org/10.3390/ijms141121435
https://doi.org/10.3389/fgene.2022.862105
https://doi.org/10.3390/cancers14184427
https://doi.org/10.1177/0300060519891271
https://doi.org/10.3389/fimmu.2022.951214
https://doi.org/10.3389/fonc.2023.1158863
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

	Cancer-associated fibroblasts refine the classifications of gastric cancer with distinct prognosis and tumor microenvironment characteristics
	Introduction
	Methods
	Data acquisition and processing
	Calculation of riskscore and immune infiltration related to the CAF Model
	Chemotherapy and immunotherapy response prediction
	Statistical analysis
	Immunohistochemistry staining analysis
	Implementing cox regression and nomogram establishment

	Results
	Higher CAF infiltration suggests poorer overall survival in patients with GC
	Co-expression model of CAF and matrix scores and functional analysis of hub genes
	Construction of a prognostic risk model based on the matrix CAF
	Relationship between CAF risk assessment and prognosis
	Association of CAF risk score with immune cell aggregation
	GSEA of the CAF signature
	CAF and drug sensitivity analysis
	Prediction of clinical features using the CAF model

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	References


