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Background: Soft-tissue sarcomas (STSs) are a rare type of cancer, accounting for
about 1% of all adult cancers. Treatments for STSs can be difficult to implement
because of their diverse histological and molecular features, which lead to
variations in tumor behavior and response to therapy. Despite the growing
importance of NETosis in cancer diagnosis and treatment, researches on its
role in STSs remain limited compared to other cancer types.

Methods: The study thoroughly investigated NETosis-related genes (NRGs) in
STSs using large cohorts from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases. The Least Absolute Shrinkage and
Selection Operator (LASSO) regression analysis and Support Vector Machine
Recursive Feature Elimination (SVM-RFE) were employed for screening NRGs.
Utilizing single-cell RNA-seq (scRNA-seq) dataset, we elucidated the expression
profiles of NRGs within distinct cellular subpopulations. Several NRGs were
validated by quantitative PCR (qPCR) and our proprietary sequencing data. To
ascertain the impact of NRGs on the sarcoma phenotype, we conducted a series
of in vitro experimental investigations. Employing unsupervised consensus
clustering analysis, we established the NETosis clusters and respective NETosis
subtypes. By analyzing DEGs between NETosis clusters, an NETosis scoring
system was developed.

Results: By comparing the outcomes obtained from LASSO regression analysis
and SVM-RFE, 17 common NRGs were identified. The expression levels of the
majority of NRGs exhibited notable dissimilarities between STS and normal tissues.
The correlation with immune cell infiltration were demonstrated by the network
comprising 17 NRGs. Patients within various NETosis clusters and subtypes
exhibited different clinical and biological features. The prognostic and immune
cell infiltration predictive capabilities of the scoring systemwere deemed efficient.
Furthermore, the scoring system demonstrated potential for predicting
immunotherapy response.

Conclusion: The current study presents a systematic analysis of NETosis-related
gene patterns in STS. The results of our study highlight the critical role NRGs play in

OPEN ACCESS

EDITED BY

Zhi-Yao He,
Sichuan University, China

REVIEWED BY

Wenhao Luo,
Peking Union Medical College Hospital
(CAMS), China
Lei Gao,
Sir Run Run Shaw Hospital, China

*CORRESPONDENCE

Wenchao Zhang,
xyzhangwenchao@csu.edu.cn

Zhihong Li,
lizhihong@csu.edu.cn

RECEIVED 05 May 2023
ACCEPTED 12 June 2023
PUBLISHED 20 June 2023

CITATION

Qi L, Chen F, Wang L, Yang Z, Zhang W
and Li Z (2023), Deciphering the role of
NETosis-related signatures in the
prognosis and immunotherapy of soft-
tissue sarcoma using machine learning.
Front. Pharmacol. 14:1217488.
doi: 10.3389/fphar.2023.1217488

COPYRIGHT

© 2023 Qi, Chen, Wang, Yang, Zhang and
Li. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 20 June 2023
DOI 10.3389/fphar.2023.1217488

https://www.frontiersin.org/articles/10.3389/fphar.2023.1217488/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1217488/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1217488/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1217488/full
https://www.frontiersin.org/articles/10.3389/fphar.2023.1217488/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2023.1217488&domain=pdf&date_stamp=2023-06-20
mailto:xyzhangwenchao@csu.edu.cn
mailto:xyzhangwenchao@csu.edu.cn
mailto:lizhihong@csu.edu.cn
mailto:lizhihong@csu.edu.cn
https://doi.org/10.3389/fphar.2023.1217488
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2023.1217488


tumor biology and the potential for personalized therapeutic approaches through
the application of the NETosis score model in STS patients.
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Introduction

Soft-tissue sarcomas (STSs) are one of the rarest malignancies,
making up only about 1% of all cancers in adults (Gamboa et al.,
2020). Annually, there are approximately 5 to 6 cases of STSs per
100,000 people (Gage et al., 2019). The STS has a predilection for
middle-aged and older adults. Several certain risk factors including
gene mutation and exposure to radiation or chemicals have been
identified, but the specific etiology of most STS remained unknown
(Hoefkens et al., 2016). STSs are extremely heterogeneous that
originate from mesenchymal cells, with peripheral extremities as
the most prevalent primary sites (von Mehren et al., 2022). It has
been a priority to identify new treatments for STS and improve
patient outcomes in recent years. As a promising treatment,
immunotherapy stimulates the body’s immune system to
recognize and attack STS cells (Birdi et al., 2021). However,
treatments can be challenging to conduct due to heterogeneous
histological and molecular characteristics.

The term NETosis refers to the process about the cell death
characterized by neutrophils releasing extracellular structures
known as neutrophil extracellular traps (NET), which contain
DNA, histones, and antimicrobial proteins that are capable of
trapping and killing bacteria and other pathogens (de Bont et al.,
2019). The innate immune response of NETosis was initially
defined as an anti-infectious effect, but recent studies have
suggested that NETosis also contributed to a number of
noninfectious pathological conditions, including cancers
(Cedervall et al., 2016). Malignancies could induce platelet
activation contributing to cancer-related thrombosis, as well as
enhanced metastasis through a variety of mechanisms (Gay and
Felding-Habermann, 2011). Additionally, it has been reported
that neutrophils that form complexes with platelets are associated
with organ failure in cancer patients (Cedervall et al., 2015).
NETs lead to the poor peripheral perfusion during the cancer,
and DNase I could destabilize and remove NETs due to the high
extracellular DNA content of NETs. Studies in mouse models
have shown that targeting NETs with DNase I reduced tumor
growth and improved chemotherapy efficiency (Cools-Lartigue
et al., 2013). In addition, the enzyme protein-arginine deiminase
4 (PAD4), mediating the citrullination of histones, has been
identified as a key player in the process of NETosis (Garcia-
Gerique and Nefedova, 2023). PAD4 could facilitates the NETs
releasing by converting arginine residues on histones to
citrulline. As a result, PAD4-mediated NETosis were reported
to contribute to tumor growth and metastasis, through its
modulation of the tumor microenvironment (TME) and
promoting angiogenesis (Li et al., 2020). Although the
NETosis has emerged as a pivotal factor about the diagnosis
and treatment in cancers, researches about STS are still extremely
limited compared with other types of cancers.

Herein, our objective was to explore in depth NETosis-related
genes (NRGs) within STS by using large cohorts within The Cancer
Genome Atlas (TCGA) as well as Gene Expression Omnibus (GEO)
databases. Employing a range of machine learning-based algorithms,
we systematically screened for NRGs. A comprehensive analysis of
genome and transcriptome characteristics of NRGs in STSs was
conducted. A number of NETosis-related clusters and subtypes have
been identified, and characteristics of TME have been investigated in
depth. Furthermore, our study established a NETosis scoring model
that could be used to predict the prognosis for STS patients and the
response to immunotherapy. Overall, the findings of this study hold
the potential to contribute to a better understanding of the biology
and treatment for STS.

Methods

Data sources and processing

The TCGA and GEO datasets were utilized to gather gene
expression profiles and clinical information of STS. Using the
Genotype-Tissue Expression (GTEx) database, we extracted gene
expression matrix for normal adipose and muscle tissues. For the
comparison of the gene expression profiles of TCGA and GTEx
datasets, UCSC Xena has utilized rigorous analyze pipeline
(TOIL RNA-seq). This algorithm could enable the direct
comparison between tumor and normal tissues at the gene
expressing level (Wang et al., 2018). We obtained all data
from the TCGA using UCSC Xena browser, including
mutations frequency, variability in somatic copy number
(SCNV) and RNA-seq data. A comprehensive pan-cancer
investigation was conducted using data from the TARGET
Pan-Cancer (PANCAN) cohort. We also screened out two
cohorts (GSE17118 and GSE30929) that included prognosis
data, as well as a single-cell RNA-seq (scRNA-seq) dataset for
STS (GSE131309), by using the GEO database. In addition, our
study included the gene matrix and clinical information of
patients receiving a combination therapy of PD-1 and CTLA-4
blockade (Gide et al., 2019).

Unsupervised clustering of NRGs

Based on research of NETosis in different diseases
(Şenbabaoğlu et al., 2016; Papayannopoulos, 2018; Zhang
et al., 2022), gene sets of NETosis have been summarized
(Supplementary Table S1). By utilizing the “glmnet” package,
we performed Least Absolute Shrinkage and Selection Operator
(LASSO) regression analysis and tenfold cross-validation to
determine the penalty regularization parameter λ. As another
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machine learning method, support vector machine recursive
feature elimination (SVM-RFE) adopts the structural risk
minimization principle and aims to optimize the learning
performance by minimizing the empirical error. To visualize
genomic location of NRGs, we used the “Rcircos” package
(version 1.2.1) to plot the chromosomes in a circular pattern.
The STS patients were grouped into specific clusters and subtypes
based on unsupervised clustering of NRGs. For enhancing the
stability of clustering, we employed the R package
“ConsensusClusterPlus” with optimal parameters set as maxK
of 9 and repetitions of 1,000 (Wilkerson and Hayes, 2010).

Gene set variation analysis (GSVA)

For the purpose of investigating the biological characteristics of
different clusters, subtypes and low and high NETosis scoring
groups, we conducted following GSVA, by utilizing the R
package “GSVA” (Hänzelmann et al., 2013). The Molecular
Signatures Database (MSigDB) provided predefined gene datasets
(h.all.v7.5.1). In order to analyze the enrichment scores, we utilized
the outputs of GSVA through R package “limma”. The modified
t-statistics were then used to analyze the data. By utilizing the R
package “ggplot2″, the outcomes were further visualized. The
“clusterProfiler” R package was also utilized for detecting
significant enrichments, based on GO annotations with the
threshold of false discovery rate (FDR) < 0.05 (Yu et al., 2012).
We visualized the correlation between NRGs in STS with the
Spearman correlation test, by using the R package “corrplot”.
The interactive network illustrating the relationship between
NRGs and prognostic data was created by utilizing the R package
“igraph".

Detection of differentially expressed genes
(DEGs) between clusters

After identifying the NETosis-related clusters through
unsupervised clustering, we conducted the analysis of DEGs
using the “limma” R package. The functions of “lmFit” and
“eBayes” were employed to guarantee precision. For addressing
the issue of multiple comparisons, we applied the
Benjamini–Hochberg method to adjust the p-values. We then
filtered DEGs with an adjusted p-value <0.05.

Quantification of immune infiltration in TME

The infiltration of specific groups of immune cell groups was
assessed using single-sample gene set enrichment analysis (ssGSEA).
The previously published research provided gene signatures for
specific clusters of immune cells used in ssGSEA (Bindea et al.,
2013). A scale ranging from 0 to 1 was utilizing for normalizing
immune cell infiltrations. We also utilized previously established
signatures of tumor mutation burden (TMB), to explore the
relationship between TME and potential biological processes
(Mariathasan et al., 2018). The ESTIMATE scores were
calculated using the R package “ESTIMATE” to estimate stromal

and immune infiltration in the samples based on gene signatures
(Yoshihara et al., 2013). From previously published studies, we also
retrieved signatures associated with pathways predicted to be
involved in immunotherapy response and cancer-immunity
cycles (Chen and Mellman, 2013; Qi et al., 2023). The framework
of cancer-immunity cycles guides cancer immunotherapy (Chen
and Mellman, 2013). The approaches for computing the activity of
these steps were described in a previous publication (Xu et al., 2018).
Using the R package “ggcor”, we further evaluated and compared the
association between the NETosis scores and the GSVA scores of the
signatures mentioned above.

Development of NETosis score

In order to score activity of NETosis, the following system
was developed. Initially, unsupervised clustering has been used
for identifying unique NETosis-related clusters. Following this,
we screened and selected DEGs overlapped between clusters.
Next, we performed a principal component analysis (PCA) using
these DEGs. In order to calculate NETosis scores, we selected
both PC1 and PC2 from the PCA of above DEGs. As a result of
this method of scoring, the dataset for most well-correlated (or
anticorrelated) genes will be given a higher score, while genes that
are not related to most set factors will be given a lower weight, as
they have been implemented in previous investigations (Zhang
et al., 2020; Chong et al., 2021). The scoring system to evaluate
NETosis score was computed using the subsequent equation:
NETosis score = Σ (PC1i + PC2i), where i indicates the expression
of the selected DEGs based on the PCA. An algorithm-derived
optimal cut-off value was further introduced to classify patients
with STS into high and low NETosis groups.

Transcriptome analysis at single-cell level

Data from a previously published scRNA-seq research
(GSE131309) were used for this study (Jerby-Arnon et al., 2021).
According to the standard pipelines, we used the Seurat package to
analyze the scRNA-seq data. The quality control (QC) metrics as
well as other parameters used, were in accordance with those in the
publications (Jerby-Arnon et al., 2021; Qi et al., 2022). Furthermore,
we annotated specific cell clusters using the same labeling system as
the original study, and the corresponding annotation methods were
described in detail in that study (Jerby-Arnon et al., 2021).
Visualization of expression patterns of NRGs were also
conducted at the single-cell resolution.

Predicting chemotherapy sensitivity

The Genomics of Drug Sensitivity in Cancer database (GDSC),
was used to collect information on drug response. (Yang et al., 2013).
There are over 1,000 human cancer cell lines in the GDSC database
along with 518 compounds that target 24 pathways. We utilized the
R packages “pRRophetic” and “oncoPredict” to compute the
IC50 and drug sensitivity score (Iorio et al., 2016; Maeser et al.,
2021).
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Long-read RNA sequencing

The expression levels of NRGs were verified using our own
sequencing data, which consisted of four pairs of STS and paired
normal tissues (GSE198568). The long-read RNA sequencing was
conducted by Biomarker Technologies (Beijing, China), in
compliance with the standards by Oxford Nanopore
Technologies.

Cell lines and quantitative PCR (qPCR)

Information about the sources for the cell lines of sarcoma
including SW-982, SW-872, hSS-005R and HSF used in this study
was provided in previous publications (Qi et al., 2022; Qi et al.,
2023). In order to cultivate the cell lines of STS, Dulbecco’s modified
Eagle medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) were used at the temperature of 37°C with 5% CO2

atmosphere.
For qPCR, we used the RNA Express Total RNA Kit (M050,

NCM Biotech, China) for extracting total RNA from cell lines. The
RevertAid First Strand cDNA Synthesis kit (K1622, Thermo Fisher
Scientific, United States) was used to synthesize cDNA. The qPCR
refers to the previous studies (Qi et al., 2022; Qi et al., 2023). The
primer sequences used for qPCR were summarized in
Supplementary Table S2.

Cell transfection

We obtained siRNAs targeting negative control (NC) and
HMGB1 via Hanbio (Shanghai, China). Upon reaching 50%
confluency in the 6-well plate, hSS-005R were transfected with
50 nmol of NC and HMGB1 siRNAs with 5 μL Lipofectamine
2000 reagent for 12 h. Supplementary Table S1 illustrated the
sequence of siRNAs used in this research.

Cell proliferation assay

The viability evaluation of the hSS-005R was conducted using
the cell counting kit-8 (CCK-8). We seeded the hSS-005R cells in
96-well plates with 2000 cells per well and then incubated the
plates overnight. Following transfection, hSS-005R cells were
cultured for the indicated durations. Each well received 10 μL
of CCK-8 solution followed by 90 μL of DMEM supplemented
with 10% FBS at every time point. After 1.5 h of incubation, the
optical absorbance at 450 nm was recorded using a microplate
reader.

Clone formation assay

Following transfection, we seeded hSS-005R cells in 6-well plates
with 1,000 cells per well and cultured them for 2 weeks, to conduct
clone formation assay for assessing cell proliferation. We fixed the
cells in 4% paraformaldehyde (PFA) for 15 min and stained them
with 0.2% crystal violet for anothewr 15 min.

Wound healing assay

In order to assess migration capacity, the wound healing assay
was conducted. Upon reaching 70% confluence, hSS-005R cells were
transfected into various 6-well plates. After reaching 100%
confluence, hSS-005R cells were subjected to wound healing
assays by creating a scratch using a 100 μL pipette tip. The
DMEM with 2% FBS was then used to culture the wounded cells
following washing with PBS. We further measured the area covered
by the migrated cells after 0 and 48 h, by using the light microscope.

Statistical analysis

We conducted data analysis using the R software (version 4.1.0).
In order to determine whether NRGs are correlated, the Spearman
correlation test was performed. Parametric and nonparametric
comparisons were conducted for pairwise comparisons using
Student’s t-test or Wilcoxon signed-rank test, respectively.
Likewise, One-way ANOVA and Kruskal–Wallis tests were
introduced for analyzing more than two groups. The survival
curves were compared using the log-rank test. For the purpose of
identifying significant prognostic factors, univariate and
multivariate Cox regression analyses were performed. To
determine the most appropriate cutoff values for NETosis scores
across datasets, the “surv_cutpoint” function from the “survminer”
package was repeatedly applied. The NETosis scores of the patients
in the datasets were then used to divide them into subgroups of low
and high scores. Also, comparing clinical characteristics between
two groups was performed using the Chi-square test or Fisher’s exact
test. Statistical significance was defined as a p-value less than
0.05 with two tailed tests.

Results

Selection for candidate NRGs

A total of 69 NRGs have been identified based on comprehensive
analysis of the existing literatures on the disease. For the purpose of
identifying potential NRGs, we used two different machine learning-
based algorithms. The LASSO regression analysis identified
23 potential NRGs from 69 genes with optimal performance
(Figures 1A, B). When the number of features was reduced to 25,
SVM-RFE achieved minimum error (Figures 1C, D). Comparing the
results from the two algorithms above, Venn diagrams were used to
identify 17 intersecting NRGs (Figure 1E).

Pan-cancer analysis of NRGs

Our initial investigation focused on the pan-cancer profile of
NRGs. As a result of SCNV of NRGs in pan-cancer, we found
SCNV gain in DNASE1, HMGB1 and PIK3CA (Figure 1F).
Moreover, comparing normal samples with cancer samples,
SELP was downregulated in most types of cancer (Figure 1G).
Among the 17 analyzed NRGs in various types of cancer,
mutations of PIK3CA were prevalent in a variety of cancer
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types (Figure 1H). Additionally, G0S2 and SLC25A37 were
identified as risk factors for multiple types of cancer
(Figure 1I). Besides, it has been found that SCNV and
expression of AKT1, AKT2, ATG7, ENTPD4, HMGB1, MTOR,
PIK3CA and SLC25A37 were significantly correlated (Figure 1J).

Genome and transcriptome characteristics
of NRGs

Within the TCGA-SARC cohort, we found that merely 6.33%
(15 out of 237) of samples present mutations linked to NRGs, and

FIGURE 1
Machine learning assisted NETosis-related genes (NRGs) identification and pan-cancer analysis. (A) LASSO coefficient profiles of the 69 NRGs. (B)
LASSO cross-validation to select optimal tuning parameter (λ) from the 69 NRGs. (C) The accuracy and error (D) rate of estimate generation in SVM-RFE
algorithm for selecting NRGs. (E) The overlapping of identified NRGs through two machine learning algorithms. (F) Variability in somatic copy number
(SCNV) of NRGs across different cancer types in TCGA pan-caner cohort. (G) Comparison of expression levels of NRGs between tumors and
corresponding normal tissues in TCGA pan-caner cohort. (H) Variations in NRG mutation frequency among cancer types in TCGA pan-caner cohort. (I)
Prognostic roles of NRGs in different types of cancer in TCGA pan-caner cohort. Factors with poor prognoses are represented by red, and factors with
favorable prognoses are represented by blue. (J) Correlation analysis between NRG expression and SCNV in various cancer types.
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that these mutations were concentrated within 8 specific NRGs
(Figure 2A). The frequency of SCNV in NRGs is illustrated in
Figure 2B, with RIPK3 showing the highest gain. The majority of
NRGs were found to be located on chromosomes 1, 4, 8, and 16
(Figure 2C). By using the somatic interaction function, we also
investigated the interactions among somatic mutations of NRGs.
Our findings suggested that ITGAM exhibited co-occurrence
with G0S2 (p < 0.01) (Figure 2D). It is noteworthy that
17 NRGs were able to differentiate between tumors and non-
tumor tissues through expression profiling (Figure 2E), as a
significant differential expression was observed in the majority
of NRGs (Figure 2F).

Our analysis of scRNA-seq data from GSE131309 allowed us to
further investigate the expression patterns of NRGs (Figures 3A, B).
Interestingly, HMGB1, AKT1 and MTOR were found to be
expressed across all types of cells, whereas TLR2 and G0S2 were
predominantly found in specific cell clusters (Figures 3B–D;
Supplementary Figure S1). Validation of qPCR showed that the
HMGB1 was significantly higher within sarcoma cell lines, such as
SW-982, hss-005R, and SW-872, when comparing with the HSF cell
line. By contrast, STS cell lines expressed lower levels of G0S2
(Figures 3E–G). Similarly, A similar pattern of consistency was
found within our own sequencing dataset of four pairs of STS with
matched normal tissue samples (Figures 3H–J).

FIGURE 2
Genome and transcriptome characteristics of NRGs. (A)Mutation frequencies of NRGs in TCGA-SARC cohort (Top 8). (B) Gain and loss in CNVs of
NRGs in the TCGA-SARC cohort. (C) Overview of the location of NRGs on human chromosomes. (D) Analysis of the mutation co-occurrences and
exclusions among mutated NRGs. (E) Principal component analysis (PCA) of NRG expression to differentiate soft-tissue sarcoma (STS) from normal
tissues. (F) Comparison of expression levels of selected NRGs between STS and normal tissues using the TCGA-GTEx database.
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FIGURE 3
The expression patterns of NRGs illustrated by scRNA-seq data and validation in cell lines. (A) The t-distributed stochastic neighbor embedding
(t-SNE) of annotated cell types in GSE131309. (B) Differences in the expression patterns of specific NRGs between cell types. (C) Stacked violin plots
illustrating the levels of expression of specific NRGs in different cell types. (D) Percent of cells expressing specific NRGs and corresponding expression
level. (E–G)Quantitative PCR validation of NRG expression in STS cell lines. (H–J) Comparison of NRG expression levels between STS and adjacent
normal tissues using own sequencing data.
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FIGURE 4
NETosis-related clusters and interactions between NRGs. (A) Correlation analysis of NRG expression and immune cells signatures in TCGA-SARC
cohort. (B) Cross-talk of NRG network TCGA-SARC cohort. (C) Kaplan-Meier survival curve of various NETosis-related clusters. (D–F) The gene set
variation analysis (GSVA) revealing distinct enriched pathways in specific NETosis-related clusters. (G) Comparison of immune cell infiltration between
different NETosis-related clusters.
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NETosis-related clusters and interactions

As immune cells could interact with other cell types and
influence their fate, the TME is essential to the regulation of
tumor progression. Upon analyzing relationships among

expression levels of NRGs as well as immunocyte signatures, we
discovered that TLR7, TLR2, SELPLG, SELP, RIPK3, ITGAM and
ATG7 were positively correlated (Figure 4A). A comprehensive
overview of the interactions was also constructed by the network
of 17 NRGs (Figure 4B). Most NRGs were positively correlated. It is

FIGURE 5
Identification of NETosis-related subtypes and corresponding biological role. (A) Venn diagrams showing the overlaps of differentially expressed
genes (DEGs) between NETosis-related clusters. (B) The Gene Ontology (GO) of overlapped DEGs. (C) Kaplan-Meier survival curve of different NETosis-
related subtypes. (D)Heatmap showing the unsupervised clustering of NETosis-related subtypes in relation to overlapped DEGs. (E, F)Comparison of the
GSVA illustraring different enriched pathways for NETosis-related subtypes.
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noteworthy that DNASE1 exhibited a negative correlation with a
significant number of NRGs.

Using unsupervised consensus clustering, TCGA-SARC cohorts
were grouped based on the expression of 17 NRGs (Supplementary
Figures S2A–F). As a result, the optimal clustering number was
found to be K = 3, including 65 cases in C1, 166 cases in C2 and
33 cases in C3, accordingly. The survival rates among the three
distinct clusters were significantly different, with C1 showing a
noticeable advantage in survival (Figure 4C). There expression
patterns of 17 NRGs were illustrated in Figure 4D. As a result of
GSVA, we were able to compare the pathway enrichment among
clusters (Figures 4E, F). In the C1 cluster, there was a significant

enhancement observed in the lysosome, chemokine signaling
pathway, and B cell receptor signaling pathway. In addition, the
ssGSEA analysis demonstrated that C1 was characterized by the
infiltration of innate and adaptive immunocytes (Figure 4G;
Supplementary Figure S2G).

Identification of NETosis-related subtypes

We further identified totally 93 DEGs associated with NETosis-
related clusters, which were used to investigate the clinical and
biological features of clusters (Figure 5A). Furthermore, DEGs were

FIGURE 6
Developing and validating the NETosis score. (A) The alluvial diagram depicting the correlation between NETosis-related clusters, subtypes, scores,
and survival rates. (B) Overview of the NETosis scores of different NETosis-related clusters shown by box plots. (C) Tumor microenvironment (TME)
scores based on ESTIMATE algorithm between low and high NETosis score groups. (D–F) Kaplan-Meier survival curve to validate the prognostic value of
NETosis scores in TCGA-SARC, GSE17118 and GSE30929 cohorts. (G) Correlation analysis of immune cell signatures and NETosis scores. (H) Pie
plots showing differences in clinical characteristics between groups with low and high NETosis scores. (I) Forest plot illustrating the multivariate Cox
regression analysis of NETosis scores and clinical characteristics.
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predominantly enriched within GO terms, including lymphocyte
mediated immunity, immune effector regulation, and biotic
response regulation (Figure 5B). For identifying unique STS
cohorts by features of NETosis-related clusters, the unsupervised
consensus clustering was conducted by utilizing the above
mentioned DEGs (Supplementary Figure S3A–F). Consequently,
we identified three distinct subtypes (S1, S2, S3) containing
respective patient counts of 107, 34, and 116. The survival
outcomes for patients within these subtypes exhibited significant
differences (Figure 5C). Despite their distinct gene expression
profiles, the clinical features of the three NETosis-related
subtypes were more heterogeneous (Figure 5D). GSVA indicated
the significant enrichment of cytosolic DNA sensing pathway,
cytokine receptor interaction and amino sugar and nucleotide
sugar metabolism in S1 subtype (Figure 5E). Intriguingly, in
contrast to subtypes S1 and S3, subtype S2 exhibited a greater
enrichment within antigen processing and presentation
(Figure 5F; Supplementary Figure S3E).

Development and verification of NETosis
score

In spite of identification of specific clusters and subtypes
associated with NETosis, these works were limited to the TCGA-
SARC cohort. Utilizing NETosis-related DEGs, we subsequently
constructed a model for NETosis score calculation in STS patients
that could be tailored to their individual needs. This illustration
presented the NETosis score developmental alluvial diagram and the
relations between NETosis-related clusters, subtypes and scores
(Figure 6A). Notably, NETosis-related clusters indicated
significant differences in NETosis scores (Figure 6B). Afterwards,
an optimal cut-off value derived by an algorithm was introduced to
classify patients with STS into high and low NETosis groups.
Further, we observed significant differences between groups with
low and high NETosis scores in TME scores, which comprise
stromal scores, immune scores, and ESTIMATE scores
(Figure 6C). The TCGA-SARC cohorts suggested an unfavorable
prognosis for patients with low NETosis scores (p = 0.010)
(Figure 6D). Validation with external data from GSE17118 (p =
0.016) and GSE30929 (p = 0.049) further corroborated this finding
(Figures 6E, F). Remarkably, several types of innate and adaptive
immune cells were positively correlated with NETosis scores,
including macrophage, monocyte, B cell, and different T cell
subtypes (Figure 6G). There were distinct clinical characteristics
among STS patients classified as high and low NETosis scores,
including prognosis (p < 0.001) and histology (p < 0.001)
(Figure 6H). The analysis of the multivariate Cox regression
model revealed that high NETosis scores were significant
prognostic risk factors for STS (Figure 6I).

Biological features associated with NETosis
scores

Subsequently, we examined the distinctions in genomic and
transcriptomic profiles between high and low NETosis score
categories. An increased mutation frequencies was noted in the

low NETosis score group, with changes in 116 (72.05%) of the
161 patients (Figure 7A), as opposed to the high NETosis score
group, where mutations were observed in 41 (56.94%) of the
72 patients (Figure 7B). It is noteworthy that the prevalence of
arm-level amplifications as well as deletions appears more
pronounced within the group with high NETosis score relative to
the low-score group (Figure 7E). Upon evaluating the enriched
pathways in distinct NETosis score groups, we discovered positive
enrichment of pathways such as TNF signaling via NF-kB, IL-6/
JAK/STAT3 signaling and KRAS signaling in the high NETosis
scoring group. Conversely, terms including myogenesis and
hedgehog signaling pathways, were observed to be negatively
enriched (Figure 7C). Further, we examined the relationship
between NETosis scores and immunotherapy-predicted pathways
as well as cancer immunity cycles. The NETosis score exhibited a
considerable positive correlation with a range of innate and adaptive
immune cells, including B cell, different T cell subtypes, dendritic
cell, macrophage and others (Figure 7D). Besides, the NETosis
scores also demonstrated a positive correlation with several
immunotherapy-predicted pathways, including IFN-γ signature
and proteasome.

A further analysis of the NETosis score within a cohort receiving
immunotherapy was conducted for exploring the correlation among
NETosis score and immune status. It is noteworthy that patients
displaying low NETosis scores exhibited unfavorable survival
outcomes (p = 0.048) (Figure 7F), as well as poor response to
immunotherapy (p < 0.001) (Figure 7G). By screening the GDSC
database, we identified drugs that exhibit various response patterns
between groups with distinct NETosis scores. A significant
difference was noted in IC50 values between the high NETosis-
score group and the low NETosis-score group with regard to
AZD6244 (p = 0.015), Parthenolide (p = 0.046), and PD.0332991
(p = 0.021).

Effects of NRGs on STS cell line

In light of the fact thatHMGB1was abnormally upregulated in STS,
we proceeded to investigate its roles in STS cell line. In hSS-005R cells
transfected with siRNA, the expression of HMGB1 was significantly
reduced (Figure 8A). By using the CCK8 assay, Figure 8B showed that
inhibition of HMGB1 resulted in a decrease in proliferation rate of hSS-
005R. Besides, the ability of hSS-005R cells to form colonies was reduced
upon the inhibition of HMGB1 (Figure 8C). In comparison to the
control group, siRNA- HMGB1 significantly decreased the migration
distance of hSS-005R cells in the scratch test (Figure 8D). The above
results suggested that the upregulation of HMGB1 may contribute to
the malignant behavior of STS cells, which supports the findings
obtained from the bioinformatic analysis.

Discussion

There are currently limited therapeutic interventions available for
STS (Gamboa et al., 2020). In order to be able to identify potential
therapeutic targets, many studies analyzed the genomic and
transcriptomic features of sarcoma. The processes of NETosis leads
to the formation of the NET, which are comprised of modified
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FIGURE 7
Genomic and transcriptional features associated with NETosis scores in the TCGA-SARC cohort. (A, B) Frequently top mutated genes between
groups with low and high NETosis scores. (C) Bar plot illustrating the differences in enriched pathways by GSVA between groups with low and high
NETosis scores. (D) Analysis of the correlation of NETosis scores with immunotherapy-predicted pathways and cancer immunity cycles. (E)Differences in
arm-level amplifications and deletions between low and high NETosis scores. (F) Kaplan-Meier survival curve showing the difference between low
and high NETosis scores within the cohort treated with immunotherapy. (G) The difference in percentage of clinical response of the immunotherapy
cohort with low and high NETosis scores. (H) Drugs with significantly different estimated IC50 in the TCGA-SARC cohort by NETosis score.
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chromatin and bactericidal proteins derived from the granules and the
cytoplasm of neutrophils. There is evidence that the NETs contribute to
aggressive mesenchymal phenotypes in gastric cancer (Zhu et al., 2021).
The presence of NETosis has been shown to exacerbate cancer by
promoting cancer-associated thrombosis and venous
thromboembolism (Demers et al., 2012). While many studies have
examined the role of NETosis in specific cancer types, there is little
research on this topic in STS. Therefore, the current study involved a
thorough analysis of NRGs in patients with STS.

According to expression data of 69 NRGs within the TCGA-SARC
cohort, this study developed a predictive model for NRGs. By applying

Lasso regression analysis and SVM-RFE, 17 genes were further
identified as potential predictors. Even though all cancers differ at
the molecular level, there are still commonmutations or transcriptional
regulation features that they share. Our first step was to analyze the
molecular characteristics of NRGs at the pan-cancer level. It has been
observed that a number of NRGs, including DNASE1, HMGB1 and
PIK3CA, undergo gains in SCNV across a variety of cancer types, which
was consistent with previous studies (Lin et al., 2011; Ueki et al., 2019;
Martell et al., 2020). The PIK3CA has the highest mutation frequency
within the TCGA-SARC cohort, suggesting that PIK3CA plays a
significant role in STS biology. In several specific cancer types,

FIGURE 8
Validation of HMGB1 for promoting malignant biological behaviors of sarcoma cells. (A) Assessment of HMGB1 knockdown efficiency in hSS-005R
cell lines. Comparison of CCK8 assay (B), clone formation (C), scratch assay (D) in hSS-005R cell lines with HMGB1 siRNA and Control siRNA.
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expression levels of NRGs are associated with prognostic risk,
suggesting that their expression can provide insight into prognosis.

The 17 NRGs identified by machine learning methods in STS were
further analyzed for their genomic and transcriptomic characteristics.
As a result of differential expression, most NRGs have distinct
expression patterns that enable differentiation between STS and
normal tissues. In our own laboratory, the qPCR and our own
sequencing data were used to confirm differential expression in
certain NRGs within certain STS cell lines and patient tumor
samples. With the advent of scRNA-seq, gene expression patterns
within individual cell types can be identified with high resolution
and specificity (González-Silva et al., 2020). It is worth highlighting
that HMGB1, AKT1 and MTOR exhibited expression within the
multiple cell clusters. It has been reported that the mTOR pathway
coordinates signaling events within neutrophils after activation,
ultimately leading to NETosis (Itakura and McCarty, 2013). Due to
the paucity of researches investigating the interaction between NRGs in
STS, it is imperative that additional investigations incorporate biological
mechanism research would be conducted in the future.

In order to explore the unique features of selectedNRGs, we utilized
the unsupervised consensus clustering method, which led to the
identification of three distinct clusters. By using this approach, it
may be possible to reveal conformational nuances that population
averages may obscure, thus revealing previously unknown and
potentially meaningful patterns (Necchi et al., 2021; Thongprayoon
et al., 2022). A comparison of NETosis-related C1 with the other two
clusters showed significantly better prognoses. The expression of genes
in C1 cluster was markedly increased, which were associated with
lysosome function, chemokine signaling pathways, and B cell receptor
signaling pathways. Furthermore, the results of ssGSEA analysis
indicated that C1 exhibited significantly elevated infiltration of both
innate and adaptive immune cells. The majority of cancers have
developed mechanisms to evade immune control or
immunosurveillance, and infiltration of immune cells and tumor
prognosis have been shown to be positively correlated in numerous
studies (Fridman et al., 2017; Jiang et al., 2022; Jiang et al., 2023). On the
basis of specificNETosis-related clusters, theDEGswere predominantly
related to lymphocyte mediated immunity, immune effector regulation,
and biotic response regulation. Therefore, NETosis plays a crucial role
in regulating immune-related processes (Cedervall and Olsson, 2015).
Based on the identification of NETosis-related clusters, this study
further identified three NETosis-related subtypes that exhibit distinct
prognoses and TME characteristics.

Despite the identification of specific NETosis-related clusters and
subtypes based on the TCGA-SARC cohorts, by utilizing systematic
approaches, the individual NETosis-related risk needs to be quantified
using an accurate method. Therefore, a DEG-based scoring system was
further developed. Besides, this study emphasizes the significance of
NETosis scoring system in relation to cancer-immunity cycles.
Moreover, the findings imply that NETosis may hold regulatory
potential over immunotherapy (Wang et al., 2020). With the aim of
addressing the lack of specific STS groups treated with immunotherapy,
we introduced an independent melanoma cohort receiving a
combination therapy of PD-1 and CTLA-4 blockade. Our results
have confirmed the strength of the NETosis score, despite the need
for further prospective studies of STS with immunotherapy. In studies
of NETosis-related genes in head and neck squamous cell carcinoma
and bladder cancer, NETosis has been found to play a key role in the

progression of these cancers and can be used for prognostic prediction.
Besides, the NETosis scoring system could serve as an efficient tool for
predicting the prognosis and response to immunotherapy in individuals
with STS.

To summarize, the current study provides the first comprehensive
analysis of NETosis-related gene patterns in STS. As a result of our
study, we have shed light on the intricate profiling and cross-talk of
NRGs in pan-cancer level well as STS cell lines, elucidating its key role in
tumor biology. With the model of NETosis score, personalized
therapeutic approaches can be enhanced and optimized in patients
with STS. In a broader sense, this research highlights the important
interplay between NRGs, which provides new insights into treatment
strategies for STS patients.
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SUPPLEMENTARY FIGURE S1
Analysis of single-cell expression patterns of NRGs across different cell types
in soft-tissue sarcoma.

SUPPLEMENTARY FIGURE S2
Identification of NETosis-related clusters. Consensus clustering based on
NRGs (K=2-6). (F) Consensus cumulative distribution function (CDF) plot
based on SRGs. (G) GSVA revealing distinct enriched pathways among
NETosis-related clusters.

SUPPLEMENTARY FIGURE S3
Identification of NETosis-related subtypes. Consensus clustering based on
DEGs associated with NETosis-related clusters (K = 2–6). (F) The CDF plot
based on DEGs associated with NETosis-related clusters. (G) GSVA
revealing distinct enriched pathways among NETosis-related subtypes.

SUPPLEMENTARY FIGURE S4
Prognostic analysis of the TCGA-SARC cohort by subgroups based on
NETosis score. The Kaplan-Meier analysis of low and high NETosis score
groups with different ages , gender (C, D), sites (E, F) and
histology (G–K).
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