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Climate change is a problem that causes many environmental issues that impact 
the productivity of livestock species. One of the major issues associated with 
climate change is an increase of the frequency of hot days and heat waves, 
which increases the risk of heat stress for livestock species. Dairy cattle have 
been identified as being susceptible to heat stress due to their high metabolic 
heat load. Studies have shown heat stress impacts several biological processes 
that can result in large economic consequences. When heat stress occurs, dairy 
cattle employ several physiological and cellular mechanisms in order to dissipate 
heat and protect cells from damage. These mechanisms require an increase and 
diversion in energy toward protection and away from other biological processes. 
Therefore, in turn heat stress in dairy cattle can lead numerous issues including 
reductions in milk production and reproduction as well as increased risk for 
disease and mortality. This indicates a need to select dairy cattle that would 
be thermotolerant. Various selection strategies to confer thermotolerance have 
been discussed in the literature, including selecting for reduced milk production, 
crossbreeding with thermotolerant breeds, selecting based on physiological 
traits and most recently selecting for enhanced immune response. This review 
discusses the various issues associated with heat stress in dairy cattle and the pros 
and cons to the various selection strategies that have been proposed to select for 
thermotolerance in dairy cattle.
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Introduction

Climate change is an issue that is currently at the forefront of many scientific, government 
and media discussions. The reason for this is it has the potential to result in several implications 
on the global environment which in turn can impact the productivity and survival of many 
species worldwide. The climate on the earth is determined by the amount of incoming solar 
energy and the ability of the earth to emit energy back to space (1). Any disruption in the 
balance of these processes leads to change in average temperature of the earth. It has been 
documented that climate change has mainly occurred due to the increase in greenhouse gasses 
that started in the industrial era due to increases in burning fossil fuels, deforestation, 
industrialization and agricultural intensification (2). Greenhouse gasses trap the energy on earth 
not allowing it to be emitted back to space (1). It has been shown that over the years the levels 
of these greenhouse gasses has continued to increase and likely will continue to increase in the 
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future (3, 4). This increase in greenhouse gasses is due both to the rise 
in human activities that generate greenhouse gasses as well as to their 
ability to remain in the atmosphere for an extended amount of time. 
For example, carbon dioxide generated from the burning of fossil fuels 
will remain in the atmosphere for over 1,000 years (5). This increase 
in greenhouse gasses over the years has led to an overall warming of 
earth, which in turn has resulted in a number of environmental issues, 
which include droughts, flooding and an increase in heatwaves and 
hot days (1, 3).

The increase in global temperature, termed global warming, leads 
to several environmental issues. Due to global warming variation in 
precipitation has led to increased flooding in some areas and increased 
droughts in others (6). Additionally, reduced overall accumulation of 
snow has been observed, which results in depleting the water resources 
that are available in the summer months when it is needed most (1). 
Increased atmospheric temperatures have also resulted in an increase 
in heat waves and the number of hot days leading to a reduction in 
cooler days and cooling at night (1, 3). Additionally, globally heatwaves 
have become more frequent and intense across the majority of 
landmasses (3). It should however be noted these changes in climate 
are not the same for all parts of the world. The Intergovernmental 
Panel on Climate Change reports the Northern Hemisphere seems to 
have the greatest increases in overall warming compared to the 
Southern Hemisphere and warming also intensifies over land 
compared to sea (7). These regional difference in climate change are 
not associated with the level of greenhouse gasses being produced in 
particular areas but instead with geographical location and proximity 
to water (7). One example of this is Canada. On the global scale 
Canada produces relatively low greenhouse gas emissions and over the 
years has actually decreased emissions, whereas other countries have 
increased levels of emissions (8). However, Canada is one of the 
countries that has experienced the greatest warming with 
approximately twice the warming being observed across the country 
compared to the global average (3, 6). Therefore, although Canada is 
making efforts to reduce their greenhouse gas production, the effects 
of global warming will still result in environmental issues that can 
have negative consequences for our livestock species.

Livestock products are an important food source globally. They 
provide 17% of the calories consumed and 33% of the global protein 
consumption (9). Reports have shown that our population is 
continually growing indicating a need to increase production of 
livestock products (10). It is estimated that by 2050 our livestock 
production will need to increase by 70% to meet the demands globally 
(10). Therefore, the environmental issues associated with climate 
change pose a threat to the livestock industry globally. Increased levels 
of carbon dioxide in combination with increased ambient 
temperatures has led to reduced forage quality (11–13). This is because 
these factors change the composition of the plants making them less 
digestible for livestock (12). Droughts also decrease forage quality and 
overall yield resulting in less available good quality feed (13–15) and 
flooding causes poor soil quality also resulting in changes to crop 
quality and yields (12). This poses an issue for livestock as they may 
not be  able to receive the nutrients, they require to sustain the 
mechanisms involved in production, reproduction, and overall health. 
Another indirect effect of global warming on the well-being of 
livestock species is the increased survival and distribution of vector-
borne pathogens (16). Increases in ambient temperatures has allowed 
vector-borne pathogens to survive much longer then they typically 

would (16). It has also allows them to migrate and survive in other 
geographical locations that they typically would not have survived in 
the past (16). This results in increased rates of disease spread and 
transmission in livestock as well as the emergence of new diseases (12, 
16). Global warming also impacts production, reproduction and 
health, of livestock species, directly as a result of heat stress (17, 18). 
Heat stress is a welfare and economic issue in the livestock industry, 
that will continue to be a problem in the future as greenhouse gasses 
in the atmosphere continue to increase. However, of all the livestock 
species heat stress seems to have a large impact on dairy cattle. Heat 
stress results in economic loss, with the greatest loss seen in the dairy 
industry (19), where about 63% of total economic losses in the 
United States, due to heat stress, is observed in dairy cattle versus 
other livestock species (see Table 1) (17). Therefore, the aim of this 
review is to focus on the impact of heat stress on dairy cattle and the 
various methods of selection that could possibly be used to breed 
for thermotolerance.

Impact of heat stress on dairy cattle

Dairy cattle have been identified as one of the livestock species 
thar are susceptible to elevated temperatures and humidity beyond 
thermoneutral zones (20). Therefore, when assessing heat stress in 
dairy cattle, temperature humidity indexes (THI) are typically used 
(21). Because dairy cattle are so susceptible to heat stress several 
productive, reproductive and health related issues occur as a result of 
heat stress that has led to economic losses for dairy producers globally. 
Previous estimates in the United  States have reported losses of 
approximately $1.5 billion per year in lactating cow due to heat stress 
(17). To understand why such losses, occur the physiological response 
to heat stress must first be understood.

Physiological response to heat stress

Heat stress is defined as an environmental setting that disrupts the 
balance between the heat accumulation and the ability for an animal 
to dissipate heat (22). Dairy cattle are particularly susceptible to heat 
stress as milk production generates increased metabolic heat load (23). 
The response to heat stress in cattle can be  seen through several 
physiological signs or symptoms as a means of trying to maintain 
internal homeostasis (24). When the atmospheric temperature 
exceeds the normal core body temperature, cattle must expend heat 
to maintain normal core temperatures (25). Therefore, initially, an 
increase in heart rate is observed (26, 27), which causes enhanced 
blood flow to the body surface (28–30). This allows heat from the 

TABLE 1 Total economic loss by livestock species in the United States due 
to heat stress.

Species Loss due to heat stress

Dairy 63.9% (about $1.5 billion/year)

Beef 15.7% (about $370 million/year)

Swine 13.4% (about $316 million/year)

Poultry 7% (about $165 million/year)

Adapted from Key et al. (17).
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cattle’s core to be transferred to the environment (31, 32). Additionally, 
evaporative mechanisms are initiated (32, 33), which include increased 
respiration rate and sweating (25, 34, 35). These mechanisms allow 
heat to be removed from the body by increasing the moisture being 
evaporated from these surfaces into the environment (36). In turn 
dairy cattle will increase their consumption of water in order to 
counteract water loss through evaporative mechanisms in order to 
avoid dehydration (37, 38). When the ambient temperature and or 
relative humidity levels increases beyond the level that cattle can 
continue to dissipate heat effectively, the core temperature of dairy 
cattle increases beyond normal, which is termed as hyperthermia (25, 
35). During hyperthermia cattle will decrease their dry matter intake 
(DMI) as means of trying decrease internal heat load (25, 37). This, 
however, can lead to complications as feed changes have been 
associated with changes in microbial populations (39). It has been 
observed that heat stress is associated with decreased rumen pH and 
therefore increased risk of rumen acidosis (40, 41). This has been 
linked to enhanced growth of microbes that produce lactic acid in the 
rumen during heat stress (30). Decreased dry matter intake has also 
been shown to impact the villi of the gut, causing them to become 
shorter and fatter (42). This impacts the barrier function allowing 
pathogens to enter the blood stream though the intestinal lining 
resulting in activation of the immune response (42). This in turn leads 
to energy being diverted to sustaining an immune response versus 
going to toward growth, reproduction and production (43). 
Additionally, several other biological processes are shifted in order to 
try and maintain internal homeostasis in dairy cattle. Thyroid 
hormone levels decrease, as another means of trying to decrease 
metabolic heat load (29, 38). However, the hormones prolactin (PRL) 
and cortisol are increased during acute heat stress. It is thought that 
PRL may play a role in sweat gland function and cortisol seems to play 
a role in shifting immune responses (29). Conversely during chronic 
heat stress hormones like cortisol, growth hormone and thyroxine 
either decrease or remain the same (44). It is thought that the 
differences in hormone production during acute heat stress is due to 
reduced concentration of electrolytes and water as a result of losses 
from sweating and increased respiration rates (45). During chronic 
heat stress elevated levels of progesterone are observed, which may 
indicate a reduced conversion of progesterone to cortisol therefore 
resulting in reduced concentrations or no change in concentration (46).

Molecular and cellular processes may also be impacted by heat 
stress. Studies have shown heat stress decreases the gene expression 
for genes involved in transcription, RNA processing and translation 
and increases the expression of genes involved in heat shock 
transcription factor 1 and heat shock proteins (HSP), indicating a shift 
toward protective mechanisms (29, 47). Even the slightest increase in 
core temperature can cause proteins to become misfolded and can lead 
to the disruption of the organization of cell organelles which leads to 
impaired intercellular transport processes (48). This results in the loss 
of cellular homeostasis and leads to activation of apoptotic cascades 
(49, 50). Therefore, in response to the disorganization of cell organelles 
expression of HSP is increased (48). As internal temperature increases, 
and proteins become misfolded bound HSP will be released through 
the dissociation of heat shock factor 1 monomers from HSP (30, 51). 
The heat shock factor 1 monomers will then bind together forming a 
trimer (51). This trimer is translocated to the nucleus of the cell and 
binds with heat shock elements present in the promoter region of heat 
shock genes (52). This leads increased expression of HSP mRNA 

resulting in the production of inducible HSP (30, 52). Heat shock 
proteins can act in a couple of different ways to protect the cell during 
heat stress; they can facilitate re-folding of mis-folded or denatured 
proteins back to their native state, they prevent aggregation of 
mis-folded proteins and aid in the degradation of unstable proteins 
(25, 29, 48, 53).

Effect of heat stress on cellular metabolism

During heat stress there is a need to increase the bodies 
maintenance requirements because heat loss mechanisms require 
enhanced energy expenditure (54). The production of HSP, as a 
means of protecting cells during heat stress, also requires extra energy 
(55). Additionally, in dairy cattle, redistributing blood to the 
extremities and away from visceral organs, in order to maximize heat 
dissipation during heat stress, results in organ dysfunction and 
hypoxia of the gastrointestinal tract (56). This can lead to oxidative 
stress and oxidative damage of epithelial cells in the gastrointestinal 
tract resulting in leaky gut and the initiation of an inflammatory 
response (56). Metabolic pathways are the key to providing the 
energy and metabolites that cells require to perform various functions 
including initiating various effector responses (57, 58). In general, 
when cells of the immune system are in a homeostatic environment 
or anti-inflammatory state, they typically use oxidative 
phosphorylation that is fueled by low levels of glycolysis and fatty 
acid oxidation in order to provide the energy required for 
maintenance (55, 58, 59) (Figure 1). However, upon the initiation of 
an inflammatory response or when exposed to stress, cells of the 
immune system undergo immunometabolic reprogramming and 
switch to using aerobic glycolysis in order to provide the required 
energy to perform effector functions, as well as provide metabolites 
that are essential for producing molecules like cytokines, chemokines 
and stress proteins (55, 58, 59) (Figure 2). Studies have shown that 
glucose tends to be  the favored energy source (40, 54) and that 
glycolysis is increased in dairy cattle that are suffering from heat 
stress (60). This suggests that dairy cattle will typically use glycolysis 
to supply the energy required for heat dissipation and cellular 
protection. Additionally, it has also been suggested that the immune 
system is stimulated during heat stress (60) and cells of the immune 
system will increase their consumption of glucose when stimulated 
(61). This increase in glucose consumption likely occurs in order to 
perform glycolysis, which is required to supply enough energy for the 
various physiological changes and effector functions associated with 
a response to heat stress.

Conflicting evidence, in dairy cattle, exists regarding the 
involvement of other metabolites and metabolic pathways during heat 
stress. It has been suggested in lactating dairy cattle that fatty acid 
oxidation is suppressed and reduced concentrations of circulating 
fatty acids during heat stress are observed (54). Its possible that 
lactating cattle may suppress fatty acid oxidation to reduce metabolic 
heat load. Whereas other studies in lactating dairy cattle have shown 
increased concentrations of circulating fatty acids and increased fatty 
acid oxidation during heat stress and it has been suggested that these 
metabolites and pathways may be needed to provide the extra energy 
required to meet the bodies demands during heat stress (62, 63). 
Additionally, some studies in lactating dairy cattle have shown an 
increase in circulation of ketone bodies during heat stress, which may 
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be a result of reduced availability of carbohydrates for energy due to 
reduced feed consumption (62), whereas other studies in lactating 
dairy cattle have shown no effect of heat stress on the concentration 
of circulating ketone bodies (65).

All the physiological and biological processes described above are 
important in maintaining internal homeostasis during heat stress in 
dairy cattle. They do however come at a cost, since energy expenditure 
and nutrient availability is shifted toward trying to maintain this 

FIGURE 1

Summary of cell metabolism at homeostasis [adapted from Loftus and Finlay (55) and (64)]. Bolded text represents high levels of particular metabolic 
processes (oxidative phosphorylation). Bolded arrow indicates majority of the metabolite (pyruvate) transferred to mitochondria for oxidative 
phosphorylation. Non-bolded text and arrows represents lower concentration of metabolites and low level of metabolic processes.

FIGURE 2

Summary of cell metabolism during heat stress [adapted from Loftus and Finlay (55) and (64)]. Bolded text represents increased concentration of 
metabolites or high levels of metabolic process. Bolded arrows indicate the direction a majority of the metabolites will take. Non-bolded text and 
arrows represent lower concentrations of metabolites or low level of metabolic process.
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homeostasis and away from other processes like milk production or 
reproduction (37). Figure  3 provides a summary of the various 
problems that can associated with heat stress in dairy cattle.

Effect of heat stress on production

Some studies have suggested the THI threshold where heat stress 
occurs in dairy cattle is defined at the point where a decrease in milk 
production is observed (66). Several different THI thresholds have 
been reported, as a result of location or production level, that range 
from 60 to 78 (see Table  2). It has been shown that the genetic 
correlation between milk yield and THI threshold, for heat stress, is 
significantly negatively correlated at a value of −0.53 (66). This 
negative genetic correlation with milk yield is even greater as the THI 
increases beyond the heat stress threshold (−0.62) (66). This indicates 
heat stress can lead to extreme losses in milk yield, which greatly 
effects economics for dairy producers. Similarly, it has been shown 
selection for increased milk production increases dairy cattle’s 
susceptibility to heat stress, which is likely a result of the metabolic 
heat load of milk production (23). This is especially a problem in the 
Holstein breed, where selection in the Canadian dairy industry has 
put a large focus on production traits for a number of years (71). It has 
been reported that for each 10 kg/day increase in milk yield the heat 
stress threshold will decrease by 5°C (72). Similarly, during heat stress 
milk production in high producing dairy cattle will decrease by 
0.335 kg/day versus low producing cattle will only experience a 
decrease of 0.158 kg/day (73). Interestingly, the same effect was also 
observed for heat tolerant breeds that have recently been selecting for 
improved production. Selecting for improved production in these 
breeds over the past few years has resulted in decreased tolerance to 

heat stress (74). Therefore, it is obvious that heat stress has an extreme 
negative effect on milk production, that is even more pronounced in 
higher yielding animals.

There have been several biological processes suggested for why 
heat stress causes such a negative impact on milk yield. One 
contributor to reduced milk production during heat stress is the 
reduction in DMI as not enough energy and nutrients will be provided 
to the animal to maintain normal levels of production (42). Studies 
have shown DMI decreases anywhere from 40 to 48% and this has 
resulted in milk yields decreasing anywhere from 25 to 53% relative 
to animals in thermoneutral environments (22, 75). However, DMI is 
not the only thing that contributes to reduced milk yield during heat 
stress. Studies have shown heat stress can both increase cell death 
when referring to In vitro studies (22) and reduce cell proliferation in 
mammary epithelial cells prior to calving (76). This could impact 
yields in the lactation following calving due to impaired mammary 
growth (which will be  discussed further in the next section). 
Additionally, heat stress has been shown to upregulate genes and 
microRNA for protein repair and degradation and down regulate 
genes for cell structure, biosynthesis and transport in the mammary 
gland (77, 78). This indicates the mammary gland maybe putting more 
energy into cell survival versus milk production during heat stress.

Not only does heat stress impact overall milk yield in dairy cattle 
it also impacts the quality of milk. Studies have shown heat stress 
reduces both fat and protein yield as well as increases somatic cell 
count (79–82). The negative impacts of heat stress on milk components 
can be largely attributed to a decrease in DMI during heat stress (79). 
However, the reduction in protein yield may also be  the result of 
further processes that are impacted by heat stress. As discussed 
previously, heat stress has been shown to alter metabolic processes, 
with an increased number of amino acids being found in circulation 

FIGURE 3

Summary of impacts of heat stress on dairy cattle [adapted from Abdelnour et al. (60)].
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(79, 80). This could suggest that amino acids are being used to supply 
energy for maintenance in cattle and therefore this limits the supply 
that could be transported to the mammary gland for protein synthesis. 
These shifts in metabolism have also been shown to impact calves that 
experience heat stress in utero, which will be discussed further in the 
next section.

Effect of heat stress on reproduction

Heat stress seems to affect reproduction in dairy cattle at all stages, 
starting from breeding through to late in gestation. These issues start 
right from trying to detect estrus in cattle. It has been shown that 
during times of heat stress 80% of estrus goes undetected, even though 
ovulation actually occurs (83). This is likely because heat stress reduces 
the signs of estrus. Heat stress causes a decrease in the production of 
clear stringy mucous discharge and decreases in mounting behavior, 
which are both common signs of estrus that dairy producers watch for 
(84). This would therefore make it difficult for producers to know 
when the optimum time to breed cattle is. This is verified by the fact 
that increases in THI are associated with an increased number of 
services to achieve pregnancy (85). Another reason why estrus may 
go undetected is that heat stress can cause detrimental effects to the 
oocyte itself. Heat stress decreases the synthesis of hormones that are 
crucial for estrus and pregnancy to occur. It has been shown heat 
stress reduces the production of luteinizing hormone and estradiol 
which leads to impaired follicle maturation and ovarian inactivity 
(86). Follicle size has been shown to be reduced by 0.1 mm for each 
increase in THI at estrus (84). Similarly altered progesterone levels 
have also been noted, which result in abnormal oocyte maturation 
(87). Altered hormone levels during heat stress speed up the 
maturation of oocytes and disrupt cytoplasmic and nuclear processes 
(83). This can result in several complications including issues with the 
fertilization process. Conception rates have been shown to be affected 
both before and after breeding during times of high THI, with the 
greatest impact occurring before breeding (88). This could be due to 
abnormal oocyte maturation seen during heat stress, causing 
impairment in the fertilization process. Similarly, it has also been 
noted that high ambient temperature causes increased uterine 
temperatures, which may be detrimental to the survival of gametes 
(83). This could be another factor that results in reduced conception 
rate during heat stress.

Despite all the complications with estrus detection and conception 
during heat stress dairy cattle are still able to get pregnant just not at 
the same rate as those being bred in cooler months. However, heat 
stress also leads to several complications early in pregnancy. The 

increased temperature of the uterine environment coupled with 
reduced blood flow in this area can lead to issues with the survival of 
the embryo (89). It can affect the embryo’s ability to attach to the 
uterine wall, which could lead to a loss in pregnancy (83). Heat stress 
can cause reduced embryonic growth and development as well as can 
cause a poor-quality corpus luteum, which is important to maintain 
pregnancy (83). All these factors would make it difficult for an embryo 
to survive and would lead to an increased incidence of early embryonic 
death during times of heat stress.

Heat stress not only effects dairy cattle early in conception or 
pregnancy but can also cause detrimental effects late in gestation. 
Dairy cattle that experience heat stress late in gestation typically 
experience lower milk yield in the subsequent lactation (90). This is 
the result of a few different issues associated with heat stress. Firstly, 
heat stress is associated with an increase in circulating PRL 
concentration (91). Prolactin is a hormone that is extremely important 
for mammogenesis (growth and development of the mammary gland 
to prepare for milk production) and lactogenesis (the beginning of 
milk secretion) (91). The increase in circulating PRL concentration 
during heat stress causes a decrease in the expression of PRL receptor 
genes in the mammary gland, liver and lymphocytes (91). This in turn 
results in reduced function and growth of the mammary gland leading 
to impaired lactogenesis and therefore reduced milk production in the 
next lactation following calving (91). The onset of lactation is also 
associated with an increase in cell number due to proliferation and 
increase in secretory capacity of each cell (91). During heat stress cell 
proliferation is reduced before calving, which also is another 
mechanism that reduces mammary growth and in turn impairs 
lactation performance in the subsequent lactation (91).

Late gestation heat stress not only effects the dairy cow, but also 
has negative impacts on the calf in utero. A number of studies have 
shown calves from dams that experiences heat stressed late in 
gestation have lower birth weight, weighing anywhere from 3.5 to 
4.8 kg lighter then calves born to dams that were cooled (90, 92–95). 
This is likely due to a few different issues associated with the dam 
during late gestation heat stress. Firstly, during heat stress the dam will 
consume less dry matter in order to reduce her metabolic heat load, 
which would result in less nutrients being provided to the calf during 
the last few months of pregnancy which is the time when the most 
growth occurs (93). Studies have also shown the gestation length in 
heat stressed dams is reduced up to 4 days, which shortens the time 
the calf has to grow in utero (92, 93, 95). Placental growth and function 
has also been shown to be altered during heat stress (90, 93), which 
could be another factor that contributes to low birth weight in calves 
from heat stressed dams.

Heat stress in utero not only alters birth weight but seems to have 
long lasting effects on the calf in terms of overall growth, performance, 
and health. Heat stress in utero seems to shift the calf ’s metabolism 
(90, 96). Increased levels of non-esterified fatty acid (NEFA) and beta-
hydroxybutyrate (BHB) along with reduced levels of glucose were 
observed in calves that were heat stressed in utero (96). This may 
indicate these calves prefer to use glucose as the main an energy 
source vs. NEFA or BHB (96). This study also showed these calves had 
reduced consumption of calf starter up to weaning compared to calves 
from cooled dams (96). This alteration in metabolism could explain 
why calves exposed to heat stress in-utero have reduced growth up to 
12 months of age (90). Not only do calves heat stressed in utero have 
reduced overall growth they also seem to have reduced reproductive 

TABLE 2 Comparison of temperature humidity index thresholds for 
Holstein cattle.

THI Threshold References

60 (Germany) Brügemann et al. (67)

62 (Luxemburg) Hammami et al. (68)

68 (Arizona, high producing cows over 35 kg/day) Zimbelman et al. (21)

72 (USA) Aguilar et al. (69)

78 (USA subtropical environment) Dikmen and Hansen (70)
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performance. These calves require an increased number of services to 
get pregnant and on average are older when they are confirmed 
pregnant (90, 94). Heat stress in utero also results in impaired 
production in the offspring during first lactation. It has been observed 
that in-utero heat stress reduces milk production by 5 kg/day up to 
35 weeks into the first lactation and this occurs in spite of the fact that 
no difference is body weight or body condition score is observed at 
calving between in utero heat stressed offspring and non-heat stressed 
offspring (90, 94, 97). In utero heat stress impacts survival, with more 
stillborn calves being born when the dam is heat stressed as well as a 
reduced number of in utero heat stressed calves surviving to first 
lactation (94). This could be a result of reduced immune function as a 
result of lower Immunoglobulin (Ig) G absorption (95), which will 
be addressed further in the next section.

Effect of heat stress on health and immune 
response

Along with productive and reproductive issues, heat stress also 
has a huge impact on the health of dairy cattle. Several studies have 
indicated cattle have increased disease occurrence during times of 
heat stress. Heat stress can alter the rumen function and in 
combination with reduced feed consumption increases cattle’s risk for 
metabolic disorders (98). Similarly, diseases like mastitis have also 
been shown to have increased occurrence during heat stress (98), 
which could be a function of increased survival of pathogens during 
these times or impaired immune response. Higher incidence of 
mortality has also been reported, with mortality rates increasing 1.27 
times during a heat wave compared the control period in dairy cattle 
in Southern Ontario (99). These health-related issues associated with 
heat stress could be  due to several factors, but one of the biggest 
factors may be the effect heat stress has on the immune response.

Both the innate and adaptive immune system can be impacted by 
heat stress. Heat stress effects the adaptive immune response by 
disrupting the balance between T-Helper 1 (TH-1) and T-Helper 2 
(TH-2) responses, and causing a responses to shift toward TH-2 (100). 
Additionally, cortisol is one of the main glucocorticoids produced in 
response to heat stress. Cortisol binds DNA and causes inhibited 
expression of genes that are involved in the activation of TH-1 cells 
and pro-inflammatory cytokine production (101). This causes the 
impairment of the cell-mediated immune response (CMIR), which is 
the response primarily responsible for the defense against intracellular 
pathogens. Similarly, heat stress has also been shown to play a role in 
down-regulating pro-inflammatory or TH-1 cytokines and the 
up-regulating TH-2 or regulatory cytokines (100, 101). Together, all 
these studies suggest a shift toward a TH-2 response or a suppressive 
immune response, which can significantly increase the risk to diseases 
caused by intra-cellular pathogens in dairy cattle.

Heat stress in dairy cattle has also been shown to lead to reduced 
proliferation of lymphocytes (101, 102). Lymphocytes, which include 
B and T-cells are activated upon pathogen exposure resulting in 
rapid proliferation in order to fight infection. Therefore, if 
lymphocyte proliferation is reduced it makes it extremely difficult 
for cattle to defend against pathogens. Similarly, heats stress can also 
cause impaired neutrophil function (103). Impaired cellular function 
could be attributed to a few things. Firstly it could be a result of cell 

damage or cell death as heat stress can increase reactive oxygen 
species production and reduce antioxidant defense therefore leading 
to cell damage due to oxidative stress (60). Addict heat stress down 
regulates the expression of L-selectin on the surface of neutrophils, 
which results in neutrophils failing to move into the site of 
infection (104).

Complement activation is another element of the immune system 
that can be  impacted by heat stress. Heat stress cause the 
downregulation of the genes that encode various components of the 
complement system, as well as factor B and H (105). Complement aid 
in the enhancement of the antibody response and phagocytic cell 
function as well as damages the membranes of infected cells in order 
to clear pathogens. Therefore, if this system is impaired it makes it 
difficult for cattle to clear invading pathogens.

Heat stress can also negatively impact the immune system a 
during late gestation in dairy cattle. As we mentioned previously, heat 
stress during late gestation causes an increase in the concentration of 
circulating PRL, which results in decreased expression of PRL 
receptors. The negative feedback loop as a result of increased 
circulating PRL is also associated with reduced lymphocyte 
proliferation (106). Additionally, during late gestation, cells from heat 
stressed cows, display reduced oxidative burst and phagocytosis 
relative to cooled cows, indicating heat stress causes reductions in 
uptake and killing of pathogens resulting in increased susceptibility to 
invading pathogens (106). Furthermore, reduced specific IgG response 
is also observed as a result of heat stress during late gestation, 
compared to cooled cows (106), which indicates animals may have 
impaired response extra-cellular pathogens as well. Evidently, heat 
stress seems to cause additional strain to an already challenged 
immune system in pregnant dairy cattle, causing enhanced risk to 
various diseases.

Dairy calves are born with little to no immunity and therefore rely 
on immunoglobulin (Ig) from colostrum and the ability to transfer 
these Ig from the colostrum through the gut to provide them with 
immunity until their own immune system matures (107). Failure of 
passive transfer (FPT) indicates calves were unable to transfer an 
adequate amount of Ig from colostrum before gut closure and this 
leaves them susceptible to any pathogens they may encounter (108). 
Heat stress during late gestation can effect the immune system of the 
in utero calf. Calves that are born from heat stressed dams have been 
shown to have increased FPT (109). This FPT could be due to lower 
IgG in the heat stressed dam’s colostrum. However, studies have 
shown even when these in utero heat stressed calves are fed colostrum 
with high concentrations of IgG, they still present lower levels of IgG 
in their serum (93). Therefore, FPT may also be  due to reduced 
absorption in the gut of the calf. Calves born to heat stress dams also 
have diminished lymphocyte proliferation, which also impacts their 
ability to produce and immune response and therefore their health 
and survival (90, 93). Considering the evidence for how heat stress 
negatively impacts the immune system, it is not surprising that dairy 
cattle and calves have increased incidence of disease and mortality 
during times of heat stress.

Therefore, considering all the negative effects associated with 
heat stress (Figure  3) and the current and future environmental 
challenges associated with climate change this indicates a need to 
identify and select animals that are more resilient to these 
environmental stressors.
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Selection strategies for 
thermotolerance

Several selection strategies for thermotolerance have been 
proposed as possible solutions to heat stress. These will now 
be discussed in the following sections.

Selecting for reduced milk production

There have been numerous studies in dairy cattle showing various 
THI thresholds with which cattle will experience heat stress (21, 67, 
68, 70). However, it is generally well accepted that higher producing 
cattle have lower THI thresholds versus lower producing cattle (21). 
This is likely due to the fact that milk production results in the 
generation of metabolic heat with increased production resulting in 
greater metabolic heat loads (23). Therefore, one selection strategy 
that has been proposed to achieve thermotolerance is to select for 
reduced milk production. This has been studied in Australia, where 
genomic breeding values related to production traits were established 
as indicators of heat tolerance (110). It has been shown that these traits 
are moderately heritable and result in a slight increase in production 
traits when evaluating the response to selection (110). Additionally, it 
was shown when selecting cows based on this selection index for heat 
tolerance and then exposing them to a heat challenge, the heat tolerant 
cows had less of a decline in yield, lower respiration rates and reduced 
increases in rectal temperatures versus heat susceptible cows (75). 
Additionally, heat tolerant cows returned to baseline yield values faster 
than that of the heat susceptible cows (75). Genomic breeding values 
based on these studies have since been released as a means of selecting 
heat tolerant dairy cattle (111, 112).

Although selecting for lower milk production does seem 
promising as a means of improving heat tolerance, it does have its 
limitations. One of the biggest issues with this selection index is cattle 
will now be bred to have reduced production traits. In fact, it was 
shown the genomic breeding values for heat tolerance are negatively 
correlated with the Australian breeding index, especially with respect 
to production traits at a correlation of −0.85 (110). Therefore, 
although heat tolerant cattle will have less reductions in yield during 
times of heat stress, their overall 305-day milk yield would likely 
be  less compared to that of heat susceptible animals. Hence, in 
countries with varying seasons throughout the year this might not 
be the ideal selection strategy to establish thermotolerance in dairy 
cattle. Additionally, when genome wide association studies were 
preformed on heat tolerant animals, based on this index, no genes 
associated with production traits or heat tolerance were found (23). 
Hence, since production traits are an indicator trait for heat tolerance 
and not directly associated it would be  worth evaluating if heat 
tolerance is achieved overtime when breeding using this index. 
Therefore, although using production traits as an indicator of heat 
tolerance does seem to provide some benefits during times of heat 
stress and it is easy to obtain large data sets on these traits, it may not 
be the best overall selection strategy based on the issues discussed.

Crossbreeding and gene editing

Another potential selection strategy for thermotolerance that has 
been discussed is crossbreeding Bos indicus breeds with Bos taurus 

breeds. Bos indicus breeds, which are found in more tropical regions, 
have been shown to have a greater ability to adapt to thermal stress 
compared to Bos taurus breeds (113). Genes associated with 
thermotolerance have been identified in the genome of Bos indicus 
breeds (114). It has also been shown these breeds have a greater ability 
to control body temperature, have reduced metabolic rates and an 
increased ability to dissipate heat (114, 115). Additionally, it has been 
shown these breeds adapt well to changes in feed supply (116). 
Therefore, crossbreeding Bos taurus breeds with Bos indicus breeds 
could be a relatively easy way to introduce heat tolerance genes into 
Bos taurus breeds ultimately resulting in thermotolerance. However, 
it should be noted that there is evidence of thermotolerance in Bos 
taurus breeds from tropical regions (117).

There are however also some issues with using crossbreeding as a 
selection strategy for thermotolerance. Although, Bos indicus cattle 
possess several traits associated with thermotolerance it has also been 
shown these breeds typically have lower milk production (118). 
Therefore, by crossbreeding with Bos indicus breeds even though it 
may result in producing thermotolerant offspring these offspring will 
also likely have lower yields relative to Bos taurus breeds. Additionally, 
crossbreeding with Bos indicus breeds may result in offspring that are 
less tolerant to colder temperatures (118). Hence, in countries with 
varying seasons, such as Canada, this may not be the ideal solution, as 
when winter occurs it is possible these crossbred offspring would have 
an increased risk for cold stress.

Another genetic strategy that has been suggested is to use gene 
editing to introduce specific genes or mutations that result in resilience 
to heat stress. One example is the SLICK haplotype. This haplotype 
occurs due to a deletion in an exon of the PRL receptor and was first 
reported in the Senepol breed (119). The SLICK mutation causes 
changes to the coat of cattle resulting in shorter hair and lower follicle 
density across the coat (120). Additionally, it has been suggested 
sweating ability may also be increased in cattle carrying the SLICK 
mutation (120). Recent studies have evaluated introducing the SLICK 
mutation into the genome of Holstein cows (121, 122). Results from 
these studies have found Holstein cows with the SLICK haplotype 
have an enhanced capacity to regulate body temperature as well as 
maintain production levels during heat stress (121, 122). Therefore, 
introducing the SLICK mutation into Bos taurus breeds might be a 
good solution to generating thermotolerance in these breeds while 
maintaining production levels. The issue with introducing this 
mutation into Bos taurus breeds is that since it changes the cattle’s coat 
phenotype to produce a coat that allows for enhanced heat dissipation 
it is possible it will also in turn increase the risk of cold stress in these 
animals (118). Consequently, similar to what was discussed with 
respect to crossbreeding with Bos indicus breeds, introducing the 
SLICK mutation into Bos taurus breeds in countries where seasons 
vary might not be the most ideal solution for thermotolerance.

Selection for physiological and cellular 
traits

One promising solution that could work to confer thermotolerance 
in dairy cattle from various locations across the world is to select for the 
various physiological traits that are involved in cooling during heat 
stress. As previously mentioned, one of the first physiological signs of 
heat stress in dairy cattle is increased respiration rate (36). Additionally, 
body temperature may also increase if cooling mechanisms are 
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ineffective at dissipating enough heat (35). Respiration rate and rectal 
temperature are both traits that have been discussed to be included in 
selection programs to confer thermotolerance (30). Studies in dairy 
cattle have shown heritability estimates for rectal temperature ranging 
from 0.06 to 0.17 (123, 124). These estimates are in the low to moderate 
range indicating genetic gains are possible when selecting for this trait. 
There have however been relatively few studies in dairy cattle reporting 
estimates of heritability for respiration rate. One study did report a 
heritability estimate of 0.04 for respiration rate, which is in the low range 
indicating it would take longer to make genetic gains when selecting for 
this trait (124). Although genetic gains in thermotolerance may be slow 
when selecting for reduced respiration rate and rectal temperature, one 
of the benefits of this approach is milk production is not impacted. 
Therefore, when selecting for these traits it is possible thermotolerance 
can be achieved without reducing overall milk production (118).

Additionally, cellular traits have also been identified as being 
associated with thermotolerance. Nitric oxide synthesis is one cellular 
trait that has been identified as being associated with thermotolerance 
(38). Nitric oxide is an important molecule in facilitating the 
vasodilation of skin during heat stress, which helps in dissipating heat 
to the environment (98, 125). Therefore, by selecting for enhanced 
nitric oxide production it is possible vasodilation of the skin would 
be improved during heat stress allowing for better heat dissipation. 
Another avenue of investigation for selection for thermotolerance is 
the examination of HSP. These proteins are not only involved in the 
initiation of immune responses but also have a key role in response to 
heat stress (60). As previously mentioned, HSP are involved in the 
protection and repair of cells during heat stress (126). To date there 
have been no studies that have reported heritability estimates for HSP 
in dairy cattle and therefore it is difficult to know how quickly genetic 
gains would be made if selecting for this trait. It is however a trait that 
many studies identify as being associated with thermotolerance or 
heat stress resilience in cattle and therefore is still worth discussing as 
a possible trait for selection (60, 102, 118). Additionally, studies have 
shown that increased expression of HSP is linked to reductions in 
respiration rate and rectal temperature (60). Hence, by including these 
physiological and cellular traits in a selection index both of these traits 
could be improved to confer overall thermotolerance while minimally 
affecting milk production and avoiding a situation that results in an 
animal that is less resilient to cold stress.

Selecting for physiological and cellular traits seems like a 
promising strategy to confer thermotolerance with having little or no 
effect of milk production. The one issue with using these traits in a 
selection index is they are costly and labor intensive to measure and 
therefore obtaining large data sets on these traits is quite difficult (30, 
127). This could be one reason why very few studies have reported 
heritability estimates for physiological traits and why currently no 
heritability estimates exist for cellular traits. Therefore, including these 
traits in a selection index as a means of selecting for thermotolerance 
is likely not feasible currently and likely will not be until less costly and 
labor-intensive methods can be identified for collecting large data sets 
on these traits.

Selection for high immune response

Another trait that has been identified as being associated with 
thermotolerance is immune response (23). The ability to select dairy 

cattle that can mount a high immune response has been developed 
over many years. The idea of this started between the 1970s and 1980s 
where researchers showed it was possible to identify mice that had 
enhanced antibody response to a specific antigen (128, 129). After 
nine generations of selection, these mice were shown to have titers that 
were 30-fold higher then mice identified as low responders (128). The 
high antibody responding mice also had enhanced response to a wide 
variety of antigens as well as greater response against extra-cellular 
pathogens (130). This concept of selecting for high antibody response 
was later extended to poultry species, like chickens (131). Around this 
time the concept of selecting for both antibody mediated immune 
response (AMIR) and CMIR was also being evaluated in pigs (132). It 
was shown that selecting for both AMIR and CMIR simultaneously 
caused genetic improvement in both traits and led to pigs with overall 
enhanced immune response (133). Later it was demonstrated that pigs 
bred for overall high immune response had a balance between type 1 
and type 2 responses, whereas pigs selectively bred for low immune 
response tended have a bias toward a type 1 immune response (134). 
These results suggest that breeding for high immune response would 
result in animals that are able to respond effectively to both 
extracellular and intracellular pathogens and therefore exhibit broad 
based disease resistance.

The method that was previously used in pigs was later adapted to 
measure immune responses in dairy cattle. Similar to what was done 
in mice, initially it was demonstrated that dairy cattle could 
be identified as high, average or low antibody responders (135). Later 
research was done to include the evaluation of CMIR as well, and 
showed the ability to identify both high AMIR and CMIR dairy cattle 
(136). A number of heritability estimates have been made throughout 
the years for immune response in dairy cattle (Table 3), but the most 
recent pedigree based heritability estimates for Holstein cattle are 
reported at 0.45 and 0.18 for AMIR and CMIR, respectively (139). 
These heritability estimates are moderate to high indicating the ability 
for the genes encoding these immune response phenotypes to 
be passed onto the next generation. Studies have also indicated the 
ability to use genomic selection to improve immune response. It has 
been shown that significant single-nucleotide polymorphisms (SNP) 
have been identified for both AMIR and CMIR (139, 140). These SNPs 
have functional properties that are associated with immune response 
and disease (139, 140). Combining both pedigree based information 
on immune response with genomic information improves accuracy in 
selection while also allowing quicker gains to be made when selecting 
for high immune response in dairy cattle (141).

Recent evidence has shown dairy cattle identified as high immune 
responders may be  more thermotolerant than those identified as 
average and low. Multiple studies have shown high immune responding 
dairy cattle have lower respiration rate at higher THI values compared 

TABLE 3 Heritability estimates of immune response.

AMIR Heritability CMIR Type

0.32–0.64 N/A Pedigree (135)

0.25–0.42 0.19–0.49 Pedigree (137)

0.16–0.41 0.19 Pedigree (138)

0.45 0.18 Pedigree (139)

0.37 0.16 Genomic (139)
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to average and low responding dairy cattle (142, 143). Additionally, one 
study evaluating physiological responses to heat stress in a tie-stall 
facility also indicated in general high immune responders have lower 
rectal temperature, during a natural heat stress challenge, compared to 
low immune responders (143). Studies evaluating the function of blood 
mononuclear cells during both in vitro and in vivo heat challenges have 
shown dairy cattle identified as high immune responders have 
enhanced production of HSP70 after multiple heat challenges 
compared to dairy cattle identified as average or low responders (142, 
144). In this same in vitro study it was also shown that high immune 
responders have a tendency to produce more nitric oxide over multiple 
heat challenges compared to average and low immune responders 
(144). As discussed above all of these physiological and cellular traits 
have been identified as being associated with thermotolerance and have 
been discussed as possible traits to select for thermotolerance. 
However, also as mentioned previously these traits are also costly and 
labor intensive to measure. Selecting for high immune response in 
dairy cattle is now relatively easy and cost effective and with the recent 
evidence of this trait also being associated with thermotolerance this 
may be an ideal selection strategy (145). Previous studies have also 
shown no difference in milk production between high immune 
responders and their herd mates (146). Therefore, selecting for high 
immune response in dairy cattle seems to be  ideal cost-effective 
selection strategy to confer thermotolerance while maintaining 
production and minimizing cold stress.

Conclusion

In conclusion heat stress is a serious issue for dairy cattle that will 
continue to persist as long as climate change continues to be an issue. 
Heat stress has resulted in large economic losses in the dairy industry 
due to reductions in milk production, reproductive issues and 
increases in treatment costs due to increased disease occurrence. This 
indicates a need to select dairy cattle for thermotolerance. Several 
selection strategies have been proposed that seem to provide the 
potential for breeding thermotolerant cattle, however some limitations 
have also been identified. Selecting for reduced milk production, 
crossbreeding with thermotolerant breeds and gene editing to 
introduce the SLICK gene all seem to be promising strategies for dairy 
cattle that live in more tropical environments. However, these 
strategies may not be ideal for cattle living in countries with seasonal 

variation as they could result in overall reduced milk production and 
may inadvertently create cattle that are more susceptible to colder 
temperatures. Selecting for physiological and cellular traits is a 
promising strategy to introduce thermotolerance while minimizing 
production losses and issues with cold stress. Unfortunately, this data 
is very costly and labor intensive to collect and therefore it is difficult 
to obtain large data sets on these traits. Nevertheless, recently is has 
been shown dairy cattle identified as high immune responders seem 
to be more thermotolerant compared to their herd mates. Therefore, 
selecting for high immune response may be  an ideal solution to 
conferring thermotolerance in dairy cattle living in both tropical and 
temperate countries.
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