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Carbohydrates dynamically and transiently interact with proteins for cell–cell
recognition, cellular differentiation, immune response, and many other cellular
processes. Despite the molecular importance of these interactions, there are
currently few reliable computational tools to predict potential carbohydrate-
binding sites on any given protein. Here, we present two deep learning (DL)
models named CArbohydrate–Protein interaction Site IdentiFier (CAPSIF) that
predicts non-covalent carbohydrate-binding sites on proteins: (1) a 3D-UNet
voxel-based neural network model (CAPSIF:V) and (2) an equivariant graph
neural network model (CAPSIF:G). While both models outperform previous
surrogate methods used for carbohydrate-binding site prediction, CAPSIF:V
performs better than CAPSIF:G, achieving test Dice scores of 0.597 and
0.543 and test set Matthews correlation coefficients (MCCs) of 0.599 and
0.538, respectively. We further tested CAPSIF:V on AlphaFold2-predicted
protein structures. CAPSIF:V performed equivalently on both experimentally
determined structures and AlphaFold2-predicted structures. Finally, we
demonstrate how CAPSIF models can be used in conjunction with local
glycan-docking protocols, such as GlycanDock, to predict bound
protein–carbohydrate structures.
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Introduction

The carbohydrate–protein handshake is the first step in many pathological and
physiological processes (de Schutter and EJM van Damme, 2015; Varki et al., 2017).
Pathogens attach to host cells after their lectins successfully bind to surface
carbohydrates (or glycans) (Karlsson, 2001; Dyason and von Itzstein, 2010; Kato and
Ishiwa, 2015; Lu and Pieters, 2019). The innate and adaptive immune systems utilize
carbohydrate signatures present on cellular and subcellular surfaces to recognize and destroy
foreign components (Haji-Ghassemi et al., 2015; Kappler and Hennet, 2020).
Glycosaminoglycans (GAGs) bind to membrane proteins of adjacent cells for cell–cell
adhesion and regulation of intracellular processes (Funderburgh, 2000; Yip et al., 2006;
Angata et al., 2007). Despite the biological importance of these carbohydrate–protein
interactions, few carbohydrate-specific tools leverage the vast Protein Data Bank (PDB)
and recent advances in machine learning (ML) to elucidate the binding of carbohydrates at a
residue level.
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Knowledge of carbohydrate–protein interactions has been
leveraged to develop therapeutic candidates to neutralize
infections and inspire proper health function (GE et al., 2019; Lu
and Pieters, 2019). One bottleneck in designing carbohydrate-
mimetic drugs is obtaining residue-level interaction knowledge
through methods such as structural data, mutational scanning
profiles, or both (DelFernández-Alonso et al., 2012; Kieber-
Emmons et al., 2014; GE et al., 2019). Furthermore, in some
studies, computational tools have been used to predict docked
structures, refine bound carbohydrates, or extract dynamic
information (DelFernández-Alonso et al., 2012; Crawford et al.,
2021; Hao et al., 2022).

Recent developments in deep learning (DL) have substantially
enhanced the theoretical modeling of proteins and protein–protein
interactions. For example, neural networks can design stable
proteins with unique folds using graph representations
(Ingraham et al., 2019; Jing et al., 2021). 3D structures can be
predicted with programs such as IgFold and AlphaFold2 (AF2)
(Jumper et al., 2021; Ruffolo et al., 2022a). Predicted 3D atomic
coordinates can be probed to determine ligand or protein binding
capabilities using neural networks, such as Kalasanty or dMaSIF
(Stepniewska-Dziubinska et al., 2020; Sverrisson et al., 2021).

Recent computational studies have demonstrated new ways to
explore protein–carbohydrate interactions. Our laboratory has also
contributed to the advancement of this field by adding the following:
(1) a shotgun scanning glycomutagenesis protocol to predict the
stability and activity of protein glycovariants (Li et al., 2021) and (2)
the GlycanDock algorithm to refine protein–glycoligand bound
structures (Nance et al., 2021).

Recently, there have been developments in small molecule-
binding site predictors. Small molecule-binding site predictors
typically fall into four categories: template, geometry, energy, or
ML-based (Xie and Hwang, 2015). Template-based strategies, such
as 3DLigandSite (McGreig et al., 2022), search datasets for sequence
and/or structurally related ligand-binding proteins to assess
prospective binding sites. Geometry-based methods, such as
FPocket (le Guilloux et al., 2009), search the surface of proteins
for pockets and cavities. Energy-based methods, such as FTMap
(Kozakov et al., 2015), use probe molecules to scan the surface of a
protein to determine the energetic favorability of binding. Recently,
ML techniques, such as Kalasanty (Stepniewska-Dziubinska et al.,
2020), have emerged and outperformed previous classical site
prediction algorithms, commonly with convolutions on a 3D
voxel grid containing atomistic information (Kandel et al., 2021;
Mylonas et al., 2021).

Although there are many general small molecule-binding site
predictors (Kozakov et al., 2015; Stepniewska-Dziubinska et al.,
2020; Evans et al., 2021), few tailored algorithms exist for the
prediction of protein–carbohydrate sites. Taroni et al. (2000)
analyzed carbohydrate-binding spots using the solvation
potential, residue propensity, hydrophobicity, planarity,
protrusion, and relatively accessible surface area to construct a
function to predict carbohydrate-binding sites. Malik and Ahmad
(2007) created a neural network to predict carbohydrate-binding
sites using their constructed Procarb40 dataset, a collection of
40 proteins, with leave-one-out validation. Moreover, Kulharia
et al. (2009) built InCa-SiteFinder to predict carbohydrate and
inositol binding sites by leveraging a grid to construct an

energy-based method for predicting binding sites. Tsai et al.
(2012) constructed carbohydrate-binding probability density
maps using an encoding of 30 protein atom types as an input to
an ML algorithm. Later, Zhou, Yang, and colleagues developed two
methods to predict carbohydrate-binding sites: (1) a template-based
approach named SPOT-Struc (Zhao et al., 2014) and (2) a support
vector machine (SVM) named SPRINT-CBH that leverages
sequence-based features (Taherzadeh et al., 2016). Tsai’s method
(Tsai et al., 2012) and SPOT-Struc (Zhao et al., 2014) both achieved
Matthews correlation coefficients (MCC) of 0.45 on test sets of
108 and 14 proteins, respectively. The increased size of the PDB and
the improvements in DL methods currently present an opportunity
to train and test more broadly.

Larger protein–carbohydrate structural databases currently
include UniLectin3D (Bonnardel et al., 2019) and ProCaff (Siva
Shanmugam et al., 2020). UniLectin3D focuses on lectins bound to
carbohydrates, containing 2,406 structures; however, it contains
many redundant structures and is currently limited to
592 unique sequences. ProCaff lists 552 carbohydrate-binding
protein structures and their binding affinities under various
conditions; however, many structures are only available in the
unbound form.

Many drug targets, from pathogen lectins to aberrant selectins,
are carbohydrate-binding proteins (Ernst and Magnani, 2009;
Kieber-Emmons et al., 2014; Lu and Pieters, 2019).
Understanding the physiological response and determining a
glycomimetic drug to neutralize the infection requires residue-
level knowledge (Ernst and Magnani, 2009). Currently, DL
algorithms—LectinOracle (Lundstrøm et al., 2022) and GlyNet
(Carpenter et al., 2022)—predict lectin–carbohydrate binding on
a protein level; however, pharmaceutical development requires
residue-level information.

In this study, we develop two DL methods for residue-level
carbohydrate-binding site prediction for non-covalently bound
carbohydrates. The two methods have different architectures, one
using voxel convolutions and the other using graph convolutions.
We also present a dataset of 808 non-covalently bound
nonhomologous protein chain carbohydrate structures and use it
to train and test both models. We compare the performance of the
models with each other and with FTMap (Kozakov et al., 2015) and
Kalasanty (Stepniewska-Dziubinska et al., 2020). Then, we evaluate
the performance of the models on AlphaFold2 (Jumper et al., 2021)
predicted versus experimentally determined structures. Finally, we
present a proof-of-concept pipeline to predict bound
protein–carbohydrate structures.

Results

Dataset for carbohydrate–protein
structures

To construct a method to predict carbohydrate–protein
interactions, we needed a large and reliable dataset for training
and testing. The dataset should contain as many nonhomologous
structures as possible to avoid biasing to specific folds. By filtering
the PDB (Berman, 2000), we constructed a dataset of 808 high-
accuracy (<3 Å resolution), nonhomologous (30% sequence
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identity), and physiologically relevant experimental structures (by
manually removing buffers), spanning 16 carbohydrate monomer
species. When multiple copies were present in the same PDB file, we
used only a single protein chain and all adjacent carbohydrate
chains. In these structures, 5.2% of the protein residues contact
carbohydrates (Supplementary File S1). The final dataset consists of
808 structures, which we split into 521 training structures,
125 validation structures, and 162 test structures. These
structures only contain single-chain protein interactions with
non-covalently bound carbohydrates.

CAPSIF uses deep neural networks to predict
carbohydrate interaction sites

We constructed convolutional neural networks (CNNs) named
CArbohydrate–Protein Site IdentiFier (CAPSIF) to predict
carbohydrate-binding residues from a protein structure. CNNs
were initially developed for images, exploiting the spatial
relationship of nearby pixels for prediction tasks. They have been
applied to predict protein structure (Yang et al., 2020; Du et al., 2021;
Ruffolo et al., 2022b) and small molecule-binding pockets of
proteins (Stepniewska-Dziubinska et al., 2020). To predict
carbohydrate-binding residues using structural information, we
created two CAPSIF CNN architectures, CAPSIF:Voxel (CAPSIF:
V) and CAPSIF:Graph (CAPSIF:G).

As a protein can change its side chain conformations upon
binding a small molecule or carbohydrate (from apo to holo), we
sought a protein representation that is robust to these and other
binding-induced changes. We chose a residue-level representation,
using only the Cβ positions of all residues (or Cα in glycine), as the
Cβ position is frequently equivalent in both the apo and holo states
(Clark et al., 2019). Both CAPSIF architectures use the following
features: unbound solvent-accessible surface area (SASA) of each
residue, a backbone orientation (architecture-specific), and

encodings of amino acid properties, including hydrophobicity
index (0–1) (Kyte and Doolittle, 1982), “aromaphilicity” index
(0–1) (Hirano and Kameda, 2021), hydrogen bond donor
capability (0,1), and hydrogen bond acceptor capability (0, 1)
(Supplementary Table S3).

The first CAPSIF architecture, CAPSIF:V, is a 3D voxelized
approach to learning carbohydrate-binding pockets. CAPSIF:V uses
a UNet architecture, which comprises a grid with a series of
convolutions compressing and then decompressing the data to its
original size with residual connections to previous layers of the same
size. For each grid, we used an 8 Å3 voxel size where CAPSIF:V
encodes each residue’s β-carbon (Cβ) into a corresponding voxel.
CAPSIF:V predicts a label P (carbohydrate-binding residue) for each
voxel on the initial grid (Figure 1A; Supplementary Figure S6).

The second architecture, CAPSIF Graph (CAPSIF:G), is an
equivariant graph neural network (EGNN) (Satorras et al., 2021),
with each Cβ representing a node on the graph and edges connected
between all neighbor residues within 12 Å (Figure 1B). EGNNs use
graph-based convolutions with message passing between connected
nodes based on node features and edge features (distances) (Satorras
et al., 2021). We explored many variations of these neural network
architectures; Supplementary Material S1 includes data supporting
our architecture and data representation choices.

The carbohydrate-binding residues comprise 5.2% of the
dataset. To ameliorate the effect of data imbalance, we followed
Stepniewska-Dziubinska et al. (2020) and chose the complement of
the Dice similarity coefficient (d) as our loss function (L � 1 − d).
The Dice coefficient is normalized by both the correctly and
incorrectly predicted residues:

d � 2pTP
TP + FP( ) + TP + FN( ), (Eq1)

where TP means true positives, FP false positives, and FN false
negatives. As d does not depend on true negative labels, this loss
function is insensitive to imbalanced datasets where the positive

FIGURE 1
Two deep learning models that predict where proteins bind carbohydrates. (A) The first model (CAPSIF:V) maps the β-carbon (Cβ) coordinates into
voxels, utilizes a convolutional UNet architecture, and predicts the binding residues. (B) The second model (CAPSIF:G) converts the Cβ coordinates into
network nodes with edges for residue–residue neighbors, performs convolutions on nodes with respect to neighbors with an equivariant graph neural
network (EGNN) architecture, and predicts which residues bind sugars.
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label is observed much less than the negative label (Stepniewska-
Dziubinska et al., 2020).

CAPSIF predicts carbohydrate-binding
residues with encouraging accuracy

CAPSIF:V and CAPSIF:G are novel architectures for predicting
carbohydrate-binding residues; however, they use 512 structures to
train with a substantial data imbalance. We, therefore, investigated
the performance of CAPSIF on a held-out test set to determine
whether the architectures accurately predict carbohydrate-binding
regions despite the small amount of training data. Four
representative CAPSIF:V predictions are shown in Figure 2,
highlighting TP residue predictions (green), FP residues (blue),
and FN residues (red). CAPSIF:V captures the binding pocket
visually for endoglucanase (Figure 2A), xylanase (Figure 2B), and
β-glucanase (Figure 2C), but it performs poorly on theHINT protein
that binds ribose (Figure 2D), a five-membered ring carbohydrate
that is commonly associated with nucleotides.

For comparison, we evaluated how small molecule-binding site
predictors FTMap (Kozakov et al., 2015) and Kalasanty
(Stepniewska-Dziubinska et al., 2020) perform for carbohydrate-
binding tasks. We assessed these methods using the following
metrics: the Dice coefficient (Eq. 1), distance from the center of
the crystal to the center of the predicted binding location (DCC) of

each independent binding site, positive predictive value (PPV),
sensitivity, and Matthews correlation coefficient (MCC). Similar
to the Dice coefficient, the MCC is suited for unbalanced datasets; it
has been reported in previous carbohydrate-binding site studies
(Tsai et al., 2012; Zhao et al., 2014; Taherzadeh et al., 2016). MCC is

MCC � TPpTN − FPpFN( )
����������������������������������������
TP + FP( )p TP + FN( )p TN + FP( )p TN + FN( )√ ,

(Eq2)
where TN means true negative. MCC ranges from −1 (worst) to
+1 (best). The Dice coefficient measures the overlap of correctly
predicted interacting residues with all predicted interacting
residues. We define success as a Dice score greater than
0.6 or, following Stepniewska-Dziubinska et al. (2020), a DCC
under 4 Å.

On the CAPSIF test set, FTMap achieved an average Dice
coefficient of 0.351 and an average DCC of 10.5 Å, and Kalasanty
achieved an average Dice coefficient of 0.108 and an average DCC of
14.6 Å (Table 1). Furthermore, FTMap predicted 16.8% of test
structures with greater than 0.6 Dice and 16.8% of test structures
with less than 4 Å DCC, whereas Kalasanty predicted 0% of test
structures with greater than 0.6 Dice and 21.4% of test structures
with less than 4 Å DCC (Table 1; Figures 3A,B).

We then investigated whether our CAPSIF models, which are
specifically tuned for carbohydrate binding, predict the
carbohydrate-binding regions more accurately than Kalasanty

FIGURE 2
Prediction of carbohydrate-binding sites on a protein surface using CAPSIF:Voxel. (A) Two representations of binding residues for cellotriose bound
to endoglucanase (6GL0), surface (left) and sticks (right), predicted surface representation of (B) xylanase bound to a xylose 3-mer (3W26), (C) β-
glucanase bound to a glucose 3-mer (5A95), and (D)HINT protein bound to a ribose monomer (4RHN) predictions. True-positive residue predictions are
colored green, false positives are blue, false negatives are red, true negatives are gray, and the bound carbohydrate is cyan. Dice is defined by Eq. 1,
and DCC is the distance from center to center of the predicted binding regions.
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and FTMap. On the held-out CAPSIF test set, CAPSIF:V achieves an
average 0.597 Dice coefficient and 4.48 Å DCCmetric, and CAPSIF:
G achieves an average 0.543 Dice coefficient and 5.85 Å DCCmetric
(Table 1). Furthermore, CAPSIF:V successfully predicts 62.7% of
test structures with greater than 0.6 Dice and 56.5% of test structures
with less than 4 Å DCC, and CAPSIF:G successfully predicts 55.2%
of test structures with less than 0.6 Dice and 46.0% of test structures
with less than 4.0 Å DCC. Both CAPSIF models have a most
probable prediction at 0.77 Dice and 2.5 Å DCC (Table 1;
Figures 3A,B).

As CAPSIF is ML-based and FTMap is energy-based, FTMap
may predict more accurately in different cases compared to CAPSIF.
We compared the CAPSIF:V and FTMap Dice scores for each
structure (Figure 3C). FTMap achieves significantly higher Dice
coefficients (difference greater than 0.15 Dice coefficient) than
CAPSIF:V in 10.9% of cases, and CAPSIF:V predicts the binding
region with a significantly greater Dice coefficient than FTMap in
67.9% of cases. We also compared the computer time. On The
FTMap server, FTMap requires an hour or more to predict the
binding region for a single structure, whereas both CAPSIF:V and

TABLE 1 Average metric for each method on the test set. The Dice similarity coefficient is defined by Eq. 1, PPV is positive predictive value = TP/(TP + FP),
sensitivity = TP/(TP + FN), DCC is the distance from center to center of predicted versus experimentally determined residues and only calculated for proteins that
yield predictions (coverage), and MCC is the Matthews correlation coefficient and defined by Eq. 2. Boldface indicates best performance for each metric.

Model Dice PPV Sensitivity DCC (Å) MCC Coverage (%)

FTMap 0.351 0.284 0.505 10.56 0.222 100.0

Kalasanty 0.108 0.080 0.207 14.62 −0.624 90.0

CAPSIF:V 0.597 0.598 0.647 4.48 0.599 94.4

CAPSIF:G 0.543 0.541 0.590 5.85 0.538 83.2

FIGURE 3
Distributions of CAPSIF:V and CAPSIF:G assessmentmetrics compared to FTMap (Kozakov et al., 2015) and Kalasanty (Stepniewska-Dziubinska et al.,
2020). (A) Distribution of the Dice similarity coefficient for all methods smoothed with a Gaussian kernel density estimate (KDE, bandwidth h = 0.04). (B)
Distance from center to center (DCC) of predicted to experimental carbohydrate-binding residues (smoothed with a Gaussian KDE, h = 0.75 Å). (C) Per-
target comparison of CAPSIF:V to FTMap and (D) CAPSIF:G Dice coefficients.
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CAPSIF:G predict binding sites within seconds on a single CPU.
Thus, on average, CAPSIF:V and CAPSIF:G outperform current
small molecule-binding site predictors of carbohydrate binding.

Finally, we compared the CAPSIF:V and CAPSIF:G
architectures. CAPSIF:V has an average Dice coefficient of 0.597
and CAPSIF:G has an average Dice coefficient of 0.543 across the
test dataset (Table 1). When comparing the Dice on the test set,
CAPSIF:V predicts 27.3% of structures with greater than 0.15 Dice
coefficient compared to CAPSIF:G, whereas CAPSIF:G predicts
11.2% of structures with greater than 0.15 Dice coefficient
compared to CAPSIF:V (Figure 3D). Thus, CAPSIF:V
outperforms CAPSIF:G in carbohydrate-binding site prediction.

Carbohydrates are unique biomolecules that bind to different
lectins with high specificity. Both CAPSIF architectures treat all
carbohydrates agnostically, meaning that all sugar residue types are
considered equivalent for predictions. Nonetheless, we compared
prediction results across different sugar residue types
(Supplementary File S1). CAPSIF:V performs best on glucose
(Glc), galactosamine (GalN), arabinose (Ara), xylose (Xyl), ribose
(Rib), and galacturonic acid (GalNAc). It predicts regions that bind
neuraminic acid (Neu/Sia), fucose (Fuc), and glucuronic acid
(GlcNAc) with less than an average 0.5 Dice coefficient. The
weaker performance could stem from chemical differences or
differences in the size of the training data. Neu and Fuc are
substantially chemically distinct carbohydrates, as Neu is a 9-
carbon structure and Fuc adopts an (L) conformation; both are
sparse in our dataset. Furthermore, CAPSIF:V performs best on

transport proteins, membrane proteins, and hydrolases; however, it
performs weakly on viral proteins and lyases (Supplementary
File S1).

CAPSIF:Voxel, in most cases, performs
similarly on AlphaFold2 structures

Both CAPSIF models were trained and tested on bound crystal
structures; however, experimental protein structure determination
can be expensive, even in the absence of carbohydrates. We,
therefore, investigated whether CAPSIF:V could usefully predict
carbohydrate-binding structures from computationally modeled
structures. We reconstructed the test protein structure dataset
with the Colab implementation of AlphaFold2 (AF2) (Jumper
et al., 2021; Mirdita et al., 2022), predicted the carbohydrate-
binding residues of the predicted structures, and evaluated the
same performance metrics (Table 2). CAPSIF:V predicts the
carbohydrate-binding regions with similar Dice coefficients of
0.597 and 0.586 for PDB versus AF2 predicted structures,
respectively. Figure 4A shows that the Dice distribution is similar
between PDB and AF2 structures. CAPSIF:V predicts the center of
the carbohydrate-binding region more accurately on AF2 structures
with a DCC of 3.8 Å, compared to 4.5 Å on crystal structures.

Although CAPSIF:V has a lower average DCC on AF2 structures
compared to experimental structures, CAPSIF:V fails to predict any
sites at all on 15% of AF2 structures, whereas it fails in only 5% of

TABLE 2 Metrics for CAPSIF:Voxel inputting PDB or AF2 structures. Dice, PPV, sensitivity, DCC, MCC, and coverage defined in Table 1.

Structure Dice PPV Sensitivity DCC (Å) MCC Coverage (%)

PDB 0.597 0.598 0.647 4.48 0.599 94.4

AF2 0.586 0.508 0.744 3.76 0.598 85.0

FIGURE 4
Dice coefficient assessment of CAPSIF:Voxel on PDB and AlphaFold2 (AF2) structures. (A) Kernel density estimate (h =0.04) showing the distribution
of the Dice coefficient for both methods. (B) Comparison of each test structure between CAPSIF:V on PDB and AF2 structures.
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PDB structures, suggesting that the signal about sugar binding is
removed for some of the small backbone errors produced by AF2.

The multiple outliers where CAPSIF:V fails to predict the region
of carbohydrate binding in only AF2-predicted structures are sorted
in Figure 4B. CAPSIF:V predicts a Dice coefficient of at least
0.15 units higher for PDB structures in 14.9% of structures and
predicts AF2 structures with a 0.15 Dice coefficient or higher for
8.7% of test structures. AF2-generated structures can be inaccurate;
however, in most of the test cases, AF2 captures the structures with
angstrom level accuracy and the carbohydrate-binding residues with
high pLDDT confidence; unfortunately, the pLDDT confidence
measure does not correlate with the CAPSIF success rate
(Supplementary Figure S8).

CAPSIF assists ab initio prediction of bound
protein–carbohydrate structures

CAPSIF:V predicts the carbohydrate-binding site on the
majority of proteins with high accuracy, suggesting that it might
be used in a pipeline to predict bound protein–carbohydrate
structures. As a proof-of-concept, we developed a prospective
pipeline and tested it on five proteins from the GlycanDock
(Nance et al., 2021) test dataset that were not included in the
CAPSIF dataset.

We constructed the following rudimentary pipeline. We
predicted the binding site from each unbound protein’s
experimentally determined structure with CAPSIF:V and

constructed the known carbohydrate with Rosetta. The
carbohydrate center of mass (CoM) was then placed in the CoM
of the predicted binding region and manually rotated to align with
the binding region shape. Subsequently, we used the Rosetta
FastRelax (Tyka et al., 2011) protocol to remove steric clashes. In
addition, we used Rosetta’s standard GlycanDock (Nance et al.,
2021) to predict the bound structures. To find the highest-rated
bound structure, we filtered 9,500 decoys by their computed
interaction energy.

We tested the pipeline on five experimentally solved unbound
proteins: P. aeruginosa lectin 1, a glycan-binding protein (GBP,
1L7L), two carbohydrate-binding modules (CBMs) (viz., 1GMM
and 2ZEW), a glycoside hydrolase enzyme (1OLR), and an anti-
HIV-1 antibody (Ab) (6N32). Figure 5 shows structures and the root
mean squared deviation (RMSD) of each predicted carbohydrate
structure from the experimental structure. CAPSIF:V predicts
carbohydrate-binding residues near the correct site on four of the
five proteins, but it fails to predict any binding residues on the
antibody (6N32). For three of the proteins, CAPSIF:V predicts the
region with high accuracy. However, on 1GMM, CAPSIF:V predicts
regions flanking the binding site, but it still provides a CoM similar
to the actual binding region. For the carbohydrates with identified
sites, the standard GlycanDock protocol was able to refine the
carbohydrate structure to an RMSD of less than 8 Å for the
entire ligand and less than 6 Å for register-adjusted values, where
the termini were removed before calculating RMSD. The 3-mer Gal
GBP (1L7L) has the worst RMSD (6 Å register adjusted, Figure 5B)
likely because the holo conformation (2VXJ) undergoes a

FIGURE 5
Results of the CAPSIF:V-GlycanDock pipeline. CAPSIF-predicted residues are shown in green. Wild-type unbound structures are shown in surface
representation in gray, with the experimentally determined carbohydrate in gray sticks and predicted bound carbohydrate in purple sticks. RMSD of the
entire ligand and RMSD of the register-adjusted ligand are shown. (A) A carbohydrate-binding module (CBM), 1GMM (unbound PDB)/1UXX (bound PDB),
(B) a glycan-binding protein (GBP), 1L7L/2VXJ, (C) an enzyme, 1OLR/1UU6, (D) a CBM, 2ZEW/2ZEX, and (E) an antibody (Ab), 6N32/6N35 are shown.
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conformational change at the carbohydrate-binding site. Although
this Ab case example failed, CAPSIF successfully predicted the
carbohydrate-binding regions of 9 of the 11 Abs tested from the
GlycanDock test set, which has no overlap with the CAPSIF training
set. These predictions demonstrate the potential of CAPSIF to help
inform experimental hypotheses or for high-throughput predictions
of bound protein–carbohydrate structures.

Discussion

We demonstrated that both CAPSIF models predict residues of
proteins that bind carbohydrates with much higher accuracy than
prior approaches. CAPSIF:V uses a voxelized approach and predicts
62.7% of crystal structures with a distance from the center of the
predicted region to the center of the experimentally determined
region (DCC) within 4 Å. CAPSIF:G performs strongly on the
dataset, predicting 55.2% of crystal structures with a DCC less
than 4 Å, with CAPSIF:V performing similarly or outperforming
CAPSIF:G in 88.8% of cases. CAPSIF:V is robust to most errors in
the protein structure of the magnitude in AF2 structures (Ångström-
level) (Jumper et al., 2021): the algorithm predicts similar
carbohydrate-binding residue regions independent of whether the
input structure is experimentally determined or predicted by AF2.
This algorithm is a substantial improvement over surrogate ligand
site predictors, Kalasanty and FTMap.

Furthermore, CAPSIF outperforms previous methods
specifically tuned for carbohydrate binding. CAPSIF:V achieved a
0.599 MCC, and CAPSIF:G achieved a 0.538 MCC on the test
dataset. Tsai et al., 2012’s method using probability density maps
achieved a 0.45 MCC on their independent test dataset of
108 proteins, SPOT-Struc achieved a 0.45 MCC on their test
dataset of 14 proteins (Zhao et al., 2014), and SPRINT-CBH
achieved an MCC of 0.27 MCC on their test set of 158 proteins
(Taherzadeh et al., 2016). Although these datasets differ from ours,
ours is a similarly constructed nonhomologous dataset of
162 structures, and CAPSIF has a markedly stronger MCC.
Although CAPSIF:V performs best, we advocate for using
CAPSIF:V and CAPSIF:G in tandem to predict carbohydrate-
binding residues because there are numerous cases where one
CAPSIF model outperforms the other.

Although CAPSIF accurately captures the
protein–carbohydrate-binding interface, there are limitations.
CAPSIF is carbohydrate-agnostic, so it only predicts that a
protein residue will bind one of the 16 carbohydrate monomers.
In other words, CAPSIF predicts the location of carbohydrate
binding, but it does not predict which carbohydrate preferentially
binds there. Furthermore, CAPSIF was only trained and tested on
known non-covalent carbohydrate-binding proteins. Therefore,
CAPSIF may not be informative on non-carbohydrate-binding
proteins or proteins that bind glycoconjugates, such as ribose in
nucleic acids, ATP/ADP, or GTP/GDP (Supplementary Figure S10).
CAPSIF was trained on a small set of sixteen sugar residue types, and
it will be most useful for non-modified sugar residues. Another
limitation is that CAPSIF fails to predict any binding on about three
times as many AF2-predicted structures as crystal structures.
Unfortunately, CAPSIF prediction accuracy on AF2 structures is
not correlated with pLDDT confidence metrics, so it is not possible

to know when it will fail. Furthermore, CAPSIF was tested on AF2-
predicted structures for proteins that already exist and may exist in
the AF2 training set.

The scope of CAPSIF makes it well-suited for a computational
pipeline. We suggest the use of DeepFRI (Gligorijević et al., 2021), a
DL model that predicts protein function, to first determine whether
it is a carbohydrate-binding protein. If it is a carbohydrate-binding
protein, then LectinOracle (Lundstrøm et al., 2022) or GlyNet
(Carpenter et al., 2022) can be used to predict which
carbohydrates bind the protein. CAPSIF can then predict binding
locations, either from an experimental structure or AF2-generated
structures, and then GlycanDock (Nance et al., 2021) can predict a
docked protein–carbohydrate structure.

We tested part of this pipeline by predicting the binding region
using CAPSIF:V and docking the known carbohydrate binder to the
region with GlycanDock (Nance et al., 2021). CAPSIF:V predicted
binding sites on four of the five proteins. The antibody case, which
failed, bound a carbohydrate at the complementary determining
region (CDR) loops, split over two chains, but CAPSIF was trained
only on single chain data. When the register was adjusted, each
structure yielded a ligand RMSD less than 6 Å. We anticipated that a
more well-tuned pipeline could yield higher accuracy structures ab
initio from sequence only.

To our knowledge, voxelized and graph-based site prediction
has not been presented simultaneously before. Existing studies have
used graphs to either predict binding affinity (Jones et al., 2021) or a
docked structure (in coordination with diffusion techniques) (Corso
et al., 2023). However, they have not been used to determine small
molecule-binding regions. We tested two architectures utilizing
either voxel or graph representations. We showed that CAPSIF:V
outperforms CAPSIF:G, both of which use convolutions to predict
the carbohydrate-binding ability of residues with the same residue
representation. We can speculate about the reason by considering
the differences between the approaches. CAPSIF:V discretizes the
protein structure over a 3D grid, which can obscure the Cβ position
by a few Ångströms, whereas CAPSIF:G uses the coordinates
without any loss of spatial information. CAPSIF:V encodes the
initial 1.4 M features input to a lower dimensionality of a 512-
feature vector to encode the entire structure, whereas CAPSIF:G lifts
the data from an Nres × 30 to a higher dimensionality of Nres × 64.
CAPSIF:V has 102 M parameters, and CAPSIF:G has 236K
parameters, reflecting how graph-based methods capture the
spatially equivariant information in fewer parameters. One
characteristic of using the voxel representation is that the grid
contains voxels with the protein and the voxels outside the
protein, including binding pocket cavities, whereas the graph
representation only contains the protein. Voxel network
reasoning over the surface pocket volume may be the key factor
for improved carbohydrate-binding residue prediction.

By building on this initial screen, future studies could focus on
improving the CAPSIF data representation for improved accuracy
and extending these models to predict which carbohydrate
monomer a residue most preferentially binds and whether the
protein is a carbohydrate-binding protein. In the future, the
dataset could include oligomeric structures that bind
carbohydrates at the oligomeric interface. Furthermore, model
performance could be improved by leveraging homologous
structures with data splits across families. Although lectins are
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well known for carbohydrate binding, some protein families, such as
G protein-coupled receptors (GPCRs) and antibodies, do not
exclusively bind carbohydrates (Dingjan et al., 2015; Yang et al.,
2021). Additionally, with our carbohydrate-binding site dataset, one
could test small molecule-binding site predictor neural networks
such as Kalasanty (Stepniewska-Dziubinska et al., 2020) or PeSTo
(Krapp et al., 2023) by fine-tuning them for sugars. High-
throughput methods like these could enable proteomic scale
sorting of carbohydrate-binding capabilities.

Methods

Dataset

No dataset of nonhomologous bound protein–carbohydrate
structures that leveraged the total size of the current PDB
existed, so we constructed one. A simple selection of all RCSB
(Berman, 2000) structures with carbohydrates gives all docked
protein–carbohydrate structures but also inherently returns all
glycosylated proteins, glycosylated peptides, and all protein
structures that use carbohydrates as crystallization agents. We
aimed to determine all true physiological protein–carbohydrate
interactions; therefore, we manually removed nonspecific
crystallization buffers or glycoproteins. Subsequently, we removed
all proteins with a resolution over 3 Å and removed all homologous
protein structures with over 30% sequence identity to remove all
sequentially redundant proteins, only accounting for chain
homology and not domain homology. Some structures
containing sugars with modified monosaccharides and cyclic
carbohydrates were unreadable in the PyRosetta (Chaudhury
et al., 2010) software and, therefore, additionally removed.

The final dataset consists of 808 structures, with a split of
521 training structures, 125 validation structures, and 162 test
structures. Each structure has one or more of the following
carbohydrate monomers: glucose (Glc), glucosamine (GlcNAc),
glucuronic acid (GlcA), fucose (Fuc), mannose (Man),
mannosamine (ManNAc), galactose (Gal), galactosamine
(GalNAc), galacturonic acid (GalA), neuraminic acid (Neu)/sialic
acid (Sia), arabinose (Ara), xylose (Xyl), ribose, rhamnose (Rha),
abequose (Abe), and fructose (Fru). We split the training, validation,
and test sets pseudo-randomly to ensure an equal representation of
all carbohydrate species in each split. The numbers of each
monomer per structure and the Dice coefficient for each
carbohydrate monomer type and each protein family in the test
set from CAPSIF:V are included in Supplementary File S1. For all
the following work, we defined a carbohydrate-interacting residue as
residues with any heavy atom within 4.2 Å of a carbohydrate-
heavy atom.

CAPSIF:V data processing

CNNs are not rotation invariant, and so data augmentation by
rotations improves their performance (Villar et al., 2021). Therefore,
we augmented the input data for CAPSIF:V during training to
overcome the rotational variance. Each time a structure was used in
training, it was rotated in Cartesian space by a random angle in

{−180°,180°} around an axis defined by a randomly chosen residue’s
location and the protein center of mass. With the random rotation
for each epoch, the network learned approximately 1,000 different
orientations of each structure in the dataset. If the protein was too
large for the grid size, it was split into separate grids and run
separately (approximately 22% of the training points).

Neural network architectures

Features
Due to the small dataset size of 808 structures, we chose residue-

level representations instead of atomistic ones. We assigned all
residue information to the Cβ atom of each residue because the
position of the Cβ is similar in the apo and holo states (Clark et al.,
2019). The features are listed in Table 3. The SASA, hydrophobicity,
and H bond donor/acceptor indices were calculated using PyRosetta
(Chaudhury et al., 2010), and aromaphilicity was indexed by Hirano
and Kameda (2021).

CAPSIF:Voxel
CAPSIF:V utilizes a UNet architecture, encoding and

decoding the input structure to predict carbohydrate-binding
residues with residual connections. CAPSIF:V inputs a grid of
36 × 36 × 36 voxels, with each voxel representing 2 Å × 2 Å × 2 Å.
We input a tensor of sizes (28, 36, 36, 36), with the 28 features
from Table 3, where orientation is the normalized components of
the Cα to Cβ bond vector. All voxels without a Cβ within are
input as zero vectors.

CAPSIF:V contains an embedding layer and nine convolutional
blocks where four blocks encode the structure, one block forms the
bottleneck, and four blocks decode the structural information. The
embedding layer lifts the 28-channel input into a 32-dimension
space. Each block has a double convolution, performing the
following methods twice: 3D convolution, with the same number
of input channels as the number of output channels, (5 × 5 × 5)
kernel with a stride of 1 and padding of 2, a batch normalization
layer, and a rectified linear unit (ReLU) activation function. In
addition, each encoding block has a MaxPooling layer to double the
size of the channels (32, 64, 128, 256, 512) while reducing the 3D
cubic voxel numbers (36, 18, 9, 3, 1). Each decoding block first
concatenates the results of the encoding layer of the same size and

TABLE 3 List of features and the associated encoding size used for both CAPSIF
models.

Feature type Encoding size

Amino acid (one-hot) 20

SASA 1

Hydrophobicity 1

Aromaphilicity 1

H bond donor/acceptor 2

Orientation (voxel only) 3

Torsion (graph only) 4
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then performs a double convolution and a 3D-transposed
convolution operator, reducing the number of channels (256,
128, 64, 32) while increasing the 3D cubic voxel numbers (3, 9,
18, 36) After the nine blocks, there is a single convolutional layer
condensing the input channels (32) into a single output channel,
which is then followed by a sigmoid activation function to output the
probability that the voxel contains a residue that binds a sugar
(Figure 6). CAPSIF:V contains 102,676,001 parameters.

CAPSIF:V was trained for 1,000 epochs with a learning rate of
10−4 and batch size of 20 grids using the Adam (Kingma and Ba,
2015) optimizer with the loss function L � 1 − d, where d is defined
by Eq. 1.

In optimizing CAPSIF:V, we explored several model
variations. We tested various combinations of 3 × 3 × 3, 5 ×
5 × 5, and 7 × 7 × 7 convolutional filters. We used four
convolutions per layer instead of the double convolution in
the primary model. Furthermore, we used larger voxel grid
sizes (72 × 72 × 72 instead of 36 × 36 × 36) with another
decoding/encoding layer in the UNet architecture. We also
attempted different configurations of skip connections, such as
UNet++ (Zhou et al., 2018). These models required slower

learning rates and showed slower convergence with no
improvement in prediction quality than the presented model.
The best model for validation accuracy is described previously.

CAPSIF:Equivariant graph neural network
CAPSIF:G is an equivariant graph neural network (Satorras

et al., 2021) that performs convolutions on each node (chosen as
each Cα for glycine and Cβ for all others). Graph edges are
connected between neighbors (defined as all other nodes within
12 Å), and the edge attribute is the distance between node Cβ atoms.
In addition to the features used in CAPSIF:V, we include a torsional
component in the node features as the sine and cosine of the φ and ψ
angles of each residue (Table 3).

CAPSIF:G first lifts the 29-feature input node into a 64-
dimension space. The 64-feature vector, alongside the edge
features (distances), is then input to eight consecutive
equivariant graph convolutional layers (EGCLs) (Satorras
et al., 2021). Each EGCL contains an edge multilayer
perceptron (MLP), a node MLP, a coordinate MLP, and an
attention MLP. The edge MLP consists of two blocks of a
linear layer and a rectified linear unit (ReLU) activation

FIGURE 6
CAPSIF:V architecture. Blue arrows indicate a double convolution, red arrows indicate an encoding layer, and green arrows indicate a decoding
layer.
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function. The node MLP consists of a linear layer, a ReLU
activation layer, and a linear layer. The coordinate MLP
contains a linear layer, a ReLU activation layer, and a linear
layer. The attention MLP contains a linear layer and a sigmoid
activation function. All layers input and output a 64-feature
vector. Finally, CAPSIF returns the embedding to a 29-feature
vector per node, adds the initial input features to the final vector,
performs batch normalization, and then uses a sigmoid activation
function to output a probability of carbohydrate binding of all
residues. CAPSIF:G contains 236,009 parameters.

This model was trained for 1,000 epochs with a learning rate of
10−4 and batch size of one protein using the Adam optimizer
(Kingma and Ba, 2015) with the loss function L � 1 − d, where d
is defined by (Eq. 1).

In optimizing CAPSIF:G, we explored changing the number of
graph convolutional layers and the latent space dimensionality. We
tested the number of layers (L = 4,6,8,16) and used different
dimensionalities of the latent space (d = 16,32,64). The best-
performing model is described previously.
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