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Although immune checkpoint blockade therapies have shown evidence of clinical
effectiveness in many types of cancer, the outcome of clinical trials shows that
very few patients with colorectal cancer benefit from treatments with checkpoint
inhibitors. Bispecific T cell engagers (TCEs) are gaining popularity because they
can improve patients’ immunological responses by promoting T cell activation.
The possibility of combining TCEs with checkpoint inhibitors to increase tumor
response and patient survival has been highlighted by preclinical and clinical
outcomes. However, identifying predictive biomarkers and optimal dose regimens
for individual patients to benefit from combination therapy remains one of the
main challenges. In this article, we describe a modular quantitative systems
pharmacology (QSP) platform for immuno-oncology that includes specific
processes of immune-cancer cell interactions and was created based on
published data on colorectal cancer. We generated a virtual patient cohort
with the model to conduct in silico virtual clinical trials for combination
therapy of a PD-L1 checkpoint inhibitor (atezolizumab) and a bispecific T cell
engager (cibisatamab). Using the model calibrated against the clinical trials, we
conducted several virtual clinical trials to compare various doses and schedules of
administration for two drugs with the goal of therapy optimization. Moreover, we
quantified the score of drug synergy for these two drugs to further study the role of
the combination therapy.
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1 Introduction

Colorectal cancer (CRC) is the third most frequent cause of cancer-related death
worldwide (Bray et al., 2018). Surgery, chemotherapy, and radiotherapy—also used in
combination—have historically been the standard treatments for colorectal cancer.
Unfortunately, these treatments have a lot of adverse consequences since they are non-
specific and cytotoxic to all cells, including healthy cells (Johdi and Sukor, 2020). In recent
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years, cancer immunotherapy as a more effective alternative
approach has changed the area of cancer treatments (Morrissey
et al., 2016; Golshani and Zhang, 2018).

Immune checkpoint blockade therapies, including anti-PD-
L1 and anti-PD-1, have raised a lot of attention and have shown
a significant increase in the survival rate of patients with multiple
solid tumor types (Alsaab et al., 2017; Popovic, Jaffee, and Zaidi,
2018; Sharma and Allison, 2020; Sharma et al., 2021). Nonetheless,
the results of clinical trials show that only a small number of patients
with metastatic CRC (mCRC) benefit from checkpoint inhibitors
(Hegde and Chen, 2020). For example, the IMblaze370 study failed
to improve overall response in the PD-L1 inhibitor atezolizumab
monotherapy or even in combination therapy with the MEK
inhibitor cobimetinib when compared with regorafenib in
previously treated mCRC patients (Eng et al., 2019). It is
essential, however, to keep looking into the role of checkpoint
inhibitors, particularly in combination with other
immunotherapy methods for the treatment of colorectal cancer.

The T cell bispecific antibody, cibisatamab (CEA-TCB), is a
novel immunotherapy agent that guides T cells to tumor cells that
express the carcinoembryonic antigen (CEA) glycoprotein at the cell
surface regardless of their T cell receptor specificity (Bacac et al.,
2016; Lehmann et al., 2016; Gonzalez et al., 2019). Numerous
colorectal tumors exhibit an overexpression of CEA on their cell
surfaces, making cibisatamab a prospective candidate for the
treatment of colorectal cancer. Cibisatamab (RO6958688;
RG7802) has been used in monotherapy and in combination
with atezolizumab (anti-PD-L1) in clinical trials (NCT02324257,
NCT02650713). The results from these trials have shown promising
outcomes for the treatment of CRC with bispecific antibodies in
solid tumors (Tabernero et al., 2017).

Although the combination therapy of bispecific antibody with
PD-L1 inhibitors in solid tumors has shown significant promise,
there may be drawbacks down the road, including the inability to
pinpoint the cause of side effects, drug-drug interactions, cumulative
side effects, and greater costs. As a result, optimization of dose and
sequence for these combination therapies can be beneficial to reduce
the potential risk of combination therapies and enhance the
advantages.

Moreover, identifying the combination therapies with
synergistic effects, which enable dose reduction of individual
drugs and increase their efficacy, is desirable in clinical studies
specially for bispecific antibodies that show toxic behavior at higher
doses. Several synergy quantification methods have been proposed
to assess drug combination performance (Chou, 2010; Meyer et al.,
2020). The majority of synergy metric approaches are based on
either Loewe Additivity (LA) principle (Loewe, 1953) or Bliss
Independence (BI) method (BLISS, 1939; Berenbaum, 1978;
Greco et al., 1995). More recently, a synergy framework called
multi-dimensional synergy of combinations (MuSyC) has been
introduced (Meyer et al., 2019), which was used in this study to
quantify the synergy of combination therapy with atezolizumab and
cibisatamab. This method’s key benefit is its ability to distinguish
between synergetic potency and synergistic efficacy.

In this study, we have extended our previously developed QSP
model of T cell engager (TCE) and anti-PD-L1 antibody in CRC (Ma
et al., 2020a; Ma et al., 2020b) by incorporating the dynamics of
helper T cells (Th) and myeloid-derived suppressor cells (MDSCs)

from our study of triple-negative breast cancer (TNBC) (Wang et al.,
2021) and modified the binding dynamics of TCE to fit the in vitro
data of cibisatamab (Vyver et al., 2021). Using this model, we aim to
optimize the dose and sequence of cibisatamab and atezolizumab
and investigate their synergistic behavior in combination therapy.

2 Materials and methods

2.1 Model structure

The current QSP model is modified from our previously
published QSP platforms (Ma et al., 2020a; Wang et al., 2021)
built using SimBiology toolbox in MATLAB (MathWorks, Natick,
MA). The model is composed of four compartments, which includes
central, peripheral, tumor and tumor-draining lymph node
compartments. The model consists of connected modules that
describe the dynamics of molecular and cellular interactions
associated with different species shown in Figure 1. In summary,
the model simulates the dynamics of naïve CD4+ and CD8+ T cells,
taking into account their trafficking between the central, peripheral,
and lymph node compartments, as well as their proliferation in the
peripheral and lymph node compartments. A small number of
cancer cells are initially incorporated into the tumor
compartment, and their dynamics is modeled using a logistic
growth approach. Cancer cell death, or apoptosis, is modeled as a
first-order reaction, which results in the release of tumor-associated
neo-antigens and self-antigens into the tumor compartment.

Themodel considers the uptake of tumor-derived neo-antigens and
self-antigens by antigen-presenting cells (APCs), their subsequent
maturation, and their migration to the tumor-draining lymph node
compartment. The detailed mechanisms of antigen processing and
presentation, including the cleavage of proteins into peptides, binding of
peptides to MHC molecules, and transport to the cell surface, are all
incorporated into the model. The activation of naïve T cells is
dependent on the extent of T cell receptor ligation by peptide-MHC
on APCs, and is implemented as a Hill function. Following activation,
Tregs, cytotoxic T cells, and helper T cells infiltrate into the tumor.
Tumor-infiltrating cytotoxic T cells kill cancer cells, and their rate of
killing depends on the ratio of cytotoxic T cells and cancer cells. This
process also results in the enhanced release of tumor-associated
antigens. However, the model assumes that tumor-infiltrating
cytotoxic T cells and helper T cells become exhausted by the
interaction of PD-1 with ligands on cancer cells and the action of Tregs.

The model also includes the secretion of CCL2 by cancer cells,
which is assumed to mediate the recruitment of myeloid-derived
suppressor cells (MDSCs) into the tumor compartment. MDSCs are
assumed to release arginase-I (Arg-I) and nitric oxide (NO), which
inhibit the cytotoxic activity of T cells. TGF-β and Arg-I facilitate the
trans-differentiation of helper T cells to Tregs in the tumor.

Finally, the model incorporates the pharmacokinetics and
pharmacodynamics of two antibodies: the anti-PD-L1 antibody
atezolizumab and the T cell engager antibody cibisatamab. Both
antibodies are directly administered into the central compartment.
The pharmacokinetics of the antibodies incorporates their clearance
from the central compartment, their transport between the central
and peripheral/tumor compartments, and their transport from the
tumor to the tumor-draining lymph node compartment. The
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pharmacodynamics of the anti-PD-L1 antibody is modeled by its
binding to the PD-L1 on cancer cells and regulatory T cells, which
blocks the interactions of PD-1 with PD-L1. The subsequent
reduction in the amount of ligand-bound PD-1 decreases the
inhibitory action of PD-1 on T cell-mediated killing of cancer
cells, which is also modeled as a Hill function. The bispecific
T cell engager can bind to CD3 on T cells and CEA on cancer
cells, leading to the formation of CEA_TCE_CD3 molecule and
enhanced cancer killing by Teff cells. The details on TCE binding
module and the equations describing pharmacokinetic of both
cibisatamab and atezolizumab are elaborated in the
Supplementary Material.

In this study, dynamics of T cells, APCs, tumor-specific neoantigens
and tumor-associated self-antigens, immune checkpoints, MDSCs are
adapted from (Wang et al., 2021). The tumor growth dynamics with a
logistic growth rate and TCE model with binding modifications are
based on (Ma et al., 2020b) with modified hill function coefficient of T
cell activation fitted to in vitro data of cibisatamab, Figure 2. The
modules have a total of 131 ordinary differential equations (ODEs),
27 algebraic equations (i.e., repeated assignment rules), 211 parameters,
and were created using MATLAB scripts. The online Supplementary
Tables S2–S7 include complete listings of model parameters, reactions,
algebraic equations, and cellular andmolecular species, as well as details
on each module.

2.2 Virtual patient generation and virtual
clinical trial

To create a virtual patient cohort that resembles the clinical
population, a subset of model parameters is varied (Supplementary
Table S7) while others remain at the baseline level (Supplementary Table

S4). Both the baseline values and ranges of selected parameters are based
on experimental and clinical data, where available (see Supplementary
Table S4 notes for references). However, the distributions of some
parameters are not currently available. For those parameters, we have
estimated their ranges such that the 95% confidence interval of simulated
ORR rate would correspond to the results of the clinical trial (percentage
of PR/CR) per RECIST, for each therapy. The model is first initialized
with a small number of cells before performing a virtual clinical trial.
Using Latin Hypercube Sampling (LHS), the values of selected
parameters are randomly generated based on the calibrated
parameter distributions, with each parameter set representing a
potential virtual patient. If the tumor is able to reach the desired
initial tumor size, which corresponds to the pre-treatment tumor size
in actual clinical trials and varies among patients, the simulation will
proceed to estimate the response to therapy. To avoid generating
implausible patients due to uncertainty in parameter ranges, the
following physiological parameters were used to screen VPs: tumor
diameter, T cell density in the blood, and Teff to Treg ratio.

2.3 Statistical analysis

Latin Hypercube Sampling (LHS) and Partial Rank Correlation
Coefficient (PRCC) methods are used to perform global uncertainty
and sensitivity analyses (Marino et al., 2008) to investigate the effects
of varied parameter values on model observations. The virtual
patient population is resampled using bootstrap sampling in
order to compare model predictions and clinical data. The
95 percentile confidence intervals and bootstrap median are then
computed for comparison between model predictions and clinical
results. Statistical analyses are carried out via MATLAB 2020a
(MathWorks, Natick, MA).

FIGURE 1
QSP Model Diagram. The model is divided into of four compartments: central, peripheral, tumor, and tumor-draining lymph node, which describe
cycles of immune activation in lymph nodes, T cell trafficking to the tumor, killing of cancer cells, immune evasion, and antigen release and lymphatic
transport. nT, naïve T cell; aT, activated T cell; NO, nitric oxide; Arg-I, arginase I; Treg, regulatory T cell; Teff, effector T cell; Th, helper T cell; Texh,
exhausted T cell; MDSC, myeloid derived suppresser cells; mAPC, mature antigen presenting cell. Cytokine degradation and cellular clearance were
omitted in the diagram. Modified from (Ma et al., 2020b; Wang et al., 2021).
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2.4 Drug synergy quantification

Using the MuSyC technique (Meyer et al., 2019), the synergy of
combination therapy is evaluated for the median behavior of simulated
virtual patients. In summary, two parameters representing synergistic
potency, α, and synergistic efficacy, β, are quantified for a two-
dimensional space representative of response to two targeted drugs.
The parameter αmeasures how the presence of another drug affects the
effective dose of one drug. When two drugs have synergistic potency
(log(α) > 0), the EC50 value decreases due to the addition of the other
drug, corresponding to an increase in potency. The percent increase in
the effect of a drug combination over the most effective single drug is
referred to as the parameter β. For example, in the case of synergistic
efficacy (β> 0), themaximum effect (Emax) of combined drugs is greater
than the maximum effect of the individual drugs.

3 Results

3.1 In silico virtual clinical trial of
atezolizumab and cibisatamab

For this study, a virtual cohort of 500 patients was created by
LHS method, and those who did not reach the desired initial
tumor size or with implausible parameter values were regarded
as non-patients and excluded from the virtual trial. Filtered
virtual patients (VPs) were used for estimating overall response
rate (ORR) of colorectal cancer in mono- and combination

therapy using atezolizumab and cibisatamab. It is important
to note that the same VPs were used in all the cases. The
parameters with no experimentally reported values
(Supplementary Table S4) were fitted to the outcome of
clinical trials NCT02324257 and NCT02650713, with 60 mg
cibisatamab QW as a monotherapy treatment and 60 mg
cibisatamab QW plus 1200 mg atezolizumab Q3W for
combination therapy (Tabernero et al., 2017). The ORRs were
calculated for VPs following RECIST 1.1 (Eisenhauer et al.,
2009) after 400 days, as summarized in Table 1. In order to
compare the simulation results with the actual clinical trials, we
have calculated 95% percentile bootstrap confidence intervals
(95% CI) of the ORRs by randomly sampling 31 VPs
10,000 times in cibisatamab monotherapy and 25 VPs
10,000 times in combination therapy. MATLAB’s “bootci”
function was used for calculation of 95% CI and, the number
of selected VPs was chosen based on number of patients in
NCT02324257 (31 patients, cibisatamab monotherapy) and
NCT02650713 (25 patients, combination therapy). Since the
result of atezolizumab was not reported in these trials, the
result of atezolizumab monotherapy from the IMblaze370
(NCT02788279) trial with a 2% (95% CI: 0.3–7.8) response
rate was used to calibrate the model and compare with the
clinical trial results (Eng et al., 2019). Similar to cibisatamab
monotherapy, we have randomly sampled 31 patients for
calculation of CI in the case of atezolizumab monotherapy.

In order to visualize the dynamics of individual virtual patients
and compare different treatments, we plotted the rate of response for
all treatment cases as spider plots, showing both the individual
variabilities of patients by randomly selecting 100 VPs in Figure 3A,
and the median behavior of the virtual population in Figure 3B. In
addition, the best overall response is demonstrated by waterfall
plots, as shown in Figure 3C.

To determine the strength of the correlation between
parameters and tumor volume, global uncertainty and
sensitivity analysis was performed using PRCC (Figure 4).
Tumor volume was significantly positively associated with
initial tumor diameter and tumor growth rate in both
cibisatamab monotherapy and combination therapy. Moreover,
in both cases, neo-antigen specific T cell clones (TCC) were highly
negatively associated with tumor volume. To further explore the
results, we plot the time profile of tumor size and T cell densities in
the tumor compartment in Figure 5. As shown in this figure, the
median tumor size is significantly lower in responders, while Teff
cell density, Treg cell density and their ratio are higher in
responders as expected. Moreover, initial values of Teff cell
density is strongly correlated with responder/non-responder
status, suggesting that pre-treatment values of Teff density is a
predictive biomarker in monotherapies and combination therapy.

FIGURE 2
Fitting the Hill function coefficient (n) of T cell activation to
concentration on synapse formed per T cells. The blue circles are
extracted from (Vyver et al., 2021).

TABLE 1 Overall Response Rate of 60 mg cibisatamab monotherapy, 1200 mg atezolizumab monotherapy and their combination therapy.

Treatment Simulated ORR (%) 95% CI Clinical ORR References

Cibisatamab 8.2 0%–22.6% 6% Tabernero et al. (2017)

Atezolizumab 3.4 0%–12.9% 2% (IMblaze370 trial) Eng et al. (2019)

Combination Therapy 11.1 0%–28% 12% Tabernero et al. (2017)
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FIGURE 3
Rate of response in model-predicted tumor diameter of (A) 100 randomly selected virtual patients; (B) all VPs. Solid line represents the median and
shaded area stands for the median absolute error (mad); (C) best overall response represented by waterfall plots for all VPs. Response is assessed by
RECIST 1.1. CR, complete response; PR, partial response; SD, stable disease; PD, progressive disease.

FIGURE 4
The partial rank correlation coefficient, PRCC, between input parameters and tumor volume after treatment with (A) cibisatamab monotherapy and
(B) combination therapy.
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3.2 Optimization of dose regimen of
combination therapy with atezolizumab and
cibisatamab by sequential therapy
simulations

At the next step, we aim to investigate the possibility of dosage
optimization using the current QSP platform, which has been validated
by its efficacy prediction of the combination therapy with atezolizumab
and cibisatamab. To this end, we conducted 40 different virtual clinical
trials, using the same VPs from above, with various cibisatamab and
atezolizumab doses and schedules.We have kept the dose and frequency
of atezolizumab the same for all the cases, 1,200 mgQ3W, since this is an
established dose in clinical trials of colorectal cancer (Tapia Rico et al.,
2018). Atezolizumab administration was simulated starting on day 1,

week 2 or week 3 after reaching initial tumor diameter, in combination
with cibisatamab. Cibisatamab dose size and schedule were selected in
the range of 0–100mg and QW-Q3W, respectively. These selected dose
sizes and schedules are in agreement with the ranges used in clinical
trials. Themedian tumor volume at week 8 (the time of first follow up in
clinical trial after treatment) andORR for each combination at the end of
treatment are reported in Figure 6. We aimed to determine whether
treatment outcomes differed between early in treatment results and end-
point results. To achieve this, we primarily measured the median tumor
volume, as the overall response rate (ORR) may not fully reflect
individual patient dynamics until the end of the treatment.

Overall, by considering both ORR and median tumor volume,
the result shows that concurrent combination therapy has
slightly better response compared to sequential therapies.

FIGURE 5
Time profile of (A) tumor size; (B) Teff cell density; (C) Treg cell density; and (D) Teff to Treg cells ratio for responders vs. non-responders in
monotherapies and combination therapy. Thick line represents the median and shaded area stands for the standard error.
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Although the highest efficacy is observed for weekly
administration of cibisatamab, which is the same frequency
used in clinical trials, the result of simulation shows that
biweekly (Q2W) and triweekly (Q3W) administration of
cibisatamab can have similar efficacy, which may be beneficial
to reduce the toxicity associated with bispecific antibodies.

3.3 Quantification of drug synergy

Next, we used the QSP model to quantify the synergy of
combination therapy with atezolizumab and cibisatamab.
25 different simulations were conducted for various combinations
of drugs concentration, with cibisatamab in the range of 0–80 mg
and atezolizumab within the range of 0–1600 mg for the same VPs
in each simulation. For each combination, the ratio of final tumor
size to tumor size at the conditions with no drug at the end of
400 days, was calculated as the metric of response. Then, a two-
dimensional heatmap was plotted for the results, Figure 7.
Quantification of the synergy using multidimensional synergy of
combinations (MuSyC) technique suggests a small synergistic
efficacy βobs = 0.072, as well as a small synergistic potency log
(α2) = 0.064.

4 Discussion

TCEs have become an important part of the therapeutic
research strategy to treat cancer (Dahlén et al., 2018; Zhou

et al., 2021). They enable a powerful mode of action by
activating T cells through the creation of artificial immune
synapses (Morcos et al., 2020). Explorative preclinical and
emerging clinical data indicate a potential for enhanced
efficacy and reduced systemic toxicity. However, TCEs are a
complex modality with challenges to overcome in early clinical
trials, including the selection of relevant starting doses. “Dosing
strategy plays a crucial role in determining the therapeutic
window of TCEs because of the desire to maximize
therapeutic efficacy in the context of known mechanism-
related adverse events, such as cytokine release syndrome
(CRS) and neurological adverse events” (Betts and van der
Graaf, 2020). Moreover, other drug combinations with T cell
engagers have been a promising approach to treat cancers. While
comprehensive drug combination tests are effective for
identifying novel synergistic drug combinations, measuring all
possible combinations is challenging due to the size of potential
therapeutic agents and cell lines. Mechanistic modeling
approaches like quantitative system pharmacology (QSP)
models are powerful tools that can be used to integrate diverse
data to predict/refine clinical dosing regimens and design trials to
optimize efficacy (Jafarnejad et al., 2019; Hosseini et al., 2020;
Sové et al., 2020; Sové et al., 2022; Wang et al., 2022). Modeling
can be used to guide rational decision making, to inform
precision medicine strategies, and to increase overall efficiency
of the oncology clinical development process (Betts and van der
Graaf, 2020; Gibbs et al., 2020).

In this study, we extend our previously developed QSP platform
(Ma et al., 2020a) to study the combination therapy of an immune

FIGURE 6
Simulations of sequential therapies using various atezolizumab and cibisatamab dose and schedule. (A) represents the median tumor volume after
8 weeks; and (B) Overall response rate for each dose regimen.
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checkpoint inhibitor, atezolizumab, and a T cell engager,
cibisatamab. Following recent developments in kinetic modeling
of bispecific antibodies (Vauquelin and Charlton, 2013; Schropp
et al., 2019), we simplified the binding of cibisatamab to CEA, by
considering one binding arm with a newly added parameter to
account for the avidity of cibisatamab and thus modifying the
binding affinity between the second target and cibisatamab
bound to the first target. We calibrated the model by fitting the
model to the experimental data of level of T cell activation as a
function of average synapse per cell from (Vyver et al., 2021). We
have also adopted the dynamics of T cells, helper T cells, APCs,
tumor-specific neoantigens and tumor-associated self-antigens,
immune checkpoints and MDSCs from our study of TNBC
(Wang et al., 2021).

Using the model calibrated against clinical data, we performed a
series of in silico clinical trials to investigate the optimal dose schedule of
atezolizumab and cibisatamab for colorectal cancer. The results suggest
that concurrent combinations result in higher ORRs (and smaller
tumor size) than sequential combinations. Although the highest
efficacy is observed for weekly administration of cibisatamab, which
is the same frequency used in clinical trial, the results of simulations
show that biweekly (Q2W) and triweekly (Q3W) administration of
cibisatamab can have similar efficacy to weekly with potentially less
toxicity and adverse events associate with CRS in T cell engagers (Yu
and Wang, 2019).

To investigate how the presence of one drug would affect the
efficacy and potency of the other drug in combination therapy, we
investigated the drug synergy quantification using MuSyC method
developed by (Meyer et al., 2019). The results of our simulations
showed insignificant synergy of potency and efficacy for
combination therapy of atezolizumab and cibisatamab. This

could be due to the fact that these two drugs have independent
mechanisms of action. In this study, we have used the ratio of tumor
size at the end of simulation following treatment to tumor size at the
end of the simulation with no treatment as the metric of response.
However, other metrics like ORR, duration of response or T cell
densities might be other potential metrics to further investigate the
drug synergy in combination therapy. Moreover, the drug synergy
quantification based on these traditional statistical models may lack
high power and accuracy measurement due to small data size. In
future, and with availability of additional data the machine learning
techniques of drug synergy quantifications may bring many
advantages, including high accuracy, ability to model non-linear
effects, and robustness to parameter assumptions (Preuer and Lewis,
2018; Liu and Xie, 2021; Zhang et al., 2021; Tang and Gottlieb, 2022).

One of the major challenges in QSP models is the parameter
estimations due to high complexity of the models. Generation of virtual
patients with the goal of establishing a reliable and effective algorithm is
an ongoing research in the field of pharmacologymodeling (Allen et al.,
2016; Rieger et al., 2018). In this study, most of the parameters are
estimated using experimental data for colorectal cancer and validated by
comparing the results to response rate of patients in clinical trial.
However, the importance of some parameters like the rate of Teff
suppression by activated Tregs due to bispecific T cell engagers and their
influence on the result of combination therapy remains to be explored.

Here, we used QSP modeling to perform in silico clinical trials of
atezolizumab and cibisatamab to study optimization of dose and
schedule in combination therapy and drug synergy quantification.
This model can be extended to study other bispecific T cell engagers
and immune checkpoint inhibitors in colorectal and other cancers if
sufficient data for parameter recalibration and model validation are
available. Also, the QSP approach can be used in model-informed drug

FIGURE 7
A dose-response heatmap for atezolizumab within the range of 0–1600 mg and cibisatamab in the range of 0–80 mg.
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design (MIDD) and design of clinical trials and provide regulatory
assistance (Azer et al., 2021; Bai et al., 2021).
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