
Emerging concepts involving
inhibitory and activating RNA
functionalization towards the
understanding of microcephaly
phenotypes and brain diseases in
humans

Mayuri Tokunaga and Takuya Imamura*

Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University,
Hiroshima, Japan

Microcephaly is characterized as a small head circumference, and is often
accompanied by developmental disorders. Several candidate risk genes for this
disease have been described, and mutations in non-coding regions are
occasionally found in patients with microcephaly. Various non-coding RNAs
(ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component
(TERC), and promoter-associated lncRNAs (pancRNAs) are now being
characterized. These ncRNAs regulate gene expression, enzyme activity,
telomere length, and chromatin structure through RNA binding proteins
(RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein
coordination in microcephaly pathogenesis might contribute to its prevention
or recovery. Here, we introduce several syndromeswhose clinical features include
microcephaly. In particular, we focus on syndromes for which ncRNAs or genes
that interact with ncRNAs may play roles. We discuss the possibility that the huge
ncRNA field will provide possible new therapeutic approaches for microcephaly
and also reveal clues about the factors enabling the evolutionary acquisition of the
human-specific “large brain.”
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1 Introduction

Abnormal brain growth leads to aberrant brain size and developmental disorders.
Microcephaly is defined as a head circumference < −2 standard deviations (SD) in humans
(Whelan, 2010). Genetic mutations have been identified in half of such patients. Patients with
severe microcephaly (<-3 SD) are more likely to be also have other developmental diseases such
as epilepsy, cerebral palsy, autism, and intellectual disabilities simultaneously (Pirozzi et al., 2018).
Numerous studies have revealed a variety of risk genes for microcephaly. For example, the
assembly factor for spindle microtubules (ASPM) gene, which encodes a centrosomal protein, is
one of themost frequent candidate genes for this symptom (Nicholas et al., 2009). Dysfunction of
other centrosomal proteins such as WDR62, CEP135, CENPE, and MCHP1 also causes
microcephaly, which indicates the importance of centrosomes for brain volume expansion in
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infants (Pirozzi et al., 2018). On the other hand, non-genetic factors
(e.g., Zika virus infection, excessive maternal alcohol drinking, drug
overdose, and malnutrition) can also be causes for such diseases
(Whelan, 2010). In addition, epigenetic factors are known to be
involved in abnormal brain growth phenotypes. For example, Rett
syndrome, an epigenetic disease, was first described in 1966 (Rett, 1966).
The syndrome appears in approximately 1 in 10,000 female births.
Patients grow and develop normally until 6-8 months of age, and then
gradually lose speech and hand skills and appear to have stereotypic
hand movements. The head circumference growth decelerates and
patients are diagnosed with microcephaly (Weng et al., 2011). This
disorder is caused by mutation in X-linked methyl-CpG-binding protein
2 (MeCP2), whose protein product binds to methyl-CpG sites (Amir
et al., 1999), affecting both genic and intergenic regions in the genome to
modulate RNA transcription. The occurrence of the complex disease
phenotypes is further supported by recent studies showing that many
central nervous system (CNS) disorders are also associated with
mutations in non-coding regions in the human genome (Simon-
Sanchez and Singleton, 2008). Single nucleotide polymorphisms
(SNPs) located within non-coding regions have occasionally been
found in infants with microcephaly (Xia et al., 2017). A recent study
indicated that ASPM is modulated by circular RNA and microRNA
(miRNA), both of which are types of non-coding RNAs (ncRNAs)
(Han et al., 2021). Therefore, better understanding of the involvement
of non-coding regions in the pathogenesis of microcephaly through
ncRNA transcription is needed. NcRNAs play important roles in
genome transcription, RNA translation, RNA degradation, and
protein scaffolding (Yan et al., 2021). For example, several miRNAs
related to Feingold syndrome function in RNA interference in which
the precursors of these miRNAs are transcribed by RNA polymerase Ⅱ,
and then themiRNA is incorporated into themiRNA-induced silencing
complex called miRISC to degrade the target mRNA (de Pontual et al.,
2011), as described later. In addition tomiRNA, long ncRNA (lncRNA)
with size greater than 200 nt (Novikova et al., 2013) also seems to
function for regulating brain size by forming a complex structure with
chromatinic DNA to regulate gene expression (Chi et al., 2019). Here,
we will introduce diseases with microcephaly candidate genes including
those for RNA-binding proteins (RBP) and with intergenic mutations
that affect the generation of ncRNAs and discuss how ncRNAs are
involved in establishing the nature of human-specific “large-brain” and
how RNA-involving epigenetic mechanisms can be therapeutic targets
(Figure 1). In fact, there are several brain diseases that affect brain size
but are not annotated as microcephaly. Since little information on
ncRNAs contributing to microcephaly is available, we will also refer to
ncRNAs known to be physically and/or functionally connected to
brain-size-affecting diseases (e.g., autism spectrum disorder: ASD)
other than known microcephaly-related diseases.

2 Cytosolic function of ncRNAs in brain
diseases

2.1 Microcephaly-related inhibitory ncRNAs
in the cytoplasm

Feingold syndrome is an autosomal dominant syndrome
including microcephaly, short stature, and short mesophalanx of
the fifth finger (brachymesophalangy). Several ncRNAs are involved

in the pathogenesis of this syndrome. In many cases, the deletion of
eitherMYCN (type 1) orMIR17HG (type 2) seems to cause this type
of disease (de Pontual et al., 2011).MIR17HG generates six miRNAs,
namely, miR-17, 18a, 19a, 20a, 19b-1, and 92a-1 (Mendell, 2008),
which have been reported to be involved in proliferation of various
tumors (Tan et al., 2022). MYCN protein seems to regulate the
expression of these miRNAs by binding to the MIR17HG promoter
region to upregulate miRNA expression (de Pontual et al., 2011).
MiR-17-92 cluster is described as a human oncogene in several
cancers (Hayashita et al., 2005) (Mu et al., 2009). The deletion of the
cluster promotes apoptosis because the miRNAs target BIM
(Ventura et al., 2008), which initiates the intrinsic apoptotic
pathway (Sionov et al., 2015). Mice models for Feingold
syndrome type 2 exhibit brachymesophalangy, small body (short
stature), and microcephaly. The homozygous deletion ofMIR17HG
frequently leads to perinatal lethality (de Pontual et al., 2011).
MIR17HG targets TGF-β receptor type 2 (TGFBR2) (Ma et al.,
2016) (Mirzamohammadi et al., 2018), and cases deficient for
MIR17HG are associated with excessive TGF-β signaling, which
is supported by the fact that treatment with a TGF-β receptor
inhibitor, LY364947, prevented the skeletal defect and
microcephaly in the Feingold syndrome type 2 mouse model.
GW788388, another TGF-β receptor inhibitor, and 1D11, a
neutralizing antibody against TGF-β ligands, also caused similar
effects (Mirzamohammadi et al., 2018).

2.2 Gene-activating ncRNAs functioning in
the cytoplasm

In recent years, patients with de novomutation of RAB11B have
been described. The symptoms include absent speech, epilepsy,
hypotonia, and microcephaly (Lamers et al., 2017) (Jauss et al.,
2022), in spite of the fact that, in mouse, Rab11b deficiency exhibits
no phenotypes (Nassari et al., 2020). This suggests that human
RAB11B has acquired human-specific functions. RAB11B is a small
GTPase belonging to the Rab family. Rab forms and transfers
vesicles, and fuses them with the cellular membrane (Stenmark
and Olkkonen, 2001). RAB11B is expressed in the brain, heart, and
testis (Lai et al., 1994). Mislocalization of abnormal RAB11B due to
mutations at its GTP/GDP binding pocket causes disorganized brain
structures and functions (Lamers et al., 2017). Interestingly,
RAB11B-AS1 is transcribed from the bidirectional RAB11B
promoter to modulate RAB11B functions. RAB11B-AS1 is
expressed in humans including in the brain, and functions as a
“SINEUP” RNA for RAB11B, that can promote RAB11B translation
(Zarantonello et al., 2021). SINEUP is a category of lncRNAs that
promote translation of partly overlapping mRNAs (Zucchelli et al.,
2015). This mechanism involves Polypyrimidine tract-binding
protein (PTBP1), which is also known to function in alternative
splicing for Filamin A (FLNA) (Zhang et al., 2016), a causative gene
for microcephaly in mice, and the deregulation of this alterative
splicing leads to periventricular heterotopia (PH) in human (Lian
et al., 2012). In addition, PTBP1 can function together with
heterogeneous nuclear ribonucleoprotein K (HNRNPK) to bind
to the SINEUP RNAs to target mRNAs. These two RBPs help to
recruit ribosomal subunits for enhancing the translation of the target
mRNAs (Toki et al., 2020). It is noteworthy that RAB11B and
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RAB11B-AS1 are downregulated by CDH8 (Zarantonello et al.,
2021), and therefore, known CDH8 variants may modulate the
cellular level of RAB11B, leading to macrocephaly and intellectual
disability (Bernier et al., 2014). Although the molecular function of
RAB11B-AS1 in brain contexts is still obscure, it is possible that
evolutionary acquisition of RAB11B-AS1 was actively involved in
enlarging the human brain because some studies have shown an
association with cancer via oncogene effects such as cell proliferation
(Li et al., 2020), migration and invasion (Niu et al., 2020).

3 Epigenetic function of ncRNAs in
brain disease

3.1 Chromatinic ncRNAs acting on
intergenic regions

Warsaw breakage syndrome is a recessive hereditary disease
caused by mutation in DEAD/H-box helicase 11 (DDX11, also
known as hChlR1) (van der Lelij et al., 2010). The clinical features
include microcephaly, hearing loss, and facial dysmorphia.
DDX11 regulates chromatin structure (Pisani et al., 2018).
DDX11 also controls chromosome separation and sister
chromatid condensation in mitosis. DDX11 is hypothesized to
prevent abnormal DNA structure in the replication folk (Leman
et al., 2010). In line with this idea, defective sister chromatid
cohesion is frequently observed in Warsaw breakage syndrome
patients’ cells (Pisani, 2019). Separation of the centromere and

sister chromatid pairs observed in mitomycin C-induced
chromosomal breakage is a remarkable feature of DDX11
mutations (van der Lelij et al., 2010). The mutations in
conserved helicase motifs result in unwinding forked duplex
DNA substrates. DDX11 destabilization occurs due to
misfolding of the protein (Santos et al., 2021). In mouse
models, Ddx11 is indispensable for mouse embryonic and
placental development, and Ddx11 knock out causes embryonic
lethality (Inoue et al., 2007). In zebrafish models, embryonic
lethality was increased and craniofacial and vertebral
abnormalities were observed. In addition, ddx11 dysfunction
generated heterochromatic structures ectopically. This gene also
affects histone epigenetic modifications (Sun et al., 2015).
Interestingly, a lncRNA, DDX11 antisense RNA 1 (DDX11-AS1,
also known as CONCR) is transcribed bidirectionally from the
DDX11 promoter region. Although the molecular function of
DDX11-AS1 in microcephaly contexts is still obscure, deletion
of DDX11-AS1 causes a defect in sister chromatid condensation in
mitosis like Warsaw breakage syndrome. Unlike SINEUP, the
DDX11 protein level is not affected by the ncRNA knockdown.
Levels of histone H3K9 acetylation at the DDX11 promoter region
and DDX11mRNA are also unchanged. Surprisingly, however, the
ncRNA can bind DDX11 protein directly, and thus activates
hydrolysis of ATP. DDX11-AS1 maintains proper chromatin
structure through promoting the enzymatic activity of DDX11
(Marchese et al., 2016). Another report indicated that DDX11-AS1
also function to regulate DDX11 through sponging miR-873-5p,
which can target DDX11 (Zhang et al., 2020).

FIGURE 1
Schematic representations of function of ncRNAs and RBPs associated with microcephaly Six examples for ncRNAs (miRNA, SINEUP, DDX11-AS1
(CONCR), TERC, UBE3A-ATS, and pancRNA) are illustrated. Magenta, black, and blue strands indicate ncRNA, mRNA, and DNA respectively. (A)
Degradation of the target mRNA is a miRNA function. MiRNAs have the complementary sequence of the target mRNAs. (B) Two RBPs (PTBP1 and
HNRNPK) bind to SINEUP and recruit the ribosome. SINEUP upregulates translation through RBPs. (C) DDX-AS1 bind to DDX11 directly to promote
its enzymatic activity. In addition, the lncRNA traps miRNA targeting DDX11mRNA. (D) TERC is the template for telomere elongation. DKC1 is essential for
the TERC stability. (E) RNA polymerases colliding is thought to lead to stopping elongation of UBE3A mRNA. (F) pancRNA recruits transcription and
histone acetylation factors by changing DNA structure.
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3.2 ncRNA that maintains telomere length

Mutation of dyskerin pseudouridine synthase 1 (DKC1)
frequently result in Hoyeraal-Hreidarsson syndrome, a
microcephaly disease (Dehmel et al., 2016). DKC1 has TRUB
(tRNA pseudouridine synthase B-like) and PUA (pseudouridine
synthase and archaeosine transglycosylase) domains. The TRUB
domain constitutes the catalytic core of DKC1, whereas the PUA
domain seems to function as a RNA binding motif (Garus and
Chantal, 2021). DKC1 plays an important role in pseudouridylation
of rRNA and telomere extension. The telomerase complex is
composed of telomerase reverse transcriptase (TERT), telomerase
RNA component (TERC), and other protein factors including
DKC1 (Czekay and Kothe, 2021). Apoptosis and chromosomal
aberrations increase and proliferative potential decreases in
Terc−/− mouse cells (Wong et al., 2003). Both Hoyeraal-
Hreidarsson syndrome patients and mouse models for
DKC1 dysfunction show reduced rRNA processing and
telomerase activities (Mochizuki et al., 2004). In fact, loss of

telomere length cause dyskeratosis congenita characterized by
bone marrow failure, hyperpigmentation, nail dystrophy and
leukoplakia (AlSabbagh, 2020). In particular, DKC1 is involved in
the Xp28 and X-linked recessive dyskeratosis congenita, known as a
profound type of dyskeratosis congenita, including growth
retardation and microcephaly (Dehmel et al., 2016). In most
cases of Hoyeraal-Hreidarsson syndrome, the variant A353V
located in the PUA domain of DKC1 is observed (Knight et al.,
1999). The same mutation attenuates the binding of DKC1 to the
TERC, leading to TERC destabilization (Czekay and Kothe, 2021).
Accordingly, some patients with mild dyskeratosis congenita also
have telomere shortening (Vulliamy et al., 2001) (Yamaguchi et al.,
2003). Because bone marrow failure also accompanies dyskeratosis
congenita, the patients are frequently treated with hematopoietic cell
transplantation (HCT) or androgen therapy (Savage and Niewisch,
2009). Considering the potential of ncRNAs as future therapeutic
agents for curing such diseases, their physical association with
EXOSC10, a component of the RNA exosome complex which
eliminates TERC, may be notable, because its knockdown

FIGURE 2
Presence of divergent lncRNAs in two examples of microcephaly-related genes Snapshots of the Integrative Genomics Viewer. Publicly available
RNA-seq data of human-iPS cell-derived neural stem cell (AF22) and human hybrid cardiomyocyte (AC16) are shown. The data is from (Brattas et al., 2017;
Lopacinski et al., 2021). ARNT2 (A) and CDK6 (B) are microcephaly related genes. In this figure, the colors indicate the differential strand usage.
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restored telomerase activity in DKC1 knockdown cells (Shukla et al.,
2016).

3.3 The convergent regulation of gene
expression by ncRNA

Angelman syndrome, another microcephaly disease, was first
described in 1965. It was characterized by unusual arm position and
jerky movement (Kishino et al., 1997). Major characteristics include
severe intellectual disability, lack of speech, sleep disruption, and

microcephaly (Levin et al., 2022). Mouse models for Angelman
syndrome frequently exhibit motor dysfunction and deficits in
learning and memory. Abnormal electroencephalogram (EEG) is
also observed (Miura et al., 2002). Mutation in the E6-AP ubiquitin-
protein ligase gene (UBE3A) was found in chromosome 15 of many
patients (Kishino et al., 1997) (Matsuura et al., 1997). Normally,
UBE3A is expressed only from the maternal allele in the brain, while
the paternal allele is silenced by genome imprinting. Some patients
have a UBE3A mutation in the maternal allele, and others have
paternal uniparental disomy (PUD) and/or imprinting defects (ID)
(Saitoh et al., 2005) (Bai et al., 2014). The deletion patients have

TABLE 1 NcRNA-involving phenotypes in mouse model.

Name Phenotype Ref

BC1 Learning and memory impaired Chung et al. (2017)

Neat1 Determination of behavioral responses under conditions of stress Kukharsky et al. (2020)

AtLAS Regulation of social hierarchy Ma et al. (2020)

Linc-Brn1b Generation of upper layer II-IV neurons in the neocortex Sauvageau et al. (2013)

Pnky (lnc-pou3f2) Neuronal differentiation Ramos et al. (2015)

Malat1 Synapse formation and/or maintenance Bernard et al. (2010)

GM12371 Regulation of expression of synaptic gene Raveendra et al. (2018)

Bdnf-AS Maintenance of stemness in neural stem cells Modarresi et al. (2012)

Evf2 Formation of GABA-dependent neuronal circuitry Bond et al. (2009)

Dali Regulation of neural differentiation genes Chalei et al. (2014)

Zfas1 Upregulating in status epilepticus mice model Hu et al. (2020)

Dlx6-as1 Upregulating in Parkinson’s disease (PD) mice model Liu et al. (2022)

TABLE 2 NcRNAs related to human brain diseases.

ncRNA Disease Ref

BC200 Alzheimer’s disease (AD) Sosinska et al. (2015)

NEAT1 Amyotrophic lateral sclerosis (ALS), Epilepsy, SCZ (female), AD, PD Safari et al. (2019); An et al. (2020)

BDNF-AS ASD Wang et al. (2015)

MSNP1AS ASD Kerin et al. (2012)

DGCR5 SCZ Meng et al. (2018)

RP5-998N21.4 SCZ Guo et al. (2022)

DODA-AS1 (G30) SCZ, bipolar disorder Detera-Wadleigh and McMahon (2006)

Cyrano (OIP5-AS1) SCZ (female) Safari et al. (2019)

FAS-AS1 SCZ (male) Safari et al. (2019)

Gomafu (MIAT/RNCR2) Multiple sclerosis (MS), SCZ Barry et al. (2014); Fenoglio et al. (2018)

TUNA Huntington’s Disease (HD) Lin et al. (2014)

RMST PD Chen et al. (2022)

PTCHD1-AS ASD Ross et al. (2020)

MEG3 ASD Taheri et al. (2021)
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more profound effects than PUD and ID patients (Lossie et al.,
2001). A UBE3A antisense transcript, UBE3A-ATS, suppresses
UBE3A on the paternal chromosome (Meng et al., 2012). In the
paternal chromosome, UBE3A and UBE3A-ATS are transcribed at
the same time. However, in contrast to SINEUP, UBE3A-ATS
prevents UBE3A transcription at the expressing paternal allele. It
has been thought that 2 opposing RNA polymerases collide and stop
the elongation of UBE3A mRNA (Wang et al., 2021) (Mabb et al.,
2011). Although the molecular function of UBE3A-ATS in
microcephaly contexts is still obscure, disrupting UBE3A-ATS
transcription is noted as a potential therapy to increase UBE3A
expression in the gene therapy field. For example, a clinical trial
using antisense oligonucleotides is ongoing (Schmid et al., 2021). In
a mouse model, such treatment can recover paternal UBE3A
expression. Early treatment in mouse models (at postnatal day 1)
is more effective compared with treatment of the adult (at 2 to
4 months of age). Partial improvement of motor deficiency and
anxiety is observed only in young models. However, the behavioral
phenotypes are hardly recovered. Nonetheless, both early and adult
treatments ameliorate the memory impairment in fear conditioning
tests (Milazzo et al., 2021) (Meng et al., 2015). Creation of indels
located between the Ube3a 3’ UTR and Snord115 (Small Nucleolar
RNA, C/D Box 115) by CRISPR/Cas9 rescued the behavioral
phenotype (Schmid et al., 2021). Cas9 targeting the Snord115
cluster also prevent the motor deficiency (Wolter et al., 2020).
Injection of the adeno-associated virus (AAV) expressing Zinc
finger-based artificial transcription factors (ATFs), that repress
Ube3a-ats to induce Ube3a expression (Bailus et al., 2016), also
recovers the behavioral phenotype in mouse models (O’Geen et al.,
2023). It is noteworthy that these targetings simultaneously truncate
UBE3A-ATS, supporting the idea that allele-specific artificial
removal of UBE3A-ATS is essential for ongoing therapies. How
the lncRNA represses UBE3A expression is still uncertain, and
elucidation of the mechanism will enable more effective therapy
for Angelman syndrome.

3.4 ncRNAs leading to divergent
transcription

We have illuminated various points of ncRNA actions in the
above sections. Independently from convergent lncRNAs, we have
found a different class composed of thousands of lncRNAs resulting
from divergent transcription that originates from protein-coding
gene promoters (Uesaka et al., 2014). Later on, we will introduce the
functional mode and the potentials of such divergent ncRNAs based
on our previous and other studies. As shown in the upper panel of
Figures 2A lncRNA seems to be transcribed in the reverse direction
to the partner gene. Comparison between RNA-seq reads from
human neural stem cells (Brattas et al., 2017) and those from human
cardiomyocyte cells (Lopacinski et al., 2021), revealed that aryl
hydrocarbon receptor nuclear translocator 2 (ARNT2) is more
highly expressed in brain than in cardiomyocytes. A variant of
the gene causes Webb-Dattani syndrome, of which the features
include microcephaly (Webb et al., 2013). Likewise, cyclin dependent
kinase 6 (CDK6) is also microcephaly candidate gene (Naveed et al.,
2018) and lncRNA expression was synchronized with that of
mRNA. It would be interesting to see the possible effects of

divergent lncRNAs on the pathogenesis of microcephaly-related
diseases. As noted above, we have discovered a new type of divergent
lncRNAs, called promoter-associated lncRNAs (pancRNAs) that are
transcribed in the reverse direction to a set of tissue-specific genes
(Uesaka et al., 2017). Approximately half of mammalian promoters
show CpG-rich sequences and lack of TATA elements. In these CpG
island-type promoters without TATA elements, TATA-binding
protein (TBP) is recruited together with CpG-rich sequence-
specific transcription factors such as Sp1 (Wu and Sharp, 2013)
in both strands, thereby driving bidirectional transcription
(Mahpour et al., 2018). Although enormous numbers of genes,
including housekeeping genes, have CpG-rich promoters, the
characteristics of the promoters for pancRNA-partnered genes
include the acquisition of a G- and/or C-skewed motif, while
such a skew cannot be seen in housekeeping genes. In addition,
the lack of a poly(A) site sequence in the body of the pancRNAs has
enabled then to get longer (An et al., 2021). Promoter-proximal
Ser2 phosphorylation further reinforces a longer RNAPII dwell time
at the start site, which may be beneficial for recruiting U1 snRNP
upstream of the gene, thereby suppressing the recognition of
poly(A) sites and the coupled termination of divergent
transcription (Almada et al., 2013). In line with the concordant
expression of pancRNAs and the partnered genes, as shown in
Figures 2A,B, pancRNA production is associated with DNA
demethylation, H3K4 trimethylation (Hamazaki et al., 2015), and
H3K27 acetylation (Uesaka et al., 2017). In terms of the biological
functions of pancRNAs, these are dependent on the roles of the
downstream genes. For example, in rat PC12 cells, pancNusap1
functions in nucleolar and spindle associated protein 1 (Nusap1)
activation through histone acetylation, accelerating the cell cycle
since Nusap1 plays a role in spindle microtubule organization
(Yamamoto et al., 2016). Another example is mouse pancIl17d,
which enhances demethylation of the interleukin 17days (Il17d)
promoter by recruiting ten-eleven translocation 3 (Tet3) and poly
ADP-ribose polymerase (Parp). Silencing pancIl17d is embryonic
lethal, probably because Il17d functions to support proliferation/
differentiation of pluripotent stem cells, which has been evidenced
by the fact that supplying Il17d protein rescues embryonic survival
(Hamazaki et al., 2015). pancRNAs occasionally form a triple helix
structure with the DNA duplex of promoters and/or enhancers, and
interact with some regulatory proteins, such as histone modifiers
and transcription factors, to regulate gene transcription in cis. A
second mechanism is based on transcriptional activation via
formation of a DNA-RNA hybrid (R-loop). In mammalian cells,
the asymmetrical distribution of cytosine and guanine, one of the
characteristics of CpG islands for tissue-specific genes as discussed
above, makes it easy to form R-loops (Chen et al., 2017). Therefore,
targeting these structures triggered by pancRNA expression might
be a strategy to mitigate microcephaly-related diseases in the future.

4 RBPs as potential targets for brain
diseases

Although the information on ncRNAs in microcephaly is still
limited, we can learn more about ncRNAs in relation to brain
diseases. In addition to the examples of functional ncRNAs noted
above, several other ncRNAs that specify social interactions and
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behavior have been identified by using mouse models (Table 1). For
example, brain cytoplasmic 1 (BC1), which has a motif for dendritic
localization (Robeck et al., 2016), regulates neuronal activity-
dependent translation in neurons (Eom et al., 2014). Memory
and learning dysfunction were observed in some mouse knockout
models of BC1 ncRNAs (Chung et al., 2017). The lncRNA nuclear
paraspeckle assembly transcript 1 (Neat1) sponges various miRNAs
(Azizidoost et al., 2022). The knockout model of Neat1 lost interest
in a social interaction (Kukharsky et al., 2020). The ncRNA of
synapsin2 (syn2) is decreased in mice with dominant behavior. The
ncRNA modulates the social rank thorough binding syn2b pre-
mRNA directly and protecting against its destabilization (Ma et al.,
2020). In ASD and schizophrenia (SCZ), differentially expressed
lncRNAs were detected (Ziats and Rennert, 2013) (Chen et al., 2016)
(Table 2). One can hypothesize that most of the lncRNAs function
together with RBPs. Although we still do not know of RBPs
specifically functioning in the context of microcephaly, in some
cases of brain diseases, detailed relationships between RBPs and
ncRNAs have been revealed. Cyrano (OIP5-AS1), which is a
schizophrenia candidate gene in females (Safari et al., 2019),
sponges HuR (human antigen R) and inhibits the protein (Kim
et al., 2016). Gomafu (RNCR2/MIAT) binds to the RNA-binding
protein Celf3 and splicing factor SF1. The complex is speculated to
control splicing and transcription (Ishizuka et al., 2014). TUNA
(Tcl1 Upstream Neuron-Associated lincRNA) forms an RNA-RBP
complex with three RBPs, PTBP1, HNRNPK, and nucleolin (NCL),
and the complex binds to the sox2 promoter (Lin et al., 2014).
Rhabdomyosarcoma 2-associated transcript (RMST) and
SOX2 interaction plays an important role in neural stem cell fate
specification (Ng et al., 2013). A recent study has shown that
lncRNAs determine Sox2’s genomic localization (Hamilton et al.,
2023). In another example, the interaction of the transcription factor
POU3F3 and DNMT1-associated long intergenic (Dali) was
described (Chalei et al., 2014). We believe that accumulating
evidence further opens up the possibility of lncRNAs as
therapeutic targets to artificially regulate their association with
various RBPs.

5 Conclusion

In this review, we described five ncRNAs that regulate
microcephaly-related genes. Although little information is
available on ncRNAs responsible for microcephaly, multiple
factors are known to provoke microcephaly. For example, 30%
of case of ASD are accompanied by the features of diminishing
brain size (Fombonne et al., 1999). Table 2 shows the ncRNAs
known to be related to brain diseases. In fact, there are many
ncRNAs related to ASD. Interestingly, most of the ncRNAs in this
list are categorized as lncRNA species. Therefore, it would be
interesting to confirm whether the lncRNA class rather than the
small RNA class brain function tends to affect the determination
of brain size by analyzing the lncRNAs listed in Table 2. Along
with understanding of the human genome, tailor-made medicine
is a center of attention these days. Acquisition of the sequences of
individual genomes become easier and less expensive, revealing
mutations that occur not only in coding genes but also in
intergenic regions. In particular, accessible and affordable

sequence reading enables us to find new intergenic mutations
that could have been missed previously because of mild disease
symptoms and poor sequencing technology. The resultant studies
on intergenic regions allow us to highlight the potentials of
ncRNAs for understanding human pathology in clinical
research. Since the intergenic regions are poorly conserved
among the enormous variety of organisms, and the large size
and complicated functions of the brain are human-unique
features, it is intriguing possibility that the intergenic regions
contribute a big controlling center for determining such
interesting traits. Considering the human-specific features of
the brain structure and function, it seems likely that model
animals such as mouse, zebra fish, and fruit fly would be of
limited use for searching for human-specific ncRNAs. Leveraging
human brain organoids, genome-wide association studies
(GWASs), and massive annotation of human-specific ncRNA
functions are essential for pioneering this vast ncRNA field. This
field will lead us to new treatments for brain disease and
understanding what makes us human.
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