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Objective: Interferon-γ (IFN-γ) encoded by IFNG gene is a pleiotropic molecule
linked with inflammatory cell death mechanisms. This work aimed to determine
and characterize IFNG and co-expressed genes, and to define their implications in
breast carcinoma (BRCA).

Methods: Transcriptome profiles of BRCA were retrospectively acquired from
public datasets. Combination of differential expression analysis with WGCNA was
conducted for selecting IFNG-co-expressed genes. A prognostic signature was
generated through Cox regression approaches. The tumor microenvironment
populations were inferred utilizing CIBERSORT. Epigenetic and epitranscriptomic
mechanisms were also probed.

Results: IFNG was overexpressed in BRCA, and connected with prolonged overall
survival and recurrence-free survival. Two IFNG-co-expressed RNAs
(AC006369.1, and CCR7) constituted a prognostic model that acted as an
independent risk factor. The nomogram composed of the model, TNM, stage,
and new event owned the satisfying efficacy in BRCA prognostication. IFNG,
AC006369.1, and CCR7 were closely linked with the tumor microenvironment
components (e.g., macrophages, CD4/CD8 T cells, NK cells), and immune
checkpoints (notably PD1/PD-L1). Somatic mutation frequencies were 6%, and
3% for CCR7, and IFNG, and high amplification potentially resulted in their
overexpression in BRCA. Hypomethylated cg05224770 and cg07388018 were
connected with IFNG and CCR7 upregulation, respectively. Additionally,
transcription factors, RNA-binding proteins, and non-coding RNAs possibly
regulated IFNG and co-expressed genes at the transcriptional and post-
transcriptional levels.
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Conclusion: Collectively, our work identifies IFNG and co-expressed genes as
prognostic markers for BRCA, and as possible therapeutic targets for improving the
efficacy of immunotherapy.
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Introduction

Breast carcinoma (BRCA) has a high incidence globally, with over
two million cases per year (Sung et al., 2021). This malignancy
represents a remarkable threat to female health and affects one in
seven women over the course of a lifetime (Corti et al., 2022). Based
upon the expression status of estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2 (HER2),
four molecular subtypes have been widely accepted: luminal A, luminal
B, HER2-enriched and basal-like tumors (Bidard et al., 2022; Curigliano
et al., 2022; Shepherd et al., 2022). Despite the progress in early
diagnosis and treatment, most patients still succumb to various
complex malignant phenotypes (Martin et al., 2022; Mayer et al.,
2022; Shepherd et al., 2022). Within 10 years following breast
conservation surgical resection with post-operative radiotherapy, the
recurrence rate is still as high as 3%–15% (Gadaleta et al., 2022).
Emerging immunotherapy has exhibited promising results in BRCA,
but with low response rates (Loibl et al., 2019; Schmid et al., 2020;
Huober et al., 2022). Such alarming situation has prompted to
determine innovative and effective therapeutic targets for BRCA.

Interferon-γ (IFN-γ) encoded by IFNG gene is the only member
of the type II interferon family, which is an essential cytokine
generated from activated T cells, natural killer (NK), and NK
T cells in the tumor microenvironment (TME) (Dörrie et al.,
1999; Wu H. et al., 2022; Wei et al., 2022). Cell death can
provide host defense and maintain homeostasis (Niu et al., 2021;
Wang Z. et al., 2022). IFN-γ can prime diverse inflammatory cell
death mechanisms. For instance, IFN-γ secreted from CD8+ T cells
rewires lipid metabolism of malignant cells through ACSL4, thus
activating polyunsaturated fatty acids and sensitizing malignant cells
to ferroptotic cell death (Liao et al., 2022). IFN-γ can also initiate
macrophages for pathogen ligand-induced killing through caspase-8
and mitochondrial cell death signaling (Simpson et al., 2022).
Moreover, the diverse implications of IFN-γ in BRCA (e.g.,
prognostication, therapeutic efficacy) have been demonstrated in
prior studies (Witek Janusek et al., 2019). Non-etheless, IFN-γ-co-
expressed genes and underlying molecular mechanisms remain
indistinct in BRCA. For solving these problems, this work was
implemented for determining and characterizing IFNG and co-
expressed genes, and clarifying their implications in BRCA and
probing possible epigenetic and epitranscriptomic mechanisms.

Materials and methods

Collection of BRCA datasets

BRCA transcriptome RNA-sequencing data (Htseq-FPKM) and
matched clinical parameters were gathered from The Cancer

Genome Atlas (TCGA) database. Somatic mutation, copy-
number alteration, DNA methylation, and microRNA (miRNA)
data were also extracted. External microarray datasets from the Gene
Expression Omnibus database were online analyzed on the Kaplan-
Meier Plotter platform.

Selection of IFNG-co-expressed genes

Utilizing limmamethod (Ritchie et al., 2015), aberrant expressed
genes in BRCA versus control specimens were selected with adjusted
p < 0.05. Based upon the same threshold, genes with different
expression between lowly and highly expressed IFNG BRCA were
acquired. Above genes were intersected and named as BRCA- and
IFNG-relevant genes. Next, weighted correlation network analysis
(WGCNA) was implemented through WGCNA package
(Langfelder and Horvath, 2008). Firstly, a clustering dendrogram
was plotted, with removal of outliers via hierarchical clustering
analysis. By Pearson’s test, interactions between genes were
analyzed, and interaction pairs with p < 0.05 were used for
constructing a similarity matrix. Afterwards, soft thresholding
value was adopted for transforming the similarity matrix to the
adjacency matrix. A scale-free network and topological overlap
matrix were built, respectively. Next, a hierarchical clustering
dendrogram was produced for detecting modules. At last,
modules were merged with dynamic tree cutting approach. The
module with the strongest connection to IFNG was chosen or
subsequent analysis.

Functional enrichment analysis

Enrichment on Gene Ontology (GO) or Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways was analyzed based upon
module genes by use of clusterProfiler approach (Yu et al., 2012).

Cox regression analysis and nomogram
establishment

Univariate-cox regression analysis on genes in the black
module with prognosis was conducted. Genes with p <
0.05 were selected for the construction of a multivariate cox
regression model. Based upon 1:1, TCGA-BRCA cases were
randomized into the discovery and verification sets. Survival
difference was then estimated. The predictive independency was
analyzed utilizing cox regression analysis. A nomogram was
defined with rms package, and predictive efficiency was
demonstrated by calibration curves.
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FIGURE 1
Expression and prognostic implication of IFNG and selection of IFNG-relevant genes in BRCA. (A) Genes with aberrant expression in BRCA versus
control specimens. (B) IFNG transcript level in BRCA and controls. (C)OS probability of groups with low or high IFNG expression. (D, E) Verification of OS
and RFS of two groups in multiple microarray datasets. (F) Genes with different expression in BRCA samples with low versus high IFNG expression. (G, H)
The shared expression patterns in BRCA versus controls and high versus low IFNG expression. (I) The transcript level of IFNG-relevant genes in
controls, BRCA with low or high IFNG expression.
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Quantification of the TME components

CIBERSORT is an algorithm for characterization of the cellular
compositions within bulk tissues based upon transcriptome
profiling (Newman et al., 2015). The components within the
TME were quantified by use of this algorithm.

Genetic alteration assessment

Somatic variants were estimated by use of maftools package
(Mayakonda et al., 2018). The mutated frequency of IFNG and co-
expressed genes was extracted. GISTIC2.0 was adopted for copy-
number alterations of above genes (Mermel et al., 2011).

FIGURE 2
Establishment of IFNG-based co-expression modules. (A) Sample dendrogram and heatmap of clinical characteristics. (B) Scale independence
along with mean connectivity under diverse soft-thresholding values. (C) Clustering dendrogram and merged modules. (D) Eigengene dendrogram and
heatmap of eigengene adjacency. (E) Relationships of co-expressionmodules with clinical characteristics. (F, G)GOand KEGGpathways of genes in each
module.

Frontiers in Genetics frontiersin.org04

Deng et al. 10.3389/fgene.2023.1112251

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1112251


DNA methylation analysis

DNAmethylation levels (beta-values) were normalized by use of
preprocessCore package. Interactions of IFNG and co-expressed
genes with methylation sites were then assessed.

Non-coding RNA analysis

MiRNAs with different expression were screened between
BRCA versus controls and lowly versus highly expressed IFNG
BRCA following adjusted p < 0.05. Above miRNAs were
intersected, and determined as BRCA- and IFNG-relevant
miRNAs. Correlation analysis on long non-coding RNAs

(lncRNAs) with IFNG and co-expressed genes was then
carried out.

Statistical analysis

For continuous variables, Student’s t-test, or one-way ANOVA
test was utilized for comprising between groups. Chi-square or
Fisher’s exact test was employed for analysis of categorical data.
Kaplan-Meier curves of overall survival (OS) and recurrence-free
survival (RFS) were plotted, with log-rank test for estimating
survival difference. Correlation analysis was conducted with
Pearson’s test. All analyses were achieved based upon the R
platform (version 4.0.3). p < 0.05 indicated statistically significant.

FIGURE 3
Generation of an IFNG-co-expressed prognostic signature. (A) Relationships of module membership in black module with gene significance for
IFNG. (B) Correlation analysis on IFNG expression with black module. (C) Univariate-cox regression results of AC006369.1, and CCR7 with BRCA survival.
(D, E) The transcript level of AC006369.1, and CCR7 in BRCA and controls. (F, G) OS analysis of AC006369.1, and CCR7 across BRCA patients. (H, I) OS
difference between low- and high-score groups in the discovery and verification sets. (J)Heatmap of the expression patterns of IFNG-co-expressed
genes in low- and high-score groups.
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TABLE 1 Univariate-cox regression results of IFNG-relevant genes with BRCA prognosis.

IFNG-relevant genes Beta z p Hazard ratio Lower Upper

AC006369.1 −0.027 −2.67695 0.00743 0.973336 0.954265 0.992788

CCR7 0 2.671615 0.007549 1.000088 1.000023 1.000153

RPL4P1 −0.03 −2.44974 0.014296 0.970893 0.948216 0.994112

TRBV5.5 −0.045 −2.43696 0.014811 0.955617 0.921356 0.991154

TRDV1 −0.014 −2.42653 0.015244 0.985938 0.974724 0.997281

PSMB8 0 −2.36695 0.017935 0.999942 0.999894 0.99999

DEF6 0 −2.35957 0.018296 0.999729 0.999504 0.999954

SHISAL2A −0.005 −2.23588 0.025359 0.9949 0.99045 0.999369

TRBC2 0 −2.19914 0.027868 0.999841 0.999699 0.999983

HCST −0.001 −2.19251 0.028343 0.998989 0.998085 0.999893

GZMM −0.002 −2.16979 0.030023 0.998335 0.996834 0.999839

RAC2 0 −2.08823 0.036778 0.999904 0.999814 0.999994

ARMH1 −0.002 −2.07626 0.037869 0.997758 0.995646 0.999874

IL12B −0.006 −1.96702 0.049181 0.993893 0.987845 0.999978

TRBV4.2 −0.006 −1.92912 0.053717 0.993905 0.987751 1.000098

SPIB 0 −1.92572 0.054139 0.999817 0.99963 1.000003

RELB 0 −1.82117 0.068581 0.999859 0.999708 1.000011

CD2 0 −1.79848 0.072101 0.999872 0.999732 1.000012

TRBV18 −0.007 −1.79285 0.072996 0.992864 0.985121 1.000668

PIM2 0 −1.79045 0.073381 0.999913 0.999819 1.000008

KLHDC7B 0 −1.75477 0.079299 0.999942 0.999877 1.000007

AL606834.2 −0.007 −1.69148 0.090745 0.993121 0.985209 1.001096

TESPA1 −0.001 −1.68354 0.092271 0.999415 0.998734 1.000096

IFNG −0.003 −1.65036 0.09887 0.996621 0.992622 1.000635

HLA.DQB2 0 −1.6428 0.100424 0.999883 0.999743 1.000023

CCL22 0 −1.62196 0.104813 0.999762 0.999475 1.00005

CD37 0 −1.598 0.110044 0.999891 0.999757 1.000025

IGHG4 0 −1.58194 0.113664 0.999988 0.999974 1.000003

TRBV12.4 −0.007 −1.51643 0.12941 0.993283 0.984668 1.001973

FASLG −0.001 −1.50584 0.132109 0.998747 0.997118 1.000378

GZMA 0 −1.47864 0.139236 0.999745 0.999406 1.000083

AC004585.1 −0.002 −1.47704 0.139664 0.998327 0.99611 1.000548

TRAV8.4 −0.006 −1.47261 0.140856 0.993756 0.985506 1.002075

ITGAL 0 −1.40573 0.159805 0.999934 0.999842 1.000026

TRAV12.2 −0.004 −1.37904 0.167883 0.99609 0.990559 1.001652

CAMK4 0 −1.32771 0.184273 0.999609 0.999032 1.000186

NAPSB 0 −1.31747 0.187682 0.999835 0.999589 1.000081

CD1A 0 −1.29969 0.193708 0.999669 0.999169 1.000168

(Continued on following page)
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Results

Expression and prognostic implication of
IFNG and selection of IFNG-relevant genes
in BRCA

The investigation on the transcriptional alterations in BRCAwas
conducted. With adjusted p < 0.05, 28,953 genes presented the
differential expression in BRCA relative to controls (Figure 1A;
Supplementary Table S1). Among them, we focused on IFNG that
was prominently upregulated in BRCA (Figure 1B). Its prognostic
significance was then evaluated. With the cutoff value, the
classification of BRCA patients as low or high IFNG expression
group was performed. As illustrated in Figure 1C, patients with high
IFNG expression owned the notable survival superiority. The
prognostic significance was further verified in multiple
microarray datasets via the Kaplan-Meier Plotter. Consistently,
IFNG upregulation was connected with better OS and RFS
(Figures 1D, E). Above data unveiled the involvement of IFNG
in BRCA pathogenesis. Afterwards, the relevant molecules of IFNG
were probed. Consequently, 19,935 genes presenting different
expression between low and high IFNG expression groups were
selected (Figure 1F; Supplementary Table S2). After intersecting,
7020 IFNG-relevant genes were obtained (Figures 1G–I).

Establishment of IFNG-based co-expression
modules

BRCA specimens with matched clinical and IFNG characteristics
were included for WGCNA (Figure 2A). The appropriate soft-
thresholding value was set as 6 through considering scale
independence and mean connectivity (Figure 2B). Utilizing
dynamic tree cutting method, highly connected genes were merged
into ten modules (Figures 2C, D). Black module exhibited the
strongest connection with IFNG (Figure 2E), which was regarded

as IFNG-relevant module. It was noted that genes in the blackmodule
were prominently linked with immunity (e.g., T cell activation,
leukocyte cell-cell adhesion, and cytokine-cytokine receptor
interaction) (Figures 2F, G).

Generation of an IFNG-co-expressed
prognostic signature

Module membership in blackmodule exhibited a notably positive
connection with gene significance for IFNG (Figure 3A). It was also
demonstrated that black module was positively linked with IFNG
(Figure 3B). Such evidence proved that genes in black module were
IFNG-co-expressed genes. Most of them owned the significant
survival significance of BRCA (Table 1). Notably, AC006369.1, and
CCR7 presented the aberrant expression in BRCA versus controls, and
their upregulation was in relation to OS outcomes (Figures 3C–G).
They were incorporated into the multivariate-cox regression model,
and worse OS was investigated in high-score patients both in the
discovery and verification sets (Figures 3H, I). Most IFNG-co-
expressed genes had the higher expression in high-than low-score
groups (Figure 3J), indicating their subtype specific expression.

The IFNG-co-expressed prognostic
signature as an independent risk factor of
BRCA and definition of a nomogram

Next, it was observed that there was a positive connection of the
IFNG-co-expressed prognostic signature with event (Figures 4A, B).
In addition, IFNG was negatively linked with N stage (Figure 4C).
Through considering uni- and multivariate-cox regression results,
the prognostic model acted as an independent risk factor of BRCA
(Figures 4D, E). The nomogram composed of the prognostic model
and clinical traits was defined, and the excellent predictive efficacy
was proven by calibration curves (Figures 4F, G).

TABLE 1 (Continued) Univariate-cox regression results of IFNG-relevant genes with BRCA prognosis.

IFNG-relevant genes Beta z p Hazard ratio Lower Upper

AC007569.1 −0.012 −1.29509 0.195289 0.987607 0.969143 1.006423

IGHGP 0 −1.1592 0.246375 0.99997 0.99992 1.000021

RGS1 0 −1.14014 0.254229 0.999972 0.999925 1.00002

SELL 0 −1.08242 0.279068 0.999948 0.999855 1.000042

LINC00494 0.001 1.061845 0.288306 1.000693 0.999414 1.001974

FCRLA 0 −1.01453 0.310331 0.999625 0.9989 1.00035

TRAV1.2 −0.003 −0.66639 0.50516 0.99687 0.98772 1.006104

GPR18 0 −0.57179 0.567466 0.999553 0.99802 1.001087

NME8 0.001 0.569963 0.568703 1.000928 0.99774 1.004127

TRBV13 −0.002 −0.47433 0.635265 0.997881 0.989171 1.006667

IGHG2 0 −0.39298 0.694333 0.999999 0.999994 1.000004

RAB37 0 −0.23861 0.811409 0.999931 0.999364 1.000498
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FIGURE 4
Associations of clinical traits with the IFNG-co-expressed prognostic signature and construction of a nomogram. (A) Correlation analysis on IFNG
and the IFNG-co-expressed prognostic model with clinical parameters. (B) Relationship of the prognostic model versus event. (C) Relationship of IFNG
versus N stage. (D, E) Uni- or multivariate-cox regression results on the prognostic signature and clinical variables with BRCA survival. (F) The nomogram
for survival prediction. (G) Calibration curves depicting the model-predictive and observed OS.
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FIGURE 5
Associations of IFNG, and co-expressed AC006369.1, and CCR7with the TME components. (A–C)Correlation analysis on (A) IFNG, (B) AC006369.1,
and (C) CCR7 with the abundance of immune cells within the TME.
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FIGURE 6
Interactions of IFNG, and co-expressed genes with immune checkpoints. (A) Correlation analysis on IFNG, co-expressed genes, and the prognostic
signature with immune checkpoints. (B–D) Visualization of the relationships of IFNG with CD274, LAG3, and PDCD1.
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TABLE 2 Correlation analyses of IFNG, AC006369.1, and CCR7 with immune checkpoints in BRCA.

Immune checkpoint IFNG AC006369.1 CCR7

r p r p r p

CCL18 0.325517 1.29E-28 0.251434 2.38E-17 0.142041 2.20E-06

CCL19 0.248134 6.33E-17 0.776397 8.92E-223 0.472312 2.59E-62

CCL2 0.286609 2.79E-22 0.234465 3.15E-15 0.132134 1.08E-05

CCL20 0.095234 0.001551 0.004758 0.874644 0.00426 0.887675

CCL21 0.051963 0.084676 0.341864 1.44E-31 0.277394 6.43E-21

CCL3 0.362793 1.29E-35 0.268843 1.06E-19 0.112889 0.000173

CCL4 0.734428 2.24E-187 0.50303 9.82E-72 0.216751 3.49E-13

CCL5 0.678464 1.69E-149 0.652101 1.93E-134 0.316081 5.44E-27

CCL8 0.505601 1.44E-72 0.148589 7.25E-07 0.07855 0.00909

CCR5 0.721719 5.85E-178 0.623922 6.29E-120 0.311697 2.96E-26

CD163 0.450361 3.81E-56 0.227338 2.20E-14 0.102062 0.000691

CD200 0.222103 8.79E-14 0.35874 8.27E-35 0.189568 2.25E-10

CD274 0.776278 1.15E-222 0.345991 2.42E-32 0.168349 1.88E-08

CD38 0.732854 3.52E-186 0.5259 2.12E-79 0.288228 1.59E-22

CD3D 0.577263 6.38E-99 0.873946 0 0.468492 3.30E-61

CD3E 0.543867 7.60E-86 0.887998 0 0.493715 8.93E-69

CD3G 0.67702 1.24E-148 0.773085 1.04E-219 0.42113 1.33E-48

CD4 0.53137 2.54E-81 0.591527 5.57E-105 0.299854 2.49E-24

CD40 0.573782 1.73E-97 0.509643 6.85E-74 0.254698 8.89E-18

CD5 0.507463 3.56E-73 0.843876 1.03E-299 0.480718 8.50E-65

CD68 0.192994 1.05E-10 0.194672 7.15E-11 0.060922 0.043178

CD8A 0.732739 4.30E-186 0.735715 2.33E-188 0.354788 4.94E-34

CR2 0.150807 4.92E-07 0.482392 2.67E-65 0.294252 1.89E-23

CSF2 0.208605 2.67E-12 0.121952 4.93E-05 0.070092 0.019964

CTLA4 0.608277 1.71E-112 0.730355 2.68E-184 0.408044 1.85E-45

CXCL10 0.487788 6.12E-67 0.196638 4.56E-11 0.09579 0.001455

CXCL11 0.527657 5.17E-80 0.295427 1.24E-23 0.147004 9.53E-07

CXCL13 0.072472 0.016117 0.083451 0.005572 0.039526 0.189804

CXCL9 0.739629 2.18E-191 0.62981 7.77E-123 0.327891 4.94E-29

CXCR3 0.614729 1.65E-115 0.808784 7.48E-256 0.424934 1.52E-49

FBLN7 −0.07183 0.017081 0.031189 0.300927 0.018202 0.546117

FCER2 0.114882 0.000132 0.562931 3.97E-93 0.37077 3.06E-37

GFI1 0.627363 1.28E-121 0.719688 1.67E-176 0.365492 3.67E-36

HAVCR2 0.465557 2.29E-60 0.371185 2.51E-37 0.148284 7.64E-07

ICOS 0.631108 1.74E-123 0.67846 1.70E-149 0.406015 5.52E-45

IGSF6 0.554317 8.87E-90 0.46468 4.06E-60 0.197137 4.06E-11

IL10 0.459602 1.09E-58 0.350066 4.05E-33 0.175888 4.15E-09

(Continued on following page)
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Associations of IFNG, and co-expressed
AC006369.1, and CCR7 with the TME
components

IFNG was negatively connected with macrophages M0 and
M2, mast cells resting, but was positively linked with
macrophages M1, T cells CD4 memory resting and activated,
T cells CD8, T cells follicular helper, T cells regulatory (Tregs),
and NK cells resting (Figure 5A). This was indicative of the role of
IFNG in regulating anti-tumor immunity. In Figure 5B,
AC006369.1 presented the negative interactions with
neutrophils, macrophages M0 and M2, NK cells activated,
dendritic cells activated, and mast cells resting, with positive
interactions with B cells naïve and memory, macrophages M1,
T cells CD4 memory resting and activated, T cells CD8, Tregs,
and NK cells resting. In addition, CCR7 exhibited the positive
relationships with B cells naïve and memory, macrophages M1,
T cells CD4 memory resting and activated, T cells CD8, and NK
cells resting, with negative relationships with macrophages
M0 and M2, NK cells activated, and mast cells resting
(Figure 5C).

Interactions of IFNG, and co-expressed
genes with immune checkpoints

As illustrated in Figure 6A; Table 2, IFNG, co-expressed genes
(notably AC006369.1, and CCR7), and the prognostic model
exhibited the positive connections with most immune

checkpoint molecules. It was also noted the positive
interactions of IFNG with CD274 (PD-1), LAG3, and PDCD1
(Figures 6B–D).

Genetic alterations and DNA methylation of
IFNG, and co-expressed genes

Most IFNG, and co-expressed genes occurred frequent
mutation across BRCA samples, such as CCR7 (6%), and
IFNG (3%) (Figures 7A, B). In addition, frequent
amplifications were found, which might contribute to their
overexpression (Figure 7C). DNA methylation sites were also
analyzed (Figure 7D). IFNG expression was positively connected
with the beta value of cg01281450, with negative connections
with the beta values of cg05224770, and cg26227465 (Figures
7E–G). Among the three CpGs, cg01281450 exhibited the lower
beta value in BRCA versus controls, with lower value in high
versus low IFNG expression tumors (Figure 7H). This indicated
the contribution of cg05224770 hypomethylation to IFNG
upregulation. Moreover, CCR7 expression exhibited the
negative interactions with the beta values of cg07388018,
cg13504059, cg17067993, cg07248223, cg16047279,
cg23663547, cg26960939, and cg07479709, with positive
interactions with the beta value of cg11729107 (Figures 7I–Q).
Among the CpGs, cg07388018 owned the lower beta value in
tumors with IFNG upregulation versus controls or tumors with
IFNG downregulation (Figure 7R). Thus, hypomethylated
cg07388018 possibly resulted in CCR7 overexpression.

TABLE 2 (Continued) Correlation analyses of IFNG, AC006369.1, and CCR7 with immune checkpoints in BRCA.

Immune checkpoint IFNG AC006369.1 CCR7

r p r p r p

IL1R1 0.049448 0.100874 0.097552 0.001185 0.039495 0.190162

IL1R2 0.056551 0.060567 0.023964 0.426762 0.010433 0.729378

IL2RA 0.421939 8.40E-49 0.330214 1.91E-29 0.182877 9.62E-10

IRF4 0.420006 2.50E-48 0.498811 2.21E-70 0.283082 9.40E-22

LAG3 0.769047 4.90E-216 0.377368 1.28E-38 0.188985 2.56E-10

MS4A1 0.219143 1.89E-13 0.667616 4.08E-143 0.423381 3.70E-49

PDCD1 0.72552 1.02E-180 0.667504 4.74E-143 0.343997 5.74E-32

SDC1 −0.04353 0.148748 −0.07891 0.008775 −0.05836 0.052782

SGPP2 0.160109 9.12E-08 0.035293 0.241745 0.016745 0.578712

SH2D1A 0.613515 6.18E-115 0.810235 1.76E-257 0.445128 9.67E-55

STAT5A 0.208098 3.02E-12 0.274147 1.89E-20 0.203145 9.96E-12

TIGIT 0.608306 1.66E-112 0.826834 3.57E-277 0.464217 5.50E-60

TNFRSF17 0.366472 2.32E-36 0.493874 7.97E-69 0.24518 1.50E-16

TNFRSF18 −0.02112 0.483628 −0.01387 0.64559 −0.01949 0.518006

TRAF6 0.081821 0.006575 0.076896 0.010663 0.025213 0.403071
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FIGURE 7
Genetic alterations and DNA methylation of IFNG, and co-expressed genes. (A) The summary of somatic mutations in BRCA. (B) The mutated
frequency of IFNG, and co-expressed genes across BRCA. (C) Copy-number frequency of above genes. (D) Methylation sites of above genes. (E–G)
Relationships of IFNGwith (E) cg01281450, (F) cg05224770, and (G) cg26227465. (H) The beta level of cg05224770 in controls, BRCAwith lowly or highly
expressed IFNG. (I–Q) Associations of CCR7 with (I) cg07388018, (J) cg13504059, (K) cg17067993, (L) cg07248223, (M) cg16047279, (N)
cg23663547, (O) cg26960939, (P) cg07479709, and (Q) cg11729107. (R) The beta level of cg07388018 across normal specimens, BRCA with down- or
upregulated IFNG.
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FIGURE 8
Transcription factors and RNA binding proteins that potentially modulate IFNG and co-expressed genes. (A) Interactions of IFNG and co-expressed
genes with transcription factors. (B–I) The transcript level of (B) ATF2, (C) CD40, (D) IRF1, (E) JUN, (F) KLF2, (G) NFKB1, (H) RELA, and (I) RFX5 across
controls, BRCA with down- or upregulated IFNG. (J) The interaction network of IFNG-co-expressed genes with RNA binding proteins. (K–T) The
transcript level of (K) AARS, (L) ADAR, (M) DICER1, (N) DKC1, (O) EIF3B, (P) ELAVL1, (Q) IGF2BP1, (R) RBPMS, (S) TBRG4, and (T) UCHL5 in normal
tissues, BRCA with down- or upregulated IFNG.
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FIGURE 9
MiRNAs and lncRNAs that possibly regulate IFNG and co-expressed genes. (A)MiRNAs with aberrant expression in BRCA versus normal specimens.
(B)MiRNAs with different expression between down- and upregulated IFNG BRCA. (C) Venn diagram illustrating the BRCA- and IFNG-relevant miRNAs.
(D) The expression of above miRNAs across normal tissues, BRCA with down- or upregulated IFNG. (E) Correlations of IFNG-co-expressed genes with
lncRNAs.
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Transcription factors and RNA binding
proteins that potentially modulate IFNG and
co-expressed genes

Figure 8A illustrates eight transcription factors potentially
modulating the transcription of IFNG and co-expressed genes, as
follows: ATF2 (IFNG, FASLG), CD40 (SPIB, RELB), IRF1 (IL12B,
FASLG, IFNG), JUN (FASLG, IL12B, IFNG, RELB), KLF2 (SELL,
CCR7), NFKB1 (CCR7, IFNG, IL12B, CCL22, FASLG), RELA
(FASLG, IL12B, CCL22, CCR7, IFNG), RFX5 (HLA-DQB2,
IFNG). Additionally, these transcription factors exhibited the
aberrant expression in BRCA versus controls (Figures 8B–I). The
heterogeneity in their expression was also found between down- or
upregulated IFNG tumors. Ten RNA-binding proteins post-
transcriptionally modulated IFNG-co-expressed genes, following
AARS (DEF6, RAC2, PIM2, FASLG, HLA-DQB2), DICER1
(ARMH1, RAC2, DEF6, NME8, RAB37), DKC1 (TESPA1,
RAB37, CD37, GZMM, IL12B, CCR7, CD1A), EIF3B (CCR7,
RELB), ELAVL1 (CD2, RAC2, SELL, ARMH1, CAMK4, DEF6,
SPIB, FASLG, CD37, CCR7, TESPA1, RELB, ITGAL, GZMM,
RAB37, PIM2, SHISAL2A), IGF2BP1 (PIM2, RELB, CAMK4,
RAC2), RBPMS (PIM2, CAMK4), TBRG4 (DEF6, PIM2,
ARMH1, CAMK4, RAB37, RAC2), and UCHL5 (DEF6, CD37)
(Figure 8J). Except for DICER1, other RNA-binding proteins were
upregulated in BRCA (Figures 8K–T).

MiRNAs and lncRNAs that possibly regulate
IFNG and co-expressed genes

Non-coding RNA-mediated post-transcriptional mechanisms of
IFNG and co-expressed genes were also probed. In Figure 9A,
695 miRNAs with aberrant expression were determined in BRCA
relative to controls. Additionally, 268 miRNAs exhibited the
different expression between lowly and highly expressed IFNG
tumors (Figure 9B). Following the intersection, 141 BRCA- and
IFNG-relevant miRNAs were selected, which were possibly
associated with IFNG expression (Figures 9C, D; Supplementary
Table S3). Several lncRNAs were then observed to be potentially
interacted with IFNG-co-expressed genes (Figure 9E).

Discussion

IFNG presented the upregulation in BRCA, as priorly reported
(Yaghoobi et al., 2018). Also, the upregulation was associated with
favorable OS and RFS outcomes. Thus, IFNG might own the
potential as a prognostic marker of BRCA. Two IFNG-co-
expressed RNAs (AC006369.1, and CCR7) constituted a Cox
regression model for BRCA prognostication. AC006369.1, and
CCR7 were aberrantly expressed in BRCA, and in relation to
survival outcomes. Similarly, Gu et al. identified AC006369.1 as
an IFNG-relevant lncRNA that was connected with prognostic
outcomes and the TME in uterine corpus endometrial carcinoma
(Gu et al., 2022). Many studies have proven the essential function of
CCR7 in BRCA. For instance, CXCL12 facilitates CCR7 ligand-
driven BRCA cell invasion and migration towards lymphatic vessels
(Hayasaka et al., 2022). Deng et al. reported that site-specific

polyplex on downregulated CCR7 increases T cells for hindering
lymphatic metastasis of BRCA (Deng et al., 2022). In addition,
CCR7 chemokine receptor stimulation can induce rapid but
transient dendritic cell migration towards draining lymph nodes,
which is crucial for initiating protective immunity and maintaining
immune homeostasis (Liu et al., 2019).

IFNG presented the negative connections with macrophages
M0 and M2, mast cells resting, with the positive correlations to
macrophages M1, T cells CD4 memory resting and activated, T cells
CD8, T cells follicular helper, Tregs, and NK cells resting. The
interactions of IFNG with such immune cells have been unveiled.
For instance, tumor-associated macrophages accelerate metastases as
well as hinder T cells. Non-etheless, macrophage polarization is capable
of killing malignant cells. IFN-γ can reprogram CD206+ tumor-
associated macrophages to inducible iNOS + macrophages in BRCA
(Sun et al., 2021). Tregs maintain BRCA progression through
manipulating IFN-γ-driven functional reprogramming of myeloid
cells (Clark et al., 2020). IFN-γ impairs the cytotoxicity of NK cells
via upregulation of PD-L1 on malignant cells as well as PD-1 on NK
cells in trastuzumab-resistant HER2-positive BRCA (Zheng et al.,
2021). IFN-γ-triggered intermediate monocytes hinder cancer
metastasis through activating NK cells (Wang R. et al., 2022). The
interactions of IFNG-co-expressed genes (especially AC006369.1 and
CCR7) with the TME components were also investigated across BRCA.

Immunotherapy exhibits effective therapeutic potential for long-
term cancer regression, but exerts a low response rate owing to
insufficient immunogenicity of malignant cells (Tian et al., 2023).
IFN-γ is an essential driver of PD1/PD-L1 expression in tumor and
host cells. In addition, IFN-γ is capable of upregulating expression of
other critical immune suppressive molecules within the TME. Mark
Ayers et al. proposed an IFNG-relevant mRNA signature that can
predict clinical response to anti-PD-1 therapy (Ayers et al., 2017).
Nevertheless, the pleiotropic effects of IFN-γ on immunotherapy have
been found, such as immunotherapeutic resistance. IFN-γ-driven
adaptive resistance remains one barrier to the improvement in
immunotherapy. In the Cucolo et al.‘s study, IFN-γ-driven
RIPK1 enhances malignant cell intrinsic as well as extrinsic
resistance to immunotherapy (Cucolo et al., 2022). UBR5 facilitates
tumor immune escape via elevating IFN-γ-driven PDL1 transcription
in BRCA (Wu B. et al., 2022). This work also exhibited the close
connections of IFNGwith immune checkpoints in BRCA, proving the
potential in improving immunotherapy.

The regulatory mechanisms of IFNG and co-expressed genes were
further probed. It was found that somatic mutation frequencies of
CCR7, and IFNG were separately 6%, and 3%. Frequent amplification
also potentially led to their upregulation. Hypomethylated
cg05224770 and cg07388018 might associate with IFNG and
CCR7 upregulation. IFNG expression can be transcriptionally
modulated by ATF2, IRF1, JUN, NFKB1, RELA, and RFX5. Among
them, IRF1 has been proven as an IFNG-inducible gene (Qian et al.,
2018). IFN-γ-induced IRF-1 attenuates BRCA cell specific growth
(Armstrong et al., 2015). RNA-binding proteins (AARS, ADAR,
DICER1, DKC1, EIF3B, ELAVL1, IGF2BP1, RBPMS, TBRG4, and
UCHL5) and non-coding RNAs also post-transcriptionally affected
IFNG and co-expressed genes. The interactions of IFN-γ with ADAR
and DICER1 have been partly proven. ADAR (an interferon-inducible
RNA-editing enzyme) mitigates IFN signaling in gastric carcinoma
through down-regulating STAT1 and IRF9 by miR-302a (Jiang et al.,
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2020). DICER1 hinders the interferon response in murine embryonic
stem cells (Gurung et al., 2021). Invasive micropapillary carcinoma is a
rare histological subtype of BRCAwith an aggressive phenotype and an
undesirable prognosis (Verras et al., 2022a). Invasive micropapillary
carcinoma has a high rate of lymphovascular invasion and lymph node
metastasis, and has been reported in multiple organs (Verras et al.,
2022b; Shi et al., 2022). However, so far, no studies have reported the
role of inflammatory cell death-related IFNG and co-expressed RNAs
(AC006369.1, and CCR7) in this subtype.

The limitations of our work require to be acknowledged. Despite
the close connections of IFNG and co-expressed genes with the TME
and immune checkpoint molecules, their roles in anti-tumor
immunity need experimental verification. Moreover, further
analyses are required for proving the regulatory mechanisms of
IFNG and co-expressed genes in BRCA.

Conclusion

Altogether, this work characterized IFNG and its co-expressed
RNAs (notably AC006369.1, and CCR7) as prognostic markers for
BRCA individuals, and unveiled their potential as therapeutic targets for
the improvement of immunotherapy. Despite this, in-depth experiments
will be implemented for proving our conclusions in future research.
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