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Background: M2 macrophages play a crucial role in promoting tumor

angiogenesis and proliferation, as well as contributing to chemotherapy

resistance and metastasis. However, their specific role in the tumor

progression of hepatocellular carcinoma (HCC) and their impact on the clinical

prognosis remain to be further elucidated.

Materials and methods: M2 macrophage-related genes were screened using

CIBERSORT and weighted gene co-expression network analysis (WGCNA), while

subtype identification was performed using unsupervised clustering. Prognostic

models were constructed using univariate analysis/least absolute shrinkage

selector operator (LASSO) Cox regression. In addition, Gene Ontology (GO)/

Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment

analysis (GSEA), gene set variation analysis (GSVA), and mutation analysis were

used for further analysis. The relationship between the risk score and tumor

mutation burden (TMB), microsatellite instability (MSI), the efficacy of

transcatheter arterial chemoembolization (TACE), immunotype, and the

molecular subtypes were also investigated. Moreover, the potential role of the

risk score was explored using the ESTIMATE and TIDE (tumor immune

dysfunction and exclusion) algorithms and stemness indices, such as the

mRNA expression-based stemness index (mRNAsi) and the DNA methylation-

based index (mDNAsi). In addition, the R package “pRRophetic” was used to

examine the correlation between the risk score and the chemotherapeutic

response. Finally, the role of TMCC1 in HepG2 cells was investigated using

various techniques, including Western blotting, RT-PCR and Transwell and

wound healing assays.

Results: This study identified 158 M2 macrophage-related genes enriched in

small molecule catabolic processes and fatty acid metabolic processes in HCC.

Two M2 macrophage-related subtypes were found and a four-gene prognostic

model was developed, revealing a positive correlation between the risk score and

advanced stage/grade. The high-risk group exhibited higher proliferation and
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OS, overall survival; TME, tumor microenvironment; WG
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invasion capacity, MSI, and degree of stemness. The risk score was identified as

a promising prognostic marker for TACE response, and the high-risk subgroup

showed higher sensitivity to chemotherapeutic drugs (e.g., sorafenib,

doxorubicin, cisplatin, and mitomycin) and immune checkpoint inhibitor (ICI)

treatments. The expression levels of four genes related to the macrophage-

related risk score were investigated, with SLC2A2 and ECM2 showing low

expression and SLC16A11 and TMCC1 exhibiting high expression in HCC. In

vitro experiments showed that TMCC1 may enhance the migration ability of

HepG2 cells by activating the Wnt signaling pathway.

Conclusion: We identified 158 HCC-related M2 macrophage genes and

constructed an M2 macrophage-related prognostic model. This study

advances the understanding of the role of M2 macrophages in HCC and

proposes new prognostic markers and therapeutic targets.
KEYWORDS

hepatocellular carcinoma, M2 macrophages, prognostic model, tumor
microenvironment, LASSO
Background

Hepatocellular carcinoma (HCC) is a dominant subtype of

primary liver cancer that has the fastest-growing cancer-related

mortality rate globally (1). The 5-year survival rate of HCC remains

below 12%, primarily due to the low early detection rates and

limited treatment options (2, 3). As a result, identifying robust

prognostic markers is crucial to optimizing prognostic accuracy and

creating effective risk stratification models, particularly given the

survival differences caused by tumor heterogeneity.

Recent cancer research has focused on exploring how the tumor

microenvironment (TME) affects tumor progression to achieve

therapeutic breakthroughs (4–6). TME–tumor cell interactions

play a significant role in modulating the pro-cancer and

anticancer roles in biological processes, impacting tumor

metabolism and growth and modifying treatment responses (6–

8). M2 macrophages comprise the major macrophage subtype in the

TME and display tumor-promoting properties (9–11). They

contribute to tumor angiogenesis and proliferation, chemotherapy

resistance, and metastasis (12, 13). Several studies have confirmed

that the degree of macrophage infiltration in the TME correlates

positively with poor prognosis in patients with cancer (14–19).

However, the role of M2 macrophages in the tumor progression of

HCC and their influence on the clinical prognosis remain unclear.

In this research, CIBERSORT and weighted gene co-expression

network analysis (WGCNA) were employed using data from The

Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-

LIHC) to identify M2 macrophage-related genes. The unsupervised
he Cancer Genome
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clustering approach revealed two M2-related subtypes, which were

compared using Gene Ontology (GO) and the Kyoto Encyclopedia

of Genes and Genomes (KEGG) to determine their functional

differences. A four-gene prognostic model was developed utilizing

univariate and least absolute shrinkage selector operator (LASSO)

Cox regression analyses, and a nomogram was constructed to

predict HCC prognosis. In addition, gene set variation analysis

(GSVA), gene set enrichment analysis (GSEA), mutational analysis,

and TME analysis were performed to identify differences between

the low and high-risk score groups. This study further explored the

relationship between the risk score and microsatellite instability

(MSI), transcatheter arterial chemoembolization (TACE) treatment

efficacy, tumor purity, TIDE (tumor immune dysfunction and

exclusion) score, immunotype, and molecular subtypes, as well as

drug sensitivity. The expression and functional roles of the genes

linked to the risk score were ultimately validated through

experimental verification. Overall, this study effectively developed

a four-gene signature associated with M2 macrophages to predict

the prognosis of patients with HCC.
Materials and methods

Data collection

The gene expression profiles (in fragments per kilobase of

transcript per million mapped reads, FPKM) and the clinical

information of the LIHC cohort was collected from The Cancer

Genome Atlas (TCGA), which included 374 HCC tissues and 50

normal liver tissues. The FPKM values were then transformed into

TPM (transcripts per million) samples. As a validation set, the Liver

Cancer—RIKEN, JP Project from the International Cancer Genome

Consortium (ICGC-LIRI-JP) dataset was used, which included the
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expression profiles and clinical data of 212 samples from the

HCCDB data portal (http://lifeome.net/database/hccdb).
Identification of M2 macrophage-related
genes

CIBERSORT was used to analyze the relative frequencies of 22

immune cell subtypes in 374 HCC samples (18). To assess the

correlation among the 22 immune cells, Spearman’s correlation

coefficient was utilized. With a soft thresholding of 9, as

recommended in the WGCNA guidelines, WGCNA was

conducted using the “WGCNA” package, which identified 17

WGCNA modules (20). The MEblack model was chosen as the

M2macrophage-related model through analysis of the module–trait

relationship. Protein–protein interaction (PPI) analysis was

performed based on the 158 genes in the MEblack model, and the

hub genes were identified using the “Degree” method.
Identification of M2 macrophage-related
subtypes

Using the 158 M2 macrophage-related genes in the MEblack

model, unsupervised clustering was performed on the 374 HCC

samples using the R package “ConsensusClusterPlus.” Based on the

cumulative distribution functions (CDFs), the optimal number of

clusters (k) was determined to be 2 (21). Principal component

analysis (PCA) was conducted using the R package “ggplot2” to

visualize the differences between the two subtypes. To conduct GO

and KEGG analyses, the R package “clusterProfiler” was utilized.

CIBERSORT was employed to analyze immune infiltrates.
Construction and validation of the
prognostic risk score

The prognostic risk score was calculated for each sample by

multiplying the expression score of the four selected genes by their

LASSO coefficients. To assess the prognostic value and the

independent prognostic ability of the risk score, Kaplan–Meier

(KM) analysis and univariate and multivariate analyses were

performed. A nomogram model that included the risk score and

the disease stage for patient prognostic prediction at 1-, 3-, and 5-

year intervals was created to make it more convenient for clinical

use. Calibration and receiver operating characteristic (ROC) and

decision curve analysis (DCA) curves were utilized to estimate the

calibration, accuracy, and clinical value of the nomogram model.
Functional and mutational analyses

To calculate the enrichment score for the gene signatures in

“msigdb.v7.0.symbols.gmt” and to evaluate variations among

subtypes, the GSVA package was employed to perform GSVA.
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Wilcoxon’s rank-sum test was then utilized to assess variations

among subtypes. In order to explore the association of the risk score

with mutation features, the somatic mutation data of the 374 HCC

samples were retrieved from the TCGA database. The GenVisR

algorithm (a package from R Bioconductor) was used to generate a

mutation landscape waterfall plot comparing the low and high-risk

score groups. The GSEA software was also utilized to

perform GSEA.
Association between the risk score and
several mutation and immune indices

MSI, which is a marker of malignancy, was calculated for each

sample from the TCGA-LIHC cohort using the R package

“PreMSIm.” The mRNA expression-based stemness index

(mRNAsi), the DNA methylation-based index (mDNAsi), and the

epigenetically regulated mDNAsi and mRNAsi (EREG-mDNAsi

and EREG-mRNAsi, respectively), which have been previously

identified as stem-like indices and predictors of tumor prognosis,

were also calculated to explore the differences among the low- and

high risk groups. To compare chromosomal instability, the

homologous recombination deficiency (HRD) scores were also

determined for low- and high risk groups using the Wilcoxon

test, as HRD scores are considered powerful biomarkers for specific

cancers. The GSE104580 cohort was obtained from the Gene

Expression Omnibus (GEO) database, which includes 147 HCC

patients with data on TACE treatment, and was normalized as

described above to explore the predictive potential of ICRPI. The

Wilcoxon test was used to measure the differences between the low-

and high risk groups. A p-value <0.5 was considered significant.
Association between the risk score and
immune-related features

The “ESTIMATE” R package was utilized to calculate the

immune score, stromal score, and tumor purity based on data from

TCGA in order to investigate the potential function of the risk score

in HCC and to provide an immune landscape for the disease. In

addition, the TIDE method was employed to evaluate the response to

immunotherapy and to quantify the TIDE scores for the HCC

samples obtained from the TCGA-LIHC cohort. The pan-cancer

analysis of immune subtypes by Thorsson et al., (45) which defined

six immune-related subtypes, was also taken into account.

Furthermore, Cancer Genome Atlas Research Network (46)

identified three subtypes of TCGA liver cancer based on

unsupervised clustering, with iCluster 1 sharing similar features to

proliferative S2 progenitor cells, iCluster 2 having commonmolecular

and pathological features with the non-proliferative type, and iCluster

3 being a new aggressive subtype with chromosomal instability, TP53

mutations, M2 macrophage infiltration, immune exhaustion, and the

worst prognosis. To explore the differences between the immune and

molecular subtypes and the risk score, the Wilcoxon test was

performed, with p-values <0.05 considered statistically significant.
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Drug sensitivity analysis

The predictive value of the risk score in chemotherapy response

was evaluated using the “pRRophetic” package to predict the

response of HCC to conventional chemotherapeutic drugs based

on the Genomics of Drug Sensitivity in Cancer (GDSC) database.

Patients were classified into a high- and a low-risk group based on

the median risk score, and statistical significance was determined by

employing the Wilcoxon rank-sum test with a significance level

of p < 0.05.
Cell culture and transfection

HepG2 cells were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine serum

(FBS) under controlled conditions of 5% CO2 and 37°C. To

knock down the expression of TMCC1, Lipofectamine 2000 was

used to transfect cells with specific small interfering RNA (siRNA)

sequences and a control sequence. The transfection protocol was

strictly followed according to the manufacturer’s instructions.
Quantitative real-time PCR

To measure the mRNA expression levels of the target genes,

RNA was extracted from HepG2 cells using the TRIzol reagent.

RNA puri ty and concentra t ion were determined by

spectrophotometry. The SYBR Green PCR Master Mix was used

for real-time PCR, with cycling conditions of 95°C for 3 min,

followed by 40 cycles of 95°C for 15 s and 60°C for 30 s. The relative

mRNA expression levels were calculated using the 2−DDCt method,

normalized to the expression of glyceraldehyde-3-phosphate

dehydrogenase (GAPDH).
Western blotting

Protein was extracted from cells using a lysis buffer containing

protease and phosphatase inhibitors, and the protein

concentrations were determined using a BCA assay kit. Equal

amounts of protein were loaded onto SDS-PAGE gels and

transferred to PVDF membranes. After blocking in 5% non-fat

milk in TBST (Tris-buffered saline with Tween-20), the membranes

were incubated with primary antibodies at 4°C overnight, followed

by secondary antibodies at room temperature for 1 h. GAPDH was

used as an internal control.
Migration assays

For the Transwell assay, HepG2 cells were harvested and

resuspended in a serum-free medium, and 1 × 105 cells were

seeded onto the upper chamber of Transwell inserts with a pore

size of 8 mm. The lower chamber was filled with a medium

containing 10% FBS, which served as a chemoattractant. After
Frontiers in Oncology 04
incubation for 24 h at 37°C, non-migrating cells were removed

from the upper surface of the membrane with cotton swabs, while

those that had migrated to the lower surface were fixed, stained, and

counted under a microscope. The number of migrated cells was

quantified by counting at least three randomly selected fields

per membrane.

For the wound healing assay, HepG2 cells were seeded onto six-

well plates and allowed to grow until ~90% confluence was

achieved. A scratch was then made across the cell monolayer

using a sterile pipette tip, generating a uniform gap. The cells

were then incubated in a medium containing 2% FBS and

monitored by microscopy for 48 h. Images were captured at 0

and 24 h to measure the degree of migration. The width of the

scratch was measured using ImageJ software, and the percentage of

closure was calculated as the ratio of the remaining gap area at 48 h

vs. that at 0 h.
Statistical analysis

Statistical analysis was performed using GraphPad Prism

software. Data were presented as the mean ± standard deviation

(SD). The normal distribution of the data was assessed using the

Shapiro–Wilk test. For the comparison of the two groups, an

unpaired Student’s t-test was used for normally distributed data,

while the Mann–Whitney test was used for non-normally distributed

data. A p-value of <0.05 was considered statistically significant.
Results

Identification of M2 macrophage-related
genes in hepatocellular carcinoma using
CIBERSORT and weighted gene co-
expression network analysis

This study aimed to identify genes related to M2 macrophages in

HCC. To achieve this, CTBERSORT was first used to calculate and

demonstrate the immune infiltration of 374 HCC samples in the

TCGA-LIHC cohort (Figure 1A and Supplementary Table S1).

Correlation analysis revealed a positive correlation of M2

macrophages with resting natural killer (NK) cells, monocytes, and

activated dendritic cells, but a negative correlation with CD8 T cells,

activated CD4 memory T cells, T follicular helper (Tfh) cells, and

regulatory T cells (Tregs) (Figure 1B). Subsequently, 17 co-expression

modules within the HCC expression profile were identified using

WGCNA, with the MEblack module being closely related to M2

macrophages (p = 3e−04) (Figure 2A and Supplementary Figure S1).

Furthermore, GO and KEGG analyses showed that the 158 genes in

the MEblack module were mainly enriched in small molecule

catabolic processes, fatty acid metabolic processes, and pathways

related to drug metabolism (including cytochrome P450) and

chemical carcinogenesis (Supplementary Figure S2). Finally, a PPI

analysis of these genes was performed, which identified six hub genes,

namely, CTNNB1, CAT, CYP2E1, CYP3A4, AOX1, and ALD3A2

(Figure 2B and Supplementary Table S2).
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Identification and characterization of the
M2 macrophage-related subtypes in
hepatocellular carcinoma

Based on the M2 macrophage-related genes, unsupervised

consensus clustering grouped the 374 HCC samples into two

clusters: M2 macrophage-related cluster 1 (n = 316) and cluster 2

(n = 58) (Figure 3A and Supplementary Figure S3 and Table S3). PCA

showed heterogeneity in the two subtypes of HCC (Figure 3B). In

order to explore differences in the functional characteristics of the two

HCC subtypes, differential gene expression analysis was performed

(Supplementary Table S4), followed by GO and KEGG analyses to

investigate their functional differences. The results revealed that

immune-related functions and pathways such as “response to

interferon-gamma,” “regulation of CD8-positive, alpha-beta T-cell
Frontiers in Oncology 05
activation,” and “antigen processing and presentation” were enriched

(Figures 3C, D and Supplementary Table S5). This supported the

results of WGCNA showing that the genes in the MEblack module

were closely linked to tumor immunity. Moreover, immune

infiltration analysis indicated that cluster 2 exhibited higher M2

macrophage infiltration, naive B cells, and resting mast cells, but

showed lower Tregs and Tfh cell infiltration (Figure 3E).
Prognostic role of the M2 macrophage-
related genes in hepatocellular carcinoma

To investigate the prognostic value of the M2 macrophage-

related genes in HCC, univariate analysis was performed, which

identified 35 genes associated with prognosis (Figure 4A).
A

B

FIGURE 1

Analysis of immune infiltration in hepatocellular carcinoma (HCC). (A) Distribution of immune cell infiltration in each HCC sample using CIBERSORT
based on The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) cohort. (B) Correlation heat map of 22 immune cell subtypes.
*p<0.05.
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Subsequently, LASSO regression analysis was conducted on these

35 genes. A panel of four genes (i.e., ECM2, SLC16A11, SLC2A2, and

TMCC1) was ultimately selected to construct a prognostic risk score

(Figures 4B, C and Supplementary Table S6). The risk score for each

sample was calculated by multiplying the expression level of each

gene with its corresponding risk coefficient (Figure 4D). Using the
Frontiers in Oncology 06
median value of the four selected genes, HCC patients were

classified into a high- and a low-expression group, and survival

analysis was performed. As illustrated in Figures 4E–H, high

expression of TMCC1 and low expression of ECM2, SLC16A11,

and SLC2A2 were associated with poor prognosis of patients

with HCC.
A

B

FIGURE 2

Identification of M2 macrophage-related genes. (A) Heat map displaying the correlation between the co-expression modules and immune cells. (B)
Protein–protein interaction (PPI) networks of the genes in the MEblack model.
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Prognostic value of the risk score in
hepatocellular carcinoma

To investigate the relationship between the M2 macrophage-

related clusters, risk score groups, and survival status, a ggalluvial

diagram was used, which depicted that patients in cluster 2 tended

to be assigned to the low risk score group, with 78% (144/184) of

patients alive in this group (Figure 5A and Supplementary Table

S7). Moreover, patients in the high-risk group exhibited worse

survival than those in the low-risk group (Figures 5B, C). The

associations between the risk score and the clinicopathological

features were also explored, which showed a close correlation

between advanced HCC grade/stage and high risk score

(Figures 4D–G). Furthermore, univariate and multivariate

analyses showed that the risk score and the disease stage were

significantly independent prognostic factors (Table 1). These

findings were consistent with the validation datasets from the

ICGC (Supplementary Figure S4). To predict overall survival (OS)

at 1, 3, and 5 years, a nomogram based on the risk score and stage

was created (Figure 5H), which was calibrated by the calibration

plot (Figure 5I). Moreover, the nomogram had a higher clinical

validity than the risk score and stage alone, as indicated by DCA. In

summary, the risk score was not only associated with the
Frontiers in Oncology 07
clinicopathological features but also served as a robust prognostic

marker in HCC.
Comparison of tumor-related features in
the different risk score groups

The results of the GSVA revealed that “BOYAULT_

L I V E R _ C A N C E R _ S U B C L A S S _ G 3 _ U P ” a n d

“LIAO_METASTASIS” were significantly higher in the high risk

s c o r e g r o up , wh i l e “GO_SHORT_CHAIN_AC ID_

CATABOLIC_PROCESS” was significantly higher in the low risk

score group (Figure 6A and Supplementary Table S8). Notably, the

G3 subtype is typically characterized by mutation of TP53 and the

overexpression of cell cycle genes (22). These findings suggest that

patients with HCC in the high risk score group may have a higher

capacity for proliferation and invasion. Furthermore, differences in

gene mutation in the different risk score groups were observed, and

it was found that the mutation rate of TP53, as well as that of

RPS6AKA3, HECW1, and ZNF208, was significantly higher in the

high risk score group, confirming the accuracy of GSVA

(Figure 6B). In addition, GSEA was utilized for functional

enrichment analysis, which showed that “TNFA SIGNALING via
A B

D

E

C

FIGURE 3

M2 macrophage-related subtypes in hepatocellular carcinoma (HCC). (A) Consensus clustering of the 374 HCC samples based on the M2
macrophage-related genes. (B) Principal component analysis (PCA) shows the distinctions between two subtypes. (C, D) Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of differentially expressed genes (DEGs). (E) Infiltration analysis of 22 immune cell
subtypes between two subtypes.
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NFKB,” “EPITHELIAL_MESENCHYMAL_TRANSITION,” and

“INFLAMMATORY_RESPONSE” were significantly enriched in

the high-risk group, suggesting that, apart from high proliferation

and invasion capacity, the immune inflammatory environment may

also play a critical role in the high risk score group (Figures 6C–E

and Supplementary Table S9).
Correlation between genomic features and
the risk score

Higher tumor mutation burden (TMB) and somatic mutation

rates are associated with increased anticancer immunity and greater

potential for benefiting from programmed cell death 1/programmed

cell death ligand 1 (PD-1/PD-L1) immune checkpoint inhibitors

(ICIs). However, there was no significant difference in the TMB or

the number of mutated genes (Figures 7A, B) between the high- and

low-risk groups. MSI, identified as a significant biomarker for

various cancer types, was higher in HCC patients in the high-risk

group than in those in the low-risk group, as indicated by the MSI
Frontiers in Oncology 08
and MSI sensor scores (Figures 7C, D). The mRNAsi, a novel

predictive factor associated with stemness and tumor prognosis,

was also higher in the high-risk HCC subgroup compared to the

low-risk group (Figure 7E). However, there was no statistically

significant difference in the EREG-mRNAsi, mDNAsi, or EREG-

mDNAsi results (Figures 7F–H) between the two groups. The HRD

score, representing genome scars and chromosomal instability

caused by DNA repair defects, was significantly lower in the low-

risk than the high-risk group (Figure 7I).
Risk score as a promising biomarker for
predicting response to transcatheter
arterial chemoembolization treatment in
patients with hepatocellular carcinoma

TACE is a commonly used treatment for unresectable liver

cancer, particularly for patients in the advanced stage. Analysis of

GSE104580 showed that patients with HCC who did not respond to

TACE had significantly higher risk scores than those who

responded to the treatment (Figure 7J). The risk score showed
A B

D

E F G H

C

FIGURE 4

Construction of a prognostic model. (A) Forest plot displays the prognostic genes with p < 0.05 (n = 35) on univariate analysis. (B, C) LASSO (least
absolute shrinkage selector operator) model for 35 prognostic genes with p < 0.05. (D) LASSO coefficients of the four selected genes for
construction of the prognostic model. (E–H) Survival analysis of ECM2, SLC2A2, SLC16A11, and TMCC1.
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promising predictive value for HCC response to TACE, with an area

under the curve (AUC) of 0.772 (Figure 7K), indicating its potential

as a biomarker for treatment response prediction. The calibration

curves showed that the predictive values of the risk scores agreed

with those of actual observations (Figure 7L). In addition, the DCA

demonstrated that the risk scores improved the net benefits and had

a wider range of threshold probability in predicting the HCC

responses to TACE (Figure 7M) in the training cohort.
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Association between the immune-related
features and the risk score

Analysis using the ESTIMATE algorithm revealed no

significant differences in the immune scores or the tumor purity

between the low- and high-risk groups (Figures 8A, C); however,

the low-risk group had a higher stromal score (Figure 8B). Higher

TIDE scores indicated a lower likelihood of responding to ICI
B C

D E F

G H

I J K

A

FIGURE 5

Clinical value of the risk score. (A) The ggalluvial diagram displays the relationships among clusters and the risk scores and survival status. (B)
Distribution of the risk scores, survival status, and the expression of four selected genes in the risk score groups. (C) Prognostic performance of the
risk score. (D–G) Relationship of the risk sores with grades and stages. (H) Nomogram for 1-, 3-, and 5-year overall survival (OS) prediction. (I)
Calibration plot for the consistency test between the predicted and actual observations at 1-, 3-, and 5-year OS. (J) Receiver operating
characteristics (ROC) showing the performance of the nomogram at 1-, 3-, and 5-year OS. (K) Decision curve analysis (DCA) evaluates the clinical
effectiveness of the nomogram, risk score, and stage. *p<0.05, ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1170775
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Song et al. 10.3389/fonc.2023.1170775
TABLE 1 Univariate and multivariate Cox regression analyses of the clinical features and risk scores.

Characteristics Total (N)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age (years) 343 1.012 (0.998–1.026) 0.102

Sex 343

Women 110 Reference

Men 233 0.841 (0.585–1.209) 0.350

Grade 338

G1/2 216 Reference

G3/4 122 1.150 (0.795–1.664) 0.457

Stage 319

Stage I/II 236 Reference

Stage III/IV 83 2.375 (1.629–3.460) <0.001 2.012 (1.373–2.948) <0.001

Risk score 343 21.517 (8.323–55.627) <0.001 22.159 (7.411–66.251) <0.001
F
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FIGURE 6

Comparison of the tumor-related features between the high- and low-risk groups. (A) Signaling pathway activity between risk groups using gene set
variation analysis (GSVA). (B) Waterfall plot of the somatic mutations between the low- and high risk score groups. (C–E) Identification of the high
risk score related pathways using gene set enrichment analysis (GSEA).
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treatments. In contrast, HCC patients in the high-risk subgroup

were more likely to benefit from ICI treatments, as suggested in

Figures 8D–F. Patients in Cluster 1 and 2 (C1 and C2) had higher

overall risk scores compared to those in Cluster 3 and 4 (C3 and

C4) (Figure 8G), with more HCCs in the high-risk subgroup

classified into C1 and C2 compared to the low-risk subgroup

(Figure 8H). Specifically, 27.5% of HCCs in the high-risk

subgroup (C1 = 9.0%, C2 = 18.5%) were classified into C1 and

C2 compared to only 7.9% in the low-risk subgroup (C1 = 2.2%,

C2 = 5.5%). In addition, HCCs in iCluster 2 had the lowest risk

scores (Figure 8I), with the proportion bar chart showing that the
Frontiers in Oncology 11
number of patients in iCluster 2 in the high-risk group was roughly

twice that in the low-risk group (38 vs. 17) (Figure 8J).
Evaluation of the risk score for predicting
sensitivity to chemotherapeutic drugs

Using the GDSC database, this study assessed the value of the risk

score in predicting the sensitivity of the high- and low-risk groups to

chemotherapeutic drugs (Figure 9). The results showed that the high-

risk group had significantly lower IC50 values for all four
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FIGURE 7

Comparison of the characteristics and transcatheter arterial chemoembolization (TACE) response in the high- and low-risk groups. (A–I) The tumor
mutation burden (TMB) (A), the Mutation_Count (B), microsatellite instability (MSI) (C), the MSI sensor score (D), mRNAsi (E), EREG-mRNAsi (F),
mDNAsi (G), EREG-mDNAsi (H), and the HRD scores (I) were compared between the high- and low-risk groups. (J) Association between the risk
score and TACE response. (K–M) The predictive role of the risk score in the response to TACE was assessed using the operating characteristic (ROC)
curve (K), calibration plot (L), and decision curve analysis (DCA) (M). *p < 0.05, ***p < 0.001. ns, no significance.
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chemotherapeutic drugs (i.e., sorafenib, doxorubicin, cisplatin, and

mitomycin) compared to the low-risk group. These findings suggest

that the risk score is a potential predictor for chemotherapy efficacy.
Verification of risk score-related gene
expression

Using the HCCDB database, this study investigated the

expression of four genes associated with macrophage-related risk

scores in HCC and normal liver tissues. ECM2 and SLC2A2 showed

lower expression trends in HCC tissues, which was validated in 10

different datasets containing both HCC and normal liver tissues

(Figures 10A, B). Conversely, SLC16A11 and TMCC1 showed

higher expression in HCC tissues, which was validated in five and

six different HCC datasets, respectively (Figures 10C, D). At the

protein expression level, using HCC samples and liver cancer

samples from the Clinical Proteomic Tumor Analysis Consortium

(CPTAC), it was further confirmed that SLC2A2 was lower

expressed and TMCC1 was more highly expressed in HCC tissues
Frontiers in Oncology 12
(Figures 10E, F). Immunohistochemical analysis using images

extracted from the Human Protein Atlas (HPA) revealed SLC2A2

to have high staining in normal liver tissues, while no staining was

detected in HCC tissues (Figure 10G).
TMCC1 promotes HepG2 cell migration
through the Wnt signaling pathway

First, the expression of four genes in HCC tissues was validated

using RT-PCR. It was found that, compared to adjacent non-

cancerous tissues, TMCC1 and SLC16A11 were upregulated, while

SLC2A2 and ECM2 were downregulated, which was consistent with

the results of previous analyses (Figures 11A–D). Of these four

genes, TMCC1 was highly expressed in HCC and was associated

with poor prognosis, but its function in HCC is unknown.

Therefore, the role of TMCC1 in liver cancer cells was

investigated. The protein expression of TMCC1 was found to be

higher in HCC tissues compared to adjacent non-cancerous tissues
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FIGURE 8

Comparison of the immune-related features between the high- and low-risk groups. (A–C) Immune score (A), stromal score (B), and tumor purity
(C) between the low and high risk score groups were determined using the ESTIMATE algorithm. (D–F) Association of the risk score with TIDE (D),
dysfunction (E), and exclusion (F). (G–J) Association of the risk score with the immune subtypes (G, H) and molecular subtypes (I, J). *p < 0.05,
**p < 0.01, ***p < 0.001. ns, no significance.
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(Figure 11E). Regarding the liver cancer cell line, HepG2 exhibited

the highest TMCC1 RNA level in the Cancer Cell Line Encyclopedia

(CCLE); thus, HepG2 cells were selected as the cell model with a

knocked-down TMCC1 gene (Figure 11F). The knockdown

efficiency experiments showed that the knockdown of TMCC1

using Si#1 effectively reduced its expression at both the RNA and

protein levels (Figures 11G, H). Therefore, we chose Si#1 as the

knockdown sequence for subsequent experiments. Moreover, the

knockdown of TMCC1 significantly inhibited the migration of

HepG2 cells, as shown by the Transwell and wound healing

assays (Figures 11I, J). The knockdown of TMCC1 also resulted

in a significant reduction of the expression of EMT-related genes at

the RNA level (Figure 11K). GSEA indicated that the Wnt signaling

pathway was significantly enriched and that TMCC1 was positively

correlated with CTNNB1 (Figures 11L, M). The PCR experiments

revealed that the knockdown of TMCC1 led to a significant decrease

in the expression of CTNNB1 at the RNA level (Figure 11N). In

summary, TMCC1 promotes HepG2 cell migration through the

Wnt signaling pathway.
Discussion

HCC, the major histological type of liver cancer, is a serious

health concern with high incidence and mortality (23). Despite

advances in the diagnosis and treatment of this disease, the effects
Frontiers in Oncology 13
have not been satisfactory (24). There is an urgent need for

prognostic markers to stratify patients for clinical management.

Macrophage infiltration is a common phenomenon in most

solid tumor malignancies. Based on previous cancer research,

macrophages can be classified into tumor-suppressing M1

macrophages and tumor-promoting M2 macrophages. Although

current studies have found that macrophage polarization is plastic

and complex and that the M1/M2 model does not recapitulate the

more complex, mixed functional profiles of macrophages in vivo in

inflamed tissues, extensive studies have shown that the M1 and M2

types have a discordant effect on the evolution and progression of

tumors. The M1 tumor-associated macrophage (TAM) phenotype

counteracts tumor progression, while M2 TAM promotes tumor

growth; moreover, the M2 TAM phenotype is important in growth

and metastasis during cancer development (25–27). Therefore, the

M1/M2 model of macrophages has certain rationality and

applicability in cancer research. However, with regard to the

tumor-promoting subtype, the prognostic value of M2

macrophages in HCC remains unclear. In this study, two M2

macrophage-related subtypes were identified and a four-gene

prognostic model including ECM2, SLC16A11, SLC2A2, and

TMCC1 was constructed to predict OS in HCC. SLC2A2 has been

reported as a prognostic marker of HCC, with an effect on the

alteration of the TME (28). Recently, researchers have constructed a

prognostic model using endoplasmic reticulum (ER) stress-related

genes (ERSRGs), including PON1, AGR2, SSR2, and TMCC1, which
B
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FIGURE 9

Evaluation of the IC50 values of chemotherapeutic drugs in the low- and high-risk groups. Sorafenib (A), doxorubicin (B), cisplatin (C), and mitomycin
(D) in The Cancer Genome Atlas (TCGA). *p<0.05, **p<0.01.
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could accurately predict the survival outcomes of patients with

HCC and also be associated with malignant degree, recurrence rate,

late TNM stage, late T stage, and hepatitis B virus (HBV)

infection (29).

Type I interferon signals play important roles in priming

antitumor CD8 T-cell responses (30). They can enhance the

sensitivity of tumor macrophages to interferon-gamma (IFN-g)
through the JAK/STAT1 pathway (31). Furthermore, Tregs could

be attracted by TAMs through the release of chemokine CCL22

(32). In KEGG and GO analyses, the “type I interference signaling

pathway” and “regulation of regulatory T-cell differentiation”

showed significant differences in the two subtypes. Immune

infiltration analysis showed that M2 macrophages were

significantly higher in cluster 2 than in cluster 1. These results

showed that the MEblack module was closely related to tumor

immunity, especially macrophages, further confirming the results of

WGCNA. Boyault et al. classified liver cancer into subgroups G1–

G6 using unsupervised transcriptome analysis, with the G3

subgroup being characteristic of TP53 mutation and the

overexpression of cell cycle-related genes (22). In the GSVA, the

G3 subgroup score of the high-risk group was higher. In addition,

“LIAO-METASTASIS” was also enriched in the high-risk group.

Verifying the results of GSVA, mutation analysis confirmed the

high TP53 mutation in the high risk score group. As a tumor
Frontiers in Oncology 14
suppressor that regulates cell cycle, apoptosis, and senescence, TP53

is mutated and inactivated in most tumors, and its inactivation state

promotes the occurrence and development of tumors (33–35). In

postoperative breast cancer patients, the levels of TP53 were

positively associated with the risk of tumor recurrence (36). In

addition, studies have shown that the expression of TP53 is

associated with the aggressive behavior of pituitary tumors (37).

Moreover, the liver cancer-related driver genes RPS6KA3 and

DYNC2H1 and the tumor migration-related gene CDH9 were also

significantly different between the two groups (38). GSEA further

confirmed that the risk score was associated with tumor immunity,

tumor migration, and proliferation.

As a quantitative index of cancer stem cells (CSCs) and a

measure of tumor stem-like features, mRNAsi serves as a

predictor that is closely associated with both stemness and tumor

prognosis. Higher mRNAsi values have been found to be correlated

with stronger tumor stemness and poorer prognosis (39). Our study

further supports the importance of mRNAsi by showing its positive

association with the risk score, which suggests that mRNAsi is a

significant risk factor for the survival of patients with HCC (40).

Another crucial biomarker used in therapy decision-making is

HRD, which refers to deficiencies in the homologous

recombination repair (HRR) mechanisms of DNA repair. A

positive HRD status is associated with increased sensitivity to
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FIGURE 10

Study of the expression of M2 macrophage-related genes in hepatocellular carcinoma (HCC). (A–D) The mRNA expression of ECM2 (A), SLC2A2 (B),
SLC16A11 (C), and TMCC1 (D) in the HCCDB database. (E, F) Protein expression of SLC2A2 (E) and TMCC1 (F) in HCC based on samples from the
Clinical Proteomic Tumor Analysis Consortium (CPTAC). (G) Immunohistochemical images of the SLC2A2 protein in normal and HCC tissues from
the Human Protein Atlas (HPA). *p<0.05, ***p<0.001.
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poly(ADP-ribose) polymerase (PARP) inhibitors, further

emphasizing the potential value of HRD testing as a predictive

biomarker for PARP inhibitor treatment (41). Notably, HRD scores

can predict response to chemotherapy in certain cancers, such as

triple-negative breast cancer, and are associated with poor survival

rates in HCC (42, 43). Lastly, our findings suggest that the risk score

could potentially help evaluate the effectiveness of TACE treatments

for HCC, indicating that this tool could be utilized to select the most

appropriate treatment methods for patients with HCC.

The TIDE score has emerged as a valuable alternative

biomarker for predicting response to ICI therapy, where higher

TIDE scores indicate a lower likelihood of benefiting from ICI

treatment (44). This study posits that patients with high-risk

subgroups of HCC in the high risk score group may benefit more

from ICI treatment. Our investigation into the immune

classification of HCC, C1–C4, demonstrated that patients with

higher matrix and immune scores (C1 and C2) had higher risk
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scores, while subtype 2 (proliferative) had lower risk scores and

subtypes 1 (metabolic) and 3 (mixed) had higher risk scores,

indicating the potential of the risk score as a tool to differentiate

the HCC molecular subtypes. The relationship between the risk

score and the sensitivity to four common tumor treatment drugs—

sorafenib, doxorubicin, cisplatin, and mitomycin—was then

investigated, and it was found that HCC patients in the high-risk

group with high risk scores exhibited increased sensitivity to these

four drugs, suggesting risk score as a means of predicting HCC

patients’ sensitivity to these chemotherapeutic agents.

This study had limitations, which included the lack of external

validation using our own data, with the analysis relying solely on

public HCC cohorts. In future research, we plan to include patients

with HCC to further validate the risk score. In addition, the function of

the TMCC1 gene in HCC was examined in in vitro cell experiments;

therefore, further validation in animal experiments is required.

Moreover, only metastasis was studied, leaving other malignant
A B D

E F G

I

H

J

K L M N

C

FIGURE 11

Experimental verification of the results of bioinformatics analysis. (A–D) RT-PCR analysis of the mRNA expression of ECM2 (A), SLC2A2 (B), SLC16A11
(C), and TMCC1 (D) in hepatocellular carcinoma (HCC) and normal tissues. (E) Protein expression of TMCC1 in paired HCC tissues. (F) Exploration of
the RNA levels of TMCC1 in different liver cancer cell lines using the Cancer Cell Line Encyclopedia (CCLE). (G, H) Verification of the efficiency of
TMCC1 knockdown at the RNA (G) and protein (H) levels. (I, J) Transwell (I) and wound healing (J) assays exploring the effect of TMCC1 on the
migration function of HepG2 cells. (K) RT-PCR analysis of the changes in EMT-related gene expression following TMCC1 manipulation. (L) Gene set
enrichment analysis (GSEA) of TMCC1 based on The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset. (M) Correlation
analysis between TMCC1 and CTNNB1. (N) RT-PCR analysis of the effect of TMCC1 gene knockdown on CTNNB1. *p<0.05, **p<0.01, ***p<0.001.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1170775
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Song et al. 10.3389/fonc.2023.1170775
phenotypes such as tumor cell proliferation, cell cycle, and cell

apoptosis unexplored. Finally, while the M1/M2 model was used to

classify macrophages in the subsequent bioinformatics analysis and

experimental verification, this model may not be applicable in all

diseases as it oversimplifies the functional complexity of macrophages.

Future experiments should be designed to further understand the

complex role of macrophages in the development of HCC.

In summary, this study offers novel insights into enhancing

individualized survival estimates and treatment responses, such as

TACE, immunotherapy, and drug therapy, through a holistic

analysis of M2 macrophages. These findings may have significant

implications for the development of personalized and precise

immunotherapeutic strategies for patients with HCC in the future.
Conclusion

This study first screened out 158 M2 macrophage-related genes

in HCC. Two M2 macrophage-related subtypes were identified and

an M2 macrophage-related prognostic model was constructed. The

performance of this predictive model was confirmed using an

independent external cohort. This research could promote our

understanding of the role of M2 macrophages and provides novel

prognostic biomarkers and therapeutic targets in HCC.
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