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Introduction: Age-specific risk factors may delay posttraumatic functional 
recovery; complex interactions exist between these factors. In this study, 
we investigated the prediction ability of machine learning models for posttraumatic 
(6 months) functional recovery in middle-aged and older patients on the basis of 
their preexisting health conditions.

Methods: Data obtained from injured patients aged ≥45 years were divided into 
training–validation (n = 368) and test (n = 159) data sets. The input features were the 
sociodemographic characteristics and baseline health conditions of the patients. 
The output feature was functional status 6 months after injury; this was assessed 
using the Barthel Index (BI). On the basis of their BI scores, the patients were 
categorized into functionally independent (BI >60) and functionally dependent 
(BI ≤60) groups. The permutation feature importance method was used for 
feature selection. Six algorithms were validated through cross-validation with 
hyperparameter optimization. The algorithms exhibiting satisfactory performance 
were subjected to bagging to construct stacking, voting, and dynamic ensemble 
selection models. The best model was evaluated on the test data set. Partial 
dependence (PD) and individual conditional expectation (ICE) plots were created.

Results: In total, nineteen of twenty-seven features were selected. Logistic 
regression, linear discrimination analysis, and Gaussian Naive Bayes algorithms 
exhibited satisfactory performances and were, therefore, used to construct 
ensemble models. The k-Nearest Oracle Elimination model outperformed the 
other models when evaluated on the training–validation data set (sensitivity: 
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0.732, 95% CI: 0.702–0.761; specificity: 0.813, 95% CI: 0.805–0.822); it exhibited 
compatible performance on the test data set (sensitivity: 0.779, 95% CI: 0.559–
0.950; specificity: 0.859, 95% CI: 0.799–0.912). The PD and ICE plots showed 
consistent patterns with practical tendencies.

Conclusion: Preexisting health conditions can predict long-term functional 
outcomes in injured middle-aged and older patients, thus predicting prognosis 
and facilitating clinical decision-making.

KEYWORDS

dynamic ensemble selection, machine learning, middle-aged patient, older patient, 
traumatic injury

1. Introduction

Traumatic injuries are a leading cause of morbidity and mortality 
in middle-aged and older individuals (1, 2). Due to various 
sociodemographic factors and frailty, these patients have 
posttraumatic complications, prolonged hospitalization, and a poor 
quality of life, which, in turn, increase the risk of functional disability 
(3–7). Although prognosis and clinical decision-making are highly 
complicated in injured middle-aged and older patients, these factors 
are crucial for ensuring optimal care and rehabilitation, which may 
minimize mortality rates and improve functional independence in 
these patients (8, 9).

Approximately 50% of injured older patients have comorbidities, 
which result in functional limitations and poor physical health (10). 
Severe complications are associated with certain demographic 
characteristics and preexisting diseases (e.g., diabetes, cardiovascular 
disease, liver disease, and psychological conditions) (11); these factors 
may delay functional recovery. In patients with hip bone fractures, 
neurological and renal disorders are associated with reduced 
performance of activities of daily living (ADL), as assessed using the 
Barthel Index (BI) (6). These findings imply that demographics and 
baseline health conditions are associated with the risk of functional 
dependence in injured middle-aged and older patients. Therefore, 
those features might be  used to build the predictive model for 
predicting long-term functional outcomes in this clinical population, 
which could support physicians in clinical practice.

In medicine, machine learning (ML) is an effective approach for 
making diagnoses and predicting prognoses; ML models exhibit 
satisfactory performance on clinical data sets, which are generally 
highly dimensional and imbalanced (12). An ML model was 
successfully used to predict knee pain in middle-aged and older 
individuals by using demographic, body measurement, and blood test 
data; the sensitivity and specificity of the prediction were 0.72 and 
0.71, respectively (13). Furthermore, the CatBoost algorithm was used 
to identify depression in this population (sensitivity: 0.71; specificity: 
0.89) (14). A study using an ML model demonstrated that 
physiological biomarkers are associated with mortality, extremity 
mobility, and ADL in middle-aged and older individuals (15). In 
addition, previous studies also evaluated the predictions of ML models 
on poststroke functional recovery, supporting rehabilitation practice 
(16, 17). These findings suggest that ML explores complicated patterns 
in clinical data to predict functional outcomes in middle-aged and 
older individuals in different clinical conditions. However, to the best 

of our knowledge, no predictive ML model has been constructed to 
predict the risk of long-term functional dependence in this population 
on the basis of preexisting health conditions. Therefore, by adopting 
an ML approach, we investigated the prediction ability of ML models 
for the risk of functional dependence in middle-aged and older 
patients 6 months after injury on the basis of their demographic 
characteristics and preexisting health conditions. We hypothesized 
that baseline features can be used to classify patients with and without 
functional dependency 6 months after injury and to predict functional 
prognosis in clinical practice.

2. Patients and methods

2.1. Study design

The protocol of this prospective observational study was approved 
by the Institution Research Board of Taipei Medical University, Taiwan 
(approval number: N202002099). All participants provided informed 
consent. This study was conducted and reported following the 
STROBE checklist. The funders had no roles in analyzing the data, 
interpreting the data, or drawing study conclusions.

2.2. Participants and data sets

We included 670 middle-aged and older patients with primary 
injury who were admitted to the Emergency Department of Wan 
Fang Hospital, Taipei Medical University, Taiwan, between August 
2020 and March 2022. The inclusion criteria were an age of ≥45 years 
and the ability to provide informed consent. After the completion 
of treatment, the researchers contacted eligible patients and 
explained the study to them. After informed consent was obtained, 
the patients were interviewed and under physical examination. Data 
regarding the patients’ sociodemographic characteristics, preexisting 
diseases, and baseline clinical characteristics were collected. For 
patients with severe injury, the interviews and assessments were 
conducted after their conditions had stabilized. Clinical events 
during hospitalization (e.g., intensive care unit [ICU] admission) 
were also recorded. After 6 months, a follow-up assessment was 
performed through telephonic interviews. All assessments were 
performed by experienced physicians and nurses. After excluding 9 
patients who died in the hospital, 134 patients who were lost to 
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follow-up, and 26 patients who died during follow-up, 527 patients 
were included in this study (Supplementary Figure S1).

Clinical characteristics were assessed using a standardized format. 
The BI, a 10-item scale that assesses ADL, was used to evaluate the 
patients’ baseline (preinjury) levels of functional dependence (18). The 
total BI score ranges from 0 to 100, and a BI score of ≤60 indicates 
severe or complete functional dependence (19). The Clinical Frailty 
Scale (CFS), a 9-point scale that assesses physical frailty and cognitive 
impairment, was used to evaluate overall frailty (20). The CFS score 
from one to three indicates that an individual is healthy or has well-
controlled medical problems, whereas the CFS score from four to nine 
indicates that an individual has “very mild frailty” to “terminally ill” 
(20). The Charlson comorbidity index (CCI), a 17-item tool with high 
validity and reliability, was used to assess the risk of 1-year mortality 
in the patients (21). The death rate is smaller than 0.5% when the CCI 
score is equal to zero, whereas this rate is approximately 20–25% when 
the CCI score is higher than six (21). Furthermore, the revised trauma 
score (RTS) was used to assess functional outcomes after injury (22, 
23). The injury severity score, which is used to assess the severity of 
injury in six body systems, was calculated for the patients upon 
admission to the emergency department (ED-ISS), during 
hospitalization (HOSP-ISS), and before discharge (ISS) (24). The RTS 
score smaller than seven might suggest the high rates of survival and 
the low rate of complication in an individual (22, 23).

2.3. Independent input and output features

We used the patients’ baseline health conditions to predict their 
functional recovery 6 months after injury. The initial input features 
were sociodemographic characteristics (e.g., age, sex, marital status, 
employment status, education level, and body mass index), causes of 
trauma, preexisting diseases (e.g., diabetes, hypertension, heart failure, 
chronic kidney disease, liver diseases, chronic obstructive pulmonary 
disorder, stroke, anemia, hip fracture, Parkinson’s disease, and 
dementia), clinical events (e.g., ICU admission and hospital 
rehabilitation), and baseline assessment scores (e.g., BI score, CCI 
score, CFS score, RTS, ED_ISS, HOSP_ISS, and ISS). The outcome 
feature was functional status determined using the patients’ BI scores 
calculated 6 months after injury; on the basis of their BI scores, the 
patients were categorized into two groups: functionally independent 
(BI >60) and functionally dependent (BI ≤60) groups (16, 25).

2.4. Descriptive statistical analysis

Data are presented as mean ± standard deviation values for 
continuous variables and number and percentage values for categorical 
variables. The functionally independent and dependent groups were 
compared in terms of demographic and clinical characteristics by 
using the independent samples t test (for continuous variables) or 
chi-square test (for categorical variables). The BI scores and the 
number of patients with functional dependency were compared 
between baseline and 6 months after injury by using paired t and 
McNemar tests, respectively. In addition, the validation and 
independent data sets were compared in terms of patient 
characteristics. A p value of <0.05 indicated statistical significance. R 
(version 4.1.2; R Foundation for Statistical Computing, Vienna, 

Austria) and Jeffrey’s Amazing Statistics Program (version 0.16.3; The 
JASP Team, 2020) were used for statistical analyses.

2.5. ML process

Figure  1 illustrates the ML process, which included data 
preprocessing, feature selection, model construction, model validation 
and testing, and model interpretation. All process steps were 
performed using Python 3.7 with Scikit-learn 1.1.3 (26) and DESlib 
library 0.3.5 (27).

2.5.1. Data preprocessing
The data set was first analyzed for missing values and outliers and 

then randomly divided into training–validation and test data sets by 
the ratio 70:30 that is commonly used in ML (28, 29). The training–
validation data set (n = 368) was used to train and construct ML 
models, whereas the independent test data set (n = 159) was used for 
evaluate the constructed models.

2.5.2. Feature selection
The imputation feature importance method was used to select 

important features and exclude noise. The logistic regression (LR) 
algorithm was used as an estimator with 1,000 repeats. The features 
with negative or 0 important scores were eliminated. The remaining 
features were used to construct the ML model.

2.5.3. Model construction
We first evaluated the classification performance of individual 

algorithms. The following six algorithms were selected: support vector 
machine (SVM), LR, k-nearest neighbor (KNN), Gaussian Naive Bayes 
(GNB), linear discrimination analysis (LDA), and decision tree (DT); 
these algorithms are commonly used for classification based on highly 
dimensional clinical data (13, 15, 16). Hyperparameter optimization 
was performed using GridSearchCV (Supplementary Table S1). The 
algorithms exhibiting poor performance were excluded.

For classification, an ensemble of classifiers is generally considered 
to be  superior to a single classifier and could reduce the risk of 
overfitting (30). Therefore, the algorithms exhibiting satisfactory 
performance were subjected to bagging (a number of estimators were 
searched using GridSearchCV); then, these were used as base learners 
to construct stacking, voting, and dynamic ensemble selection (DES) 
models, including k-nearest oracle union (KNORA-U), k-nearest 
oracle elimination (KNORA-E), DES performance (DES-P), and meta 
learning for DES (META-DES).

2.5.4. Cross-validation and internal validation on 
the test data set

The models were trained on the training–validation data set 
through stratified five-fold cross-validation, repeated twenty 
times. Because our data were imbalanced, random oversampling 
was separately applied on each training fold (but not the testing 
folds) during cross-validation. The DES and single-algorithm 
models were compared in terms of performance. The best model 
was evaluated on the independent test data set for assessing its 
performance on unseen data. In the cross-validation process, 
we  estimated a 95% confidence interval for each performance 
indicator of all algorithms, defined by a mean score ± 1.96*validated 
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standard error. When testing the final model on the independent 
test data set, the 95% CIs for performance indicators were 
calculated by conducting the bootstrap method (1,000 repeats) on 
the independent test data set.

2.5.5. Performance matrix
The performance matrix included accuracy, sensitivity, 

specificity, F1 score, and area under the receiver operating 
characteristic curve (ROC-AUC). Because our aim was to 
investigate the prediction ability of the models for the risk of 
functional dependence, minimizing false negative rates was 
important. Therefore, we preferred sensitivity over specificity for 
model evaluation. In addition, because our data sets were 
imbalanced, a dummy classifier (uniform strategy) was used to 
construct a no-skill model, whose performance matrix was used 
as the baseline cutoff score for comparisons.

2.5.6. Model interpretability analysis
Regarding the intuitive interpretation of the models, partial 

dependence (PD) and individual conditional expectation (ICE) 

plots were constructed to compare the effects of features on the 
outcomes predicted by the ML models with clinical tendencies. 
Given that the assessment scores indicated the effects of 
preexisting diseases on the model outcome, we constructed PD 
and ICE plots only for the assessment scores to evaluate the effects 
of changes in these scores on the risk of functional dependence 
6 months after injury.

3. Results

3.1. Patient characteristics

Tables 1, 2 summarize the patient’s sociodemographic 
characteristics, injury severity levels, and functional outcomes. 
The most common cause of trauma was falling (69.1%; Table 1). 
Of the patients, >50% had at least one chronic disease. As shown 
in Table 2, the most common comorbidities were hypertension 
(53.7%), diabetes (29.2%), and heart failure (24.7%). The 
proportion of patients with functional dependency significantly 

FIGURE 1

Machine learning process. Data obtained from the patients were first checked for missing values and outliners and then divided into training–validation 
data set (for model construction) and independent test (for model evaluation) data sets. The permutation feature importance method was used for 
feature selection. Because our data were imbalanced, random oversampling was applied on each training fold during cross-validation. Six algorithms, 
including support vector machine (SVM), logistic regression (LR), k-nearest neighbor (KNN), Gaussian Naive Bayes (GNB), linear discrimination analysis 
(LDA), and decision tree (DT), were validated through five-fold cross-validation. The algorithms exhibiting satisfactory performance (LR, GNB, and LDA) 
were subjected to bagging; afterward, they were used as the pool of classifiers for ensemble models (i.e., stacking, voting, and dynamic ensemble 
selection [DES] models). The ensemble models were compared in terms of performance, and the best model (k-nearest oracle elimination [KNORA-E]) 
was evaluated on the independent test data set. Partial dependence (PD) and individual conditional expectation (ICE) plots were constructed to 
investigate the interpretability of the model.
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increased 6 months after injury (from 5.6 to 11.4% in total; 
p  < 0.01; Table  2). The patients’ demographic and clinical 
characteristics did not vary significantly between the training–
validation and independent test data sets (p > 0.05; Tables 1, 2), 
which indicates that the independent test data set can be used 
for validation.

3.2. Selection of informative features for 
classification

To reduce noise and select the most efficient features for 
predicting the risk of functional dependence 6 months after 
injury, feature selection was performed using the permutation 
feature importance method. Of the total 27 features, 8 had 0 or 
negative important scores and thus were removed (Figure 2). The 
remaining 19 features were used as input features to construct the 
classification models.

3.3. Performance of single-algorithm 
models for predicting the risk of functional 
dependence

Six single-algorithm classification models were constructed 
through hyperparameter optimization. The LR, LDA, and GNB 
models exhibited balanced performance. LR exhibited the highest 
sensitivity (0.789, 95% CI: 0.761–0.817) and specificity (0.789, 95% CI: 
0.778–0.799), followed by GNB (sensitivity: 0.719, 95% CI: 0.690–
0.745; specificity: 0.761, 95% CI: 0.739–0.783) and LDA (sensitivity: 
0.687, 95% CI: 0.656–0.718; specificity: 0.777, 95% CI: 0.766–0.787). 
The F1 scores of the LR, LDA, and GNB models were higher than the 
baseline F1 score of the no-skill model, i.e., 0.462 (95% CI: 0.446–
0.478), 0.416 (95% CI: 0.397–0.436), and 0.402 (95% CI: 0.386–0.419) 
vs. 0.181 (95% CI: 0.168–0.193), respectively. By contrast, the SVM, 
KNN, and DT models exhibited imbalanced performance with high 
specificity but low sensitivity (Table 3).

TABLE 1 Sociodemographic characteristics of the patients and causes of 
trauma.

Patient 
characteristics

Total 
(N = 527)

Training–
validation 
data set 
(N = 368)

Independent 
test data set 

(N = 159)

Age (years), 

mean ± standard 

deviation

72.1 ± 12.8 72.4 ± 12.6 71.4 ± 13.1

Sex (women), n (%) 318 (60.3) 218 (59.2%) 100 (62.9)

Marital status, n (%)

Single 32 (6.1) 25 (6.8) 7 (4.3)

Married 301 (57.1) 209 (56.8) 92 (57.9)

Divorced 34 (6.5) 23 (6.3) 11 (6.9)

Other 160 (30.3) 111 (30.1) 49 (30.9)

Job, n (%)

Working 147 (27.9) 101 (27.5) 46 (28.9)

Housekeeping 27 (7.0) 28 (7.6) 9 (5.7)

Retired 329 (62.4) 230 (62.5) 99 (62.3)

Unemployed 14 (2.7) 9 (2.4) 5 (3.1)

Education level, n (%)

None 51 (9.7) 35 (9.5) 16 (10.1)

Elementary 157 (29.8) 112 (30.4) 45 (28.3)

Secondary 59 (11.2) 47 (12.8) 12 (7.6)

High school 116 (22.0) 79 (21.5) 37 (23.3)

Undergraduate 125 (23.7) 82 (22.3) 43 (27.0)

Postgraduate 19 (3.6) 13 (3.5) 6 (3.7)

Cause, n (%)

Fall 364 (69.1) 256 (69.6) 108 (67.9)

Traffic accident 133 (25.2) 90 (24.5) 43 (27.0)

Other 30 (5.7) 22 (5.9) 8 (5.1)

Patient characteristics did not vary significantly between the training–validation and 
independent test data sets (independent samples t-test or chi-square test).

TABLE 2 Clinical characteristics of the patients.

Preexisting 
health 
conditions

Total 
(N = 527)

Training–
validation 
data set 
(N = 368)

Independent 
test data set 

(N = 159)

Health conditions, n (%)

Hypertension 283 (53.7) 200 (54.4) 83 (52.2)

Diabetes 154 (29.2) 111 (30.2) 43 (27.4)

Heart failure 130 (24.7) 88 (23.9) 42 (26.4)

Anemia 84 (15.9) 64 (17.4) 20 (12.6)

Chronic kidney 

disease

66 (12.5) 48 (13.4) 18 (11.3)

Dementia 55 (10.4) 38 (10.3) 17 (10.7)

Stroke 49 (9.3%) 36 (9.8) 13 (8.2)

Hip bone fracture 31 (5.9) 25 (6.8) 6 (3.8)

Chronic obstructive 

pulmonary disorder

23 (4.4) 16 (4.4) 7 (4.4)

Parkinson’s disease 23 (4.4) 12 (3.3) 11 (6.9)

Liver diseases 20 (3.8) 13 (3.5) 7 (4.4)

Scores, mean ± standard deviation

Baseline CFS 3.3 ± 1.5 3.3 ± 1.5 3.3 ± 1.5

Baseline ISS 7.1 ± 5.9 7.1 ± 5.9 7.2 ± 6.0

Baseline RTS 7.8 ± 0.2 7.8 ± 0.1 7.8 ± 0.2

BI

Baseline 93.7 ± 15.16 93.9 ± 14.9 93.2 ± 15.7

After 6 months 86.8 ± 20.4*** 86.6 ± 19.8*** 87.2 ± 21.6***

Number of patients with functional dependency, n (%)

Baseline 31 (5.9) 22 (6.0) 9 (5.6)

After 6 months 60 (11.4)** 42 (11.4)** 18 (11.3)**

Patient characteristics did not vary significantly between the training–validation and 
independent test data sets (using independent samples t-test or chi-square test). The BI 
scores and number of patients with functional dependency varied significantly between 
baseline and 6 months after injury when analyses were performed using the total, training–
validation, and independent test data sets (paired t and McNemar tests, respectively). BI, 
Barthel Index; CFS, Clinical Frailty Scale; ISS, injury severity score; and RTS, revised 
traumatic score. **p < 0.01 and ***p < 0.001 compared with baseline.
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FIGURE 2

Permutation feature importance selection. The figure presents important scores of the features assessed using the permutation importance 
ranking method (1,000 repeats). CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disorder; HOSP_ISS, injury severity score 
during hospitalization, ED_ISS, injury severity score upon admission to the emergency department; CCI score, Charlson comorbidity index 
score; RTS, revised traumatic score; EDU, education level; ISS, injury severity score before discharge; DM, diabetes mellitus; LIVER_DIS, liver 
diseases; HF, heart failure; HT, hypertension; HIP_FX, hip bone fracture; CFS_BASE, baseline score on the Clinical Frailty Scale; and BI_BASE, 
baseline score on the Barthel Index.

TABLE 3 Performance of single classifiers on the training–validation data set.

Classifiers Accuracy Sensitivity Specificity F1 score ROC-AUC

SVM 0.900 (0.897; 0.903) 0.149 (0.124; 0.175) 0.997 (0.995; 0.998) 0.234 (0.197; 0.270) 0.632 (0.611; 0.652)

LR 0.789 (0.780; 0.798) 0.789 (0.761; 0.817) 0.789 (0.778; 0.799) 0.462 (0.446; 0.478) 0.854 (0.842; 0.866)

KNN 0.853 (0.846; 0.860) 0.381 (0.349; 0.413) 0.914 (0.907; 0.920) 0.367 (0.338; 0.393) 0.647 (0.631; 0.664)

GNB 0.756 (0.737; 0.775) 0.719 (0.690; 0.745) 0.761 (0.739; 0.783) 0.416 (0.397; 0.436) 0.811 (0.797; 0.826)

LDA 0.766 (0.757; 0.775) 0.687 (0.656; 0.718) 0.777 (0.766; 0.787) 0.402 (0.386; 0.419) 0.815 (0.801; 0.829)

DT 0.843 (0.835; 0.851) 0.328 (0.294; 0.362) 0.910 (0.902; 0.918) 0.317 (0.287; 0.347) 0.619 (0.602; 0.636)

No-skill model 0.500 (0.492; 0.507) 0.485 (0.452; 0.518) 0.501 (0.497; 0.505) 0.181 (0.168; 0.193) 0.500 (0.500; 0.500)

A no-skill model was constructed using a dummy classifier; the performance matrix of this model was used as the baseline threshold for comparison. SVM, support vector machine; LR, 
logistic regression; KNN, k-nearest neighbor; GNB, Gaussian Naive Bayes; LDA, linear discrimination analysis; DT, decision tree; and ROC-AUC, area under the receiver operating 
characteristic curve.

3.4. Performance of ensemble models for 
predicting the risk of functional 
dependence

To investigate whether the ensemble models could improve the 
prediction ability of the input features, stacking, voting, and DES 
models were constructed through the bagging of LR, LDA, and 
GNB as the pool of classifiers (Table 4). The KNORA-E model 
outperformed the other ensemble models (sensitivity: 0.732, 95% 
CI: 0.702–0.761; specificity: 0.813, 95% CI: 0.805–0.822; Table 4; 
Figure 3A). Furthermore, the F1 score of this model (0.460, 95% 
CI: 0.444–0.477) was higher than the baseline F1 score of the 

no-skill model 0.181 (95% CI: 0.168–0.193) and the F1 scores of 
the other models.

3.5. Validation on the independent test 
data set

To investigate the performance of the KNORA-E model on 
unseen data, the model was applied to the independent test data set. 
The performance matrix on the test data was similar to the 
performance on the train-validation data set, with accuracy, sensitivity, 
specificity, F1 score, and ROC-AUC values of 0.850 (95% CI: 
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0.792–0.899), 0.779 (95% CI: 0.559–0.950), 0.859 (95% CI: 0.799–
0.912), 0.534 (95% CI: 0.359–0.680), and 0.886 (95% CI: 0.768–0.976), 
respectively (Figure 3B).

3.6. Model interpretability

PD and ICE plots were constructed for continuous predictive 
features (e.g., BI_BASE score, CFS_BASE score, ISS, and RTS) to 
investigate the effects of changes in the scores on the risk of functional 
dependence. These plots showed a consistent trend. The effects of 
predictive features on the model-predicted outcomes were consistent 
with the practical tendency. The risk of functional dependence 
decreased with increasing baseline BI scores and RTS, particularly 
when the scores were 40–60 and > 7, respectively. By contrast, this risk 
increased with increasing baseline CFS scores (nearly linear increase) 
and ISS scores, particularly when the score was >4 and > 20, 
respectively (Figure 4).

4. Discussion

Pathophysiological changes may worsen posttraumatic functional 
outcomes in middle-aged and older individuals (3–7). The pattern of 

functional recovery in these patients may vary from that in younger 
patients (2). Developing a model to predict long-term functional 
dependency in middle-aged and older individuals may facilitate 
treatment and rehabilitation, thus reducing the risk of functional 
disability. In the present study, using the DES models including 
selected features, we  found that baseline sociodemographic 
characteristics, functional assessment scores, and preexisting diseases 
successfully predicted the risk of functional dependence in the study 
population 6 months after injury. The assessment scores may 
be  non-linearly correlated with functional outcomes, and the 
correlation may be  stronger in some score ranges. Our findings 
suggest that preexisting health conditions considerably affect 
functional recovery in injured middle-aged and older individuals; 
furthermore, ML models constructed using these input features can 
be used to predict prognosis in this population.

High dimensionality and imbalance are the characteristics of real-
life clinical data; these characteristics complicate the analysis of data 
using ML models and reduce the applicability of these models (12). In 
the present study, the selection of features through the permutation 
importance method helped remove noise from the input features and 
improve model performance. Using the remaining features, several 
single-algorithm models, such as the LR, LDA, and GNB models, were 
constructed; these models predicted functional outcomes with 
acceptable performance. Although these algorithm exhibited 

TABLE 4 Performance of heterogeneous assemble models on the training–validation data set.

Classifiers Accuracy Sensitivity Specificity F1 score ROC-AUC

KNORA-U 0.783 (0.775; 0.791) 0.719 (0.690; 0.748) 0.791 (0.782; 0.801) 0.431 (0.415; 0.446) 0.821 (0.808; 0.834)

KNORA-E 0.804 (0.796; 0.812) 0.732 (0.702; 0.761) 0.813 (0.805; 0.822) 0.460 (0.444; 0.477) 0.841 (0.829; 0.853)

DES-P 0.786 (0.777; 0.795) 0.713 (0.684; 0.741) 0.796 (0.786; 0.806) 0.431 (0.416; 0.451) 0.834 (0.823; 0.846)

META-DES 0.801 (0.793; 0.809) 0.668 (0.638; 0.697) 0.819 (0.810; 0.827) 0.434 (0.417; 0.452) 0.822 (0.809; 0.836)

Stacking 0.761 (0.752; 0.770) 0.707 (0.675; 0.739) 0.768 (0.758; 0.778) 0.404 (0.387; 0.421) 0.818 (0.804; 0.831)

Voting 0.780 (0.770; 0.790) 0.732 (0.702; 0.763) 0.786 (0.774; 0.798) 0.433 (0.417; 0.449) 0.836 (0.824; 0.848)

No-skill model 0.500 (0.492; 0.507) 0.485 (0.452; 0.518) 0.501 (0.497; 0.505) 0.181 (0.168; 0.193) 0.500 (0.500; 0.500)

A no-skill model was constructed using a dummy classifier; the performance matrix of this model was used as the baseline threshold for comparison. KNORA-U, k-nearest oracle union; 
KNORA-E, k-nearest oracle elimination; DES-P, dynamic ensemble selection performance; META-DES, meta learning for dynamic ensemble selection; and ROC-AUC, area under the receiver 
operating characteristic curve.

FIGURE 3

Area under the receiver operating characteristic curve (ROC-AUC) of the k-nearest oracle elimination (KNORA-E) model. (A) ROC-AUC of the 
KNORA-E model evaluated using the cross-validation data set. (B) ROC-AUC of the KNORA-E model evaluated using the test data set.
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FIGURE 4

Partial dependence (PD) plots (blue lines) with individual conditional expectation (ICE) plots (grey lines). The plots indicate the overall (for PD) and 
individual (for ICE) effects of the features, including the baseline Barthel Index (BI_BASE) score, baseline Clinical Frailty Scale (CFS_BASE) score, revised 
traumatic score (RTS), and injury severity score (ISS).

acceptable classification performance on highly dimensional data after 
appropriate feature selection, they may exhibit overfitting in several 
circumstances, particularly in the case of data imbalance (31). Thus, 
we constructed heterogeneous ensemble models; these models may 
have a reduced overfitting risk and improved prediction ability (30). 
In the present study, the KNORA-E model exhibited the highest, 
balanced performance on both the training–validation and 
independent test data sets, which indicated that the levels of bias and 
variance were low for this model. Because of the nature of ML on 
extremely imbalanced data, the different gap between sensitivity and 
specificity in the final model in our study might be acceptable, which 
was similar to a previous study conducted an on extremely imbalanced 
cancer dataset (32). This finding corroborates that DES models exhibit 
improved classification performance on imbalanced data (33). Thus, 
DES modeling with feature selection may be an effective ML approach 
for prognosis using clinical data.

In this study, baseline BI and CFS scores (indicating functional 
level and frailty, respectively) were found to be the best features for 
predicting the risk of functional dependence in middle-aged and older 

patients 6 months after injury. The other assessment scores used in this 
study, such as RTS and ISS, also contributed to the model-based 
prediction of functional recovery. The BI is a common scale used for 
evaluating functional independence in patients with various health 
conditions; this scale has high validity and reliability (19). The CFS 
score indicates the requirement of additional health care support for 
injured patients (34). However, the BI and CFS scores are influenced 
by comorbidities, age, and other sociodemographic factors (18, 35). 
The use of only assessment scores may not be sufficient for effectively 
predicting long-term functional outcomes in injured patients; 
therefore, additional features, such as sociodemographic 
characteristics and preexisting health conditions, must be included in 
the models.

Several preexisting diseases, including anemia, hip bone 
fracture, hypertension, heart failure, stroke, liver disease, and 
diabetes, helped predict functional recovery in older patients 
6 months after injury. Hypertension, stroke, and diabetes markedly 
reduced the function and quality of life in patients with those 
diseases, particularly middle-aged and older patients (36). Anemia 
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reduces physical and cognitive functions, thus worsening functional 
outcomes in middle-aged and older individuals (37, 38). Hip 
fractures are common in this population; this reduces their mobility 
and quality of life (39–41). In a relevant study, approximately 40% of 
all patients with heart failure experienced moderate to severe 
difficulties in performing ADL; these challenges were associated 
with mortality and hospitalization (42). Liver diseases may alter the 
structure and function of the brain and heart, thus worsening 
patients’ functional outcomes (43, 44). In summary, preexisting 
diseases may worsen functional outcomes in injured middle-aged 
and older individuals and may help predict the risk of long-term 
functional dependence in this population.

Using PD and ICE plots, we  found that several assessment 
scores nonlinearly affected the risk of functional dependence. 
Higher baseline BI (particularly >40) scores exerted stronger 
effects on functional outcomes, which is consistent with Sinoff ’s 
interpretation that older individuals with BI scores of <40 may 
exhibit severe or complete functional dependence (45). In patients 
who experienced an acute stroke, those with BI scores of ≥40 
exhibited considerable improvements in their ADL compared with 
those with BI scores of <40 (46). In the present study, CFS scores 
of >4 markedly increased the risk of functional dependence. 
According to the CFS guideline, patients with CFS scores of 4 
exhibit limited performance of activities, and those with CFS 
scores of >5 require assistance in performing ADL (47). Prolonged 
hospitalization in acute medicine units has been reported in 
patients with CFS scores of >4 (48). In the present study, RTSs of 
>7 strongly reduced the risk of functional dependence; this is 
consistent with the findings of other studies indicating that an 
RTS of 7 serves as the cutoff value for predicting mortality and 
complication development in injured patients (22, 23). Taken 
together, the findings support the interpretability of our ML 
models and their feasibility in clinical practice.

This study has some limitations. First, our data sets were 
imbalanced; although we validated our models using the independent 
test data set, the patient sample was regional and may not represent 
the general population. Thus, external validation is necessary to 
evaluate the generalizability of the model. Second, we  assessed 
functional outcomes only at baseline and the 6-month follow-up; thus, 
time-related changes in functional outcomes, which may differ across 
preexisting health conditions, could not be  recorded. Finally, our 
model did not include preclinical data; thus, the predictive value of 
preclinical features for long-term functional outcomes could not 
be estimated.

In conclusion, our model constructed through feature selection 
and DES modeling exhibited high performance for predicting the risk 
of functional dependence in injured middle-aged and older patients 
on the basis of their sociodemographic characteristics and preexisting 
health conditions. The model showed practical interpretability. This 
study may facilitate further large-scale studies on the prediction ability 
of baseline information and its application for the prediction of long-
term functional prognosis in injured patients.
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