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Objective: Naming speed, behaviorally measured via the serial Rapid automatized

naming (RAN) test, is one of the most examined underlying cognitive factors of

reading development and reading difficulties (RD). However, the unconstrained-

reading format of serial RAN has made it challenging for traditional EEG analysis

methods to extract neural components for studying the neural underpinnings of

naming speed. The present study aims to explore a novel approach to isolate

neural components during the serial RAN task that are (a) informative of group

differences between children with dyslexia (DYS) and chronological age controls

(CAC), (b) improve the power of analysis, and (c) are suitable for deciphering the

neural underpinnings of naming speed.

Methods: We propose a novel machine-learning-based algorithm that extracts

spatiotemporal neural components during serial RAN, termed RAN-related

neural-congruency components. We demonstrate our approach on EEG and

eye-tracking recordings from 60 children (30 DYS and 30 CAC), under

phonologically or visually similar, and dissimilar control tasks.

Results: Results reveal significant differences in the RAN-related neural-

congruency components between DYS and CAC groups in all four conditions.

Conclusion: Rapid automatized naming-related neural-congruency components

capture the neural activity of cognitive processes associated with naming speed

and are informative of group differences between children with dyslexia and

typically developing children.

Significance: We propose the resulting RAN-related neural-components as

a methodological framework to facilitate studying the neural underpinnings

of naming speed and their association with reading performance and

related difficulties.

KEYWORDS

EEG, fixation-related potential (FRP), neural-congruency, machine learning, dyslexia,
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1. Introduction

Rapid Automatized Naming (RAN), broadly defined as the
ability to name as fast as possible visually presented stimuli
such as colors, objects, digits, and letters (Kirby et al., 2010),
is one of the most examined underlying cognitive factors of
reading development and reading difficulties (RD). Indeed, since
the original work by Denckla (1972), there has been an ongoing
effort to explain the rather complex relationship between RAN
and reading (e.g., Kirby et al., 2010; Araújo et al., 2015) across
different ages (e.g., Landerl and Wimmer, 2008; Moll et al., 2009)
and ability (e.g., Wolf and Bowers, 1999; Papadopoulos et al.,
2009a; Torppa et al., 2013) groups and languages (e.g., Georgiou
et al., 2012; Moll et al., 2014; Papadopoulos et al., 2021), focusing
on group and individual differences. This effort has been based
on behavioral/cognitive and neuroimaging data evidence. With
regard to the former, two research approaches have been used, a
componential (e.g., Georgiou et al., 2014) and a correlational (e.g.,
Papadopoulos et al., 2016) approach. With regard to the latter,
data derived from fMRI studies (e.g., Cummine et al., 2015; Al
Dahhan et al., 2020), electroencephalography (EEG) methods (e.g.,
Bakos et al., 2020) or more recently Fixation-Related Potentials
(FRPs; e.g., Christoforou et al., 2021a). Although the evidence
shows that RAN predicts reading performance and that RAN
taps into universal cognitive mechanisms involved in reading
(Papadopoulos et al., 2021), little is known about which neural
components of RAN could better distinguish children with reading
difficulties from typically developing peers. Thus, the present
study aims to take this research line further: to produce and test
methods that isolate the most informative neural components for
RAN, suitable for deciphering group or individual differences in
naming speed.

Based on correlational data, behavioral or cognitive research
has repeatedly confirmed that RAN relates to reading because both
tasks require serial processing and lexical access (e.g., Georgiou
et al., 2013; Logan and Schatschneider, 2014). Also, it has been
shown that RAN exerts direct effects on reading fluency only when
oral reading fluency is the outcome measure (Georgiou et al., 2013;
van den Boer et al., 2014; Papadopoulos et al., 2016), suggesting
that articulation is essential for the RAN-reading relationship.
Correlational research has also concluded that universal cognitive
mechanisms such as working memory, attention, and processing
speed are distal “common cause” processes to the RAN-reading
relationship (Papadopoulos et al., 2016). Indeed, it is well-
established that processing speed partly mediates the RAN-reading
relationship (e.g., Bowey et al., 2005; Georgiou et al., 2012; Liao
et al., 2015). Also, working memory is necessary because of the
effortful nature of cognitive control required to perform naming
speed tasks successfully, as it also occurs with word reading
(Jacobson et al., 2011) or reading comprehension (e.g., Leong
et al., 2008; Kendeou et al., 2012). Likewise, for serial processing
to occur successfully, attention must be disengaged from naming
a current item and directed to the next (Altani et al., 2017).
Recent studies using eye-tracking methodology have verified the
influential role of attention on RAN performance (e.g., Jones et al.,
2009; Kuperman et al., 2016). Finally, evidence shows that speech
production planning processes are also involved before articulation
(e.g., Araújo et al., 2021).

These findings are further validated through research
examining the unique contribution of articulation and pause
time and what these components share with cognitive mechanisms
such as the above. Since oral reading fluency and rapid naming
require articulation alongside processing speed, the unique
contribution of articulation time is justified (Georgiou et al., 2012).
In turn, attention shifting, required as the participants move from
one stimulus to another in a short time, is encapsulated in pause
time (Wolf and Bowers, 1999; Georgiou et al., 2014), providing
quick access to phonological codes or semantics in long-term
memory (Rijthoven et al., 2018). Developmental data corroborate
this evidence, as the contribution of pause time for typical readers
decreases with time as they rely on larger orthographic units to
read fluently (e.g., Georgiou et al., 2014). In contrast, pause time
continues to explain significant variance in children with reading
difficulties because of the deficits in accessing phonological codes
experienced by this ability group (Ziegler et al., 2003; Araújo
et al., 2011). Likewise, other processes have also been investigated,
including multi-element sequence processing, coordinating rapid
serial eye movements, and speech production planning processes of
successive items (e.g., Gordon and Hoedemaker, 2016; Henry et al.,
2018). However, studying these dimensions of the RAN-reading
relationship was beyond the scope of the present paper to further
explore their contribution.

Neurocognitive research has verified such findings with adults
or typically developing and same-age poor readers, based on
neuroimaging data. For example, Cummine et al. (2015), using
functional magnetic resonance imaging (fMRI) with an adult group
of typical readers, reported that RAN and reading rely on highly
similar neural regions and that the RAN–reading relationship
is driven by motor/serial processing. Likewise, Al Dahhan et al.
(2020), using fMRI and eye-tracking methods, concluded that
compared to typically achieving readers, readers with reading
difficulties performed poorer in naming speed tasks. They had more
extended articulation and pause times, longer fixation durations,
and more regressions, resulting in decreased performance. This
deficient processing was also reflected in greater bilateral activation
and recruited additional regions involved with memory, namely
the amygdala and hippocampus. Moreover, when the RAN-letter
stimuli were visually or phonologically similar, adult readers
showed higher activation in the amygdala and hippocampus,
irrespective of their group (dyslexics vs. controls).

Furthermore, studies using eye-tracking (e.g., Easson et al.,
2020) or electroencephalography (EEG) methods (e.g., Bakos et al.,
2020) have provided additional evidence. Their results have focused
on the RAN’s constituent components or the neurophysiological
differences between children with reading difficulties and typically
developing readers. For example, Easson et al. (2020) revealed
significant contributions of fixation duration and saccade count to
the prediction of naming speed performance. In addition, Bakos
et al. (2020) showed that EEG activity differed between 10-year-olds
with reading difficulties and their counterparts at around 300 ms
after stimulus presentation. This difference was evident in the left-
occipital-temporal P2 component and was statistically significantly
correlated to RAN performance, albeit small r(72) = 0.24, p< 0.04.

More recently, Christoforou et al. (2021a,b) combined EEG
and eye-tracking recordings to examine the underlying factors
elicited during the serial Rapid-Automatized Naming (RAN) task
that may differentiate between children with reading difficulties
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and chronological age controls (CAC). In doing so, the authors
extracted fixation-related potentials (FRPs) under phonologically
similar (rime-confound) or visually similar (resembling lowercase
letters) and dissimilar (non-confounding and discrete uppercase
letters, respectively) RAN tasks. As a result, the authors reported
significant differences in FRP amplitudes between RD and
CAC groups under phonologically similar and non-confounding
conditions. These differences were evident in a cluster emerging
around 128–170 ms in the frontal and occipital channels and
between 80–160 ms for the rime-non-confusable and the rime-
confusable RAN-letter tasks, respectively. However, no differences
were observed in the case of the visual conditions. Moreover,
regression analysis showed that the average amplitude of the
extracted components significantly predicted RAN performance.

That research investigating the RAN-reading relationship
concludes that RAN is a proxy for reading because it exerts similar
processes to the neural reading system in the brain’s left hemisphere
is not a surprise. This system includes a ventral stream that
helps the reader recognize the words and their semantic meaning
(Norton and Wolf, 2012) and a dorsal stream which connects
sub-lexical phonological codes to orthographic representations
(Pugh et al., 2001; Price, 2012). Deficits with the processing of
grapheme-phoneme correspondence, in turn, are reflected in lower
activation in the dorsal stream. Likewise, automatic visual word
recognition deficits are reflected in lower activation in the ventral
occipital-temporal system (Richlan et al., 2011). Consequently,
when performing RAN tasks whose stimuli exhibit phonological or
visual similarities, this network tends to suffer more (Al Dahhan
et al., 2020; Christoforou et al., 2021a).

Despite these efforts to isolate the neural components for RAN,
the findings about the different brain regions identified do not tell
the complete story of the RAN-reading relationship. For example,
the evidence does not tell us why group or individual differences
exist or which are the most informative components that could
help replicate such findings with groups of different ages, varying
cognitive or linguistic abilities, or language. We argue that more
advanced methods are needed to isolate the most informative
components, explain group differences and improve the power of
analysis. FRPs, for example, can be used as markers of ability, but
we need more specific attributes to carry more information about
group differences.

In recent years, machine learning approaches are becoming
more prominent in analyzing EEG signals and studying
neurocognitive processes. Machine learning allows an algorithm
to isolate neural components that “optimally” characterize
group differences under different conditions; therefore having
the potential to detect more informative neural components than
traditional EEG analysis methods (i.e., average ERPs and traditional
frequency-band analysis). Several machine learning approaches
have been proposed to overcome the methodological constraints
of traditional EEG analysis methods. For example, single-trial
correlation analysis (Christoforou et al., 2013) was developed to
identify associations between continuous behavioral measures and
concurrent neuronal activity. It was applied to exploring the neural
underpinnings for the Stimulus Presentation Modality Effects in
Traumatic-Brain-Injury treatment protocols. In the context of
spatial cognition, a Common Spatial Pattern (CSP)-based single-
trial analysis algorithm was proposed (Christoforou et al., 2018) to
disambiguate the neural basis of two spatial-cognition processes,

namely Perspective Taking and Mental Rotation. Machine-
learning-based algorithms have been also proposed for decoding
neural activity during complex interactions, such as consuming
video and music context, toward studying user’s preferences
and affective state (Dmochowski et al., 2012; Christoforou et al.,
2017; Christoforou and Theodorou, 2021), as well as in other
decision making (Philiastides and Sajda, 2005). In the context
of reading and reading disorders, machine learning algorithms
were proposed for detecting informative neural components
during performing a phoneme elision task (Christoforou et al.,
2022a,b), and classifying dyslexic from non-dyslexic participants
during resting EEG (Rezvani et al., 2019). However, most of the
proposed machine-learning approaches assume some prior domain
knowledge of the spatial and temporal characteristics of the sought
EEG components. They also require experimenter-controlled
time-locked events (i.e., stimulus onset), and are typically limited
to within-participant comparisons because of the large inter-
subject variability in the EEG signals (Christoforou et al., 2010).
These methodological requirements do not hold in the case of
the serial RAN task which makes their direct application to RAN
ineffective.

In the present study, we explore a novel machine-learning-
based approach to isolate neural components informative of group
differences between children with dyslexia and controls during
the serial RAN. Our approach overcomes many methodological
challenges of traditional methods which enable us to extract
differential spatiotemporal profiles of neural components among
children with dyslexia and controls during RAN and in the
absence of experimenter-controlled time-locked events. Our
method first formulates an optimization problem for extracting
EEG components based on the Neural-congruency hypothesis.
This relates to the premise that neural activity elicited during a
cognitive task is similar (i.e., congruent) among participants that
have mastered the task but less congruent otherwise (Christoforou
et al., 2021b; Christoforou and Theodorou, 2021). Subsequently,
our approach optimally combines the resulting components to
identify neural differences between children with dyslexia and
controls. We demonstrate the ability of our approach to extract
informative neural components on a real EEG dataset involving
children with dyslexia and controls of ages 9 and 12 (i.e., 3rd
and 6th grade). Moreover, we examine the predictive power
of the resulting components under a set of phonological and
visual confounding RAN tasks. Importantly, our proposed analysis
approach serves as a novel methodological framework for studying
the neural underpinnings of cognitive processing in children under
the serial RAN, on which traditional analysis methods have proven
inadequate.

2. Materials and methods

2.1. Experimental task and data collection

The data we used in this study were collected as part of a
broader project aiming to identify the neural underpinnings of
dyslexia in children. In this section, we briefly describe the key
parameters of the RAN experimental task and the data collection
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procedure relevant to our analysis; we refer to Christoforou et al.
(2021a) for full details on the data collection apparatus.

2.1.1. Participants
Participants were recruited from Grades 3 and 6 from inner-

city public elementary schools in Cyprus. A total of 60 children
(36 boys, 24 girls, age range = 7.6 through 12.1 years) participated
in the study; all children were native Greek speakers. Two groups
were formed from this sample: a group of children with dyslexia
(DYS) and a chronological-age control group (CAC), based on a
stepwise group selection process (see Christoforou et al., 2021a)
using a lenient cutoff threshold on their reading fluency scores.
Particularly, thirty Grade 3 and Grade 6 children (19 males; mean
age = 9.6, SD = 1.5) who scored at least one standard deviation
below their respective age group mean on the reading fluency
tasks (word reading fluency and nonword reading fluency; ERS-
AB; Papadopoulos et al., 2009c) and within the average range
on verbal (Vocabulary Wechsler Intelligence Scale for Children—
Third Edition; Greek standardization: Georgas et al., 1997) and
non-verbal ability tasks (Nonverbal Matrices from the Cognitive
Assessment System; Niglieri and DAS, 1997; Greek standardization:
Papadopoulos et al., 2009b) were included in the DYS group.
Another group of 30 children (17 males; mean age = 9.92 years,
SD = 1.62) were randomly chosen from the same classes and
were matched to the DYS group on chronological age and gender.
Groups did not differ in age, F(1,58) = 0.22, ns, gender, χ2
(1, N = 60) = 0.28, ns, and the verbal and non-verbal ability
measures, Wilks λ = 0.98, F(2,57) = 0.70, ns. Parental consent
and school consent were obtained before to each assessment.
The study was carried out per the Cyprus National Bioethics
Committee recommendations (EEBK/EP/2011/10). It also received
approval from the Ministry of Education and Culture, Cyprus
(#7.15.01.27/17).

2.1.2. Serial RAN task
A computerized version of the serial Rapid Automatized

Naming task was adapted from the work of Jones et al. (2008)
to allow for simultaneous recordings of EEG and eye-tracking
measurements during the experiment. The RAN task comprises
four letter-matrix stimuli each encapsulating one of four conditions
that differed by the degree of visual and phonological confusability
among letters. In particular, the conditions encoded by the
stimuli were rime-confusable (Condition 1), rime non-confusable
(Condition 2), visual confusable (Condition 3) and visual-non-
confusable (Condition 4). In the rime-confusable condition, pairs
of letters that are phonologically confusable in the Greek alphabet
(i.e., β-θ, ε-υ; beta-theta, epsilon-upsilon) were presented adjoining
each other. In the rime non-confusable conditions, the pairs were
disjoined (i.e., β–ε, β–υ, θ–ε, θ–υ, beta-epsilon, beta-upsilon, theta-
epsilon, theta-upsilon). In the visual-confusable condition, pairs of
letters that are visually confusable in the Greek alphabet (i.e., ζ-ξ , ρ-
ϕ; zeta-xi, rho-phi), were presented adjoining each other. The visual
similarity was removed in the visual-non-confusable condition by
using the corresponding capital form of the letters (i.e., Z-4, P-
8). Each letter-matrix stimulus was organized in five rows and ten
columns. Participants were shown the corresponding letter-matrix
for each condition and asked to name each letter aloud, reading
from left to right and from top to bottom, as fast and as accurately

as possible. Before each conditioned stimulus, a fixation cross was
displayed on the screen to prime participants to focus their eye-gaze
at the center. The experimenter monitored the participants during
the experiment and pressed the SPACE bar button the moment
the participants name aloud the last letter of the letter-matrix. The
experimenter also controlled the transition from one condition to
the other. A schematic representation of the experimental task and
example stimuli is shown in Figure 1.

2.1.3. EEG and eye-tracking data collection
during RAN

All participants had to perform the serial RAN task while
simultaneous eye-tracking and EEG measurements were collected
during the session. Eye-tracking data were collected using the
EyeLink 1000 Plus eye-tracker (SR Research, Kanata, ON, Canada)
at a 1,000 Hz sampling rate. Eye fixations and saccade events
were automatically detected and recorded by the EyeLink parser
along with the raw gaze data. The stimuli were presented on a
Dell Precision T5500 workstation with an ASUS VG-236 monitor
(1,920 × 1,080, 120 Hz, 52 × 29 cm) at a viewing distance
of 60 cm. A chin rest was used to maintain the participant’s
head proper positioning and to improve measurement stability.
A nine-point calibration session was performed prior to experiment
to establish a correct mapping to screen coordinates. EEG data
were collected using a BioSemi Active-two system (BioSemi,
Amsterdam, Netherlands) at a sampling rate of 256 Hz. Before
to the experimental session, a 64-electrode cap was fitted to the
participants, following the 10/20 system. The DC offset of all
sensors was kept below 20 mV using electro gel. To align the
stimulus presentation time to the EEG and eye-tracking signal
streams, event markers were sent to each device at the beginning
and ending of each condition. Specifically, the event markers
were sent to the trigger channel of the EEG amplifier via parallel
port TTL signals and to the eye-tracking recorder via direct
ethernet event logs. Eye-tracking data were collected for each
participant in a separate data files; specifically an EDF file format
(default of the eye-link trackers), and the EEG data in a BDF
file format.

2.2. EEG and eye-tracking data
pre-processing

2.2.1. EEG data pre-processing
All EEG data preprocessing was implemented using custom

python code and the MNE python library. Preprocessing of
the EEG signals was performed separately on the recordings of
each participant. First the raw, continuous EEG data and the
corresponding trigger channel were loaded from the data file
(i.e., BDF data format file) using MNE library functions. Once
loaded, all EEG data channels were re-referenced to the average
channel. A 0.5 Hz high pass filter was used to remove DC drifts
and a notch filter at 50 Hz and 100 HZ was used to reduce
the power-line noise interferences. Markers in the EEG trigger
channel were used to identify the timestamp of the beginning
and end of each stimulus trial (i.e., each condition). Four EEG
sub-segments were generated for each condition, each segment
spanning 2 s before each stimulus onset to 2 s after the trial
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FIGURE 1

(Top) The four letter-matrix stimuli used in the serial RAN encapsulating the four experimental conditions, Rime-confusable (top-left),
Rime-non-confusable (bottom-left), Visual-confusable (top-right), and Visual-non-confusable (bottom-right). (Bottom) Schematic representation
of the serial-RAN trials, repeated for each one of the letter-matrix stimuli.

conclusion (i.e., after the participant finished reading all letters in
the letter-matrix). The baseline amplitude of each segment (i.e.,
activity from −200 ms to zero) was subtracted from each segment.
After basic EEG pre-processing, we have an EEG segment EEGp,c
for each participant p and condition c, each representing the entire
EEG recording of that participant reading the entire letter-matrix
of that conditions. It is important to note that the duration of
each EEG segment varies from condition-to-condition and from
participant to participant, as each participant took a different time
to complete the reading of each matrix.

2.2.2. Eye-tracking data preprocessing
Preprocessing of the eye-tracking data was also performed

separately for each participant. The eye-fixation data and the
corresponding event logs were loaded using the PyGaze Analyzer
python library. Information on the event logs was used to
determine the timestamp of the beginning and ending of each
stimulus trial. Each eye-fixation data point comprised an absolute
timestamp, the x-y screen coordinates of the fixation and durations
in milliseconds. The set of eye-fixation points was grouped into
four subsets, one for each of the four conditions. Each fixations
subset comprised those fixations whose timestamp fell within the
time window spanning the beginning and end of the stimulus
presentation of that condition. The timestamp of the stimulus

onset event of each condition (as recorded in the eye-tracking
data) was subtracted from the timestamp of each fixation within
that condition’s fixation subset to achieve temporal alignment
between the fixation data to the EEG data. Therefore, each fixation’s
timestamp is now relative to the onset of the stimulus.

2.3. Generating single-trial
fixation-related potentials

A particular challenge in analyzing EEG signals obtained
during the serial RAN is the lack of experimenter-controlled,
time-locked trials necessary to extract Event-related Potentials.
As such, we opted to explore the neural activity time-locked to
the onset of eye fixations; this activity is referred to as single-
trial Fixation-related Potential (sFRP). To extract the sFRP, we
integrate information from eye-tracking and EEG measurements.
In particular, the onset of each eye-fixation’s timestamp in the
dataset is used as a temporal marker to epoch the EEG segments.
More precisely, given an EEG data segment EEGp,c (i.e., the
segment generated during the EEG pre-processing step above,
which represents the EEG response of participant p while reading
the entire letter-matrix of condition c), and given the corresponding
set of fixations FIXp,c, we epoch the EEGp,c between −200 ms

Frontiers in Psychology 05 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1076501
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/


fpsyg-14-1076501 June 17, 2023 Time: 11:39 # 6

Christoforou et al. 10.3389/fpsyg.2023.1076501

to 500 ms of the onset time of each f ∈ FIXp,c and subtract the
baseline amplitude of each epoch. This procedure results in a new
set defined as

FRPp,c = {sFRPi}
|FIXp,c|
i=1

where sFRPi corresponds to the EEG epoch on the onset time of
the i-th fixation of FIXp,c. We note that the two sets have the same
cardinality. The generation of all sFRPs was implemented using
custom python code.

2.4. Reading-related neural-congruency
components

Our objective was to isolate neural components in the extracted
fixation-related potentials that were likely modulated by RAN tasks
and were informative of differences between CAC and DYS. Our
approach was motivated by the hypothesis that the neural activity
of participants that have developed adequate reading skills would
exhibit neural activation patterns congruent with other participants
with adequately developed reading skills. While contrarily,
participants who experienced reading difficulties would have neural
responses that deviated from such stereotypical patterns. Toward
this objective, we formulated an optimization procedure to isolate
neural components congruent among participants with sufficiently
developed reading skills and explore those components as potential
differentiation neuro-markers between CAC and DYS. Here, we
provide details of our approach to isolate such reading-related
neural-congruency components.

We seek to identify components (i.e., spatial projections of
the fixation-related potential) that capture neural activity that
maximally correlates among a group of children with adequately
developed reading skills (i.e., CAC group). For this, we formulate
an optimization problem as follows: for a group of S participants,
S = {s1, s2, . . . , sS} , where si ∈ Z+denotes a participants index,
representing a CAC group, we define the between-subject and
within-subject cross-covariance matrices was :

Rb =
1

S(S− 1)

∑
i∈S

∑
j∈S

(
1− δij

)
Rij

Rw =
1
S

∑
i∈S

Rii

where
Rij =

1
K
XiXT

j

where K is a normalizing scalar, δij is the Kronecker delta 1, and
Xs ∈ RD × S.F is the horizontally concatenated matrix comprised
of the fixation-related potential of a participant s during a given
condition (i.e., reading of a letter-matrix stimulus), defined as:

Xs = [ sFRP1, sFRP2, sFRP3, . . . , sFRPF]

For a spatial projection vector w ∈ RD, the average Pearson
Product Moment Correlation Coefficient between the fixation-
related potentials, projected onto vector w, across every pair of

1 Kronecker delta is defined as: δij = 1 if i = j; delta δij = 0 if delta i 6= j

participants in the group is then defined as:

ρ =
wTRbw
(wTRww)

We consider ρ as a measure of the degree of congruency
in reading-related neural activity (projected onto component w)
among participants with adequately developed reading skills. As
such, we seek to find the component w that maximized ρ. Taking
the derivative of ρ with respect to w and setting it to zero, we get
the solution of the optimization given as the eigenvectors to the
generalized eigenvalue problem:(

R−1
w Rb

)
wk = λkwk (1)

where wk is the k-th eigenvector of the matrix
(
R−1
w Rb

)
and

corresponds to the component (i.e., spatial projection vector)
that captures the k-th largest correlation in neural activity, and
λk is the corresponding eigenvalue and denotes the strength
of the correlation. We note that since

(
R−1
w Rb

)
is a D × D

matrix (D being the number of channels), there are D solutions
to the optimization problem (i.e. the D eigenvectors), each
identifying a component at different correlation strength, with
the first eigenvector (i.e., k = 1) having the strongest correlation,
and subsequent components appearing in descending order of
correlation strength. As such, the vector w1defines a component
(spatial projection) where neural activity is most strongly correlated
among participants in the adequately developed reading skills, w2
defines the component where neural-activity exhibits the second
strongest correlation among the groups, and so on.

To determine the reading-related neural-congruency (RRNC)
score of an individual participant s with respect to the kth
component, we measure the correlation between the fixation-
related potentials of the subject to the fixation-related potentials of
each subject in the group, after projecting both onto the component
wk. Formally, we define the reading-related neural congruency
score for a participant s and a component wk as:

RRNCs,k =
wT
kR

b
swk

wT
kR

b
swk

where

Rb
s =

1
S

∑
i∈S

Rsi + Ris, Rw
s =

1
S

∑
i∈S

Rss + Rii,

We calculate RRNC scores separately for each condition (i.e.,
Rime-confound, Rime-non-confound, Visual-confound, Visual-
non-confound). Moreover, to avoid training bias during the
component extractions, data from the subject to be tested were
excluded from the component extractions step. Finally, we define
the neural-congruency feature vector of each participant s as:

cs =
[
RRNCs,1,RRNCs,2, . . .RRNCs,K

]T (2)

Each RRNCs,k score measures the strength of the congruency
in neural activity between participant s and the CAC group, with
respect to the k-th component. Therefore, the neural-congruency
feature vector cs encapsulates the neural-congruency of participant
s, across all K components. In essence, the feature vector cs
characterizes the overall congruency observed in the participant’s
neural activity for each extracted component. We note that the
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FIGURE 2

Box-plot showing the distribution of the Cumulative RAN-related Neural Congruency scores for each experiment condition, and each group.

dimensions of the vector cs are indexed in descending order,
according to the lambda score of each extracted component.

2.5. Aggregation of RAN-related
neural-congruency components

Our goal was to explore whether information captured in the
feature vector of neural-congruency components cs is predictive
of differentiating between DYS and CAC groups during the RAN
task. Toward this objective, we considered two approaches for
aggregating the RRNC scores into determining markers of dyslexia.
The two approaches are detailed below.

2.5.1. Cumulative RAN-related
neural-congruency metric

The first approach defines a neural metric by simply summing
the RRNC score corresponding to the first K̂ components in
the neural-congruency feature vector (i.e., those with the highest

variance). Formally, given a feature vector cs of a participant s (as
defined in eq. 2), we define the Cumulative RAN-related Neural-
congruency metric (C-RRNN) as follows:

C − RRNNs =

K̂∑
k = 1

cs(k)

where the index k denotes the k-th element of the vector. The
value of K̂ = 3 was selected by identifying the ‘knee’ in the plot of
eigenvalues of equation 1, and was fixed across the calculation of
C-RRNN of all participants.

2.5.2. LASSO-weighted RAN-related
neural-congruency metric

The second approach learns a classifier that optimally
weights the contribution of each of the identified neural
congruency components to best differentiate between typically
developing children and children with dyslexia. In particular,
we employed a sparse Logistic Regression classifier with LASSO
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regularization, using the K = 10 components with the highest
lambda values as independent variables, and an individual’s
group (DYS or CAC) as the dependent variable. We opted
to use a sparse classifier because it minimizes the number of
non-zero parameters, thus, favoring selecting a small subset
of meaningful neural-congruency components. The classifier’s
prediction output corresponds to an optimally weighted-sum
of the individual neural-congruency scores that maximizes the
differentiation between DYS and CAC. Moreover, since the optimal
weights are calculated using the LASSO regularizations, we refer
to the resulting prediction score as LASSO-weighed RAN-related
Neural-congruency metric. In our analysis, a separate classifier was
trained on each of the four conditions (i.e., Rime-confusable; Rime
Non-confusable; Visual-confusable; Visual Non-confusable) using
a leave-one-participant-out cross-validation procedure to avoid
training biases.

2.6. Spatiotemporal profiles of
RAN-related neural-congruency

Given the solutions to the generalized eigenvalue problem,
the temporal profile of each component was calculated as the
product of each component ŵk, with each single-trial response and
taking the grant-average response of the projected components.
Moreover, the topographical profile (i.e., the forward model) of
each component was calculated as follows:

ak =
Rwŵk

ŵT
kRwŵk

The forward model captures the covariance between each
component’s activity as measured by each electrode.

2.7. Statistical analysis

To avoid training bias, all model parameters, including the
extracted neural-congruency components and classifier weights,
are trained using a leave-one-participant-out cross-validation
procedure. The classifier’s generalization performance is calculated
as the area under the Receiver Operator Characteristic curve (AUC)
on cross-validated scores. A permutation test is used to determine
statistical significance levels over AUC scores (10,000 repetitions).
A two-way ANOVA was used for group and grade comparisons,
with the neural congruency metrics as the dependent variable.

3. Results

3.1. Group comparisons using the
RAN-related neural-congruency metrics

For each participant, Cumulative Neural-Congruency scores
were calculated as the sum of the three components with the
highest lambda values, corresponding to the components whose
projection has the highest correlation. To avoid training biases
during the neural-congruency component identification, data from

the participant for whom the Neural-Congruency score was to be
calculated was excluded from the component identification step.
Neural-Congruency scores were obtained and analyzed separately
for each of the four conditions (i.e., Rime-confusable; Rime
Non-confusable; Visual-confusable; Visual Non-confusable). For
each condition, a separate two-way ANOVA was performed to
analyze the effect of group (i.e., CAC vs. DYS) and grade (grade
3 vs grade 6) on the Neural-Congruency scores. A two-way
ANOVA on Rime-confusable Cumulative RAN-related Neural-
Congruency scores shows a significant main effect of grade
(p < 0.04), with grade 6 group showing higher neural-congruency
than the grade 3 group. The analysis also releveled there was
not a significant interaction effect between the group and grade,
F(1,52) = 0.740, p = 0.39, nor a statistically significant effect for
group (p = 0.19). A two-way ANOVA on Rime non-confusable
Neural-Congruency scores revealed a significant main effect of
group (p < 0.01). Participants in the control group showed a
higher Cumulative RAN-Related Neural-Congruency scores than
the participants with dyslexia group. There was no main effect of
grade (p = 0.61), and there was no statistically significant effect
observed between group and grade F(1,52) = 1.67, p = 0.20.
On the Visual Confusable task, a two-way ANOVA revealed a
statistically significant interaction effect between the group and
grade F(1,52) = 4.22, p = 0.04. The analysis also revealed there
was not a statistically significant main effect of either the group
or the grade (p > 0.05). Finally, the Visual non-confusable task
revealed a main effect of the group (p < 0.01), with participants
in the control group showing a higher Neural-congruency scores
than the children with dyslexia group (DYS). No grade or
interaction effect between grade and groups were observed during
the Visual non-confusable. Figure 2, shows the box plots for
the four two-way ANOVA for each condition. Moreover, a two-
factor repeated measures ANOVA was performed to compare the
effect of modality condition (rime vs visual) and confusability
(confusable vs non-confusable). The analysis showed a statistically
significant difference in RAN-related Neural-Congruency scores
between modality conditions (p < 0.001) with the Rime modality
exhibiting higher scores.

3.2. Lasso-weighted RAN-related
neural-congruency as a significant
predictor of group differences across
conditions

We aimed to further explore the characteristics of the
underlying neural activity captured by the neural-congruency
components and determine the degree to which each neural-
congruency component contributes toward inferring an
individual’s group (i.e., DYS or CAC). We hypothesized
that a weighted aggregation of individual neural-congruency
components would carry predictive information about the
participant’s condition. We employed a sparse logistic regression
classifier using the ten components with the highest lambda values
as independent variables, and an individual’s group (DYS or CAC)
as the dependent variable. The classifier was modeled and trained
according to the procedure described in Section “2.5.2. LASSO-
weighted RAN-related neural-congruency metric.” The statistical
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significance levels over AUC scores were established using a
permutation test (10,000 repetitions). In all four conditions, the
cross-validated AUC scores of the classifiers show that the LASSO-
weighted RAN-related Neural-congruency metric predicted an
individual’s group. The prediction accuracy for all conditions,
the Rime-confusable condition (AUC = 0.86, p < 0.00001),
Rime Non-confusable condition (AUC = 0.86, p < 0.00001)
the Visual Non-confusable (AUC = 0.81, p < 0.00001), and the
Visual Confusable condition (AUC = 0.73, p < 0.005) was high
and statistically significant. The ROC curves and corresponding
AUC scores for each condition and the 95th-percentile envelop
of the ROC curve under the null-distribution are depicted in
Figure 3. The boxplot in Figure 4 shows the distribution of the
lasso-weighted RAN-related neural-congruency for each grade and
group and experimental condition.

3.3. Spatio-temporal profile of
neural-congruency components

The spatio-temporal profile of each RAN-related Neural
Congruency for all conditions is shown in Figure 5 and the
Supplementary material. Each spatio-temporal profile comprises
the “Forward model,” which shows the spatial distribution of
the correlated neural activity captured by the corresponding
component, and the temporal profile–the time course of the
FRP’s neural activity when projected onto that neural-congruency
component. Visual inspection of the temporal profile provides
insights into timeframe differences between groups and condition
intensify. Similarly, visual inspection of the forward model alludes
to potential brain areas from which the underlying neural
activity originated from. The weights associated with each channel
in the forward model capture the electrical coupling of the
correlated components. The components are ordered based on
their corresponding lambda scores, with component #1 reflecting
the highest lambda, and component #10 the smallest lambda value.
The LASSO-coefficients associated with each component are shown
over each component’s forward model and indicate the weight used
to aggregate the neural-congruency components.

3.4. Naming speed behavioral data
analysis

Analysis of the behavioral data obtained during the experiment
has been previously reported by Christoforou et al. (2021a) and
it is outside the scope of this papers. However, to provide the
context on our results on neurophysiological data, we include
a summary of the behavioral data analysis of this experiment.
A MANOVA analysis was performed on the behavioral data, with
the naming speed performance time for each of the four RAN
tasks as dependent measures and Group (2) as a fixed factor.
The main group effects was significant, Wilks’ Lambda = 0.754,
F(4,55) = 4.48, p < 0.01, η2 = 0.20. Subsequent univariate analyses
demonstrated that the group’s main effect was significant for all
individual measures after Bonferroni adjustments (Supplementary
Table 1). The DYS group performed significantly poorer than the
chronological age controls in all naming speed measures.

4. Discussion

Methodological difficulties in using traditional
neurophysiological techniques to investigate the neural
underpinning of dyslexia during serial RAN have hindered
the development of studies in that direction (Bakos et al., 2020;
Christoforou et al., 2021a). To help alleviate this problem,
we proposed a novel computational approach for identifying
neural components elicited during the serial RAN task. We
also explore the component’s contribution to characterizing the
underlying neural differences between children with dyslexia and
chronologically age controls in four experimental conditions.
Specifically, we formulated an optimization problem to extract
spatiotemporal components from EEG measures that maximize
the correlation between single-trial fixation-related potentials
during serial RAN. We treated RAN as an additional variable to
the diagnosis of reading difficulties, explaining the shared variance
of the disorder. Based on the resulting components, we defined the
per-subject neural-congruency scores that indicate the degree to
which each participant engaged in neural processes relevant to the
RAN task. Results show that the neural-congruency components
capture the neural activity of cognitive processes associated with
reading and are informative of group differences between children
with dyslexia and typically developing children. Moreover, our
results provide insights into the spatial and temporal characteristics
of the underlying mental process involved in the naming speed and
points to which potential neuro-cognitive mechanisms differentiate
between children with and without dyslexia. These findings are
robust given the careful matching of the participating groups
based on their verbal and non-verbal ability and demographic
variables. Furthermore, the study findings contribute to the
relevant research because previous evidence has overlooked the
contribution of neurophysiological measurements during serial
RAN tasks and their relation to behavioral measures (i.e., naming
speed) that together might explain reading performance and
related difficulties.

4.1. Differences between DYS and CAC in
the cumulative RAN-related
neural-congruency components

Regarding the contribution of the Cumulative RAN-related
neural-congruency components in differentiating between
children with and without dyslexia, the results revealed
significant differences between the groups in the both non-
confusable conditions (i.e., Rime non-confusable, and Visual
non-confusable). Specifically, on the one hand, cumulative RAN-
related neural-congruency scores in typically developing children
were significantly higher than their counterparts in the DYS
groups. This finding denotes an increase in the synchronicity in
neural activity in the CAC groups, which suggests that the CAC
group has developed a more consistent stereotypical response
in neural activations when engaging processes associated with
the execution of the serial RAN task. Breznitz and colleagues
(Breznitz, 2001, 2003; Breznitz and Misra, 2003) have proposed
the ‘synchronization hypothesis’ to describe this phenomenon.
According to this hypothesis, accurate information integration in
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FIGURE 3

Shows the ROC curves of the predictions based on the LASSO-weighted RAN-related Neural-congruency components. The gray area denotes the
ROC score under the null hypothesis (i.e., neural-congruency scores between DYS and CAC groups are indistinguishable). All four graphs show that
the LASSO-weighted RAN-related Neural-congruency scores carry significant predictive information as the condition (i.e., DYS or CAC) of the
participants.

decoding words can occur only when the modalities and brain
systems are synchronized. This synchronization, therefore, requires
that the processing speed and the accuracy with which content
information is processed and transferred within and between the
various activated neural systems are readily available. Our findings
further confirm this hypothesis that this synchronicity in neural
activity is evident in typically developing readers but to a lesser
degree in children with dyslexia.

Indeed, on the other hand, the consistency in the synchronicity
of the responses diminishes across the DYS groups, suggesting
a lack of regularity in the processing the letter stimuli in
the serial RAN. Visual inspection of the time course of the
three neural-congruency components used in calculating the
Cumulative RAN-related neural-congruency score suggests that
the difference in congruency appears between 100 ms–200 ms
following the fixation onset. The analysis also shows that the effect

that emerged in the non-confusable tasks is not present in the
confusable tasks (i.e., Rime-confusable, and Visual-confusable).
That is, there were no significant differences observed in the
Cumulative scores between DYS and CAC. We interpret these
effects in the context of neural efficiency theory. Specifically, we
argue that the CAC group has developed efficient mechanisms
for recognizing, decoding, and reading letters as captured by
the consistency in the neural responses across participants. In
contrast, the DYS group does not show the same regularity in
neural responses, suggesting the corresponding mechanisms for
recognizing, decoding, and reading letters are less fine-tuned in
the DYS group. This latter finding has additive value to Breznitz’s
Asynchrony Theory (Breznitz, 2008) which proposes that dyslexia
is an outcome of the failure to synchronize the various brain
entities activated during reading-related processes. Nevertheless,
this asynchrony is also evident for children with dyslexia and their
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FIGURE 4

Box-plot showing the distribution of the LASSO-weighted RAN-related Neural Congruency scores for each experiment condition, and each group.

typically developing counterparts when the stimulus’ complexity
increases – as occur in the rime or visual confusability. This
finding underscores the need for additional neural resources to
resolve the stimulus’s confounding elements (rime or visual).
To that end, the Cumulative RAN-related neural congruency
components, fail to capture a consistent neural-response across
either of the groups.

4.2. Differences between DYS and CAC is
the lasso-aggregate neural-congruency
components

Although the simple aggregation of the top three neural-
congruency scores revealed significant differences between groups
under the non-confounding conditions, we hypothesized that
an optimally weighted sum over all ten neural-congruency
components would capture additional differences in neural
activations between groups. Indeed, the sparse logistic regression

classification revealed that an optimally weighted aggregation
over the neural-congruency components differentiates between
CAC and DYS across both confounding and non-confounding
conditions. These results suggest that components beyond
the three with the highest lambda values do capture neural
activity relevant to the task. Moreover, the weights associated
with each component differ in both amplitude and sign
(i.e., they can contribute either positively or negatively to
the sum). This finding suggests that the neural activations
captured by each individual component might appear with
different intensity and polarity in each group. For example, one
component that might capture activity associated with character-
disambiguation might exhibit stronger synchronicity in one
group (i.e., contributing positively to the sum); however, another
component might exhibit stronger synchronicity in the other
group. Thus, simple aggregation of components might result in
cancelling out this effect. Overall, our classification model suggests
that individual components must be considered when analyzing
neural activations.
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FIGURE 5

Spatiotemporal profiles of RAN-related Neural-congruency
component for the rime-confusable condition; The corresponding
plots for all conditions are provided in the Supplementary material.

4.3. Interpretation of the spatiotemporal
profiles

Spatial (i.e., the forward model) and temporal profiles
of the extracted components are depicted in Figure 4 for
each condition. The forward model of the neural-congruency
component #1 (i.e., the one with the highest lambda score) exhibits
a similar topography across all four conditions; moreover, their
corresponding temporal profiles show the neural activity is most
strongly modulated at a time window of around 100 ms. The
similarity suggests that component #1 captures neural activity
common to all four conditions, albeit at different intensity levels.

At the very least, this finding confirms previous evidence showing
that processing complex features of textual stimuli is reflected in
the electrophysiological responses around 100 ms after stimulus
presentation (Hauk et al., 2006).

The temporal profile of components #10 shows similarity
in waveform across the four conditions and a peak amplitude
at around 100 ms following the fixations onset. Similarities in
the spatial profiles are observed among some of the remaining
components as well, although the indexing/ordering of those
components varies among conditions. Such similarities suggest
that the matching neural-congruency components likely capture
neural activity originating from the same underlying source. The
variation in the indexing is expected since the ranking of the
components is established independently for each condition and
depends on the relative strength of all the neural-congruency
components in that condition. Interestingly, several projected
temporal profiles in each condition display a stereotypical response
consistent with neural activations often observed in traditional
grant average Event-related Potential analysis (i.e., N/P100 and
N170). For example, the temporal profile of component #9 shows
an N170 waveform response with visible differences in amplitude
at around 170 ms between CAC and DYS. Moreover, the forward
model topography of this component shows it to emerge more
strongly in electrodes over the left posterior-occipital regions.
In the literature, the difference in N170 over the left-posterior
occipital region is regarded as an electrophysiological marker of
visual expertise (Varga et al., 2020). Particularly, children with a
lower letter knowledge, as pre-readers, have shown reduced N170
amplitudes and delayed N170 latency compared to typical readers
during letter-string presentations (Maurer et al., 2005). Therefore,
component #9, extracted by our method, can be interpreted as
potentially indicating a visual precursor to literacy resulting from
familiarity with letter strings. Furthermore, negativity components
at 170 ms have been associated with attention modulation (i.e.,
Kropotov, 2016), and in turn, attention represents a known latent
common cognitive factor of RAN and reading (Papadopoulos
et al., 2016). Therefore, part of the neural activity captured by
the component could also reflect those distal processes. Moreover,
several forward model scalp plots display topographies that often
arise as the “forward problem” solutions to single-source dipole
models, indicating that those components likely capture source-
localized neural activity of different neural processes. Finally,
components with high lasso coefficients (i.e., either positive or
negative) capture underlying neural activity that more strongly
differentiate between DYS and CAC. Thus, group differences
among groups appear in the underlying sources modeled by those
components.

Further studies could investigate these components in more
detail and draw additional conclusions about the neural and
cognitive processes that contribute to these differentiations.
For example, an interesting expansion of these findings relates
to examining the validity of the suggested neural-congruency
components analysis against other more conventional EEG
analyses. Given that the literature has only recently started to
investigate the important information that the FRPs can provide to
studying the RAN-reading relationship or other similar correlates
of reading performance (e.g., Christoforou et al., 2021b; Fella et al.,
2022), the present findings are considered a promising beginning
of this quest. Another interesting expansion would be to examine
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the relationship of the extracted neural congruency components
to eye-tracking-based metrics during RAN, such as the recently
proposed entropy-based gaze time-series analysis on RAN (Wang
et al., 2022).

In conclusion, the RAN-related neural congruency component,
identified by our proposed method, carry information on
the neural basis of naming speed that differentiates between
children with dyslexia and their typically developing counterparts.
The topographies of the resulting components suggest that
each component likely captures source-localized neural activity
corresponding to distinct neural processes. Moreover, neural
differences appear to be distributed across several RAN-related
Neural-congruency components but at different intensity levels.
Therefore, optimally combining the RAN-related components
using machine learning enhanced the power of analysis in
identifying differences in both the confusable and non-confusable
conditions, which have been missed by simple aggregation of the
RAN-related Components. Our findings also support the Neural-
congruency hypothesis (Christoforou et al., 2021b; Christoforou
and Theodorou, 2021), indicating that neural activity elicited
during cognitive tasks is more congruent among participants that
have mastered the cognitive skills but less congruent otherwise.
Finally, our proposed approach opens up new research directions
in studying the neural underpinnings of naming speed and their
association with reading performance and reading difficulties. For
instance, until recently, evidence concluded that individuals with
reading difficulties show increased reliance on inferior frontal
regions of the reading network and right-hemisphere posterior
regions (e.g., Richlan et al., 2011; Norton et al., 2015). The
present findings show that several brain areas contribute to the
execution of naming tasks which show similarities with reading
tasks. Although simple at the surface level, RAN tasks are multi-
componential, as is reading (Papadopoulos et al., 2016). Thus,
we believe that the present method succeeded in better defining
the properties of other processes (including those of reading)
that RAN carries and how these are critical in determining
naming speed’s influential role on reading performance. At the
very least, capturing the RAN performance in the form of neural
components helps us better understand the process involved
in performing RAN tasks and explore some reasons for poor
performance. Next, provided that the generated components will
be further systematically tested against behavioral performance
measures, the likelihood of deciphering issues relevant to the
significant similarity of the RAN and reading measures, such
as seriality, is possible (see Altani et al., 2020). Thus, in
future work, we plan to further explore the spatiotemporal
characteristics and brain sources of the RAN-related Neural-
congruency components and the relationship between the neural
underpinnings of naming speed - as captured by the Neural-
congruency components- and reading difficulties, as well ex
explore eye-tr.
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