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The fractured reservoir is one of the significant petroleum reservoir types in China,
representing over one-third of total reserves. The Kuqa Depression in the Tarim
Basin is dominated by fractured low-porosity sandstone gas reservoirs with
characteristic tight matrix, developed fractures, and edge and bottom water.
However, the continued development of these reservoirs has led to various
problems, including strong reservoir heterogeneity, low well control, complex
gas-water relationships, and early water invasion. Addressing these issues requires
a detailed understanding of the reservoir’s geological characteristics. Onemethod
for achieving a fine reservoir description is through the use of 3D geological
modeling. This high-level, comprehensive characterization technique is widely
used throughout the entire life cycle of oil and gas field development. A 3D
geological model can accurately predict the actual underground reservoir
characteristics and provide a geological basis for later numerical simulation
work. Based on a study of the geological characteristics of the Kuqa
Depression in the Tarim Basin, a 3D geological modeling technique was
developed, which includes structural modeling, facies modeling, petrophysical
modeling, and fracture modeling. This technology has been successfully applied
to many deep gas reservoirs in the Kuqa Depression of the Tarim Basin, leading to
enhanced gas recovery.
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1 Introduction

The concept of 3D geological modeling was proposed in the late 1980s. After 4 decades of
development, significant progress has been made in modeling methods, algorithms, and
software. Nowadays, it is moving toward big data analysis, deep learning, and artificial
intelligence (Høyer et al., 2015; Li et al., 2016; Varga andWellmann, 2016; Snyder et al., 2018;
Liu et al., 2021a; Zhou et al., 2021; Shi and Wang, 2022). 3D geological modeling is an
interdisciplinary field that integrates geology, mathematics, and computer science. This
method comprehensively utilizes seismic, geology, well logging, well testing, and reservoir
engineering data to establish a 3D digital quantitative geological model by quantitatively
characterizing the structure, sedimentation, reservoir properties, and fluid properties (Jia
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et al., 2007; Wu and Li, 2007; Calcagno et al., 2012; Jørgensen, 2015;
Schneeberger et al., 2017; Ursegov et al., 2018a; Grose et al., 2019;
Chen et al., 2021; Yuan et al., 2022; Zhan et al., 2022). Numerous
studies have been conducted on 3D geological modeling in recent
years. For example, Qiu and Jia (2000) summarized the technology
development of geological modeling in the past decade in China and
accurately proposed the development direction of the fine outcrop
study, stochastic modeling method, high-resolution sequence
stratigraphy, and well-to-seismic ties. By using the modeling
method of “multi-phase constraint, hierarchical facies control,
and multi-step modeling”, Guo et al. (2015) solved the problem
of poor application of traditional modeling methods in braided
fluvial tight sandstone gas reservoir of the Sulige gas field, and it
improved the accuracy and reliability of the prediction model. Hu
et al. (2014) built an accurate model highly consistent with the
oilfield production performance by applying the “multi-stage, multi-
condition” constraint modeling method of seismic inversion.
Ursegov et al. (2018b) proposed a new adaptive approach to
create full-field geological and hydrodynamic models of
unconventional carbonate reservoirs with heavy oil, and the
adaptive hydrodynamic models were history-matched. Irakarama
et al. (2021) proposed a newmethod for implicit structural modeling
that extended the inherent properties of the classic one-dimensional
discrete second derivative operator to higher dimensions, and the
results were robust and numerically efficient.

The Kuqa Depression development of the Tarim Oilfield
currently faces the challenge of maintaining stable production
and expediting production initiation. One crucial issue that needs
to be addressed is the determination of an optimal well count and
gas production rate within the Kuqa Depression. However, due to
the limited availability of data, it becomes imperative to establish
a refined 3D geological model that accurately represents the
subsurface characteristics during this development period. 3D
geological modeling is an essential technique for the
characterization of reservoirs and is widely used in all stages
of oil and gas field development. The geological model provides
the basis for the reservoir development plan, such as the
prediction of the development index, the deployment of well
locations, and the design of well trajectories. However, due to the
unique reservoir characteristics of deep burial (6000–8000 m),
strong heterogeneity (sand ratio of 15%–90%), low matrix
porosity (4%–12%), and fracture development
(0.1–0.8 numbers per meter) in the Kuqa Depression of the
Tarim Basin, there are several challenges in 3D geological
modeling. Firstly, due to the buried depth of the Kuqa
reservoir being generally more than 7,000 m, the poor seismic
data limits the accuracy of the underground structure
characterization. Secondly, the “small number of wells and fast
production construction” development plan only allows for
1–3 wells at the early development stage, making it difficult to
predict reservoir properties at the edge accurately. Thirdly, with a
low well pattern density of 8–12 wells per square kilometer and a
large well spacing of 2–5 km, it is challenging to predict inter-well
characteristics accurately. Finally, the widespread development of
fractures in the Kuqa reservoir presents difficulties in describing
fracture parameters such as shape, length, and aperture
and predicting fracture distribution through 3D geological
modeling.

2 Geological setting

The Kuqa Depression of the Tarim Basin is mainly a fractured
gas reservoir with abundant resources. The proven reserves of the
Kuqa reservoir are 1476.7 billion cubic meters, which accounts for
68% of the proven gas reserves and 72% of the gas production in the
Tarim Oilfield. It is the main block responsible for increasing
reserves and production in the Tarim Oilfield (Figure 1). Keshen
8, Keshen 24, Dabei 102, Dabei 201, Bozi 1, Bozi 3, and other gas
fields are the primary reservoirs, and they generally have
characteristics of ultra-deep, high temperature, high pressure, low
porosity, low permeability, and developed fractures. The reservoir
depth ranges between 6,000 and 8,000 m, while the reservoir
pressure and temperature range between 100 and 130 MPa and
140°C–190°C, respectively. Additionally, the reservoir thickness
ranges between 260 and 350 m, while the effective matrix
porosity and permeability are 4%–12% and 0.05–0.15×10 –3μm2,
respectively. Currently, the total number of gas wells in this area is
232, with 182 wells in production (78.4% of the total). The average
well production is 374,000 m3/day, and the gas recovery rate ranges
between 2% and 3%.

3 Materials and methods

The Kuqa Depression in the Tarim Basin is a sedimentary system
that includes alluvial fan, fan delta or braided river delta, and shore-
shallow lake (Gu et al., 2001; Zhang et al., 2008; Pan et al., 2013; Lai et al.,
2018; Liu et al., 2019; Liu et al., 2021b; Chen et al., 2021; Liu et al., 2022;
Liu et al., 2022). The subfacies are mainly subaqueous distributary
channels and mouth bars of the fan delta or braided river delta. The
provenance is mainly from the South Tianshan debris, and the
paleocurrent flow direction is from north to south. The sandbody is
relatively stable, and the lithofacies aremainly sandstone andmudstone.
The main sandbody of the Kuqa reservoir is formed by multi-stage
channels that overlay and connect with each other. Outcrop studies
show that the thickness of themud interlayer is less than 4 m, the length
of themud interlayer is 10–600 m, and the density of themud interlayer
is 0.1–0.4 m per meter. Logging analysis shows that the mud interlayer
thickness is 1–5 m, themud interlayer frequency is 0.1–0.3 numbers per
meter, and the mud interlayer density is 0.1–0.8 m per meter (Figure 2).
The interlayer is primarily distributed among sandbodies, while its
continuity is deficient, leading to a lack of sealing effect on the reservoir.
This study indicates that the reservoir exhibits robust connectivity.

Under the multi-stage tectonic movement during Yanshanian
and Himalayan periods, the fault system demonstrates substantial
development. Within the designated study area, a comprehensive
analysis reveals the existence of 41 secondary and tertiary faults,
exhibiting varying lengths ranging from 440 to 29,054 m. These
faults primarily exhibit a predominant trend oriented in the NEE
direction. Fractures are generally developed in the Kuqa reservoir.
The fractures are typically high-angle or vertical structural fractures,
with a density ranging from 1 to 5 fractures per meter (Figure 3).
These fractures are primarily semi-filled or unfilled, and the fillings
are predominantly composed of calcite and gypsum. The aperture of
the fractures ranges from 0.1 to 0.6 mm, and the fracture
effectiveness is generally good (Figure 4). Fractures can be
classified into three types based on their genetic mechanisms,
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geometric scales, and penetrability: large-scale, medium-scale, and
small-scale. Large-scale fractures possess the ability to penetrate
multiple sets of compound sandbodies, with lengths that can extend
up to hundreds of meters, heights reaching tens of meters, and
apertures measuring several millimeters. They primarily control
inter-well and inter-layer seepage flow. Medium-scale and small-
scale fractures, on the other hand, tend to be relatively limited in
scale, predominantly developing within the sandbody and exhibiting
lengths generally less than 100 m. These types of fractures mainly
exert influence over inner-layer seepage flow (Table 1).

Aiming to address the primary challenges of 3D geological
modeling of deep fractured low porosity sandstone gas reservoirs, a

3D geological modeling technique has been developed for the Kuqa
Depression of the Tarim Basin, building upon existing 3D geological
modeling methods and geological data. This technique includes
structural modeling using well top and seismic data, facies modeling
using lithology data, petrophysical modeling using matrix property
data, and fracture modeling using imaging logging data. During the
modeling process, performance data such as initial production andwell-
testing data are fully utilized, resulting in building amulti-scale fracture-
matrix-performance 3D geological model (Figure 5). The 3D geological
modeling technique comprises four key techniques: 1) Structural
modeling under well-to-seismic ties, 2) facies modeling under the
stochastic object, 3) reservoir petrophysical modeling under facies

FIGURE 1
Gas reservoir distribution of the Kuqa Depression in the Tarim Basin (modified from the Tarim Oil Field Company report).

FIGURE 2
Mud interlayer statics of typical gas wells in the Kuqa Depression.
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FIGURE 3
Fracture characterization of the Kuqa River outcrop.

FIGURE 4
Fracture and filling characterization of well BZ104 coring. (A) High-angle structural fracture developed; (B) Gypsum is filled in the fracture.

TABLE 1 Fracture classification standard in the study area.

Fracture
scale

Main distribution characteristics Length Height Aperture Geostress Seepage flow

Large-scale Penetrate through multiple sets of compound sandbodies and
cut across the mudstone interlayers

>100 m 10–100 m 1–10 mm Local geostress
field

Control inter-well and
inter-layer flow

Medium-scale Develop within the compound sandbodies and cut across the
bedding, with distribution controlled by the mudstone

interlayers

10–100 m 1–10 m 0.1–1 mm Derivative
geostress field

Control inner-
layer flow

Small-scale Develop within the sandbody and is controlled by bedding <10 m 0.01–1 m 0.01–0.1 mm Derivative
geostress field

Control inner-
layer flow
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constraint, and 4) fracture modeling under multi-condition constraint
and static-performance data combined.

The research area encompasses two geological components,
namely, matrix and fractures. Initially, a comprehensive grid model
is constructed by integrating seismic, fault, surface, and well
topographical data, employing the “structural modeling under well-
to-seismic ties” within structural modeling. This grid model
incorporates fault and surface models, providing a solid foundation
for subsequent modeling stages. Subsequently, leveraging the grid
model, the lithofacies model is established through the application of
“facies modeling under stochastic object,” taking into consideration
logging data related to lithofacies, porosity, permeability, and gas
saturation. Furthermore, the “reservoir petrophysical modeling under
facies constraint” is employed to build models for porosity,
permeability, and gas saturation. Lastly, employing field outcrop,
core, seismic, and imaging logging data, an innovative approach
“fracture modeling under multi-condition constraint and static-
performance data combined” is employed in fracture modeling. By
incorporating dynamic data such as production data, well-test data, flow
meter data, and mud loss data, the fracture modeling process is
effectively constrained, leading to the establishment of a 3D
geologicalmodel that accurately reflects the actual geological conditions.

4 Results

4.1 Structural modeling under well-to-
seismic ties

Aiming to address the poor quality of seismic data in the Kuqa
Depression, the wide-azimuth seismic technique has been utilized to
enhance the signal-to-noise ratio and resolution of the seismic data.
Wide-azimuth seismic is employed to enhance the azimuth angle of
seismic sampling, consequently augmenting the aspect ratio of the

azimuth observation acquisition system from 0.22 to 0.45. In
comparison to conventional 3D seismic data, the seismic data
obtained through this high-density wide-azimuth seismic
technology encompasses a more comprehensive seismic wave
field, facilitating richer amplitude imaging and azimuthal
anisotropy information. This expanded dataset serves as a
foundation for subsequent seismic data processing and
interpretation, offering a more precise and detailed basis for the
accuracy demands of 3D structural modeling. The method of well-
to-seismic ties has been applied to interpret the target structure,
resulting in a significant reduction in the error of target depth to
within 25 m. Additionally, over the past 5 years, the well drilling
success rate has been 100%.

Structural modeling is the first and most critical step in 3D
geological modeling, providing the framework for facies and
petrophysical modeling. The accuracy of the structural model is
essential for ensuring high-quality modeling results (Wu et al., 2005;
Marquer et al., 2006; Calcagno et al., 2008; Pakyuz-Charrier et al.,
2018b; Zhong, 2019; Almedallah et al., 2021; Hillier et al., 2021; Lan
et al., 2021). Structural modeling involves the development of both
fault and surface models, with the well-to-seismic ties method
employed to create the structural framework based on fine
structural interpretation.

Based on the contour map derived from seismic interpretation,
the faults are imported into the modeling software. Then, the faults
from different surfaces are classified, which are used to analyze the
vertical extension length and dip angle. After building the initial
fault model, the model is repeatedly modified according to the fault
relationships using a 3D visual interactive window. This is done to
ensure that the fault model is consistent with the seismic surface and
that the distribution of faults in three-dimensional space is
reasonable.

The first step in building the surface model is pillar gridding,
which divides the structure into thousands of grids to reflect the

FIGURE 5
Flow chart of multi-scale fracture-matrix-performance 3D geological modeling.
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structure’s elevation. Considering the complex anticline structural
reservoir and computing speed, a plane grid size of 50 m × 50 m is
adopted. Typically, well tops and structural maps are used to
constrain surface modeling. However, some Kuqa reservoirs
modeled by this traditional method have issues such as
formation pinch-out and formation crossing, which differ from
the actual underground formation. Due to the stable sedimentary
environment, the Kuqa reservoir has relatively uniform formation
thickness, and the poor seismic data makes it difficult to match the
well tops exactly with the structure. Therefore, a comprehensive
dataset of top structure, bottom structure, and well tops is used to
build the surface model. The structural model created using this
method is more consistent with the actual structural characteristics
(Figure 6).

4.2 Facies modeling under the stochastic
object

Facies modeling involves two main methods: deterministic
modeling and stochastic modeling. Common methods used in

facies modeling include object modeling, truncated Gaussian
simulation, sequential indicator simulation, multipoint
simulation, and indicator Kriging simulation. Each of these
methods has its own advantages and applicable conditions, and
the optimal method should be selected based on the geological
conditions of the gas reservoir being studied (Falivene et al., 2006;
Correia et al., 2014; Wellmann et al., 2014; 2018; Pakyuz-Charrier
et al., 2018a; 2019; Wellmann and Caumon, 2018; Ferrer et al., 2021;
Laudadio et al., 2022).

Because of the challenges posed by the strong heterogeneity, low
well control degree, and limited wells in the Kuqa reservoir, the
stochastic object modeling method is adopted to build a facies model
based on the geological characteristics of the study area. This
method involves stochastically simulating the facies model using
object parameters such as shape, length, width, thickness, and
direction to reflect the statistical probability and trend
distribution of the geological object. Based on the lithology and
sedimentation analysis, sandstone is used as the background and
mudstone as the object during the stochastic simulation. The
mudstone content is derived from well logging analysis, and
geological parameters, such as direction, length, length-width

FIGURE 6
3D structural model of the study area. (A) Surface and faults model; (B) Intersection of the 3D structural model.
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ratio, and thickness, are primarily based on outcrop and single-well
statistical research. Furthermore, the mudstone distribution is used
as a trend to constrain the facies modeling and accurately predict the
facies distribution between wells. The Kuqa facies model obtained
using this method accurately shows the sandbody distribution, and
the geometric characteristics of the subaqueous distributary channel,
mouth bar, and interdistributary bay are consistent with the
previous geological research (Figure 7). Influenced by the
provenance from the north, the formation of the braided river
delta front sedimentary system occurs in a north-to-south
direction. The model exhibits a sand ratio of 69.1%. Regarding
the spatial distribution, the central and western regions display a
greater thickness of sandstone in the horizontal plane. In the vertical
direction, as depth increases, there is a gradual increase in the
content of mudstone, accompanied by a gradual decrease in the sand
ratio.

4.3 Reservoir petrophysical modeling under
facies constraint

Similar to the facies modeling simulation methods, petrophysical
modeling of the reservoir involves techniques such as sequential
Gaussian simulation, Gaussian random function simulation, Kriging
simulation, and moving average simulation (Linsel et al., 2020; Yong
et al., 2020; Giraud et al., 2021; Ursegov et al., 2021). In line with the
geological features of the study area, sequential Gaussian simulation is
utilized to stochastically model the reservoir properties, including
porosity, permeability, and gas saturation under facies constraints.

Due to the nappe-thrust tectonic movement in the study area,
each block exhibits morphological features with a long axis in the
east-west direction and a short axis in the north-south direction,
where the long axis is perpendicular to the provenance direction.
With a large well spacing, the variogram analysis of various
petrophysical data must consider the structural and sedimentary
characteristics to determine key parameters such as major range,
minor range, and vertical range. Failure to consider these

characteristics during variogram analysis can lead to the
mistaken assumption that the main major range is in the east-
west direction, which is inconsistent with the actual provenance
direction of the north-south direction. This contradiction between
the petrophysical model and actual reservoir characteristics can be
avoided by considering the structural and sedimentary
characteristics during variogram analysis.

Using facies constraints during sequential Gaussian simulation
can help predict properties in different facies and reduce uncertainty
between wells (Liu et al., 2022; Liu et al., 2023). The lithologies of the
Kuqa reservoir are predominantly sandstone and mudstone. Range
parameters from variogram analysis are used in sandstone
petrophysical modeling, while a minimum value (porosity is 1%,
permeability is 0.001 × 10−3 μm2, gas saturation is 1%) is directly
assigned for the mudstone petrophysical modeling. The model is set
with a major range of 1480.3, a minor range of 876.9, and a vertical
range of 4.3. By conducting statistical probability analysis on the
acoustic impedance and lithofacies types (sandstone and mudstone)
at the well locations, the relationship between different lithofacies
and corresponding acoustic impedance is established. Additionally,
the probability of porosity occurrence in mudstone for different
acoustic impedance is determined through correlation analysis. The
research findings indicate a positive correlation between
permeability and porosity in the study area. To enhance the
accuracy and reliability of the permeability model, we integrate
porosity as a co-Kriging parameter. This integration allows us to
control the permeability model based on the corresponding
porosity, and we improve the accuracy and reliability of the
permeability model in the study area. This study leverages single
well logging interpretation to establish the gas saturation data, which
serves as the foundational input for simulating the static distribution
relationship between gas and water within the reservoir using a
random simulation algorithm. The resulting porosity, permeability,
and gas saturation models contain geological characteristics of
sedimentation and petrophysical distribution, which are more
consistent with the actual geological characteristics (Figure 8).
The model exhibits a porosity range of 3.5%–8.2%, with an

FIGURE 7
3D facies model of the study area.
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average porosity of 4.5%. The permeability ranges from 0.06 to 4.7 ×
10−3 μm2, with an average permeability of 0.068 × 10−3 μm2. The gas
saturation ranges from 50% to 81%, with an average of 63%. In terms
of spatial distribution, the middle reservoir demonstrates favorable
properties overall on the horizontal plane. However, as the burial
depth increases in the vertical direction, the reservoir properties
gradually deteriorate.

4.4 Fracture modeling under multi-
condition constraint and static-
performance data combined

Fracture modeling using seismic attributes, such as the ant-
tracking technique, cannot accurately identify fractures in the Kuqa
Depression of the Tarim Basin due to poor seismic data quality.

FIGURE 8
3D reservoir petrophysical model of the study area. (A) Porosity model; (B) Permeability model; (C) Gas saturation model.
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Therefore, in fracture modeling, it is necessary to consider various
influential factors such as geostress, faults, and structural position
that affect the development of fractures. Through comprehensive
analysis involving field outcrops, core observations, experimental
analysis, and other methodologies, a comprehensive examination of
various factors influencing the extent of fracture development has
been conducted. Genesis analysis indicates that fractures are
primarily controlled by factors such as faulting, folding,
structural location, and lithology. These factors play significant
roles in shaping the development and distribution of fractures.
We assume that these fractures are further constrained by
curvature, geostress, distance from the anticline axis, and distance
from the fault. Fracture development is concentrated near faults and
folds where geostress is concentrated, with the 200–300-m area
around these structures being the primary fracture development
zone. Different lithologies have different rock mechanics
parameters, leading to varying numbers of fractures formed
under the same geostress. The Kuqa reservoir has a tight matrix,
and the fractures developed around the wells are the primary
channels for fluid flow into the wellbore. Initial production data
can effectively reflect the fracture development around the wells.

Based on the analysis of fracture azimuth, the fractures in the
Kuqa Depression have been divided into two groups with nearly
north-south and nearly east-west directions, respectively. By
coupling the characteristics of the paleostress field, three main
periods of fracture formation have been determined. It is
considered that the Himalayan period is the primary formation
period, during which the fractures have a low filling and good
effectiveness under compressive geostress.

With the rapid development of fracture research and computer
technology in recent years, fracture prediction has evolved from
conventional interpolation methods to space subdivision methods,
such as discrete fracture network modeling (Benedetto et al., 2014;
Pellerin, 2014; Hyman et al., 2015; Azim, 2021; Ceccato et al., 2021;
Wang et al., 2021; Berrone and Raeli, 2022; Lopes et al., 2022; Yan
et al., 2022). Stress-intensity factors are relative to fracture pressure,
fracture height, and layer stress (Li et al., 2022). Equilibrium fracture
height can be calculated based on the relationships between the
stress-intensity factors at the tips and the fracture toughness in the
layers (Weng et al., 2011; Li and Wu, 2022).

Ku
I �

���
1
πh

√ ∫h

−h P y( ) − δ y( )( ) �����
h + y

h − y

√
dy (1)

Kl
I �

���
1
πh

√ ∫h

−h P y( ) − δ y( )( ) �����
h + y

h − y

√
dy (2)

Where Ku
I and Kl

I are the stress-intensity factors at the upper and
lower tips, respectively; h is the fracture height, P(y) is the fracture
pressure, and δ(y) is the in-situ stress.

In accordance with the fracture characteristics of the study area,
fractures of different groups and periods are simulated during
discrete fracture network modeling. Based on outcrop data, the
deterministic modeling of the structural trace method under fault
constraint is used to predict large-scale fractures. Using the
constraints of curvature, geostress, distance from the anticline
axis, and distance from the fault, medium and small-scale
discrete fracture network models are built based on fracture

development properties and large-scale fracture models.
Performance constraint properties are established by integrating
several performance data, including initial production, well test
permeability, and drilling fluid loss. The modeling process
utilizes the co-kriging method to effectively incorporate
performance constraint properties into the fracture distribution
prediction. By coupling fractures of different periods and scales, a
multi-scale fracture model under multiple constraints is built
(Figure 9). The fractures exhibit a distribution with two main
sets of fractures oriented in EW and NS directions. These
fractures display an inclination angle ranging from 52° to 89°,
with an average angle of 72°. Fracture development is notably
pronounced in the elevated regions of the structure and close
proximity to the fault zone. These areas exhibit a higher fracture
density, indicating a greater abundance of fractures, and
demonstrate favorable effectiveness in terms of their connectivity
and fluid flow properties.

Based on the 3D geological modeling technique, the DFN
fracture model can be used to predict the early water invasion of
the fractured reservoirs in the Kuqa Depression. Particular focus is
given to the fracture zone that connects the edge water and the gas
well, and the numerical simulation research based on the DFN
model is conducted. This approach enables accurate anticipation of
the distribution characteristics of the remaining gas and facilitates
analysis of the dynamic interplay between the gas and water phases.
By adopting this comprehensive methodology, a deeper
understanding of the gas reservoir behavior is achieved, resulting
in precise predictions of gas and water distribution. Ultimately, this
enhanced reservoir management approach ensures effective
decision-making and resource optimization.

4.5 Model quality control

Ensuring the accuracy of a geological model requires quality
control measures at every step of the modeling process. For instance,
in the grid model, geometrical properties such as grid height and
volume are made to eliminate negative grids. The structural model
must be checked repeatedly to confirm consistency in the
distribution trend between surfaces, faults, and raw structural
data. In property models (facies, porosity, permeability, and gas
saturation), consistency is confirmed by comparing the distribution
trends of logging data, upscaling data, and model data, as well as
creating property distribution maps and reservoir profiles. Due to
limited wells and rapid development, validation through wells
decimation is generally not feasible. Instead, the model is
primarily checked and corrected by drilling new development
wells at later stages. The fracture model can be validated with
performance data during the modeling process and tested with
newly monitored performance data. Upon importing the 3D
geological model into the numerical model, the model’s accuracy
is evaluated through the first history matching rate analysis. The first
history matching rate refers to the coincidence rate obtained from
the history matching of well pressure, gas production, and other
parameters without adjusting any performance and model
parameters. If the first history matching rate reaches 60% or
more, the geological model is typically considered accurate.
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The 3D geological model built in this study includes no negative
grids, and the distribution trends of logging data, upscaling data, and
model data are consistent overall. The distribution characteristics of
model properties also align with previous geological understanding.
With a first-history matching rate of 75% for well pressure and 100%
for gas production, the established 3D geological model is confirmed
to be both accurate and credible.

5 Discussion

The application of the 3D geological modeling technique has been
successful in many deep fractured low porosity sandstone gas reservoirs
in the Kuqa Depression of Tarim Basin, including Keshen 2, Keshen 8,
Dabei201, Dabei 9, Bozi 1, and Bozi 3. Four key techniques were used to
address the challenges in modeling the structure, facies, reservoir
petrophysics, and fractures. When considering the reservoir
attributes surrounding a well, inter-well prediction necessitates the
creation of numerous well-connected correlation profiles. However,
this process is both time-consuming and labor-intensive, and inter-well
reservoir attribute prediction is often considered subjective. Although
seismic data can provide valuable insights into the distribution of
sandbodies and gas-bearing characteristics in the study area, its
resolution typically exceeds 50 m, making it insufficient for a
detailed reservoir description. In contrast, 3D geological modeling
integrates logging, seismic, and other data, offering significant
advantages over traditional reservoir characterization methods. It
allows for reservoir characterization accuracy at sub-meter levels,
enabling precise reservoir description. Additionally, random
mathematical methods can be employed to predict cross-well
attributes, guided by geostatistical statistical outcomes and geological
understanding. This approach offers distinct advantages, including high
accuracy, reduced human influence factors, and efficient processing
speed. 3D geological models are consistent with the actual structural
characteristics, which provide the model basis for enhancing gas
recovery.

By using the four key techniques, a favorable development area was
predicted, and it supported the deployment of more than 60 wells. The
favorable development formation was evaluated, and it supported the

perforation and fracturing designs. Based on the structural model, facies
model, reservoir petrophysical model, and fracture model, numerical
simulation was used to predict and optimize the reasonable
development index. Factors such as well production allocation, gas
recovery rate, and well numbers directly affect gas recovery. According
to the production performance, well-controlled dynamic reserves, and
numerical simulation results, it is suggested that the reasonable gas
recovery rate of the Kuqa reservoir should be controlled below 2%, and
the reasonable well production allocation should be 10–50 × 104 cubic
meters per day. The application of this technique has enhanced the gas
recovery by 6%–15% over a 30-year development period,
demonstrating the significant potential for wider implementation
across other reservoirs.

6 Conclusion

Aiming to address the challenges posed by the tight matrix,
developed fracture, and strong reservoir heterogeneity of the Kuqa
reservoir, a 3D geological modeling approach for deep fractured low
porosity sandstone gas reservoirs was developed, utilizing geological and
performance data. Compared with the traditional geological modeling
method, this method requires fewer data and provides better
systematicness and strong pertinence. As a result, it is highly
effective at addressing modeling challenges associated with limited
well numbers and poor-quality seismic data. This method includes
four key techniques: 1) Structuralmodeling usingwell-to-seismic ties, 2)
facies modeling utilizing stochastic objects, 3) reservoir petrophysical
modeling under facies constraints, and 4) fracture modeling under
multiple-condition constraints and static-performance data
combination.

“Structural modeling under well-to-seismic ties” is used to address
the issue of inaccurate structural models caused by deep burial and poor
seismic data. “Facies modeling under stochastic objects” is used to
address the challenge of strong reservoir heterogeneity, a small number
of wells, and complex sedimentary geometry. “Reservoir petrophysical
modeling under facies constraints” is employed to resolve the
petrophysical problem arising from large well spacing and the need
for accurate prediction between wells. Finally, “Fracture modeling

FIGURE 9
Discrete fracture network model of the study area.
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under multi-condition constraints and static-performance data
combined” is applied to tackle the challenge of predicting fractures
accurately despite poor seismic data.

The application of 3D geological modeling has proven to be
effective in the Kuqa Depression of the Tarim Basin. The built
models support the adjustment of the reservoir development index
and are expected to enhance the gas recovery by 6%–15% at the end
of the development period. This technique has a strong theoretical
basis and systematic approach, which effectively addresses the
challenge of modeling deep-fractured low-porosity sandstone gas
reservoirs. Moreover, this technique is user-friendly and can provide
guidance and support for modeling work. As such, it has the
potential to be widely adopted in other gas reservoirs.
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