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In healthy settings, the gut–liver axis allows host–microbiota communications

and mediates immune homeostasis through bidirectional regulation.

Meanwhile, in diseases, gut dysbiosis, combined with an impaired intestinal

barrier, introduces pathogens and their toxic metabolites into the system,

causing massive immune alternations in the liver and other extrahepatic

organs. Accumulating evidence suggests that these immune changes are

associated with the progression of many liver diseases, especially hepatic

cirrhosis. Pathogen-associated molecular patterns that originated from gut

microbes directly stimulate hepatocytes and liver immune cells through

different pattern recognition receptors, a process further facilitated by

damage-associated molecular patterns released from injured hepatocytes.

Hepatic stellate cells, along with other immune cells, contribute to this

proinflammatory and profibrogenic transformation. Moreover, cirrhosis-

associated immune dysfunction, an imbalanced immune status characterized

by systemic inflammation and immune deficiency, is linked to gut dysbiosis.

Though the systemic inflammation hypothesis starts to link gut dysbiosis to

decompensated cirrhosis from a clinical perspective, a clearer demonstration is

still needed for the role of the gut–liver–immune axis in cirrhosis progression.

This review discusses the different immune states of the gut–liver axis in both

healthy and cirrhotic settings and, more importantly, summarizes the current

evidence about how microbiota-derived immune remodeling contributes to

the progression of hepatic cirrhosis via the gut–liver axis.
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Introduction

The gut–liver axis is the bidirectional communication

between the intestine, its microbiota, and the liver. While

receiving nutrient-rich blood from the gut through portal

veins, the liver also directly contacts translocating bacteria

and their various components and metabolites. Fortunately, in

healthy settings, an intact and multilayered intestinal barrier

restricts such direct host–microbiota contact and defends

against excessive bacterial translocation. Another important

interplay between the gut and the liver relies on bile acid

metabolism. Synthesized in the liver and excreted into the gut

along with other bioactive substances, primary bile acids are

then converted into secondary bile acids by certain

commensal microbes, especially Clostridium cluster XIV (1).

About 95% of the bile acids are reabsorbed by the intestine,

transported back to the liver, and secreted into the gut again,

establishing a metabolic cycle called enterohepatic circulation.

Within this cycle, bile acids modulate the composition of gut

microbiota via selective pressure and, simultaneously,

influence the metabolism and functionality of the liver. In

addition to bile acids, many other host–microbiota–derived

metabolites also take part in the bidirectional regulation

utilizing similar routes, such as free fatty acids, choline, and

e thano l de r i va t i v e s (2 ) . Through the s e complex

interregulations, commensal bacteria and their metabolites

help to maintain the metabolic and immune homeostasis of

the liver. For instance, Akkermansia muciniphila, a Gram-

negative anaerobic bacterium colonizing the mucus layer of

the intestine, helps to alleviate intestinal inflammation and

mitigate alcoholic and nonalcoholic liver damage (3, 4). Bile

acids produced by certain bacteria can activate intestinal

farnesoid X receptor (FXR) and thus promote fatty acid

oxidation while reducing lipogenesis and lipid absorption in

the liver, ameliorating hepatic inflammation and steatosis (5,

6). Another bacteria-derived metabolite, butyrate, helps to

maintain gut barrier integrity and alleviate ethanol-induced

liver injury (7). In short, the bidirectional communication

between the host and the microbiota is essential not just to the

health of the gut but also to that of the liver and probably the

whole system.

Liver cirrhosis is a huge burden on public health worldwide.

About one million deaths around the world are attributable to

liver cirrhosis annually, making it the 11th most common cause

of death and the third leading cause of death in people aged 45–

64 years (8). According to WHO’s Global Burden of Diseases

studies for 2019, liver cirrhosis was responsible for 560.4 age-

standardized disability-adjusted life-years (DALYs) per 100,000

population globally, while liver cancer causes only 151.1 DALYs

(9). The etiology of cirrhosis is rather complicated since various

chronic liver diseases can lead to shrinkage of the liver

parenchyma and overproduction of scar tissue. The most
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dominant causes of liver cirrhosis are hepatitis B and C,

alcoholic liver disease (ALD), and nonalcoholic fatty liver

disease (NAFLD) (8, 9). Despite the different pathological

settings of these precirrhotic diseases, the trajectory of

cirrhosis comes down to similar complications that mark the

transition from compensated to decompensated cirrhosis. In a

traditional perspective, variceal bleeding, ascites, and hepatic

encephalopathy are the three major complications of cirrhosis,

which result from portal hypertension, arterial vasodilation, and

hyperammonemia, respectively. However, giving each

c omp l i c a t i o n o r o r g an f a i l u r e an i nd ep end en t

pathophysiological mechanism does not seem to explain the

complexity of decompensated cirrhosis well enough. Recent

studies suggest that systemic inflammation and organ

immunopathology are additional contributors to organ

dysfunction, further verifying the notion that cirrhosis is a

systemic disease (10, 11). For patients with acute

decompensation of cirrhosis, the severity of systemic

inflammation increases in parallel with the disease progression

and the number of organ failures (10, 12, 13). Moreover, the

significant correlations between systemic inflammation and

portal hypertension, ascites, and hepatic encephalopathy

indicate that systemic inflammation is the common

pathophysiological mechanism for different complications of

decompensated cirrhosis (13). Interestingly, gut microbes have

long been considered the major source of systemic inflammation

in cirrhosis (11, 13). Evidence indicates that gut dysbiosis is

associated with the pathogenesis and progression of many

precirrhotic diseases such as viral hepatitis, NAFLD, and ALD

(14–19). Hepatic cirrhosis, as the advanced stage of these liver

diseases, is linked to the altered composition and reduced

diversity of gut microbiota despite etiology. Moreover, patients

with cirrhotic conditions are prone to an impaired intestine

barrier, pathological bacterial translocation, and systematic

inflammation (20). Pathogen-associated molecular patterns

(PAMPs) such as lipopolysaccharide (LPS) can stimulate

immune cells and cytokine secretion in a Toll-like receptor

(TLR)-NF-kB-dependent way, generating a proinflammatory

and profibrogenic immune environment. Additionally, a

bacterial infection is now regarded as the fourth major

complication of decompensated cirrhosis because of its

astonishingly high prevalence (21). The most common

infection for cirrhosis patients, spontaneous bacterial

peritonitis (SBP), is a perfect demonstration of how bacterial

translocation constantly elicits inflammation and alters the host

immunity (22). Therefore, it is tempting to speculate that gut

microbiota contribute to the progression of hepatic cirrhosis

through immune remodeling in a dysbiotic setting. Since

bacteria are the most well-studied members of the gut

microbiota and probably play a central role in microbiota–host

interaction, this review will focus on gut bacteria but not viruses,

fungi, archaea, or other microbes.
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Gut–liver axis contributes to
immune homeostasis

Gut homeostasis

The human intestine contains 1014 microbes, over 99% of

which are bacteria . With such a huge quantity of

microorganisms living inside the intestinal lumen, our system

needs a strong defense to protect us from the excessive input of

viable bacteria and their toxic metabolites. The multilayered

intestinal barrier may serve as the first line of defense. The inner

surface of the intestine is covered with a mucus layer that

physically separates the bacteria from the intestine wall and

delivers tolerogenic signals (23, 24). Beneath the mucus layer lies

the intestinal epithelium, which consists of enterocytes, goblet

cells, tuft cells, Paneth cells, M cells, and different immune cells

(20). Adjacent epithelial cells form junctional complexes

between each other to limit paracellular trafficking of intestinal

contents. These complexes consist of desmosomes, adherens

junctions (AJs), and tight junctions (TJs) (25). Paneth cells

secrete a-defensins, islet-derived protein III-gamma (RegIIIg),
and lysozyme to defend against pathogens (26). Intraepithelial

lymphocytes, including abT cells and gdT cells, are activated by

various cellular or cytokine signals to battle bacterial infection

(20). Mononuclear phagocytes such as dendritic cells (DCs),

with their processes sticking into the intestinal lumen, take part

in both antibacterial immunity and oral tolerance (27). In the

lamina propria, plasma cells secrete sIgA into the mucus layer to

reinforce the frontline defense, while Th17 cells help to

strengthen the tight junctions and promote epithelial

regeneration. Microbial signals sensed by DCs or group 3

innate lymphoid cells (ILC3) trigger the secretion of IL-17 and

IL-22, which promote the release of antibacterial peptides,

mucin, and sIgA by other cells (28, 29). The last and most

critical defense of the intestinal barrier, the gut–vascular barrier,

is composed of endothelial cells, pericytes, and enteric glial cells.

This gut–vascular unit is also reinforced by junctional

complexes, allowing antigens from food or commensal bacteria

to pass for tolerance induction but not bacterial translocation

(20, 23).

Interestingly, this host–microbiota regulation is reciprocal,

with recent studies proving that the intestinal barrier can be

modulated by the gut microbiota. For instance, adhesion of

certain microbes like segmented filamentous bacteria to the

intestinal epithelial cells triggers robust induction of Th17 cells

(30). When bacteria penetrate the inner layer of mucus, a group

of sentinel goblet cells can nonspecifically sense microbial

molecules and secrete more Muc2 mucin to expel the

pathogens by activat ing the NLRP6 inflammasome

downstream of ROS synthesis (31). CX3CR1+ macrophages

are localized around the intestinal lamina propria vasculature,

forming an interdigitating network to defend against pathogens.
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The conversion of such macrophages from CCR2hiCX3CR1+

monocytes is mediated by the microbiota in a Nr4a1-dependent

manner (32). Furthermore, innate lymphoid cells in the lamina

propria can maintain long-term antibacterial activity after being

trained with bacteria (33). Bacteria-derived metabolites also

contribute to the homeostasis of the gut. Indole is a

tryptophan derivative produced by commensal bacteria that

regulate the IL-22 expression of ILC3 via aryl hydrocarbon

receptor (AHR). IL-22, in turn, modulates the secretion of

antibacterial RegIIIg by Paneth cells, making indole a favorable

signal to gut homeostasis (34). Other studies suggest that indole

reinforces the gut barrier integrity by increasing TJ resistance

(35). To conclude, the host defense does not develop all by itself

but rather depends on the constant stimulations from

commensal microbes. In turn, active surveillance by intestinal

immunity keeps gut microbes in line. Such delicate mechanisms

of bilateral regulation guarantee a balance between tolerance for

autochthonous microbes and antibacterial activities against

pathogens in the gut (Figure 1A).
Liver homeostasis

The liver faces bacterial challenges constantly due to the

unique anatomical and hemodynamic features of the portal

system. If potent antibacterial immunity were induced each

time the bacterial antigens reached the liver, there would be

relentless inflammation and severe collateral damages to the

system. Therefore, it is essential that liver parenchymal cells

and other liver-resident cells form a fine-tuned immune

network together and respond to these challenges in a well-

balanced way.

Upon stimulation by gut-derived microbes, hepatocytes not

only can secrete acute-phase proteins, complement proteins, and

other bioactive substances to battle bacterial infection but also

can play an important role in immune surveillance via

expressing MHC I/II and costimulatory molecules. Liver

sinusoidal endothelial cells (LSECs) allow the interaction

between gut-derived molecules and the underlying hepatocytes

and nonparenchymal cells via the special fenestrae (36). In

addition to recruiting monocytes and lymphocytes in an

ICAM-, VCAM-, or VAP-dependent manner, LSECs actively

regulate the periportal distributions of myeloid and lymphoid

cells via MYD88 signaling induced by gut commensal bacteria,

resulting in more efficient prevention of systemic bacterial

dissemination (37). Kupffer cells (KCs), a group of liver-

resident macrophages that patrol the sinusoidal lumen, are

important immune sentinels to detect, capture, and present

bacterial antigens (38). Furthermore, KCs also regulate iron

metabolism and prevent accumulative toxicity by removing

damaged RBCs and hemoglobin from the bloodstream (39).

Hepatic stellate cells (HSCs) crawl around the liver vasculature
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and store lipids and vitamin A in basal conditions. Whereas in

the inflamed liver, HSCs transdifferentiate into fibrinogenic and

immunomodulatory cells (40). Even though these different kinds

of cells all express MHC and other antigen-presenting

molecules, they are poor activators for T cells under most

circumstances. Constant exposure to low-level LPS induces a

refractory response in APCs, a phenomenon called endotoxin

tolerance (41) and downregulation of costimulatory signals and

upregulation of coinhibitory molecules like PD-L1 (38, 42).

These alternations promote the development of regulatory T

cells and cause incomplete activation, clonal anergy, and even

premature death to the CD8+ T cells. In addition to direct

contact, these antigen-presenting cells can also secrete inhibitory

cytokines such as IL-10 and TGF-b, which dampen the

activation and functions of CD4+ T cells and CD8+ T cells.

Other studies suggest that Kupffer cells and HSCs prime the

naïve CD4+ T cells toward Treg phenotype via secretion of

prostaglandins (PGE2) and retinoic acid, respectively (38, 43).

Furthermore, low-level LPS and proinflammatory cytokines like
Frontiers in Immunology 04
IFN-g can induce the expression of indoleamine-2,3-

dioxygenase (IDO) in Kupffer cells and DCs (42). This enzyme

produces an immunosuppressive metabolite called kynurenine

and contributes to the suppression of T-cell functions.

To conclude, gut-derived signals help to direct liver

immunity to a tolerogenic phenotype that prevents immune

overreaction in basal conditions. However, such immune

tolerance does not exist without limitations. The liver still

needs to efficiently mobilize immune cells and initiate an

antibacterial response when a dangerous infection occurs. In

fact, different receptors expressed by liver cells can distinguish

antigens from commensal flora and those from pathogens.

When excessive or dangerous signals are detected, APCs,

including hepatocytes, LSECs, DCs, and Kupffer cells, can

recruit neutrophils, natural killer cells, and lymphocytes to

eliminate pathogens. In short, with the help of gut-derived

signals, liver parenchymal and nonparenchymal cells construct

a harmoniously coordinated network to maintain immune

homeostasis (Figure 2A).
BA

FIGURE 1

Comparison between intact and impaired gut barriers. (A) In healthy settings, the mucus layer serves as the first defense of the intestinal barrier
against intraluminal bacteria. Epithelial cells tightly jointed together by junctional complexes limit the translocation of bacteria. Immune cells
within the lamina propia not only actively remove invading pathogens by phagocytosis but also strengthen the gut barrier by secreting certain
cytokines. Altogether, an intact gut barrier prevents pathological bacterial translocation. (B) In gut dysbiosis, bacterial overgrowth and
disproportion can be found in the intestinal lumen. The mucus layer becomes thinner and looser, allowing pathogens to reach the epithelium.
Disrupted junctional complexes and impaired gut–vascular barrier further promote pathological translocation. Additionally, dysregulated
intestinal immunity aggravates inflammation and enterocyte injury, which eventually leads to a leaky gut.
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Dysfunctional gut–liver axis in
liver cirrhosis

Gut dysbiosis is related to liver cirrhosis

A diverse and relatively stable gut microbiome is essential to

maintain the immune homeostasis of the host. Once initiated by

certain insulting etiologies, gut dysbiosis slowly develops at the

early stage of liver disease and progresses as the disease

progresses. Researchers have confirmed that gut dysbiosis is

closely associated with the pathogenesis and progression of

hepatic cirrhosis. To begin with, reduced overall gene richness

was found in the stool samples of cirrhotic patients (44, 45).

Furthermore, a decreased a-diversity of gut microbiota is

another feature of cirrhotic patients (46–48). b-Diversity was

also significantly altered in individuals with NAFLD-cirrhosis

(48, 49). These findings all suggest a less diverse and less stable

gut microbiome in cirrhotic patients. Meanwhile, the

composition of the gut microbiota is also changed adversely.

Firmicutes and Bacteroidetes are the most dominant phyla of the

human gut microbiota, followed by Proteobacteria and

Actinobacteria with much smaller abundances. In cirrhotic

settings, Proteobacteria and Fusobacteria are enriched while
Frontiers in Immunology 05
Bacteroidetes are depleted (44, 49–51). At the family level,

potentially beneficial autochthonous taxa like Lachnospiraceae,

Ruminococcaceae, and Clostridiales XIV are reduced while

potentially pathogenic taxa including Staphylococcaceae,

Enterobacteriaceae, and Enterococcaceae are increased (52). At

the genus level, cirrhotic patients display higher abundances of

buccal microbes including Veillonella, Streptococcus, and

Prevotella, indicating that oral commensals may invade the

intestine in cirrhotic conditions (44–48). At the species level,

potential pathogens like Ruminococcus gnavus, Veillonella

parvula, and Streptococcus parasanguinis are enriched, while

beneficial commensals like Eubacterium rectale and

Faecalibacterium prausnitzii are depleted (46, 48). Another

marked alternation of the gut microbiota in cirrhotic patients

is the small intestinal bacterial overgrowth (SIBO), partly due to

decreased bowel motility, delayed transit time, and use of acid

inhibitors and antibiotics (53, 54). Instead of being exclusive to

cirrhosis, SIBO appears to be prevalent in different precirrhotic

diseases, indicating that it develops as the disease progresses (55,

56) and correlates with disease severity (57). Even though

alcohol consumption, a high-fat diet, virus infection,

autoimmunity, and other cirrhosis-related factors may all

affect the gut microbiota in certain ways, cirrhotic patients
BA

FIGURE 2

Liver immune environment in tolerogenic and immunogenic conditions. (A) In basal conditions, commensal bacteria and food antigens from a
healthy gut help to maintain liver immune homeostasis. Constant exposure to LPS induces tolerance of APCs and therefore inactivation of CD8+

T cells but activation of Treg cells. (B) By contrast, bacterial dysbiosis and impaired gut barrier promote the pathological translocation of viable
bacteria and their products, causing massive inflammation in the liver and the whole system. The complicated interplay among different
immune cells facilitates the proinflammatory and profibrogenic transformation of the liver. Activation of hepatic stellate cells seems to be the
common mechanism for this transformation.
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share similar microbiota profiles despite etiology. This might

suggest that gut dysbiosis not only has something to do with the

unique pathophysiological changes of cirrhosis but also partly

results from some common medical interventions for cirrhosis.

One possible explanation is that impaired hepatic function

changes the intestinal environment (e.g., reduced bile flow and

complement synthesis), which is then aggravated by cirrhosis

complications (e.g., impaired gut motility due to ascites) and

medical interventions (e.g., proton-pump inhibitors for variceal

hemorrhage prevention). Further investigation is needed to

figure out how gut dysbiosis initiates in cirrhosis patients.
Impaired gut barrier promotes bacterial
translocation and inflammation

Bacterial translocation (BT) is defined as the translocation of

bacteria and/or bacterial metabolites from the gut lumen to

mesenteric lymph nodes or the portal bloodstream. Though BT

exists in basal conditions and helps to build tolerance for

commensal microbes, its quantity markedly increases in

pathological settings, eliciting a proinflammatory response and

even systemic infection. As discussed before, an intact intestinal

barrier is essential to prevent pathological bacterial translocation

and to maintain immune homeostasis. This line of defense no

longer holds in cirrhotic settings, with evidence showing the

structural and functional breakdown of the gut barrier in

cirrhosis (58, 59). Firstly, the mucus layer becomes thinner

and easier for bacteria to colonize, even in the relatively denser

and supposedly sterile inner layer. Other structural distortions

include enlarged interepithelial space, shortening and widening

of microvilli, submucosal edema, and disorganization of

interepithelial TJs (20, 53, 58). In fact, these structural changes

are related to decreased expression of tight-junction proteins

occludin and claudin-1 (60, 61). Also, evidence has proven that

the impairment of epithelial TJs is related to dysregulated

fermentation of the gut microbiota. Ethanol and its toxic

derivative acetaldehyde can damage the TJs directly and

increase gut permeability in ALD (61, 62). The reduction of

butyrate and other protective metabolites also contributes to the

damaged barrier (7, 63). It is thought that weakened TJs promote

the paracellular trafficking of bacterial metabolites, while

translocation of viable bacteria likely depends on transcytosis

(27, 54, 64). Although research on the detailed mechanisms of

bacterial transcytosis is still lacking, many lines of evidence

suggest that intestinal immune dysregulation induced by

dysbiosis contributes to the bacterial penetration of the gut

barrier. Cirrhotic rat models exhibit an inflammatory pattern

of immune dysregulation in intraepithelial lymphocyte (IEL)

and lamina propria lymphocyte (LPL), with an increase in

activated lymphocytes and IFN-g and IL-17 production (58,

65). Furthermore, dysbiosis-induced inflammation impairs the
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gut barrier via TNF-a/TNFR1 signaling mediated by monocytes

and macrophages (62). Another study on cirrhosis patients also

reveals that activated macrophages secrete NO, IL-6, and IL-8

that undermine the gut barrier, most probably under bacterial

stimulation (59). By contrast, reduced synthesis and release of

defensin, RegIIIb/g, and sIgA suggest impaired antibacterial

functions of Paneth cells, neutrophils, B cells, and other

epithelial cells (66). These findings are in line with a report of

B-cell dysfunction in cirrhosis patients (67). Intestinal DCs also

show a less-activated phenotype with decreased TNF-a
production, deficient phagocytosis, and impaired migration in

cirrhotic rats with excessive bacterial translocation (68). As for

the final defense of the intestinal barrier, the gut vascular barrier

is also damaged by certain pathogens such as Salmonella

typhimurium via dampened b-catenin-dependent signaling

(69). In dysbiotic conditions, reduced FXR signaling due to

dysregulation of bile acid metabolism also impairs the integrity

of GVB (70). To conclude, gut dysbiosis leads to the

accumulation of invasive pathogens and toxic metabolites,

which directly impair the gut barrier and cause intestinal

inflammation. Local inflammation not only damages

enterocytes but also weakens the antibacterial ability of the gut

barrier. Altogether, these changes facilitate pathological bacterial

translocation (Figure 1B).

Translocated bacteria and gut-derived metabolites can

directly interact with host cells. One of the most well-

established mechanisms involves a group of receptors named

pattern recognition receptors (PRRs), which are widely

expressed on the surface of various hepatic and intestinal

ce l ls (38) . PRRs include TLRs, nucleotide-binding

oligomerization domain-like receptors (NLRs), C-type lectin

receptors (CLRs), retinoic acid-inducible gene I-like receptors

(RLRs), and absent in melanoma-2 (AIM2)-like receptors

(ALRs) (71). Different PRRs can recognize different

conserved molecular patterns of microbes (PAMPs) or

damaged cells [damage-associated molecular patterns

(DAMPs)]. For instance, a cell wall component of Gram

negative bacteria, is a typical PAMP, while mitochondrial

DNA released from injured cells belongs to DAMPs. Among

these receptor–ligand interactions, TLR4-LPS is one of the

most thoroughly studied and relevant pairs in cirrhosis. Upon

recognition of LPS, TLR4 initiates downstream activation in

both a MyD88-dependent manner and a TRIF-dependent

manner. For MyD88-dependent signaling, TLR4-LPS

interaction activates the MyD88-NF-kB pathway and leads to

the production of proinflammatory cytokines such as TNF, IL-

1, IL-6, and chemokines. For TRIF-dependent signaling (or

MyD88-independent signaling), the TRIF-TBK1-IRF-3 axis is

activated to secrete type I IFN (72). In short, interactions

between PRRs and PAMPs/DAMPs promote the clearance of

pathogens or damaged cells, thus causing inflammation-related

damages in the gut and the liver in a cirrhotic setting.
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Gut-derived signals lead to an
inflamed liver

In acute or chronic liver injury, especially liver cirrhosis,

the delicate balance between tolerogenic and immunogenic

responses is broken. Detrimental effects caused by an

impaired gut barrier, bacterial translocation, alcohol

consumption, and an unhealthy diet all contribute to the

immune malfunction of the liver through the gut–liver axis.

Chronic liver diseases such as ALD and NAFLD not only

directly affect liver metabolism and immunity but also

indirectly impaired liver function via a dysregulated

intestinal barrier and gut dysbiosis. In response to these

pathogenic conditions, hepatocytes and liver-resident

immune cells may lose their normal functions and

transform into proinflammatory, profibrogenic phenotypes

that facilitate the progression of cirrhosis (Figure 2B).

Hepatic stellate cells (HSCs) are the primary precursors for

myofibroblasts during liver fibrosis (40). Gut-derived LPS can

stimulate TLR4 of quiescent HSCs and activate these cells in a

MyD88-NF-kB-dependent manner, thus causing profibrogenic

transformation and accelerating liver fibrosis (73). Moreover,

profibrogenic cytokines such as TGF-b and IL-17 are potent

activators for HSCs and collagen production, which are

excessively secreted by other hepatic cells under inflamed

conditions (40, 74). A mouse model of liver fibrosis suggests

that MyD88 signaling in activated HSCs promotes macrophage

M1 polarization in a CXCL10/CXCR3-dependent manner, thus

promoting liver fibrosis and inflammation (75).

Hepatocytes, the major parenchymal cells of the liver, play

a crucial part in liver immune surveillance in health. However,

recent studies suggest that hepatocytes might also promote

liver cirrhosis in the presence of PAMPs and DAMPs.

Activation of the TLR4-NF-kB pathway in hepatocytes

promotes Jagged1/Notch signaling in the NASH mouse

model, thus inducing OPN-dependent HSC activation and

progressive fibrosis (76, 77). DAMPs released from injured

hepatocyte mitochondria, mainly mtDNA, can directly activate

HSCs and promote liver fibrosis. Such mito-DAMPs are

increased in both mouse models and human patients with

NASH and advanced fibrosis (78). In addition, TAZ is a

transcription factor markedly elevated in the hepatocytes of

human and murine NASH livers, which can initiate HSC

activation in an Indian hedgehog (Ihh)-dependent manner

and promote inflammation and fibrosis in NASH (79).

Neutrophils are recruited to the liver via the adhesion

molecules ICAM-1 and VCAM-1 expressed by LSECs. These

innate immune cells counteract bacterial infection mainly by

phagocytosis and releasing lysozyme, ROS, elastase, and

myeloperoxidase (MPO). Moreover, special extracellular

fibrous structures named neutrophil extracellular traps (NETs)

are formed to trap and eliminate pathogens (38). Studies suggest
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that neutrophils are involved in several cirrhosis-related

conditions and the progression of cirrhosis (80). For example,

nonalcoholic steatohepatitis (NASH) patients display significant

neutrophil infiltration and activation in the liver. These cells

secrete excessive MPO that directly kills hepatocytes, activates

HSCs, and subsequently promotes liver fibrosis. Likewise, in

cirrhosis, neutrophil functions are also disturbed by the

dysfunctional gut–liver axis, leading to inflammation-related

hepatocyte injury and IL-17-dependent HSC activation (81).

Furthermore, intrahepatic neutrophils in patients with acute-on-

chronic liver failure (ACLF) have higher expression of CXCR1

and CXCR2, receptors that are crucial for neutrophil

recruitment, inflammatory mediator production (e.g., IL-8, IL-

6, IL-23, CCL-20, and ROS), and contact-dependent cell

death (82).

Hepatic macrophages can be divided into several subsets,

among which Kupffer cells and monocyte-derived macrophages

are essential players in maintaining immune homeostasis. In

cirrhotic settings, especially ACLF, excessive bacterial

translocation from the disrupted intestinal barrier exhausts the

scavenging ability of macrophages and causes type I IFN-mediated

IL-10 expression, resulting in a high risk of bacterial infection for

cirrhosis patients. These macrophages also express a high level of

MER tyrosine kinase (MERTK), which dampens the response to

PAMPs and therefore antibacterial activity (83, 84). In addition to

impaired bacterial clearance, macrophages also contribute to

cirrhosis progression via promoting inflammation and

fibrogenesis. Upon recognition of DAMPs and PAMPs, activated

macrophages secrete proinflammatory mediators such as TNF, IL-

1b, IL-6, IL-8, and ROS and promote the activation and survival of

HSCs and myofibroblasts via TGF-b1 and PDGF (84).

Macrophage-derived inflammasome resulting from bacterial

translocation and tissue damage also contributes to the

inflammatory injury to the liver (85). Such a multiprotein

complex can be activated by PAMPs, DAMPs, ROS, cholesterol

crystals, and other PRR ligands (86). Activated inflammasome

initiates caspase-1-dependent production of proinflammatory

cytokines like IL-1b and IL-18, which subsequently enhance liver

inflammation, fibrosis, and damage in ALD, NASH, and other

settings of liver injury (87).

Normally, mucosal-associated invariant T cells (MAIT) are

anti-infection effectors that can be activated by bacterial

metabolites from the vitamin B2 biosynthesis pathway in an

MR1-dependent way (88). On the other hand, chronic liver

inflammation exerts deleterious effects on the disease

progression. A recent study suggests that MAITs are enriched

in the fibrotic septa of cirrhotic patients, making direct contact

with fibrinogenic cells. In vitro experiments show that MAIT can

enhance the proinflammatory properties of myofibroblasts and

monocyte-derived macrophages, further promoting liver fibrosis

progression (89). Such MAIT–myofibroblast interaction can be

achieved via the secretion of TNF and IL-17A by MAIT.
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LSECs, along with Kupffer cells, constitute the most

powerful scavenging system in the liver. LSECs maintain

immune homeostasis by inducing tolerance to harmless

antigens from food or commensal bacteria and maintaining

quiescence of HSC (90). However, in acute or chronic liver

injury, LSECs undergo several aberrant alternations in terms of

morphology and function that promote a proinflammatory,

profibrogenic, and proapoptotic phenotype. One of the major

alternations in the capillarization of LSECs is a transformation

characterized by the loss of fenestrae and the development of the

basal membrane. Capillarized LSECs can no longer provide

enough oxygen for the underlying hepatocytes, causing cell

apoptosis, necrosis, and eventually the release of DAMPs (91).

DAMPs and LSEC-derived signals such as TGF-b activate the

profibrogenic HSCs and promote the generation of collagen and

the progression of liver fibrosis. Dysfunctional LSECs also gain

sinusoidal vasoconstriction ability due to reduced eNOS activity

and increased vasoconstrictors, causing detrimental changes in

liver hemodynamics that favor the development of

portal hypertension.

Upon stimulation of DAMPs such as HMGB1, liver DCs can

be switched from a tolerogenic, IL-10-producing phenotype to

an immunogenic and TNF-producing phenotype. In addition,

these cells activate NK cells and prime T cells within portal tract-

associated lymphoid tissues (PALTs), further facilitating the

progression of inflammation and tissue injury in a

fibrotic setting.

NKT cells, a group of innate lymphoid cells that recognize

endogenous or exogenous glycolipid antigens in a CD1d-

dependent manner, are important regulators of liver

immunity. When activated by different antigens or cytokines,

type I NKT cells can activate NK, DCs, B, and T cells and recruit

neutrophils and monocytes to the liver, propagating the liver

inflammation. A recent study suggests that NKT promotes

inflammatory response with the engagement of NLRP3

inflammasome in a mouse model of liver fibrosis (92).

Moreover, type I NKT cells contribute to liver fibrosis via

activation of the Hedgehog pathway and HSCs via secretion of

osteopontin (OPN) (73, 93, 94).

To conclude, the massive release of PAMPs and DAMPs

due to the impaired gut barrier and subsequent inflammation

completely transforms the liver ’s immune landscape.

Tolerogenic properties in healthy conditions are replaced by

immunogenic and fibrinogenic properties in cirrhotic settings,

which feature the expansion of proinflammatory cells and

cytokines and the deposition of the extracellular matrix. It is

apparent that activation of HSCs is the common and central

mechanism of cirrhosis progression induced by different cells

(Figure 2B), which is not surprising due to the collagen-

producing function of activated HSCs. Moreover, during this

transforming process, innate immunity seems to play the

leading part, while adaptive immunity shows some protective
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effects. In a murine NASH model, CD8+ tissue-resident

memory T cells promote liver fibrosis resolution by inducing

apoptosis of hepatic stellate cells in a Fas/FasL-dependent

manner (95). However, the interplay between innate and

adaptive immunity in the development of cirrhosis still needs

in-depth investigation.
Cirrhosis-associated
immune dysfunction

Cirrhosis-associated immune dysfunction (CAID) is the

complex manifestation of an impaired immune system in the

cirrhotic setting, mainly characterized by systemic inflammation

and immune deficiency. CAID includes two phenotypes: the

low-grade systemic inflammatory phenotype found in patients

with compensated cirrhosis or decompensation without organ

failure and the high-grade systemic inflammatory phenotype

found in patients with ACLF (96). Evidence suggests that CAID

is closely related to gut dysbiosis and impaired intestinal barrier,

raising the idea that a dysfunctional gut–liver axis affects not

only the immune environment of the gut and the liver but also

the systemic immune functions.
Systemic inflammation

Impaired gut barrier and bacterial dysbiosis excessively

increase the bacteria and their components or metabolites

within the blood flow. These PAMPs bind to PRRs of different

organs and tissues, causing massive release of proinflammatory

cytokines and activation of various immune cells and

inflammasomes. Moreover, detrimental elements like

endotoxins, alcohol, cholesterol, ROS, and the inflammation

they induce will cause liver cell damage and thus the release of

DAMPs into circulation, which further exacerbates the systemic

inflammation. In the meantime, impaired liver functions render

insufficient albumin, a protein that is supposed to neutralize

excessive PAMPs during systemic inflammation. Likewise,

deficient production of anti-inflammatory cytokines such as

IL-10 by monocytes and Kupffer cells dampens the immune

tolerance and promotes inflammation (96). Furthermore,

stimulation by certain bacteria, immunogenic cell death, and

oxidative stress in combination with excessive protein-folding

demand during severe inflammation finally overwhelms the

processing abilities of the endoplasmic reticulum, eliciting the

unfolded protein response (UFR). UFR per se is a source of

inflammation via secreting proinflammatory cytokines such as

IL-6 and TNF. In turn, circulating cytokines like IL-1, IL-6, IL-8,

and TNF can activate UFR in the liver, making a positive

feedback loop that amplifies the systemic and hepatic

inflammation (97, 98).
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Immune deficiency

Prolonged inflammation causes damage not only to

parenchymal cells but also to the circulating immune cells.

Immune cells show upregulated markers of activation but

hampered immune response (99). For instance, in cirrhosis

without ACLF, CD14+CD16+ monocytes are enriched and

express more HLA-DR and TNF, favoring a proinflammatory

and profibrogenic phenotype. However, their functions, such as

phagocytosis, chemotaxis, and T-cell activation, seem to be

inhibited. When the disease progresses to ACLF, expression of

HLA-DR and TNF by these cells markedly decreases, as anti-

inflammatory cytokines such as IL-10 appear to increase (96,

100). Likewise, neutrophils experience impaired antibacterial

activity in the progression of cirrhosis (101). Moreover,

continuous activation renders lymphocytes susceptible to

anergy, apoptosis, and exhaustion. IFN-g produced by T cells

decreases, while inhibitory signals such as PD-1 and TIM3

increase (102). Changes in liver structure and function also

contribute to immune deficiency. Extracellular matrix

deposition, sinusoidal capillarization, intrahepatic shunting,

and loss of hepatocytes all hamper the immunosurveillance

and pathogen clearance functions of the liver (96). A recent

study suggests that IL-2, a proinflammatory cytokine secreted by

various cells in response to bacterial invasion, can markedly

impair follicular T helper cells and therefore hamper the

humoral immunity in advanced cirrhosis (103). Immune

efficiency worsens as cirrhosis progresses, making advanced

patients, especially ACLF patients, susceptible to severe

systemic infection (104, 105).
Summary and future perspectives

Liver cirrhosis is the advanced stage of various liver diseases,

characterized by its diffuse, fibrinogenic, and nodule-forming

changes pathologically. Cirrhosis patients are prone to gut

dysbiosis, an impaired intestinal barrier, pathological bacterial

translocation, and severe inflammation and fibrosis in the liver.

It is not surprising to see how gut dysbiosis directly affects the

progression of liver cirrhosis, given the close relationship they

have in terms of anatomy, physiology, and metabolism.

However, seeing how a dysregulated gut–liver axis can elicit

such massive immune alternations in the fibrotic liver is still

intriguing. The TLR4–LPS interaction seems to initiate most of

the immune transformations in this process. A high level of

PAMPs breaks the immune tolerance in the liver and causes

prolonged inflammation and massive tissue damage. DAMPs

released from injured cells further amplify the inflammation not

only in the liver but also in the whole system. Eventually,

immune paralysis occurs when the immune system gets

overwhelmed by intense and continuous activation. During

disease progression, hepatocytes and various nonparenchymal
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cells experience drastic changes in terms of phenotype and

function. Among these changes, activation of HSCs appears to

be the center of fibrosis progression, which is one of the

pathological features of cirrhosis. However, HSC is not the

entire story, as mounting evidence indicates that complex

interplays exist among different immune cells.

Of note, due to the complexity of etiology, differences

between various types of cirrhosis, such as virus-related

cirrhosis, alcohol-related cirrhosis, NAFLD-related cirrhosis,

and autoimmune-related cirrhosis, are not discussed in this

review. It is of great importance to know that the etiology per

se might, along with gut dysbiosis, contribute to the disease

progression. For instance, alcohol alone can disrupt the gut

barrier and cause inflammatory injury to the liver. Therefore, it

might work in synergy with gut dysbiosis to reshape the immune

environment of the liver. Relevant studies were extensively

reviewed elsewhere (16, 63, 106, 107).

Given the great impact of gut dysbiosis on liver immunity, it

is tempting to design therapy for cirrhosis patients targeting the

gut–liver-immune axis. For microbiota modulation, fecal

microbiota transplantation (FMT) and prebiotics/probiotics

are proven to have beneficial effects on cirrhosis patients (53,

108, 109). Most interestingly, bacteriophages targeting

pathogens such as Enterococcus faecalis can ameliorate

alcoholic liver injury in an animal model, indicating a novel

strategy to modulate gut microbiota (110). For gut barrier

restoration, FXR agonists appear to be a promising choice (5,

70) while nonselective B-blockers (NSBBs) can reduce SIBO, and

therefore BT, probably by (111) improving gut motility.

Additionally, there is also new progress in modulating the

liver-related immune response. Targeting TLR4 signaling and

other cirrhosis-related proinflammatory pathways might be of

great therapeutic potential (112, 113).

Though we are starting to comprehend the role of the gut–

liver axis in the pathogenesis and immune remodeling of liver

cirrhosis, multiple research perspectives remain largely elusive.

Firstly, although researchers have identified some bacterial

species that are correlated with liver cirrhosis, very few studies

have discovered the mechanistic links between these specific

species and cirrhosis progression. In addition to the common

PAMP–PRR interaction, other components and metabolites of

these species may have their own unique ways of communicating

with the host. Secondly, intercellular communications in

cirrhosis settings deserve more attention. The single-cell

transcriptomic analysis begins to show its advantages in

dissecting the complicated crosstalk among different immune

cells in chronic liver diseases (95, 114). In the foreseeable future,

multiomics studies, including transcriptomics, metagenomics,

and metabolomics, will continue to provide fresh insights into

the intrahepatic immune environment and host–microbiota

interaction (115, 116). Thirdly, immune remodeling through

the gut–liver axis goes far beyond the gut and the liver.

Cirrhosis-related changes in other immune compartments
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such as the peritoneal cavity (22), lung, kidney, and brain (23) still

warrant thorough investigations. Given the fact that gut-derived

bacteria and metabolites are the major sources of systemic

inflammation, a common condition associated with mortality

for decompensated cirrhosis patients, it is very important to

understand how the dysbiosis starts and how it affects the

disease progression. Future studies need to focus on the cellular

and molecular mechanisms of gut–liver–immune regulation and,

hopefully, help patients benefit from these studies.
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