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Abstract 

Leaf pigment content can reflect the nutrient elements content of the cultivation medium 

indirectly. To rapidly and accurately predict the pigment content of tomato leaves, chlorophyll a, 

chlorophyll b, chlorophyll and carotenoid were extracted from leaves of tomato seedlings cultured 

at different nitrogen concentrations. The visible/near-infrared (VIS/NIR) hyperspectral imaging 

(HSI) non-destructive measurement technology, 430-900 nm and 950-1650 nm, with total variables 

of 794, was used to obtain the reflection spectra of leaves. An improved strategy of the sparrow 

search algorithm (SSA) based on Logistic chaotic mapping was proposed and optimized the back 

propagation (BP) neural network to predict the pigment content of leaves. Different pretreatment 

methods were used to effectively improve the prediction accuracy of the model. The results showed 

that when the nitrogen concentration in the nutrient solution was 302.84 mg·L-1, the pigment 

content of leaves reached the maximum. Meanwhile, the inhibition effect of high concentration was 

much stronger than that of low concentration. To address the problem that the SSA is prone to get in 

premature convergence due to the reduction of population diversity at the end of the iteration, the 

initialization of the SSA population by Logistic chaotic mapping improves the initial solution 

quality, convergence speed and search capacity. The root mean squared error (RMSE), coefficient of 

determination (R2) and relative percent deviation (RPD) of chlorophyll a were 0.77, 0.77 and 2.08, 

respectively. The RMSE, R2 and RPD of chlorophyll b were 0.30, 0.66 and 1.71, respectively. The 

RMSE, R2 and RPD of chlorophyll were 0.88, 0.81 and 2.28, respectively. The RMSE, R2 and RPD 

of carotenoid were 0.14, 0.75 and 2.00, respectively. The HSI technology combined with machine 

learning algorithms can achieve rapid and accurate prediction of crop physiological information, 

providing data support for the precise management of fertilization in facility agriculture, which is 

conducive to improving the quality and output of tomatoes. 

 

Introduction 

Nitrogen is an essential element for tomato growth and development. Appropriate nitrogen 



concentration can promote the growth of stem and leaf, pigment synthesis, photosynthetic rate and 

organic matter conversion efficiency, and effectively improve the quality and output of tomatoes 

(Fontes et al., 1997). If tomato seedlings are deficient in nitrogen, plant growth is retarded, flower 

bud differentiation is low, stems and leaves are small, and growth and development are inhibited. If 

there is an excess of nitrogen, the plant grows wildly, with large leaves but stunted roots, leading to 

a decrease in resistance, an irreversible process (Baglieri et al., 2014). Therefore, exploring the 

optimal nitrogen concentration of fertilization in the tomato seedling stage is the basis of the 

precision management of facility agriculture. According to the principle of plant physiology, plant 

leaves are the most sensitive to nitrogen, and the nitrogen content in the cultivation media will 

cause the difference in pigment content in leaves (Flores et al., 2001). By detecting pigments in 

leaves, we can indirectly diagnose the nitrogen deficiency of plants. The VIS/NIR-HSI is an 

effective technique for rapid and non-invasive analysis to obtain the required continuous spectral 

and image information. In recent years, using spectral analysis to obtain physiological information 

about crops has gradually become a research focus.  

The reflectance of plant leaves is mainly determined by the surface properties and internal 

structure of the leaves as well as by the concentration and distribution of chemical components. In 

the visible spectral (400-750 nm), it is mainly the absorption of photosynthetic pigments in the 

leaves. In the short wavelength near infrared (750-1300 nm), there is no strong absorption feature 

and the reflectance is determined by the discontinuous structure encountered in the leaves. The long 

wavelength near-infrared (1300-2500 nm), it is mainly related to the absorption characteristics of 

water and other compounds (Yao et al., 2009). Various biochemical factors, such as content of 

pigment and nutrient, have been found to affect the optical properties of tissues (Xu et al., 2007). 

Due to physiological stress, the spectra of plant leaves change in both the visible and near-infrared 

regions (Xu et al., 2007). The nitrogen concentration in the culture medium can directly affect the 

pigment content and its distribution in the leaves, which in turn affects the internal structure of the 

leaves. Owing to the large dimension of the hyperspectral detection data, the strategy of key band 



screening can reduce the amount of modeling data (Ouyang et al., 2021). However, it may lead to 

the loss of valid information, resulting in low prediction accuracy and insufficient generalization 

ability of the model. Therefore, the HSI non-destructive measurement technology combined with 

machine learning algorithms is being more and more widely applied to the detection of agricultural 

information and agricultural products (Wang et al., 2021; Li et al., 2018). The BP neural network 

algorithm has good self-learning, self-adaptation, generalization and fault-tolerance capabilities, but 

it has some drawbacks of slow convergence speed and local miniaturization (Zhang et al., 2021). To 

solve these problems, the optimization algorithm can optimize and reconstruct the BP network. At 

present, the classical population optimization algorithms include particle swarm optimization (PSO), 

ant colony optimization (ACO) and bee colony optimization (BCO). The SSA is a new population 

optimization algorithm designed with the idea of collaborative search of sparrow populations in 

foraging (Xue et al., 2020). It has the advantages of fewer iterations, faster convergence, and higher 

search efficiency. Tuerxun (2021) used SSA to optimize the penalty factor and kernel function 

parameters of the support vector machine (SVM) and established the SSA-SVM fault diagnosis 

model of the wind turbine. Zhang (2022) put forward an aberration optimization method based on 

the SSA. The results show that the aberration combination distribution optimized by the SSA 

method is more remarkable than that under zero aberration. Fathy (2022) proposed that SSA is 

applied to manage the operation of the power grid system in the best manner. The results show that 

SSA can effectively reduce the cost and emissions of power grid energy management, and has good 

robustness. The above results show that the SSA has the advantages of fewer iterations, faster 

convergence speed and higher search efficiency. At present, it has been widely applied in the fields 

of system diagnosis, image processing, mechanical analysis and so on. However, compared with 

other optimization algorithms, it is easy to get into premature convergence due to the reduction of 

population diversity at the end of the iteration. Yuan (2021) proposed to initialize the population 

using the gravity center reverse learning mechanism to make the population has a better spatial 

solution distribution. Gao (2022) proposed to optimize the diversity of population initialization with 



Ten chaotic mapping, which accelerated the convergence rate and improved the convergence 

accuracy of the algorithm. Combined with the greedy strategy, the ability of the algorithm to deal 

with the locally optimal solution is improved, and each sparrow is fully utilized. Yan (2021) 

proposed to improve SSA by adopting an iterative locally search strategy. In the local search stage, 

the improved iterative local search strategy is adopted to improve the search accuracy and prevent 

missing the optimal solution. 

In this study, chlorophyll a, chlorophyll b, chlorophyll and carotenoid in leaves of tomato 

seedlings were researched. The nutrient solution was prepared with ten kinds of nitrogen 

concentrations, and the leaves were picked for VIS/NIR hyperspectral collection. Aiming at the 

problems in the SSA, the Logistic chaotic mapping strategy was proposed to improve the 

population initialization, and established the Logistic-SSA-BP prediction model. Different 

pretreatment methods were adopted for different pigments to improve the prediction accuracy of the 

model. To explore the optimum nitrogen concentration of the nutrient solution in the greenhouse 

tomato seedling stage and the prediction effect of the optimization algorithm. 

 

Materials and methods 

Experimental design and sample collection 

The experiment was carried out in the scientific greenhouse of the College of Agricultural 

Engineering, Shanxi Agricultural University on November 12, 2021. Tomato seedlings, Provence of 

purchased from the seedling company, grown in the transplanting pot (diameter of 23.8 cm and 

height of 19.5 cm) on coconut chaff. The nutrient solution was a water-soluble fertilizer formulated 

of the Netherlands Institute of Greenhouse Horticulture. Ten nitrogen concentrations (nitrogen 

concentration range of 59.64 ~ 605.68 mg·L-1, step length of 60 mg·L-1, denote: N20, N40, N60, 

N80, N100, N120, N140, N160, N180, N200) were adjusted with urea. Ca2+ was supplemented with 

pure calcium fertilizer (Ca2+ ≥ 94%), keeping the Ca2+ concentration consistent. Ten plants were 

cultivated at all concentrations, except for five plants at N200 concentration, for a total number of 
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plants of 95. When tomato plants bloom by more than 50%, it is identified as reaching the flowering 

stage. Tomato leaves were sampled at the ‘transplant-flowering’ stage (December 13, 2021). At this 

time, the main stem stretched out 10-11 branches, and the tomato leaves were arranged according to 

Figure 1 (A). Among them, 9-7 branches were in the upper position, 6-4 branches were in the 

middle position, and 3-1 branches were in the lower position. The branches and leaves of tomatoes 

are ‘single-branch and multi-leaf’. To obtain the sample of the corresponding leaf position as 

comprehensively as possible, refer to the marked parts for sampling in Figure 1 (B). According to 

the position of the leaves, a total leaves of 1710 (285 samples) with uniform size were collected (6 

leaves for each sample). The samples were placed in sealed bags, numbered and stored in an 

incubator filled with dry ice. 

 

Hyperspectral imaging system 

Leaf images were collected by the VIS/NIR hyperspectral scanning platform (Headwall 

Photonics, USA). This system (Figure 1 (C)) mainly includes two hyperspectral imagers, lifting 

platform, light source, controller, scanning platform controlled by stepper motor and military 

computer. The resolution of the hyperspectral imager in the spectral range of 380-1000 nm and 

900-1700 nm are 0.727 nm and 4.715 nm, respectively. Due to the noise near the measuring range 

of the imager, a total variables of 794 in the spectral range of 430-900 nm and 950-1650 nm are 

intercepted as effective variables for modeling. System parameter settings: the movement speed was 

2.721 mm·s-1, the advance stroke was 100 mm, and the distance from the lens to the leaf was 28 cm, 

to obtain a clear and distortion-free image. 

To reduce the interference of the system light source and dark current on the image, the 

black-and-white correction of the HSI is carried out according to formula (1). Firstly, the dust and 

impurities on the leaves surface were washed clean with deionized water. Secondly, use filter paper 

to absorb the moisture on the surface. Finally, put three leaves on the stage. Two hyperspectral 

images were collected from each sample. 
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Where, R represents the image obtained after correction, R0 represents the original image, Rw 

represents the whiteboard calibration image (>99.9% reflectance), and Rb represents the dark 

background calibration image (<0% reflectance). 

 

Determination of leaf pigment content 

After collecting spectral images of the samples, the contents of chlorophyll a, chlorophyll b, 

chlorophyll and carotenoid were measured by spectrophotometer (Wellburn, 1994). After removing 

the leaf veins, each sample was cut into small pieces of about 2×2 mm, mixed and weighed 0.2 g 

and poured into a test tube. First, 10 mL of anhydrous ethanol was added, shaken well and extracted 

in the dark room for 10 h. Then, 10 mL of anhydrous ethanol was extracted for 14 h. Finally, 5 mL 

of anhydrous ethanol in a constant volume. The absorbance values of the prepared pigment extract 

were measured at wavelengths of 665 nm, 649 nm and 470 nm, respectively. Each sample was 

repeated three times. The pigment content is calculated according to formula (2-5). 

 

665 64913.95 6.88Chla A A=  −     （2） 

649 66524.96 7.32Chlb A A=  −     （3） 

Chll Chla Chlb= +       （4） 
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 −  − 
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Where, Chla, Chlb, Chll and Caro represent chlorophyll a, chlorophyll b, chlorophyll and 

carotenoid content, respectively. A665, A646 and A470 represent the absorbance of the solution to be 



measured wavelengths at 665 nm, 646 nm and 470 nm, respectively. 

 

Logistic Improved Sparrow Search Algorithm (Logistic-SSA) 

The sparrow search algorithm is based on the cooperative layout of the sparrow population in 

the form of predators, followers, and warnings in the process of finding food. The population 

simulates sparrow individuals in matrix form, expressed as follows: 
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Where, d

nx  represents the position of sparrows, n represents the number of sparrows, and d 

represents the dimension of variable space. The population fitness value is expressed as: 
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Where, f(x) represents the individual fitness value of the sparrow. 

Aiming at the existing problems of SSA, the Logistic chaotic mapping strategy was proposed to 

initialize the population. It increases the population diversity, makes the population distribution 

more uniform, and improves the initial solution quality of the population, thus upgrading the 

optimization efficiency and ergodicity of the algorithm. Its expression is as follows: 

 

( ) ( ) ( )( )1X t+1 = X t X t   −    （8） 

 



Where, X (t+1)∈[0, 1]. µ∈[0, 4] is Logistic parameters. According to relevant literature (Kanso 

et al., 2009), the closer to 4, the uniform distribution of X in the [0, 1] region, that is, the complete 

chaotic state, so µ= 4. t is the iteration time step. 

The role of predators is to provide searching direction for the foraging. In the process of 

searching for food (optimization), predators with higher adaptability get food first, so the predator 

has a larger search space. In the iterative optimization process, the position of the predator is 

expressed as: 
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Where, Xi,j represents the spatial position information of the i-th sparrow in the j-th dimension. 

t represents the current iteration number. α∈ (0, 1] random number. intermax represents the maximum 

number of iterations (set to 20). Q is a random number that obeys the normal distribution. L 

represents a 1×d matrix with all elements of 1. R2∈ [0, 1] is the warning value. ST ∈ [0.5, 1] is a safe 

value (set to 0.8). When R2 < ST, the search space is safe, and predators can widely search for food. 

When R2 ≥ ST, the predator finds an alarm in the search space, and alert the community to fly away 

quickly. 

During foraging, the follower watches the predator in real time. If the predator finds food, the 

follower quickly occupies the best position for foraging, and its position is expressed as:  

 

( )( )

,

2
1

,

1
1 1

,

0.5

0.5

t t

worst i j

t

i j

t t t

p i j p
T T

X X
Q exp                               i n

i
X =

X X X A L      i n   A A

+

−
+ +

  −
   

 
 


+ −   

（10） 

 

Where, Xworst represents the worst position in the current population space. Xp indicates the best 



position of the current predator. A is a 1×d matrix expressed as 1 and -1. When i > 0.5n, followers 

with low fitness values can't catch food, so they need to search other areas for food. When i≤0.5n, 

followers will forage in the best position. 

A certain number of sparrows in the population are randomly selected as warnings agents to 

assume the warning function. Its position is expressed as:  
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Where, Xbest represents the best position of the current population space. β represents the step 

size control parameter, which is a random number with standard normal distribution. The random 

number of k ∈ [-1, 1]. fi is the individual fitness value of the current population. fg and fw are the best 

and worst fitness values of the current population space, respectively. ε represents a constant (set to 

10-8) to avoid the model being meaningless. 

 

Logistic-SSA-BP model and evaluation index 

In the Logistic-SSA optimization algorithm, the ratio of predator, follower and warning was set 

to 0.7: 0.3: 0.2. When the maximum number of iterations was reached, the optimal fitness value 

outputs the optimal solution, so as to optimize the weights and thresholds of the BP neural network. 

The error back propagation was used for iterative training, and the preset effect was achieved. 

The Logistic-SSA-BP model flow is shown in Figure 2. The node number of the input layer, 

hidden layer and output layer of the BP neural network was 794, 30 and 1, respectively. This 

network has two layers, where the number of thresholds and weights in the first layer were set to 

23820 and 30, and the thresholds and weights in the second layer were set to 30 and 1. The settings 

of each parameter are shown in Table 1. In this paper, the fitness function is expressed as: 

 



   
( ) ( )( )f=argmin mse TE mse PE+    （12） 

 

Where, TE and PE are training set and prediction set errors, respectively. mse is the mean 

square error function. The smaller the mean square error, that is, the smaller the fitness function 

value, indicating the higher the prediction accuracy of the model. 

The root mean squared error (RMSE), coefficient of determination (R2) and relative percent 

deviation (RPD) evaluated the prediction potential and performance of the models. The smaller the 

RMSE, the higher the prediction accuracy. The closer R is to 1, the higher the prediction accuracy. 

When RPD>2, it indicates that the model achieves a better prediction effect on the index. When 

1.4<RPD<2, it indicates that the model can predict the index to a certain extent. When RPD<1.4, it 

indicates that the model cannot predict the index (Wang et al., 2019). 
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Where, n represents the number of samples, yi represents the actual value of physical and 

chemical experiments of samples, ˆiy  represents the predicted value of the sample model, and y  

represents the average value of yi. 



Results and discussion 

Analysis on the change law of leaf pigment content 

The concentration of nitrogen in nutrient solution affects the absorption and assimilation 

potential of crops. The effects of different concentrations of nutritional solution nitrogen on the 

pigment content of tomato leaves are significantly different, as shown in Figure 3 (A). When the 

nitrogen concentration in the nutrient solution (N100) was 302.84 mg·L-1, the pigment content in 

leaves reached the maximum. When the concentration was less than 302.84 mg·L-1, with the 

increase in concentration, the maximum growth rates of chlorophyll a, chlorophyll b, chlorophyll 

and carotenoid reached 14.29%, 20.75%, 17.45% and 17.85%, respectively. When the concentration 

was greater than 302.84 mg·L-1, with the increase of concentration, the maximum decrease rates of 

chlorophyll a, chlorophyll b, chlorophyll and carotenoid reached 16.35%, 21.74%, 17.78% and 

27.40%, respectively. This is because the optimum concentration of nitrogen can keep the balance 

of nutrients in plants. Too high or too low will upset this balance, and inhibit the growth and 

development of crops. The results showed that the inhibitory effect of high concentration was 

stronger than that of low concentration. At the same time, nutrients are easily transferred during the 

process of crop growth and development, resulting in differences in pigment contents in tomato 

leaves, as shown in Figure 3 (B). When the leaf was from the upper to the middle, the decrease rates 

of chlorophyll a, chlorophyll b and chlorophyll were the same, about 7.92%, while the decrease rate 

of carotenoid content was 13.5%. When the leaf position was from the middle to the low, the 

decrease rates of chlorophyll a, chlorophyll b, chlorophyll and carotenoid were the same, reaching 

about 19.12%. This indicates that the plant is in a vigorous growth stage. 

 

Extraction of spectral data and spectral response characteristics of leaves 

As there are many pixels in the image collected by the spectral imager, it is difficult to extract 

and process these data. To simplify this process, batch extraction and processing software of HSI 

was developed for SpectralView software. Use the ellipse model to select the center coordinate, x/y 



semi-axis length, and x/y axis interval of the image region of interest (ROI). Generate a coordinate 

matrix of the ROI on the target image. Importing images through SpectralView follows the 

principle of ‘from left to right, from top to bottom’, and actively extracts ROI information from 

images. Then, the spectral information of different bands of each pixel was output in batches as an 

arithmetic average, as shown in Figure 4. Because the resolutions of the hyperspectral imager are 

different, the number of pixels taken is also different. At 430-900 nm and 950-1650 nm, 18810 and 

2130 pixels were extracted from each leaf, i.e. 112860 (18810×6) and 12780 (2130×6) pixels were 

extracted from each sample, and the average spectral reflectance was output in batches. 

Different nitrogen concentrations of nutrient solution and pigment contents in different leaves 

are quite different, which leads to great differences in spectral reflectance of samples treated with 

different treatments. Figure 4 shows the response curves of leaves at 430-900 nm and 950-1650 nm. 

There is a strong absorption area of chlorophyll and carotenoid at 490 nm (Wang et al., 2019). 

There is a strong reflection region of chlorophyll at 550 nm. There is a strong absorption area of 

chlorophyll at 680 nm. There are obvious wave point fluctuations in 750-900 nm, which is related 

to the absorption of water or oxygen (Schmilovitch et al., 2014). There is a second harmonic 

generation (SHG) of free O-H groups stretching vibration at 980 nm (Kostin et al., 2015). There is 

the harmonic generation and combined spectral band of the C-H groups stretching vibration at 1200 

nm (Sankar et al., 2010). There is the SHG of the O-H bond in water molecules at 1450 nm (Huang 

et al., 2013). 

 

Dataset partition 

The SPXY algorithm, which comprehensively considers the differences between the spectral 

characteristics and physicochemical properties of the samples, was used to divide the dataset 

(Galvao et al., 2005). As can be seen from Table 2, the sample mean values of the training set and 

the prediction set were almost the same, indicating the rationality of the dataset partition. 

 



Prediction of leaf pigment content 

For chlorophyll a, chlorophyll b, chlorophyll and carotenoid, Figure 5 and Table 3 show the 

changes in iterations and fitness values of Logistic-SSA and SSA. From the iterative results, it can 

be seen that Logistic-SSA obviously improves the quality of the initial solution of the population, 

and effectively increases the diversity of the population. With the increase of iterations, the early 

convergence rate was obviously improved, which indicates that the global searching capability of 

the population was optimized. Although the number of optimization iterations has increased, the 

optimization accuracy had been improved, that is, the optimal fitness value was obviously lower 

than that of SSA. The chlorophyll a, chlorophyll b, chlorophyll and carotenoid decreased by 0.03, 

0.02, 0.01 and 0.02, respectively. The results show that the Logistic chaotic mapping strategy can 

effectively improve the searching performance of the SSA population. 

In the process of spectral scanning, factors such as leaf state, measurement environment, 

instrument response, etc. will cause the spectral baseline to shift, thus affecting the prediction 

accuracy of the model. The Savitsky-Golay (S-G), Standard Normal Variable (SNV) and Multiple 

Scattering Correction (MSC) were used to eliminate multiple linear errors caused by leaf surface 

scattering, optical path change and interference among components. Through Logistic-SSA iterative 

optimization, the weights and thresholds of the BP neural network from input layer to hidden layer 

and from hidden layer to output layer are optimized, respectively, to obtain the optimal solution of 

optimal fitness output. The contents of chlorophyll a, chlorophyll b, chlorophyll, and carotenoid 

were predicted through the reconstruction of the BP network. The prediction accuracy results of 

different pretreatment methods for the raw data (Raw) are shown in Table 4. For chlorophyll a, the 

optimal prediction was obtained by combining S-G, SNV and MSC, with RMSE, R2 and RPD of 

0.77, 0.77 and 2.08, respectively. For chlorophyll b, the optimal prediction was obtained by 

combining S-G and MSC, with RMSE, R2 and RPD of 0.30, 0.66 and 1.71, respectively. For 

chlorophyll, the optimal prediction was obtained by combining S-G and SNV, with RMSE, R2 and 

RPD of 0.88, 0.81 and 2.28, respectively. For carotenoid, the optimal prediction was obtained by 



combining S-G and SNV, with RMSE, R2 and RPD of 0.14, 0.75 and 2.00, respectively. In summary, 

it can be concluded that Logistic-SSA-BP can achieve better prediction for chlorophyll a, 

chlorophyll, and carotenoid, and to a certain extent for chlorophyll b. The model can be used to 

predict chlorophyll a, chlorophyll and carotenoid. It shows that the model has some generalizability. 

 

Conclusions and prospects 

In this paper, the contents of chlorophyll a, chlorophyll b, chlorophyll and carotenoid in 

different leaf positions of tomato seedlings under nutrient solution cultivation with different 

nitrogen concentrations were taken as research indexes. Prediction model of pigment content based 

on hyperspectral technology and machine learning algorithms. To solve the problems of the SSA in 

the optimization process, the Logistic chaotic mapping strategy was proposed to initialize the 

population. The Logistic-optimized SSA was used to optimize the weights and thresholds of the BP 

neural network to establish the pigment content prediction model. The following conclusions were 

mainly obtained: 

(1) There are significant differences in the effects of different nitrogen concentrations on 

pigment content in tomato leaves. When the nitrogen concentration is 302.84 mg·L-1, the pigment 

content in leaves is the highest, and the inhibitory effect of high concentration was stronger than 

that of low concentration. It could provide data support for precise management of fertilizer in 

facility agriculture, and then improve the quality and output of tomatoes. 

(2) The Logistic chaotic mapping strategy was adopted to initialize the SSA population, which 

effectively improves the initial solution of the population. It reduces the optimal fitness of the 

population, and improves the convergence speed and optimization efficiency of the algorithm. 

Thereby improving the search ability of the population. 

(3) Different combinations of pretreatment methods for different pigments significantly 

improved the accuracy of the Logistic-SSA-BP prediction model. The RMSE, R2 and RPD of 

chlorophyll a were 0.77, 0.77 and 2.08, respectively. The RMSE, R2 and RPD of chlorophyll b were 



0.30, 0.66 and 1.71, respectively. The RMSE, R2 and RPD of chlorophyll were 0.88, 0.81 and 2.28, 

respectively. The RMSE, R2 and RPD of carotenoid were 0.14, 0.75 and 2.00, respectively. The 

results show that the optimization algorithm has a good prediction effect and universality, which 

provides a theoretical basis for the application of crop or agricultural product information 

prediction. 
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Table 1. Parameters of the BP neural network model. 

 

Parameters Network function and parameter size 

Hidden layer function Logsig 

Output layer function Purelin 

Training function Traingdx 

Maximum steps of training 300 

Training accuracy 0.01 

Learning rate 0.1 
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Table 2. Statistical results of leaf pigment content dataset. 

 

Sample 

category 
Pigments Number Max Min Mean SD 

Training set 

Chlorophyll a 

213 

14.72 3.37 8.32 2.18 

Chlorophyll b 4.89 1.24 2.86 0.74 

Chlorophyll 19.62 4.61 11.15 2.89 

Carotenoid 3.23 0.60 1.42 0.44 

Prediction set 

Chlorophyll a 

72 

12.43 5.26 8.31 1.69 

Chlorophyll b 4.38 1.80 2.90 0.57 

Chlorophyll 16.63 6.96 11.31 2.22 

Carotenoid 2.14 0.90 1.40 0.34 

 

 
 

Table 3. Optimal iteration times and fitness value of Logistic-SSA and SSA for leaf pigment index. 

 

Pigments 

Logistic-SSA SSA 

1st 

Optimal 

number of 

iterations 

Best fitness 

value 
1st 

Optimal 

number of 

iterations 

Best 

fitness 

value 

Chlorophyll a 0.17 15 0.10 0.15 6 0.13 

Chlorophyll b 0.15 17 0.11 0.14 15 0.13 

Chlorophyll 0.21 19 0.11 0.17 13 0.13 

Carotenoid 0.16 14 0.08 0.13 16 0.10 

 

Note: 1st represent the initial optimal fitness value of the population. 

 

 
 

Table 4. Comparison of prediction accuracy results of different pretreatment methods. 

 

Pigments Pretreatment method RMSE R2 RPD 

Chlorophyll a 

Raw 0.82 0.70 1.84 

S-G 0.77 0.74 1.97 

S-G+SNV+MSC 0.77 0.77 2.08 

Chlorophyll b 

Raw 0.34 0.57 1.52 

S-G 0.31 0.63 1.65 

S-G+MSC 0.30 0.66 1.71 

Chlorophyll  

Raw 0.89 0.77 2.09 

S-G 0.86 0.79 2.18 

S-G+SNV 0.88 0.81 2.28 

Carotenoid 

Raw 0.21 0.66 1.71 

S-G 0.18 0.73 1.92 

S-G+SNV 0.14 0.75 2.00 
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Figure 1. Sampling rules and hyperspectral imaging system. 

 
 
 
 
 

 
 

Figure 2. Flow chart of Logistic-SSA-BP neural network. 



 
 

Figure 3. Effects of different nitrogen concentration on different positions of tomato leaves. 

 

 



 
 

Figure 4. Spectral response curve of tomato leaves. 

 

 



 
 

Figure 5. Comparison of iterative curves between Logistic-SSA and SSA. 
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