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Tryptophan (Trp) is an essential amino acid that can be metabolized via endogenous 
and exogenous pathways, including the Kynurenine Pathway, the 5-Hydroxyindole 
Pathway (also the Serotonin pathway), and the Microbial pathway. Of these, the 
Microbial Trp metabolic pathways in the gut have recently been extensively 
studied for their production of bioactive molecules. The gut microbiota plays an 
important role in host metabolism and immunity, and microbial Trp metabolites 
can influence the development and progression of various diseases, including 
inflammatory, cardiovascular diseases, neurological diseases, metabolic diseases, 
and cancer, by mediating the body’s immunity. This review briefly outlines the 
crosstalk between gut microorganisms and Trp metabolism in the body, starting 
from the three metabolic pathways of Trp. The mechanisms by which microbial 
Trp metabolites act on organism immunity are summarized, and the potential 
implications for disease prevention and treatment are highlighted.
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1. Introduction

Tryptophan (Trp), one of the functional amino acids (FAAs) for mammals, can synthesize 
proteins and is also a precursor for a range of biologically active molecules (1). Trp is metabolized 
via the Kynurenine Pathway, the 5-Hydroxyindole Pathway (Serotonin pathway), and the 
Microbial pathway. The metabolites serotonin, melatonin, indole, and its derivatives are essential 
in regulating organismal immunity (2, 3).

The gut possesses a complex ecosystem that provides a habitat for numerous microbiota. 
Over a long evolutionary period, the gut microbiota and its host have mutually benefited and 
maintained certain homeostasis (4, 5). Dysbiosis of the intestinal ecology will lead to dysfunction 
accompanied by increased intestinal permeability, immune system abnormalities, and 
organismal inflammation (6, 7). These effects can be mediated directly through intercellular 
interactions. Besides, they can also be mediated by metabolites produced by microorganisms, 
the environment or host molecules (8). As a veritable endocrine powerhouse, the gut microbiota 
generates various bioactive molecules. These bioactive compounds can exert effects both locally, 
within the gut environment, and distally, throughout the body, eliciting a range of responses that 
can impact multiple organ systems (8). Disruption in the reciprocal communication between 
the host and the microbiota may incite or intensify the development of disease pathogenesis (9, 
10), which includes the mediation of disease through the immune system. The indole and indole 
derivatives, such as indole-3-acrylic acid (IA), indole-3-propionic acid (IPA), indole-3-lactic 
acid (ILA), indole-3-aldehyde (IAld), and indole-3-acetic acid (IAA), act as essential signaling 
molecules within the microbial community, mediating host-microbial crosstalk to affect the 
body’s immune system causing the development of related diseases (11–13). It is worth 
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mentioning that indole and indole derivatives metabolized by Trp can 
act as activators of aryl hydrocarbon receptor (AhR) or pregnane X 
receptor (PXR) signaling to regulate host immune responses (14, 15).

While several previous studies have comprehensively explored the 
impact of Trp metabolism and gut microbes on related diseases and 
the crosstalk between the two (16–22), there remains a notable gap in 
the literature regarding the relationship between microbial Trp 
metabolites and organismal immunity. To address this issue, 
we present a concise summary of recent discoveries regarding the gut 
microbiota’s role in Trp metabolism. This encompasses the direct 
conversion of Trp into bioactive molecules by the gut microbiota, as 
well as their modulation of Trp metabolism in various pathways. 
Additionally, we provide an overview of the potential function of 
microbial-derived Trp metabolites as signaling molecules in the 
communication between the gut microbiota and organismal 
immunity, as well as their involvement in the pathophysiology of 
related diseases. Overall, this review aims to elucidate the complex 
interactions between microbial Trp metabolism, gut microbiota, and 
organismal immunity that which have important implications for 
human health.

2. Tryptophan metabolism

2.1. Tryptophan uptake, absorption, and 
metabolism

Tryptophan, also referred to as β-indolylalanine, is an aromatic 
amino acid characterized by the presence of a β-carbon attached to the 
3-position of the indole group. With a chemical formula of C11H12N2O2 
(23), Trp is the largest molecular weight of the standard amino acids 
and the least stored within the cell, making it more susceptible to a 
deficiency under conditions of nutrient deprivation and increased 
catabolism (12). Poultry, fish, dairy, soybean, and other foods have 
high Trp content (24). Humans consume Trp in the form of both 
ingested protein and gut microbial secretion, and the majority of Trp 
is absorbed in the intestine. Dietary habits, hormones, geographic 
location, and stress are some factors that affect Trp absorption and 
utilization (25). In addition, the simultaneous intake of other neutral 
amino acids or carbohydrates can also limit the absorption and 
availability of Trp (26, 27). Studies have shown that Trp uptake in the 
brain is enhanced during intense physical activity, activation of the 
neurosympathetic system, lipolysis, and increased plasma levels of 
non-esterified fatty acid (NEFA) (28, 29). The body’s deficiency of Trp 
and related metabolites is associated with various diseases, including 
neurological disorders, inflammatory bowel disease (IBD), metabolic 
diseases, cardiovascular diseases, and depression (11, 30).

Tryptophan, a neutral amino acid, is absorbed through apical 
membranes in the small intestine by amino acid transporters, 
including ATB0+ (SLC6A14 gene), a symporter utilizing 2Na/1Cl−, 
and B0AT1 (SLC6A19 gene), Na-dependent transmembrane protein 
(2, 31). It is then transported into the portal circulation through 
basolateral membranes via TAT1 (SLC16A10 gene), a uniporter, or 
LAT2-4F2hc (SLC7A8-SLC3A2 gene) and LAT1-4F2hc (SLC7A5-
SLC3A2 gene), antiporters (32–34). The insertion of these transporters 
into the cell membrane, the modulation of their activity, and an 
increase in substrate supply require their association with other 
molecules, such as ACE2, CD98/CD147, or aminopeptidase 

N. Nonetheless, comprehension of the factors that affect the expression 
of these receptors and proteins remains insufficient. After being 
absorbed into the circulation, Trp binds mainly to albumin (75–90%) 
(30). Trp enters the liver with the blood circulation for protein 
synthesis, and the rest of Trp continues to reach tissue cells throughout 
the body with the blood circulation for protein synthesis (35). Trp that 
does not undergo protein synthesis will enter various metabolic 
pathways, mainly through Endogenous Trp metabolism, including the 
kynurenine and the serotonin pathway (36, 37). Within these 
pathways, the formation of endogenous metabolites such as 
kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine 
(3-HOK), and 5-hydroxytryptophan (5-HTP) takes place (38, 39). In 
addition, a portion of Trp that does not enter the circulation will 
be metabolized and degraded by intestinal microorganisms (Bacterial 
Trp metabolism) (40), also known as exogenous Trp metabolism. 
Notably, exogenous metabolites indole and indole derivatives are 
produced during this process (39).

2.2. Kynurenine pathway

The kynurenine pathway (KP) is the primary catabolic route for 
Trp. Once Trp is transported to the bloodstream from the intestine, 
approximately 90% of the unbound Trp, which is not used for protein 
synthesis, undergoes catabolism through this pathway in the liver (41, 
42). The enzymatic activities involved in the KP and the availability of 
Trp are crucial factors affecting this process. Specifically, the initial 
and rate-limiting step for the production of downstream metabolites 
involves the oxidation of Trp to N-formyl-kynurenine (Nfk) by 
indoleamine 2,3-dioxygenase 1 and 2 (IDO1, IDO2) as well as 
Trp 2,3-dioxygenase (TDO). IDO and TDO are subject to stabilization 
by its substrate, leading to reduced inactivation rates (43–45). IDO 
and TDO are tissue specific. The IDO is present in various organs 
including the brain, gastrointestinal tract and liver, and is related to 
the body’s inflammatory response. IFN-γ, TNF-α, and IL-6, 
inflammatory cytokines effectively induce IDO activity. TDO is 
expressed almost exclusively in the liver, and the hypothalamic–
pituitary–adrenal axis positively affects TDO expression through 
glucocorticoids, and to a lesser extent in the brain (45–47). Under the 
mediation of arylformamidase, N-formylkynurenine is catalyzed to 
kynurenine concisely. Kynurenine (KYN) can form kynurenic acid 
(KYNA) in the presence of kynurenine aminotransferase (KAT) 
(42, 48).

In addition to this, kynurenine can be  formed to form 
3-hydroxykynurenine (3-HOK) catalyzed by kynurenine 
3-monooxygenase (KMO). 3-HOK can be converted to xanthurenic 
acid (XA) catalyzed by KAT. In addition, 3-hydroxyanthranilic acid 
(3-HAA) can also be formed under the catalysis of Kynureninase (49, 
50). 3-HAA is metabolized in three ways. (1) As one of the most 
critical products of the KPquinolinic acid (QUIN) is formed from 
3-HAA catalyzed by 3-HAA oxygenase (36). QUIN can be converted 
to NAD as the end product of the kynurenine-quinolinic acid pathway 
(17). (2) 3-HAA is catalyzed by 3-hydroxyanthranilate 3,4-dioxygenase 
to form 2-amino-3-carboxymuconate semialdehyde, and then in 
2-amino-3-carboxymuconate semialdehyde carboxy-lyase catalyzed 
formation of Picolinic acid (51). (3) Conversion of 2-amino-3-
carboxymuconate semialdehyde to acetyl CoA (complete oxidation) 
(52, 53). Among the three possible sub-metabolic pathways of KP, Trp 
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is completely oxidized to carbon dioxide and water via acetyl CoA for 
the majority of reasons that we will not discuss here.

2.3. 5-Hydroxyindole pathway

The Serotonin Pathway is another pathway involved in the 
endogenous metabolism of Trp. Serotonin (5-hydroxytryptamine, 
5-HT) is a monoamine molecule that is primarily synthesized in 
mammals through the catabolism of Trp (54). 5-HT, a key inhibitory 
neurotransmitter, is found in high levels in the cerebral cortex and 
synapses, where it is involved in mood control, regulation of sleep and 
pain, etc. (55, 56). In addition, 5-HT acts as a strong vasoconstrictor 
and smooth muscle contraction stimulator in peripheral tissues. 
Initially, Trp hydroxylase (TPH)-1/2 converts Trp to 
5-hydroxytryptophan (5-HTP). Enterochromaffin cells located in the 
gastrointestinal tract express the enzyme TPH-1, and serotonergic 
neurons in both the central nervous system (CNS) and enteric nervous 
system (ENS) express the enzyme TPH-2 (17, 37, 57). Serotonin is 
formed from 5-HTP by the catalytic action of aromatic amino acid 
decarboxylase. In the intestine, TPH-1 catalyzes the production of 
serotonin, which can act locally or be  transported by platelets to 
various distal sites, such as the liver, bones, and cardiovascular system 
(58). Although 5-HT is essential in maintaining the normal function 
of the central and peripheral nervous system, it cannot cross the 

blood–brain barrier under physiological conditions (59). 5-HT 
catalyzed by TPH-2 is produced in the CNS and periphery in small 
but significant amounts to act locally (60). Melatonin is metabolically 
synthesized from Trp in the pineal gland or the EC in the 
gastrointestinal tract (61). Trp is converted to 5-HT by the catalytic 
action of various enzymes. Initially, 5-HT is converted to N-acetyl-5-
hydroxytryptamine catalyzed by serotonin-N-acetyltransferase, then 
to melatonin catalyzed by acetylserotonin O-methyltransferase (62). 
Besides that, Monoamine oxidase (MAO) breaks down 5-HT through 
catabolism, resulting in the formation of 5-hydroxyindole (5-HI) 
acetaldehyde. Subsequently, aldehyde dehydrogenase further 
metabolizes the acetaldehyde to form 5-HI acetic acid (5-HIAA), 
which is eliminated from the body through urine excretion (63) 
(Figure 1).

2.4. Microbiome pathways

In addition to the 5-HT pathway and KP, a small fraction of Trp 
enters the large intestine to be metabolized by microorganisms. The 
metabolic breakdown of Trp is proportional to intake, carbohydrate 
consumption and colonic pH (11, 64). As carbohydrate substrates are 
progressively depleted along the colon from proximal to distal regions, 
bacterial metabolism shifts from utilizing carbohydrates to proteins 
via fermentation. The transition leads to a notable rise in phenolic 

FIGURE 1

Endogenous pathways of tryptophan metabolism including Kynurenine Pathway (left) and 5-Hydroxyindole Pathway (right). IDO, indoleamine 
2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase; KMO, kynurenine 3-monooxygenase; KAT, kynurenine aminotransferase; 3-HAO, 
3-hydroxyanthranilicacid 3,4-dioxygenase; ACMSD, 2-amino-3-carboxymuconate-6-semialdehydedecarboxylase; QPRT, quinolinate 
phosphoribosyltransferase; and NAD+, nicotinamide adenine dinucleotides+.
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compound levels, resulting from the breakdown of Trp in the gut 
content, which are considerably more abundant in the distal colon 
compared to the proximal colon (65).

In Microbiome Pathways, Trp is degraded by intestinal 
microorganisms to indole and its derivatives, including IAA, IAld, 
IPA, IA, Indole-3-Acetamide (IAM), etc., which is a complex process 
and accompanied by many enzymatic reactions. Microbiome 
Pathways can be broadly classified into four pathways (Figure 2). Path 
I: Trp is converted to IAM (by Tryptophan 2-monooxygenase) and 
then to IAA (by indole-3-acetamidehydrolase) (9, 28). Path II: Trp is 
converted to tryptamine and then to Indole-3-acetaldehyde(IAAld) 
by Tryptophan decarboxyolase, Diamine oxidase, and MAO. IAAld 
can be  converted to Tryptophol or IAA catalyzed by Indole-3-
acetaldehydeoxidase. IAA can be  converted to skatole (by 
Indoleacetate dexarbaxylase) or IAId (28). Path III: Trp gradually 
transforms to Indole-3-Pyruvate(IPyA; by Aromatic amino acid 
aminotransferase), ILA (by phenyllactate dehydrogenase), and IA (by 
phenyllactate dehydratase), and eventually to IPA(by acyl-CoA 
dehydrogenase) (9, 40). Path IV: Trp is catalyzed by Tryptophanase to 
indole, which can be further converted to Indoxyl sulfate (I3S) (13).

Many intestinal microorganisms are involved in metabolism, and 
most mediate metabolism by forming the different types of enzymes 
required for the pathway (66). One of the most well-studied 
microorganisms is Escherichia coli (E. coli). In E. coli, the indole 
pathway is regulated by a transcriptional regulator called 
tryptophanase (TnaA), which catalyzes the conversion of Trp to indole 
and pyruvate (67). Additionally, E. coli also possesses an indole 
importer (YhcY) and an efflux pump (MdtEF), which regulate the 
intracellular concentration of indole and control its secretion (68). 
Another microorganism involved in the indole pathway is Clostridium 
sporogenes (69). Trp is converted to indole by the enzyme 

tryptophanase in this microorganism, which is then further 
metabolized to IAld by an aldehyde dehydrogenase. IAld can then 
be oxidized to IAA by an oxidoreductase or converted to tryptamine 
by a decarboxylase. Several other microorganisms, including 
Bacteroides thetaiotaomicron, Proteus vulgaris, and Pseudomonas 
aeruginosa, have also been shown to possess enzymes involved in the 
indole pathway of Trp metabolism (70–73). Furthermore, 
Pseudomonas aeruginosa has been found to have a tryptophanase 
enzyme regulated by a two-component system, which is vital for 
regulating virulence (74).

3. Crosstalk between intestinal 
microbes and tryptophan metabolism

An increasing body of literature suggests that Trp catabolites, 
produced by the gut microbiota, play a critical role as signaling 
molecules in both microbial communities and communication 
between hosts and microbes (9). These metabolites may have a role in 
maintaining immune system stability within the body (75). As seen 
previously, bacterial Trp metabolites include indoles and indole 
derivatives, most of which are produced by intestinal microorganisms, 
including indole, IAA, IA, IPA, tryptamine, and skatole. Bacterial Trp 
metabolites can act as potent bioactive compounds to mediate 
organismal immunity. Metabolites can affect immune cells and 
intestinal barrier integrity by activating human receptors such as PXR 
or AhR, both highlighted in subsequent sections (9, 65). Different 
bacteria produce different enzymes to catalyze different metabolites. 
Since the production of some metabolites requires multiple enzymatic 
reactions to produce them, multiple bacterial mediators are required 
(Table 1).

FIGURE 2

Tryptophan metabolism exogenous pathway is also known as the microbial pathway.
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TABLE 1 Microbiota-derived tryptophan metabolites and gut microbiota species.

Microbial 
tryptophan 
metabolites

Enzymes References Producers References

Indole Tryptophanase (TNA) (28, 40) Bacteroides ovatus Enterococcus faecalis (11, 76–80)

Clostridium limosum Escheichia coli

Clostridium bifermentans Fusobacterium nucleatum

Clostridium malenomenatum Haemophilus influenza

Clostridium lentoputrescens Proteus vulgaris

Clostridium tetani Paracolobactrum coliforme

Clostridium tetanomorphum Pseudomonas. aeruginosa

Clostridium sordellii Peptostreptococcus asscharolyticus

Clostridium ghoni Salmonella enterica

Corynebacterium acnes Vibrio cholerae

Citrobacter koser …for more see (76, 81)

Indole-3-acid-

acetic (IAA)

Tryptophan 

decarboxylase (TrD)

(30) Bacteroides thetaiotaomicron Clostridium sporogenes (69, 78, 82–85)

Bacteroides eggerthii Clostridium perfringens

Indole-3-acetaldehyde 

oxidase

Bacteroides ovatus Clostridium putrefaciens

Bacteroides fragilis Clostridium saccharolyticum

Tryptophan 

2-monooxygenase 

(TMO)

Bifidobacterium adolescentis Clostridium sticklandii

Bifidobacterium longum subsp. longum Clostridium subterminale

Diamine oxidase Bifidobacterium pseudolongum Clostridium subterminale

Clostridium bartlettii Escherichia coli

Monoamine oxydase 

(MAO)

Clostridium difficile Eubacterium hallii

Clostridium lituseburense Eubacterium cylindroides

Clostridium paraputrificum … for more see (82)

3-methylindole 

(skatole)

Indoleacetate 

decarboxylase (IAD)

(30, 65) Bacteroides thetaiotaomicron Eubacterium cylindroides (86, 87)

Butyrivibrio fibrisolvens Eubacterium rectale

Clostridium bartlettii Megamonas hypermegale

Clostridium scatologenes Parabacteroides distasonis

Clostridium drakei … for more see (65, 88)

Indole-3-acrylic 

acid (IA)

Aromatic amino acid 

aminotransferase 

(ArAT)

(11, 65) Clostridium sporogenes (12, 69, 89, 90)

Phenyllactate 

dehydrogenase (fldH)

Peptostreptococcus russellii

Phenyllactate 

dehydratase (fldBC)

Peptostreptococcus anaerobius

Pyruvate: ferredoxin 

oxidoreductase B and C 

(porB, C)

Peptostreptococcus stomatis

… for more see (91)

Indole-3-propionic 

acid (IPA)

Acyl-CoA 

dehydrogenase (acdA)

(30) Bacteroides Escherichia. coli (69, 89, 92, 93)

Clostridium botulinum Peptostreptococcus asscharolyticus

Clostridium caloritolerans Peptostreptococcus russellii

Clostridium paraputrificum Peptostreptococcus anaerobius

Clostridium sporogenes Peptostreptococcus stomatis

Clostridium cadvareris … for more see (94)

(Continued)
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In addition to Bacterial Trp metabolism, numerous studies have 
shown that Endogenous Trp metabolism is also mediated by 
microorganisms (41, 65). Serotonin is one of the critical products 
of Endogenous Trp metabolism and is mainly released from 
intestinal chromogranin cells (103). It has been demonstrated to 
function as an intestinal signaling molecule, conveying signals from 
the gut to intrinsic or extrinsic neurons and influencing intestinal 
peristalsis, motility, secretion, vasodilation, and nutrient absorption 
(104–107). These effects suggest a potentially significant role in the 
regulation of gastrointestinal physiology (104). Investigations 
employing germ-free mice have demonstrated a noteworthy 
reduction in the levels of serotonin present in both the colon and 
blood (108). A further investigation utilizing germ-free mice 
colonized with specific pathogen-free fecal microbiota has shown 
that commensal microbiota synthesizes serotonin within the gut 
lumen by deconjugating glucuronide-conjugated serotonin, which 
is excreted via the bile duct through a β-glucuronidase-dependent 

mechanism (109). This discovery emphasizes the significant role of 
commensal microbiota in regulating gut serotonin levels, which can 
be  modulated in multiple ways. Studies have revealed that 
commensal bacteria promote serotonin biosynthesis in colonic 
enterochromaffin cells through a mechanism involving metabolites 
and cell components (110, 111). Hafnia alvei (NCIMB, 11999), 
Escherichia coli K-12, Lactobacillus plantarum FI8595, L. lactis 
subsp. lactis IL1403, Klebsiella pneumoniae (NCIMB, 673), 
Morganella morganii (NCIMB, 10466), Lactococcus lactis subsp. 
cremoris MG1363, and Streptococcus thermophilus NCFB2392 have 
been reported to produce serotonin by expressing Trp synthetase 
(37, 112). Moreover, several other factors have been found to 
modulate the gut microbiota’s effects on serotonin production. For 
instance, dietary components such as fiber have been shown to 
stimulate serotonin production by promoting the growth of specific 
gut bacteria (113). Microbial biotransformation of bile acids 
changes secondary bile acids to deoxycholic acid inducing 5-HT 

TABLE 1 (Continued)

Microbial 
tryptophan 
metabolites

Enzymes References Producers References

Indole-3-lactic acid 

(ILA)

Aromatic amino acid 

aminotransferase 

(ArAT)

(30, 65) Anaerostipes hadrus Clostridium sporogenes (69, 83, 95–97)

Anaerostipes caccae Clostridium saccharolyticum

Bacteroides thetaiotaomicron Escherichia coli

Bacteroides eggerthii Eubacterium rectale

Bacteroides ovatus Eubacterium cylindroides

Phenyllactate 

dehydrogenase (fldH)

Bacteroides fragilis Faecalibacterium prausnitzii

Bifidobacterium adolescentis Lactobacillus murinus

Bifidobacterium bifidum Lactobacillus paracasei

Bifidobacterium longum subsp. infantis Lactobacillus reuteri

Bifidobacterium longum subsp. longum Megamonas hypermegale

Pyruvate: ferredoxin 

oxidoreductase B and C 

(porB, C)

Bifidobacterium pseudolongum Parabacteroides distasonis

Clostridium bartlettii Peptostreptococcus asscharolyticus

Clostridium perfringens … for more see (40)

Indole-3-aldehyde 

(IAld)

Tryptophanase (TNA) (98) Lactobacillus johnsonii (96, 99, 100)

Lactobacillus. reuteri

Lactobacillus. acidophilus

Lactobacillus. murinus

…for more see (100)

Tryptamine Tryptophan 

decarboxylase (TrpD)

(98) Bacteroides (93, 101)

Clostridium sporogenes

Escherichia. coli

Firmicutes C. sporogenes

Ruminococcus gnavus

…for more see (93)

Indole-3-

acetaldehyde 

(IAAld)

Diamine oxidase (40) Escherichia coli (102)

Each indole derivative corresponds to the enzyme required for the process of synthesis of that derivative from tryptophan.
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synthesis (114). Similarly, alterations in the gut microbiota 
composition resulting from disease, medication use, or other factors 
can impact serotonin biosynthesis (105, 115, 116).

As the most critical enzyme in KP, IDO, the effect of the gut 
microbiota on IDO1 activity has been extensively studied (53, 117). 
Germ-free mice with a deficient intestinal microbiota reduce IDO1 
activity, and antibiotic treatment of mice with established microbiota 
results in a similar reduction in IDO1 activity (118). It is worth 
noting that introducing some gut microbes (e.g., Bifidobacterium 
infantis) can normalize the kynurenine-to-tryptophan ratio (119). 
This is due to the ability of the intestinal microorganisms to degrade 
Trp into a variety of metabolites (Trp microbial pathway), thereby 
limiting tryptophan metabolism in the KP and serotonin pathways 
(59). Besides that, intestinal microorganisms indirectly regulate 
IDO1 activity through the metabolite butyrate, a short-chain fatty 
acid (SCFA), which modulates the kynurenine pathway (120). 
Butyrate serves as the primary energy source for enterocytes and can 
downregulate intestinal IDO expression through two mechanisms. 
First, it inhibits the expression of STAT1 (121), which reduces the 
transcriptional activity of IDO. Second, it acts as a histone 
deacetylase inhibitor to suppress IDO transcription, thereby 
inhibiting kynurenine production from Trp (122). These researches 
demonstrate that gut microbes and their metabolites are essential 
regulator of the KP.

4. AHR and PXR recognize microbial 
pathway tryptophan metabolites

4.1. Aryl hydrocarbon receptor signaling 
pathway

The AHR is a transcription factor that regulates various 
physiological and pathological processes in living organisms, 
including detoxification, metabolism, cell proliferation, differentiation, 
inflammation, and immune responses (123). AHR is typically present 
in the cytoplasm as part of a protein complex, which includes the 
AhR-interacting protein Ara9, the c-SRC protein kinase (c-SRC), the 
90-kDa heat shock protein (HSP90), the 23 kDa heat shock protein 
(p23) and AHR, when not bound to a ligand (123). Ligand binding 
induces a conformational change in AHR, exposing it to protein 
kinase C-mediated phosphorylation and promoting its nuclear 
translocation, where it dissociates from the protein complex and 
rapidly interacts with the AhR nuclear translocator (ARNT) (124). 
The AhR/ARNT heterodimeric complex binds to specific DNA 
sequences, known as dioxin-responsive elements (DREs) or 
xenobiotic-responsive elements (XREs), located at 5’-TNGCGTG-3′, 
to regulate gene transcription (125).

The most frequently mentioned genes are several genes involved 
in xenobiotic metabolism encoding for microsomal cytochrome P450-
dependent monooxygenases. These include CYP1A1, CYP1A2, 
CYP1B1, and NAD(P)H-quinone oxidoreductase (126). These 
enzymes play a critical role in the metabolism of xenobiotics, such as 
environmental toxins, drugs, and carcinogens, by catalyzing their 
oxidation and conjugation with endogenous molecules to facilitate 
their elimination from the body (127). Furthermore, the AhR 
signaling pathway is crucial for the regulation of immunity. AhR 
activation regulates the differentiation, migration, and activation of 

immune cells, the production of inflammatory factors, and helps 
maintain immune homeostasis (128) (Figure 3).

4.2. Microbial TRP metabolites as AHR 
ligands

Aryl hydrocarbon receptor is a remarkably versatile nuclear 
receptor with the ability to bind to a wide range of diverse ligands. The 
ligands of AHR include endogenous ligands (Kynurenine, 
6-Formylindolo [3,2-b]carbazole, and Tryptamine, etc.) and 
exogenous ligands (Benzo [a]pyrene and Indole-3-carbinol, 
2,3,7,8-Tetrachlorodibenzo-p-dioxin, TCDD; etc.) (123, 129). AHR 
receptors involved in Microbiome Trp metabolism include IA, IAA, 
IAAld, IAId, and Tryptamine, which are important sources 
of receptors.

4.3. AHR and organismal immunity

Aryl hydrocarbon receptor is highly expressed in innate and 
adaptive immune cells, and recent investigations have elucidated its 
significant involvement in immune regulation (130). The role of AhR 
in regulating adaptive immunity is primarily discussed with respect 
to B cells and T cells (123). Experimental findings indicate that 
AhR-deficient mice expression display a marked increase in the 
overall population of B220 cells within their bone marrow compared 
to their wild-type counterparts (131). This effect was attributed to an 
increase in the number of pro/pre-B cells and immature B cells, 
without impacting the total number of mature B cells (131). Moreover, 
the potential contribution of AhR to B-cell malignancies has been 
examined (132). To summarize, AhR modulates B cell proliferation, 
differentiation, and the development of malignancies.

Aryl hydrocarbon receptor has different effects on the 
development and function of different T cells. AhR binding to ligands 
is activated to promote Tregs/Th17 cell differentiation in a ligand-
specific manner (133). For example, TCDD-induced activation of 
AhR promotes the generation of Tregs (134); FICZ promotes the 
generation of Th17 cells (134). In addition to this, the AhR signaling 
pathway can promote the differentiation of T helper 17(Th17) cells by 
limiting the activation of STAT-1 and STAT-5 (135, 136), thereby 
reducing the expression of Th2 cytokines and modulating the Th1/Th2 
balance (137).

In AhR-mediated innate immunity, Macrophages, Dendritic cells, 
and Lymphoid Cells (ILCs) are significantly affected. Notably, AhR 
exerts a negative regulatory effect on the production of 
proinflammatory cytokine IL-6 by inhibiting histamine production in 
macrophages stimulated by lipopolysaccharide (LPS) (138). 
Furthermore, ILCs express AhR and its genetic disruption can cause 
functional defects in ILCs and loss of specific subpopulations (139). 
Specifically, AhR is necessary for the activation of certain types of 
ILCs, such as liver-resident NK cells, and for the secretion of cytokines 
and anti-microbial peptides by ILC3s in the gastrointestinal tract 
(137). In addition, AhR controls DC differentiation, function and 
antigen presentation with profound effects on T-cell immunity (25). 
Overall, these studies suggest that AhR affects organismal immunity 
by directly and indirectly influencing the maturation and function of 
multiple immune cells.
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In general, the AhR signaling pathway is widely recognized as a 
critical component of the immune defense mechanism at barrier sites 
(65, 140). This pathway is crucial in maintaining intestinal homeostasis 
by regulating various processes, including barrier stability, and 
immune cell function (141). However, Microbial metabolism has a 
dominant influence on the activity of AhR in the intestine. In the next 
section, the effects of gut microbial Trp metabolites on organismal 
immunity are explicitly described, with the AhR signaling pathway, 
which is activated with gut microbial Trp metabolites as ligands, 
occupying an important position.

4.4. Pregnane X receptor

Similar to the AhR, the pregnane X receptor (PXR) serves as a 
prominent target for the interaction with microbial tryptophan 
metabolites. PXR also belongs to a family of nuclear receptors 
(NR1I2) (142),which plays a crucial role in regulating the expression 
of genes involved in both drug and endobiotic metabolism, 
including those encoding UDP-glucuronosyl-transferases, 
cytochrome P450s (CYPs), drug efflux pumps, and glutathione-S-
transferases (143–145). The PXR is a major regulator of the 
expression of the CYPs isoform, which metabolizes more than half 
of all human drugs (146). Therefore, PXR activation protects the 

body from exogenous or endogenous toxic substances and plays an 
essential role in the process of detoxification. PXR is expressed in a 
variety of cells including intestinal epithelial cells, immune cells (B 
cells, T cells, dendritic cells, etc.), and hepatocytes (147, 148). 
Activation of PXR occurs upon binding of ligands to its ligand-
binding domain (LBD), leading to the formation of a heterodimeric 
complex with the retinoid X receptor (RXR), subsequently initiating 
gene transcription. PXR serves as an essential regulator of intestinal 
epithelial barrier function, and PXR deletion or PXR low expression 
decreases intestinal homeostasis and increases intestinal 
inflammation (149, 150).

The microbial Trp metabolites indole and indole derivatives 
including skatole, IAA, and IPA have been extensively studied as PXR 
ligands. IPA activates its receptor PXR by binding directly to the 
genomic region of PXR or by indirectly crosstalk with other 
transcription factors, such as AHR (151). These transcription factors 
control many genes involved in transport, inflammation, apoptosis, 
and oxidative stress (152). For example, PXR reduces the secretion of 
proinflammatory cytokines and controls inflammation by inhibiting 
the NF-κB signaling pathway (153, 154). In Addition, indole and IAM 
induced PXR regulatory genes CYPs and MDR1 in human intestinal 
cancer cells. I3S exerts cytostatic properties via the PXR in breast 
cancer models (151, 155). Clarifying the microbial Trp metabolite 
mediated PXR pathway would further shed light on the mechanisms 

FIGURE 3

Aryl hydrocarbon receptor signaling pathway and ligands.
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that govern the metabolic cross-talk between host and microbiome 
with regard to Trp.

5. Microbial tryptophan metabolites 
and immunity

Recent studies have highlighted the crucial role of Trp catabolites 
produced by the gut microbiota in serving as signaling molecules 
within the microbial community and host–microbe interactions (65). 
In turn, this significantly contributes to maintaining immune system 
homeostasis in the body (Figure 4).

5.1. Regulation of Trp metabolites from gut 
microbiota in the innate immunity

The innate immune system consists of skin and mucous 
membranes, and immune cells (neutrophils, dendritic cells, 
macrophages and NK cells, etc.) (156). Non-specific immunity plays 
a vital role in the immune system as it rapidly responds to a broad 
spectrum of pathogens even without prior exposure (157). In this 
section, the effects of microbial Trp metabolites on non-specific 

immune cells and the regulation of cytokine (produced by non-specific 
immune cells) expression are discussed.

The microbial Trp metabolite indole and its derivatives can 
directly regulate the growth and differentiation of non-specific 
immune cells (65). For example, IAld and IAA have been shown to 
promote the differentiation of monocytes into dendritic cells, whereas 
IAA also enhances the phagocytic activity of human neutrophils and 
macrophages (158, 159). Moreover, indole derivatives also facilitate 
the differentiation of tolerogenic dendritic cells, leading to the 
generation of regulatory T cells that suppress the inflammatory 
response. These notable effects are mediated through the activation of 
the AHR in dendritic cells, thereby triggering the upregulation of 
genes associated with tolerogenic dendritic cell functionality and the 
production of immunomodulatory cytokines (160–162). NK cells are 
also a critical component of the innate immune system that is involved 
in defending against viral infections and tumors. Several recent studies 
have revealed that IAld can activate human NK cells and enhance their 
ability to kill cancer cells (163–165). Moreover, tryptamine has been 
found to activate the AHR pathway in NK cells, resulting in an 
augmented cytotoxicity toward tumor cells (166–168). Overall, these 
studies suggest that microbial Trp metabolites have a major impact on 
the formation and function of many non-specific immune cells and 
might be involved in the regulation of immune responses.

FIGURE 4

Microbial tryptophan metabolites mediate immune responses and relevant diseases.
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In addition to direct modulatory effects on non-specific immune 
cells, numerous studies have shown that microbial Trp metabolites can 
mediate the inflammatory response by modulating the expression of 
cytokines during the infection phase, with a particular emphasis on 
the pivotal role played by macrophages (167, 169). Macrophages, 
derived predominantly from bone marrow monocytes, represent a 
critical subset of immune cells in the body (170). As one of the most 
important parts of innate immunity, M1 macrophages can be induced 
by IFN-γ, LPS or FFA to promote inflammatory responses, kill 
intracellularly infected pathogens and fight tumors by releasing 
inflammatory cytokines such as IL-1, IL-12, and TNF (171). M2 
macrophages are capable of synthesizing and releasing anti-
inflammatory factors (TGF-β, IL-10, etc.), immunosuppressive factors 
and various tumor-promoting cytokines, which can suppress 
inflammatory responses and promoting tumor cell growth and 
metastasis (172). Numerous studies have shown that microbial Trp 
metabolites can suppress the inflammatory response in macrophages 
during the infection phase. In patients with NAFLD, IAA attenuated 
the effect of TNF-α secreted by macrophages on bile acid metabolism, 
which reversed the ratio of CDCA to CA increased by FFA and 
macrophage inflammatory factors (123, 173). Similar results were 
found in the liver of mice, where IAA attenuated HFD-induced 
hepatotoxicity in a dose-dependent manner. It inhibited the expression 
of inflammatory factors such as IL-1β, IL-23, TNF-α, MCP-1, IL-17A, 
and IL-6, while elevating the level of the anti-inflammatory factor 
IL-10. The reduced pro/anti-inflammatory cytokines ratio was also 
reduced (14, 174, 175). In addition to this, IPA can reduce serum 
inflame, matory factors TNF-α and IL-1β (176). Similarly, indole has 
a similar function while decreasing the inflammatory cytokine 
expression and increasing the anti-inflammatory cytokine expression 
(177). Collectively, these investigations have shown that indole and 
indole derivatives of microbial Trp metabolites such as IPA and IAA 
can reduce the expression of proinflammatory factors in a dose-
dependent manner and help regulate the inflammatory response.

The regulation of cytokines by microbial Trp metabolites is mainly 
mediated through AHR. It was found that macrophage TNF 
expression was reduced in response to co-stimulation by LPS and the 
AhR ligands IAld and IAA. In which IAld leads to a decrease in 
inflammatory vesicle pathway and IL-6 signaling capacity that reduces 
TNF transcription (178); IAA neutralizes free radicals, thus 
attenuating the inflammatory response of RAW264.7 macrophages to 
LPS and increasing IL-8 signaling (179). Similarly, indole-3-methanol 
suppressed the generation of LPS-mediated inflammatory cytokines 
such as IL-6 in bone marrow-derived macrophages (BMM) of mice 
(180). Tryptamine decreased the mRNA expression levels of IL-7 and 
IL-6 in LPS-stimulated RAW 6.264 cells via AHR (175, 181). Microbial 
Trp metabolite ligands of AhR affect the metabolic and 
immunomodulatory processes of nonspecific immune cells. Pathways 
such as oxidative phosphorylation, fatty acid β-oxidation or amino 
acid degradation are upregulated in most cases.

5.2. Regulation of Trp metabolites from gut 
microbiota in the adaptive immunity

Apart from innate immunity, microbial Trp metabolites are 
believed to have a significant impact on adaptive immunity. 
Specifically, the focus is on the role of T cells in the adaptive immune 

response, which recognize and respond to specific antigens (182). 
Upon activation, T cells differentiate into different subtypes, such as 
Th cells, cytotoxic T cells, and regulatory T cells, each with a distinct 
function in regulating the immune response (183). Several studies 
have reported that indole derivatives can regulate the differentiation, 
activation, and proliferation of T cells, thereby modulating 
their function.

Indole derivatives can regulate T-cell differentiation by 
modulating the expression of cytokines and transcription factors. For 
example, the indole derivative Indole-3-carbinol (I3C) has been 
shown to promote Th1 cell differentiation by upregulating the 
expression of interferon-γ and T-bet transcription factors (184). This 
is crucial in the defense against the intracellular pathogens (e.g., 
viruses and bacteria) (185, 186). Moreover, I3C inhibit the 
differentiation of Th2 cells by downregulating the expression of 
interleukin-4-related genes and GATA3 transcription factors (184), 
which mediate the development of allergy and asthma (186, 187). 
Another indole derivative, Indole-3-propionic acid (I3S), has also 
exhibited the ability to regulate T-cell activation and proliferation. I3S 
suppresses the expression of CD25 and CD69 surface markers (188), 
which are critical indicators of early T-cell activation and proliferation 
(189, 190). Besides, I3S reduced the frequency of IL-4-producing CD4 
T cells and inhibited Th2 differentiation (191). This effect was 
attributed to the suppression of STAT5 and STAT6 phosphorylation, 
which are transcription factors involved in Th2 differentiation. I3S can 
also induce T cell apoptosis, or programmed cell death, by 
upregulating the expression of pro-apoptotic proteins (192). Other 
indole derivatives, IAld and IPA, have also been shown to modulate 
immune responses by regulating T-cell function (193, 194). IAld 
induces T-cell apoptosis and inhibits T-cell activation by regulating 
the expression of pro-and anti-apoptotic proteins (195).

Most notably, T-regulatory (Treg) and T-helper 17 (Th17) cells are 
key T-cell lineages that predominate at mucosal sites, including the 
gastrointestinal tract (196). Tregs play a pivotal role in inducing immune 
tolerance via cytokine secretion and modulation of antigen-presenting 
cell or effector lymphocyte function, making them critical cellular 
determinants of immune homeostasis in most tissues (197). In the 
thymus, “natural” Tregs (nTregs) develop when T lymphocytes tightly 
bind to self-peptide–MHC complexes on thymic stromal cells, and 
FOXP3 expression is induced. In the periphery, “induced” Tregs (iTregs) 
arise when Antigen-presenting cells activate Th cells in the presence of 
IL-2 and TGF-β (198). Autoimmune disorders and IBD are associated 
with dysregulation of the Treg population in circulation and afflicted 
tissue (196). Th17 cells develop following the activation of Th cells in the 
presence of inflammatory cytokines like IL-1β, IL-6, and IL-23, coupled 
with TGF-β. Mouse models have demonstrated the essential role of 
Th17 cells and their secreted cytokines in the pathogenesis of IBD, with 
elevated levels found in affected individuals (199). Notably, the Th17 
response and inhibition of Tregs are considered significant contributors 
to the development of aberrant inflammation in the GI tract (200). 
Numerous studies have shown that the microbiota Trp metabolite 
indole and indole derivatives modulate Treg/Th17 differentiation, 
suggesting that the persistence of indole promotes tolerance and 
suppresses colonic inflammation (201). For example, I3C treatment 
decreases the occurrence of colitis by reducing Th17 cells and increasing 
Tregs (202). Besides that, I3C increased the production of CD4Foxp3 
cells in mice and ultimately reduced CD4 IL-17 cells that induce 
neuroinflammation (203). IAA and IPA promote Treg differentiation 
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and function by upregulating the expression of Foxp3 and other Treg-
related genes (14, 40, 204). IAA also promotes Tregs differentiation by 
activating the AHR pathway (14).

The AhR pathway has been described in detail above as a key 
pathway involved in regulating the immune response by several 
ligands, including indole derivatives. For example, I3S inhibited Th2 
differentiation by suppressing the phosphorylation of the related 
transcription factors STAT5 and STAT6 (191). However, the effect of 
I3S on Th2 was inhibited by the AhR antagonist α-naphthoflavone, 
which laterally suggests that the regulation of Th2 differentiation by 
I3S is AhR-dependent (191). Thus, boosting circulating AHR ligands, 
whether from endogenous or exogenous sources, is crucial for 
managing inflammatory diseases in various tissues. Furthermore, 
L. reuteri-produced Trp catabolites ILA or IAAld activated AhR and 
enhanced IL-17 production by T cells (205). This activation of AhR by 
ILA derived from Trp metabolism leads to the downregulation of 
Thpok and the reprogramming of CD4 intraepithelial lymphocytes 
(IELs) into double-positive (DP) IELs (96), highlighting an 
AHR-mediated mechanism distinct from AhR’s impact on regulatory 
T cells (Tr1, Tregs), intraepithelial γδ T cells and DCs (96). Moreover, 
tryptamine has been shown to activate mechanistic target of 
rapamycin (mTOR) in Treg cells in vitro, induce increased expression 
of p4EBP1  in effector memory T (Tem) cells, and enhance 
phosphorylated ribosomal pS6 expression in Tem cells (206), 
suggesting that exogenous tryptamine promotes glycolysis in TC 
(cytotoxic) T cells, thereby influencing the regulation of CD4 T cell 
function (207). Indole derivatives can modulate immune function and 
maintain immune homeostasis through their effects on Th1, Th2, and 
Treg cells as well as the AhR pathway (15, 208). Understanding the 
role of indole derivatives in T-cell regulation may lead to developing 
new therapies to treat immune-related diseases.

In addition to their effects on T lymphocytes, indole derivatives 
have been shown to have inhibitory and stimulatory effects on B cells. 
I3C can regulate B-cell function by inhibiting the production of 
immunoglobulins IgM and IgG in response to various stimuli. 
Reducing the expression of CD69, a marker of B-cell activation, 
induces B-cell apoptosis and inhibits B-cell proliferation (209, 210). 
Tryptamine has also been shown to stimulate IgA production by B 
cells and to activate the transcription factor AhR to regulate B cell 
function (211, 212). In conclusion, indole derivatives with inhibitory 
and stimulatory effects on B cells may have the potential as 
immunomodulators for treating immune diseases. However, further 
research is needed to fully understand the mechanisms of action of 
these compounds and their potential therapeutic applications.

5.3. Microbial Trp metabolites maintain 
intestinal barrier function and mucosal 
integrity

Intestinal microbial homeostasis and intestinal barrier integrity 
are closely linked with intestinal immunity. The intestinal barrier 
comprises the epithelial and mucus barriers, consisting of a layer of 
epithelial cells. Both Tight junction (TJ) and adherens junction (AJ) 
proteins play an essential role in this regard (213). TJ proteins, such as 
ZO1 and occludin, act as a protective barrier at the apical region of 
neighboring epithelial cell membranes (214). Their role is to prevent 
the unregulated diffusion of molecules between cells, thereby 

maintaining the integrity of the cell–cell barrier. On the other hand, 
AJ proteins like E-cadherin and β-catenin, located basolaterally but 
subjacent to TJs, play a crucial role in adhesive forces between adjacent 
epithelial cells (215). These proteins aid in sealing the intestinal 
barrier, ensuring its integrity. The intestinal barrier integrity is 
maintained through the collaboration of numerous factors, including 
mucus proteins, active molecules, and immune factors (216). 
However, disruptions to these factors may lead to various conditions, 
such as diabetes, asthma, autism, acne, allergies, and several intestinal 
disorders, including inflammatory bowel disease (IBD) (217, 218). A 
properly functioning gut-organ axis relies on a healthy intestinal 
microbiota structure and an integrated intestinal barrier. Disturbances 
to the gut microbiota composition have been associated with 
disruptions in intestinal homeostasis and intestinal barrier 
dysfunction (219). Therefore, regulating the interaction between the 
intestinal microbiota and the intestinal barrier presents a new 
approach to treating some intestinal diseases. The function of 
intestinal microbial Trp metabolites in maintaining the intestinal 
barrier and mucosal integrity has been extensively studied.

Indole derivatives, including indole-3-ethanol (IEt), IPyA, and 
IAld, have been shown to regulate the integrity of the intestinal barrier 
by modulating TJs and AJs, which together form the apical junction 
complex, ultimately reducing the incidence of DSS colitis in mouse 
models (100, 220). Treatment with IAld, IEt, and IPyA in mice 
inhibited the expression of TNFR1 during DSS colitis and prevented 
TJ and adherens junction complex (AJC) catabolism caused by 
activation of NF-κB by TNFα (93, 221–223). Furthermore, these 
metabolites protect the intestine from AJC destruction caused by 
proinflammatory cytokines by promoting the intestinal epithelial cells 
IL-10R expression (224, 225). Similarly, in the colitis model, oral 
administration of indole-containing capsules enhances the expression 
of molecules associated with TJs and AJs in colonic epithelial cells of 
germ-free mice, thus mitigating epithelial injury (226). Indole is 
known to fortify the epithelial barrier by inducing the upregulation of 
genes associated with the functions of TJs, AJs, actin cytoskeleton, and 
mucin production, among others (177). From the above studies, it can 
be hypothesized that microbial Trp metabolites have multiple targets 
in vivo, but their actions are synergistic. Highly relevant to the 
intestinal epithelium, and interacting directly with the microbiota, 
they work together to maintain intestinal health and immune 
function. Regulation of TJ by indole derivatives can be mediated by 
mediating gene expression. IPA and ICOOH treatment increased the 
gene expression of occludin, ZO-1, and MUC-2 in IECs (227, 228), 
and also reduced the expression of LPS-induced inflammatory factors 
such as IL-1β and IL-8, ultimately decreasing the permeability 
between the intestinal barriers. Administration of IEt, IPyA, and 
indole-3-carboxaldehyde increased the expression of genes such as 
ocludin and ZO-1, thereby enhancing the adhesion between adjacent 
epithelial cells (220). The findings of these studies collectively 
demonstrate that bacterial TRP metabolites promote TJ protein 
expression and reduce proinflammatory cytokine expression.

IL-22 plays a key role in maintaining intestinal epithelial integrity 
and antimicrobial defense, in addition to enhancing intestinal stem 
cells (ISC)-mediated regeneration and proliferation of epithelial cells. 
The primary producers of IL-22 in the intestine, a process controlled 
by microbiota, are innate ILCs and ILCs that express the nuclear 
hormone receptor RORt (229, 230). Symbiotic microbiota inhibits 
IL-22 production by ILCs in the healthy mouse intestine by expressing 
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IL-25 by epithelial cells (231). In addition, the microbiota has been 
shown to modulate IL-22 production via indole and indole derivatives. 
Treatment with IAld alleviated dextran sulfate sodium (DSS)-induced 
colitis in mice, improved the reduction in body weight and colonic 
length, and restored damage to the jejunum and colon (232). IAld 
activation of AHR prompts lamina propria lymphocytes (LPLs), a type 
of Lymphoid Cells (ILCs), to secrete IL-22. IL-22 enhances intestinal 
epithelial regeneration and proliferation by inducing phosphorylation 
of STAT3 and accelerating ISC differentiation (100). Furthermore, it 
has been shown that IL-22-mediated STAT3 activation reduces crypt 
damage and stimulates crypt formation (233). Ultimately, the 
proliferation of intestinal epithelial cells is accelerated, restoring the 
damaged intestinal mucosa and barrier function.

Indole-3-propionic acid, a ligand for PXR, promoted intestinal 
barrier integrity by downregulating enterocyte TNF-α while it 
upregulated ligand-encoded mRNAs, which led to the induction of 
MDR1 and regulation of the epithelial nodal complex (149). 
Furthermore, metabolite IA reduce inflammatory response and 
enhance the function of the intestinal barrier by downregulating 
inflammation and oxidative stress genes, including CD14, CCL2, 
MT2A, CYBB, IL-6, and PTAFR (89).

6. Diseases

Bacterial TRP metabolites are critical in regulating various 
immune diseases, including inflammatory, cardiovascular, 
neurological, metabolic diseases, and cancer. This review focuses on 
the impact of bacterial TRP metabolites on the pathophysiology of 
inflammatory bowel disease (IBD), neurological disorders, and 
metabolic diseases.

6.1. Inflammatory bowel disease

Inflammatory bowel disease is a recurrent, chronic, non-specific 
inflammatory condition affecting the gastrointestinal tract (234). The 
two most commonly observed forms of IBD are Crohn’s disease and 
ulcerative colitis (UC) (235). IBD is known to result from the interplay 
of genetic and environmental factors, such as dysregulation of the 
mucosal immune system, disruption of the mucosal barrier of the 
intestine, and imbalances in the intestinal microbial community (183). 
Of note, recent research has demonstrated the significant involvement 
of dysregulated gut microbiota in the pathogenesis of IBD (12). 
Moreover, several studies have suggested a possible association 
between microbial Trp metabolism and IBD. For example, one study 
found that a tryptophan-free diet increased the susceptibility of mice 
to colitis (236). Trp indole metabolites would be selectively reduced in 
the serum and colon of IBD mice (237). The levels of IAA and other 
indole derivatives with anti-inflammatory effects were also 
significantly reduced in IBD (238, 239).

Recent research has indicated that there is a potential involvement 
of the Th17 subpopulation in the pathogenesis of colitis models induced 
by TNBS and DSS. Specifically, increased inflammation and Th17 
subpopulations were observed in the colon and colon-associated 
mesenteric lymph nodes (MLN) (240–242). Notably, treatment with 
I3C can significantly reduce Th17 populations while increasing Tregs. 
Additionally, in mice with colitis treated with I3C, normal crypt 

formation and colonic tissue structure were maintained, while cellular 
infiltration was reduced (202). In parallel, the intestinal mucus layer was 
thinner and the amount of IPA was significantly reduced in patients 
with IBD, but its levels recovered with disease remission (237). In 
addition, IPA-treated mice showed attenuated inflammatory infiltration 
and reduced structural loss of epithelium and tissue. Microbial 
metabolites, including IPA, can help maintain intestinal homeostasis by 
promoting normal secretory function of goblet cells and contributing 
to a stable and healthy gut microbiota (243). Therefore, it can 
be  speculated that treatment of IBD patients to normalize IPA can 
reduce the disease and promote intestinal homeostasis.

The most noteworthy anti-inflammatory factor in IBD is IL-10. 
IL-10 or IL-10 receptor deficient mice spontaneously develop severe 
colitis (244). During organismal inflammation, IL-10 binds to IL-10R1 
and signals to reduce the proinflammatory factors production in a 
variety of cells, including intestinal epithelial cells (245). Functional 
IL-10 signaling is essential to maintain mucin production by cupped 
cells, which ensures mucosal barrier function and epithelial cell 
homeostasis (246). Mutations in IL-10 receptors have been associated 
with IBD and serve as a critical marker for inflammation resolution in 
colitis (247). Furthermore, IA has been shown to enhance IL-10 and 
mucin gene expression production. Thus, restoration of Trp 
metabolism in the gut of IBD patients leading to an increase in IA 
production may promote an anti-inflammatory response to produce 
therapeutic effects in IBD patients (89). In summary, gut microbial 
Trp metabolism is expected to be a therapeutic target for patients with 
IBD, and microbial Trp metabolites have been demonstrated laterally 
in the pathophysiology of other inflammatory diseases.

6.2. Neurological diseases

Microbial TRP metabolites can signal to the brain suggesting a 
potential role for metabolites in communication between the gut 
microbiota and the CNS (9, 248). AhR is known to be a receptor 
expressed not only in the gastrointestinal tract but also in CNS cells 
(neurons, astrocytes, and microglia). AhR reduces proinflammatory 
cytokine expression in astrocytes and microglia and affects the 
development of neurological diseases such as Parkinson’s disease 
(PD), multiple sclerosis (MS) (249, 250), Alzheimer’s disease (AD), 
and epilepsy (251, 252). Besides, AhR significantly impacts neuronal 
differentiation, proliferation, and survival (253). Indole derivatives, 
serving as ligands for AhR, including IPA and IAA, exhibit the ability 
to traverse the blood–brain barrier (BBB), thereby imparting 
particular relevance to their mediating role in the gut-brain axis 
(GBA). For example, indole, I3S, IPA, and IAld can activate AhR 
signaling in astrocytes and inhibit inflammation in the CNS (254). IPA 
has importance in neurological diseases due to its potent free radical 
scavenging ability and antioxidant capacity to protect primary neurons 
and neuroblastoma cells from oxidative damage (255).

Alzheimer’s disease as the most prevalent neurodegenerative 
disease, β-amyloid (Aβ) abnormal accumulation, and phosphorylation 
of tau aberrantly are widely recognized as key events leading to AD 
(256). Numerous studies have increasingly shown the positive effects of 
indoles and their derivatives in ameliorating AD pathology (257–259). 
Notably, in AD patients, the expression of indole derivatives IAA, ILA, 
and IPA was significantly reduced (260, 261). Similarly, in a study 
involving APP/PS1 mice with AD, indole, ILA, IAA, and I3C were 
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found to prevent Tau hyperphosphorylation, abnormal Aβ 
accumulation, synaptic damage, and to promote behavioral and 
cognitive recovery (251). These effects are attributed to the ability of 
indole derivatives to elevate the levels of PSD-95 and synaptophysin, 
thereby mitigating synaptic damage and promoting synaptic maturation 
(251). Additionally, indole derivatives suppress the release of 
inflammatory cytokines (IL-18, IL-1β, IL-6, and TNF-α) by upregulating 
the expression of AhR, inhibiting the activation of the NF-κB signaling 
pathway, and impeding the formation of NLRP3 inflammasome. 
Consequently, indole derivatives contribute to the reduction of AD 
inflammatory responses (262). PD is the second most prevalent 
neurodegenerative disease after AD (263). Similar to AD, the therapeutic 
potential of indole derivatives for PD has been extensively investigated. 
For instance, I3C ameliorates lipopolysaccharide-induced 
neuroinflammation models of PD, delay neuronal degeneration, and 
improve cognitive function (264, 265). These effects are attributed to the 
inhibition of the NF-κB signaling pathway, decreased activity of 
inflammatory cytokines such as TNF-α and IL-6, and increased levels 
of catalase and superoxide dismutase (265). Furthermore, Pael receptors 
were associated with delayed proliferation of cells overexpressed in 
PD. IPA treatment significantly improved the proliferation of SH-SY5Y 
cells overexpressing Pael receptors (266). In summary, indole derivatives 
hold promise as potential therapeutic agents for both AD and PD. Their 
ability to mitigate key pathological events, including Aβ accumulation, 
tau phosphorylation, synaptic damage, and inflammatory responses, 
highlights their potential for improving the underlying 
neurodegenerative processes associated with these diseases (255, 260). 
Further research in academia is warranted to fully elucidate the 
mechanisms involved and explore the translational potential of indole 
derivatives in the treatment of AD and PD.

In contrast, recent studies have shown that L. reuteri, which is 
involved in one of the intestinal microbial Trp metabolisms, will 
exacerbate Experimental autoimmune encephalomyelitis (EAE) when 
colonized in the host intestine (267). This is due to the activation of 
AHR by indole derivatives such as IAA, IAAld, and tryptamine 
metabolites of L. reuteri, which promote the value-added of IL-17-
producing γδ T cells and infiltration into the CNS. In parallel, 
production of inflammatory factors IL-17, IFN-γ, and GM-CSF 
increases. When reduced dietary tryptophan consumption will suppress 
EAE and inflammatory T cell responses in the CNS (205). In conclusion, 
the communication between Trp microbial metabolites and the CNS is 
a complex and dynamic process involving the combined effects of 
various receptors (e.g., AhR and PXR) and cytokines. The activation of 
AhR by indole derivatives to mediate inflammation in the CNS appears 
to act bidirectionally, but further studies are needed. These findings 
suggest that a better understanding of the gut-brain connection and the 
role of Trp microbial metabolites in this connection may lead to new 
therapeutic strategies for treating neurological disorders. By promoting 
a healthy gut microbiota and modulating Trp microbial metabolites, 
we  may be  able to positively impact brain health and prevent the 
development of neurological disorders.

6.3. Metabolic diseases

The prevalence of metabolic diseases is increasing with the 
increase in high-calorie diets and the decrease in exercise in humans 

(268). Metabolic disorders are clustered by a variety of interrelated 
pathological conditions, including obesity, nonalcoholic steatohepatitis 
(NASH), dyslipidemia, glucose intolerance, insulin resistance, 
hypertension, and diabetes mellitus (269). When these disorders 
occur together, they strongly increase cardiovascular morbidity 
and mortality.

Interestingly, the role of microbial TRP metabolites in metabolic 
diseases has been increasingly studied by scientists in recent years. 
A strong negative correlation exists between IAA abundance and 
body mass index (BMI) (270). IAA affects high-fat diet-mediated 
obesity through PXR and TLR4-mediated production of IL-35 B 
cells (271). Moreover, indole, IPA and I3S were lower in patients 
with type 2 diabetes and higher IPA serum concentrations were 
associated with a lower incidence of T2D (272). Metabolic disorders 
decrease the production of AHR ligands from Trp metabolites, 
thereby inhibiting the AhR pathway. This reduction also lowers the 
production of GLP-1 and IL-22, contributing to gut permeability 
and transfer of LPS, which results in inflammation, insulin 
resistance, and liver fat deposition. Recently, it has been shown that 
indole reduced key protein expression in the NF-κB pathway and 
inhibited proinflammatory factor expression (273). Besides, Indole 
prevents LPS-induced cholesterol metabolism alterations by 
increasing 4β-hydroxycholesterol hepatic levels via transcriptional 
regulation, which ultimately counters the adverse effects of LPS on 
liver. Additionally, IAA and ILA can reduce insulin resistance via 
aryl hydrocarbon receptors (11).

7. Summary

In conclusion, microbial Trp metabolites, especially those 
produced by gut microorganisms, significantly influence the 
regulation of host immunity. The metabolites produced by gut 
bacteria, such as indole and its derivatives, can activate the AhR 
and PXR signaling pathways, which play a crucial role in immune 
function and maintaining intestinal barrier integrity. These 
metabolites are involved in modulating non-specific and adaptive 
immunity, stimulating the generation of anti-inflammatory 
cytokines and enhancing the activity of immune cells. Moreover, 
bacterial Trp metabolites are also involved in maintaining 
intestinal homeostasis and mucosal integrity, thereby 
contributing to the prevention of inflammation and the 
development of immune-related diseases. Dysbiosis of the 
intestinal microbiota can lead to an imbalance in Trp metabolism, 
contributing to the pathophysiology of variety diseases (e.g., 
inflammatory bowel disease, neurological diseases, and 
metabolic diseases).

The crosstalk between gut microbes and Trp metabolism is a 
critical research area still in its early stages. However, the findings 
presented in this review suggest that targeting the gut microbiota and 
its metabolites may be a promising strategy for the prevention and 
treatment of immune-related diseases. To fully comprehend the 
mechanisms by which bacterial Trp metabolites impact immunity and 
to identify potential therapeutic targets, further research is necessary. 
The significance of the gut microbiota in regulating host immunity 
emphasizes the necessity for continued exploration of this intricate 
and constantly changing system.
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