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Abstract:
Abstract:
In this paper, we discuss some of the concepts of robustness for uncertain
multi-objective optimization problems. An important factor involved with multi-
objective optimization problems is uncertainty. The uncertainty may arise from
the estimation of parameters in the model, error of computation, the structure
of a problem, and so on. Indeed, some parameters are often unknown at the
beginning of solving a multi-objective optimization problem. One of the most
important and popular approaches for dealing with uncertainty is robust opti-
mization. Markowitz’s portfolio optimization problem is strongly sensitive to the
perturbations of input parameters. We consider Markowitz’s portfolio optimiza-
tion problem with ellipsoid uncertainty set and apply set-based minmax and lower
robust efficiency to this problem. The concepts of robust efficiency are used in the
real stock market and compared to each other. Finally, the increase and decrease
effects of uncertainty set parameters on these robust efficient solutions are verified.

Keywords: Portfolio Optimization, Robustness, Ellipsoid Uncertainty Set.
MSC Classification: 91G10, 90C26, 90C31

1 Introduction

Multiobjective (vector) optimization is concerned with optimizing more than one

objective function subject to some constraints. In multiobjective optimization,

the decision maker is faced with a set of conflicting criteria and the goal is to

choose the most preferred alternative(s). Many real-life optimization problems are

multi-objective in their nature. In finance, we commonly deal with two objectives,

maximizing return (profit) and minimizing risk. In many classes of practical op-

timization problems, a decision maker is faced with uncertainty in the modeling,

resulting from data errors, perturbations, data uncertainty, environmental factors,

and partial knowledge. There are various approaches in the literature for deal-

ing with uncertainty, including stochastic optimization, robust optimization, and

sensitivity analysis. We consider Markowitz’s portfolio optimization problem that

heavily suffers from uncertainties of input parameters [11, 12]. Robust optimiza-

tion has been widely studied in recent years from different standpoints in single-
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and multi-objective optimization, see for example [1, 2, 8, 15]. Soyster [15] initially

introduced minmax robustness in single-objective optimization, and then, Ben-Tal

et al. [1] and Ben-Tal and Nemirovski [2] studied it extensively. This notion was

extended from single-objective to multi-objective optimization by Ehrgott et al. [6],

Fliege and Werner [7], Bokrantz and Fredriksson [3], and Kuroiwa and Lee [10] .

The concept of robustness in portfolio optimization problems has been used by sev-

eral researchers. Fliege and Werner used minmax robust efficiency in Markowitz’s

portfolio optimization problem and set order relations approach employed in the

portfolio optimization problem [4,7].

In this paper, we use robust efficiency in the sense of Ehrgott and lower set less

ordered efficiency in a portfolio optimization problem with ellipsoid uncertainty set.

In the following, we apply these concepts to 9 investment positions from the Tehran

stock market and compared them to each other.

The rest of this paper is organized as follows. Section 2 contains some prelim-

inaries. Section 3 is devoted to introducing some robustness concepts. Section 4

continues the paper with robust portfolio optimization. Section 5 illustrates robust

efficient solutions for portfolios in the real stock market finally, Section 6 draws

some conclusions.

2 Preliminaries

This section is devoted to some preliminaries. For two arbitrary sets A,B ⊆ Rn,
we use the notation A±B := {x± y : x ∈ A, y ∈ B}. For simplicity, we use x±A

instead of {x} ±A.

A set K ⊆ Rp is said to be a cone if λK ⊆ K for each λ ∈ [0,+∞). The cone K is

said to be convex if K +K ⊆ K, and it is pointed if K ∩ (−K) = {0}.Furthermore,

it is called nontrivial if K ≠ Rn and K ̸= {0}. A set K ⊆ Rm is called an ordering

cone if it is a nontrivial, closed, convex, and pointed cone; which establishes a

partial ordering in Rp. The natural ordering cone is defined by

Rp≧ = {x = (x1, · · · , xp) ∈ Rp : xi ≥ 0, i = 1, · · · p}.

Throughout the paper, the notations ≦, ≤ and < stand for the following orderings

on Rp :

x ≦ y ⇐⇒ y − x ∈ Rp≧,

x ≤ y ⇐⇒ y − x ∈ Rp≥,

x < y ⇐⇒ y − x ∈ Rp>,

where Rp> = {x ∈ Rp : xi > 0, i = 1, · · · p} and the symbol Rp≥ denotes the set

Rp≧ \ {0}.
Throughout the paper, the notation ∥.∥ stands for Euclidean norm and ⟨a.b⟩ and

aT b denotes the inner product of a, b ∈ Rn. In matrix spaces the notation ∥Σ∥
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stands for Frobenius norm of Σ ∈ Sn, where Sn is the space of all symmetric n× n

matrices and Sn+ is the cone of positive semidefinite matrices.

2.1 Multi-objective Optimization

We consider the following multi-objective optimization problem:

min f(x)

s.t. x ∈ X.
(1)

where ∅ ̸= X ⊆ Rn is the feasible solution set of this problem and f : X → Rp with
p ≥ 2. In fact f(x) = (f1(x), f2(x), · · · , fp(x)) for each x.
This class of multiobjective optimization problems is called a deterministic multi-

objective optimization problem (DMOP) without uncertain parameters.

Definition 2.1. [5] A vector x̄ ∈ X is called an efficient solution of (DMOP) if(
f(x̄)−K

)∩
f(X) = {f(x̄)}.

Utilizing a natural ordering cone, a vector x̄ ∈ X is called an efficient solution of

(DMOP) if there exists no x ∈ X such that f(x) ≤ f(x̄) and f(x) ̸= f(x̄).

2.2 Scalarization

Scalarization is a traditional approach to solving multi-objective optimization prob-

lems [5]. By scalarization methods, one solves a single objective optimization prob-

lem corresponding to a given multiobjective optimization problem whose optimal

solutions can be efficient.

• Weighted Sum Scalarization

The single objective weighted sum problem corresponding to (MOP) is as

follows

(Pλ) : min
p∑
i=1

λifi(x)

s.t. x ∈ X

where λi ≥ 0 for i = 1, · · · , p and
∑p
i=1 λi = 1.

• The ε-Constraint Method

Besides the weighted sum approach, the ε-constraint method is probably the

best-known technique to solve multicriteria optimization problems.

(Pε) : min fj(x)

s.t. x ∈ X

fk(x) ≤ εk k = 1, · · · , p, k ̸= j,

where ε ∈ Rp.
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2.3 Mean-Variance Portfolio Optimization Problem

Consider a portfolio of n risky assets (Ai). Markowitz mean-variance portfolio

optimization problem (MV) can be written as

(MV ) : min f(x) = (xT Σ̂x,−µ̂x)

s.t.
n∑
i=1

xi = 1

mi ≤ xi ≤Mi, i = 1, · · · , n.

(2)

In 2, xT Σ̂x and −µ̂x are measuring the risk and return of portfolio respectively.

The parameters of µ̂ and Σ̂ are assumed to be accurately computed by

µ̂i = E[Ri],

Σ̂ij = E[(Ri − µ̂i)(Rj − µ̂j)],

where Ri is the return on Ai, i = 1, · · · , n, Mi and mi are the maximum and

minimum investments on Ai respectively.

The basic idea is that a portfolio is solely characterized by the two quantities

risk (mostly measured in terms of the variance or volatility) and expected return.

Since an investor is seeking an allocation with low risk and high return, a trade-

off between these two conflicting aims has to be made. In this paper, we solve

the UMV problem with weighted sum scalarization, therefore we are facing the

following problem

(MVλ) : min (1− λ)(xT Σ̂x) + λ(−µ̂x)
s.t. x ∈ X

where 0 ≤ λ ≤ 1, X := {x ∈ Rn+ :
N∑
i=1

xi = 1, mi ≤ xi ≤Mi, i = 1, · · · , n}.

2.4 Uncertain Multi-objective Optimization

The robust optimization approach finds solution(s)while uncertainty is involved in

objective function and constraints.

The following vector programming problem is a perturbed multi-objective opti-

mization problem whose modeling is due to a perturbation in the objective function:

P (ξ) : min f(x, ξ)

s.t. x ∈ X, ξ ∈ U.

(3)

where x and ξ are decision variables and uncertain parameters respectively, f :

Rn × U → Rp and U ⊆ Rq. Uncertainty can emerge anywhere in the real world

(e.g., the preceding expected returns possibly varying in a set of scenarios called an
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uncertainty set (U ⊆ Rp)). Therefore an uncertain the multi-objective optimization

problem (UMOP) is written as

P (U) := (P (ξ), ξ ∈ U)

defined as a family of parametric problems P (ξ).

In uncertain Markowitz mean-variance portfolio optimization problem (UMV),

the parameters of the expected return and the covariance matrix are considered to

be uncertain. For this purpose a joint uncertainty set U is chosen for the uncertain

data ξ = (µ,Σ).

(UMV ) : min
ξ=(µ,Σ)∈U

f(x) = (xTΣx,−µx)

s.t.
N∑
i=1

xi = 1

mi ≤ xi ≤Mi, i = 1, · · · , n.

(4)

In the existing literature, there are some uncertainty sets that are employed in

uncertain optimization problems [14].

In this paper, we choose an ellipsoid uncertainty set [14] around the (µ̂, Σ̂):

Uδ(µ̂, Σ̂) := {(µ,Σ) ∈ Rn × Sn+ | ∥µ− µ̂∥+ c∥Σ− Σ̂∥ ≤ δ}.

The point (µ̂, Σ̂) ) is called the center of the ellipsoid set and δ is its radius.

3 Robust Portfolio Optimization

One of the most important and popular approaches for dealing with uncertainty is

robust optimization and an important issue in robust optimization the approach is

studying the efficient solutions which are insensitive to some changes in the problem

data. As mentioned in the preceding section, various definitions of robustness can

be found in the literature for example [6–8].

Definition 3.1. [7] A vector x̄ ∈ X is called robust efficient in the sense of Fliege

and Werner for P (U) ( point-based minmax robust), written as x̄ ∈ FWR[f, U,X],

if x̄ is efficient solution for

min
x∈X

max
ξ∈U

f(x, ξ) = min
x∈X

(max
ξ∈U

f1(x, ξ), · · · ,max
ξ∈U

fp(x, ξ)).

This means that the worst case of the objective function under all possible sce-

narios are minimized.

Definition 3.2. [6] A vector x̄ ∈ X is called robust efficient in the sense of

Ehrgott for P (U) (set-based minmax robust), written as x̄ ∈ ER[f, U,X], if there

is no x ∈ X \ {x̄} such that

fU (x) ⊆ fU (x̄)− Rp≥,

where fU (x) := {f(x, ξ) : ξ ∈ U}.
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Ehrgott et al. [6] pointed out that if U = U1 × · · · × Up and the objective

functions f1, · · · , fp are independent of each other with respect to the uncertain

set, then point-based minmax robust efficiency is equivalent to set-based minmax

robust efficiency.

Definition 3.3. [8] A vector x̄ ∈ X is called a lower set less ordered efficient

solution for P (U), written as x̄ ∈ LSO[f, U,X], if there is no x ∈ X \ {x̄ such that

fU (x) + Rp≥ ⊇ fU (x̄).

Now, we apply the concepts presented in the previous on the UMV problem and

compare them. In the UMV problem, it is evident that set-based minmax robust

efficiency is equivalent to point-based robust efficiency [6, Theorem 4.1].
The robust counterpart in the sense of Ehrgott of UMV problem [7] with ellipsoid

uncertainty set can be given as

(UMV (ER)) : min
x∈X

max
ξ=(µ,Σ)∈U

f(x, ξ) = min
x∈X

(
max

(µ,Σ)∈Uδ(µ̂,Σ̂)
xTΣx , max

(µ,Σ)∈Uδ(µ̂,Σ̂)
−µTx

)
= min

x∈X

(
xtΣ̂x+

δ

c
∥x∥2 ,−µ̂tx+ δ∥x∥

)
this relationship tells the fact of computing upper robust efficient solutions for

UMV portfolio optimization problems via MVminmax.
According to definition 3.3 the lower robust efficiency of UMV problem with

ellipsoid uncertainty set is obtained as follows

(UMV (LSO)) : min
x∈X

min
ξ=(µ,Σ)∈U

f(x, ξ) = min
x∈X

(
min

(µ,Σ)∈Uδ(µ̂,Σ̂)
xTΣx , min

(µ,Σ)∈Uδ(µ̂,Σ̂)
−µTx

)
= min

x∈X

(
xtΣ̂x− δ

c
∥x∥2 ,−µ̂tx− δ∥x∥

)

Unlike to UMV(ER), UMV(LSO) employs to minimize the function with uncertain

parameter ξ taking the value at the best case (the best scenario) and the optimiza-

tion variable x fixed while reducing uncertainty in the optimization problem. And

the efficient solutions obtained by UMV(LSO) are lower robust efficient solutions.

So, with the help of the weighted sum scalarization, the above two problems

become as follows

(UMVλ(ER)) : min
x∈X
0≤λ≤1

(1− λ)(xtΣ̂x+
δ

c
∥x∥2) + λ(−µ̂tx+ δ∥x∥),

and

(UMVλ(LSO)) : min
x∈X
0≤λ≤1

(1− λ)(xtΣ̂x− δ

c
∥x∥2) + λ(−µ̂tx− δ∥x∥).
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4 Illustrations of robust portfolio solutions

In this section, we will compare the set-based minmax and the lower robust effi-

ciency in the UMV problem via the data from the real stock market. We have

considered 9 investment positions from the Tehran stock market in a period of 3

years (1998/01/17 to 1401/04/12). The information related to the daily price of

these 9 investment positions in this period of time has been obtained with the help

of TseClient 2.0 software, then returns and volatilities of these assets have been

calculated using MATLAB software. Expected return, volatilities of these assets,

and the covariance between them can be seen in Table 1 and Table 2.

Name Bank Melli Inv S*Mellat Bank Tamin Daroo Gol-E-Gohar Iran Khodro Shazand Petr S*Isf. Oil Ref.Co Sadr Tamin Inv Iran Const. Inv

Symbol BANK1 BMLT1 DTIP1 GOLG1 IKCO1 PARK1 PNES1 SADR1 SAKH1

µ̂ 0.0013 -0.0002 0.0015 0.0007 -0.0007 0.0022 -0.0004 0.0030 -0.0014

σ 0.0012 0.0038 0.0029 0.0021 0.0131 0.0009 0.0029 0.0027 0.0155

Table 1: Expected return, Volatilities of assets

Name Bank Melli Inv S*Mellat Bank Tamin Daroo Gol-E-Gohar Iran Khodro Shazand Petr S*Isf. Oil Ref.Co Sadr Tamin Inv Iran Const. Inv

Symbol BANK1 BMLT1 DTIP1 GOLG1 IKCO1 PARK1 PNES1 SADR1 SAKH1

BANK1 0.0012 0.0003 0.0003 0.0003 0.0002 0.0004 0.0004 0.0003 0.0003

BMLT1 0.0003 0.0038 0.0004 0.0003 0.0002 0.0003 0.0002 0.0005 0.0001

DTIP1 0.0003 0.0004 0.0029 0.0002 0.0001 0.0002 0.0002 0.0003 0.0003

GOLG1 0.0003 0.0003 0.0002 0.0021 0.0005 0.0003 0.0004 0.0003 0.0002

IKCO1 0.0002 0.0002 0.0001 0.0005 0.0131 0.0004 0.0007 0.0006 0.0002

PARK1 0.0004 0.0003 0.0002 0.0003 0.0004 0.0009 0.0004 0.0004 0.0001

PNES1 0.0004 0.0002 0.0002 0.0004 0.0007 0.0004 0.0029 0.0003 0.0003

SADR1 0.0003 0.0005 0.0003 0.0003 0.0006 0.0004 0.0003 0.0027 0.0003

SAKH1 0.0003 0.0001 0.0003 0.0002 0.0002 0.0001 0.0003 0.0003 0.0155

Table 2: Covariance between assets

We obtained an efficient solution and set-based minmax and lower robust efficient

solution of the UMV problem with an ellipsoid uncertainty set. At first, we take

c = 2 and δ = 0.075 as parameters of the ellipsoid uncertainty set. The results

of MV, UMV(ER), and UMV(LSO) are illustrated in Fig. 2. Then, the cases of

δ = 0.0075 and δ = 0.00075, and the value c unchanged are shown in Fig. 3 and 4.

Oppositely, the cases of c = 0.2 and c = 20 and δ unchanged are depicted in Fig. 5

and 6 [7].

Comparisons of Figs. 2, 3, and 4 show that the radius of ellipsoid uncertainty set

(δ) has a positive effect on the set-based minmax efficient (robust efficient in sense

of Ehrgott) frontier. That is, with the decrease of the radius, the set-based minmax

efficient frontier will be closer to the efficient frontier. On the other, a lower robust

efficient frontier is sensitive to the scaling factor of ellipsoid uncertainty set (c).

Fig. 5 and 6 illustrated that the increase of the c causes the lower robust efficient

frontier to be closer to the efficient frontier.
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Figure 1: Efficient frontier when c = 2, δ = 0.075

Figure 2: Efficient frontier when c = 2, δ = 0.0075

Figure 3: Efficient frontier when c = 2, δ = 0.00075
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Figure 4: Efficient frontier when c = 0.2, δ = 0.00075

Figure 5: Efficient frontier when c = 20, δ = 0.00075

5 Conclusion

In this paper, some concepts of robustness for uncertain multi-objective optimiza-

tion problems are introduced and set-based minmax robust and lower robust effi-

ciency are applied in the Markowitz’s portfolio optimization problem with ellipsoid

uncertainty set. In the end, we applied these concepts to the real market and inves-

tigated the effects of uncertainty set parameters on these robust efficient solutions.

These outcomes explain that in the real stock market, each of the (robust) efficient

solutions can be recommended to construct the advisable portfolio according to the

status of the stock market.

Bibliography
[1] A. Ben-Tal, L.El Ghaoui and A.L. Nemirovski, Robust Optimization, Princeton Univer-

sity Press, 2009.

[2] A. Ben-Tal, A.L. Nemirovski, Robust optimization methodology and applications, Mathe-
matical Programming, 92 (2002), 453480.



204 Journal of Mathematics and Modeling in Finance

[3] R. Bokrantz, A. Fredriksson, On solutions to robust multiobjective optimization problems
that are optimal under convex scalarization, (2013) arXiv:1308.4616v2.

[4] C. Chen, Y. Wei, Robust multiobjective portfolio optimization : a set order relations approch,
Journal of Combinatorial Optimization 38 (2019) 21-49.

[5] M.Ehrgott, Multicriteria Optimization, Springer, Berlin, 2005.
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