
Bounding the End-to-End Execution Time in Distributed
Real-Time Systems:

Arguing the case for Deterministic Networks in Lingua Franca
Henrik Austad∗†

henrik.austad@sintef.no
Institute for Mathematics and Cybernetics, SINTEF Digital

Trondheim, Norway

Geir Mathisen
geir.mathisen@ntnu.no

Department of Engineering Cybernetics, Norwegian
University of Science and Technology

Trondheim, Norway

ABSTRACT
Designing and implementing distributed systems with real-time
requirements quickly reveal the complexity of handling time and
logic across multiple systems. As data traverse a network, it is
subjected to variable delay due to interfering traffic and variable
load on network components. This introduces an element of non-
determinism in execution time for distributed algorithms, which
translates into increased error logic and pessimistic worst-case es-
timates. Over the next few years, it is expected that Cyber-Physical
Systems will see many new use cases, and the network connect-
ing these will play an ever more important role. Combined with
the onset of the fourth industrial revolution, IEEEs Time Sensitive
Networking, IETFs Deterministic Networking, and 3GPPs Ultra
Reliable Low Latency profile will play a vital role in realizing these
systems. Coordination languages such as Lingua Franca can offer
a substantial contribution to the design process and implementa-
tion of distributed systems such as Cyber-Phyiscal Systems, both
through its model of computation which elevates time to a first-
class citizen and with its support for distributed models. In this
paper, we show that by introducing deterministic network channels
with a fixed delay, the worst-case execution time is not increased
whereas the variance in total execution time from start to finish is
greatly reduced. For a coordination language such as LF, this means
that we can analyze a system using much tighter delay bounds for
network traffic, which in turn can yield better resource utilization.

CCS CONCEPTS
• Networks → Sensor networks; Packet-switching networks; •
Computer systems organization→ Real-time system architec-
ture; Real-time operating systems; Embedded systems.

KEYWORDS
Deterministic Networks, TSN, Tactile Internet, Cyber-Physical Sys-
tems, Lingua Franca, Real-Time Systems
∗Corresponding author
†This work was funded by the Norwegian Research Council under grant 323340

This work is licensed under a Creative Commons Attribution International
4.0 License.

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0049-1/23/05.
https://doi.org/10.1145/3576914.3587499

ACM Reference Format:
Henrik Austad andGeirMathisen. 2023. Bounding the End-to-End Execution
Time in Distributed Real-Time Systems: Arguing the case for Deterministic
Networks in Lingua Franca. In Cyber-Physical Systems and Internet of Things
Week 2023 (CPS-IoT Week Workshops ’23), May 09–12, 2023, San Antonio, TX,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3576914.
3587499

1 INTRODUCTION AND MOTIVATION
A traditional definition of a real-time system is a system in which
correctness is evaluated not only on its logical result but also on
the time in which it is produced. A classical example is the control
loop for a robotic system where sensors read the angle of one or
more joints. These are then used as input in a model that estimates
the state of the robot and compares this to the desired state. This
difference is used as an error input to a control algorithm that
computes one or more actuator commands designed to bring the
robot closer to the desired position. The value of such a control
signal to a highly dynamic system decreases quickly with time. If
the new control signal arrives late it may no longer improve the
system, and may instead be detrimental and make the control loop
unstable. Since neither state estimation nor computing the control
signal happens in zero time, a certain delay is unavoidable, and
depending on the system, other tasks may also share the same
hardware. One crucial task is therefore to ensure that the control
signal is computed and made available to the actuator in time. The
computation has a deadline.

Reducing the interference of unrelated tasks and keeping dead-
lines has been an active field since the seminal paper of Liu and
Layland [15]. Real-time scheduling has seen a continuous improve-
ment from fixed priority, single core to dynamic priorities running
on multicore systems [9]. Although meeting the deadlines is im-
portant, it is also important to reduce the variance of the delay,
meaning making the time taken to compute a value as consistent as
possible. A constant delay makes the total system more predictable
as sudden surges in computation demand are less likely to occur.
One caveat of this is that the delay is constant, i.e. the jitter should
be as low as possible.

When a real-time system consists of components located on
different physical machines, we say that the system is a distributed
real-time system (DRTS). Independent components can easily be
assigned to different nodes in the system, but for components that
have a direct or indirect dependency, this quickly becomes more
challenging. For a distributed system, unrelated traffic thus mani-
fests itself as an indirect dependency on other, unknown entities.

343

https://orcid.org/0000-0002-6046-7046
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576914.3587499
https://doi.org/10.1145/3576914.3587499
https://doi.org/10.1145/3576914.3587499
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576914.3587499&domain=pdf&date_stamp=2023-05-09

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Austad and Mathisen

The execution profile of a task can only be found if all preceding
tasks on which it depends are also found, and in a distributed sys-
tem, the delay of the interconnecting fabric (the network) must also
be factored in. For systems with poor quality of service (QoS), this
necessarily leads to pessimistic run-time estimates, if they can be
derived at all.

When multiple components of a DRTS send critical traffic con-
currently, or when non-critical traffic enters the network, critical
traffic may experience delay jitter even if the extra delay is within
the delay bounds. A distributed real-time system must consist of
composable objects, i.e. elements that behave independently of each
other and which can be combined without affecting the validity of
the remaining system [13]. By always using the upper bound for
the end-to-end delay we effectively remove the non-determinism of
said interference without increasing the worst-case delay. Granted,
the best-case delay grows closer to the worst case, but as the range
of delays decreases, the total execution time for a distributed algo-
rithm becomes stable, and the variance decreases. This allows us to
calculate tight bounds on total execution time, reduce timeout used
to detect network outages and make a decentralized, distributed
system more predictable.

The rest of this paper is organized as follows. Relevant back-
ground information is covered in Section 2. This also presents
relevant deterministic networks and Lingua Franca in more detail.
Related work is covered in Section 3. In Section 4 we present a
roadmap for including net_chan in LF and describe the current
status of this work. We close the paper in Section 5 with a brief
discussion before concluding in Section 6.

2 BACKGROUND
Figure 1 shows a small, distributed control system for a robotic
arm. The robot interface receives state updates periodically from
the arm, forwards this to the controller, and receives an updated
control signal which is then used to adjust the robotic arm.

Figure 1: Distributing a robotic control algorithm
(credit: UR10e image, Universal Robots)

The nature of the connection between Robot IF and Controller
is important once the nature of the traffic becomes apparent. Each
state update must be processed before a new update arrives, and
each control update must be sent to the robot in the correct order.

2.1 Time Sensitive Networks and the Tactile
Internet

Time Sensitive Networking [1, 3] is a set of open IEEE standards
that bring determinism and improved reliability to Commercial
Off-the-Shelf (COTS) network hardware. A set of data packets that

logically belong together is denoted a stream Critical streams are
identified using a unique stream identifier and are protected by
reserving both buffer capacity and transmission priority along the
path from the sender (“Talker”) to one or more receivers (“Listen-
ers”). If all network switches (Bridges in TSN nomenclature) can
meet the stream requirements, the reservation succeeds and the
talker can begin transmitting data, otherwise the reservation fails
and the network is unable to provide bounded delays. The original
traffic classes, A and B, with the Credit Based Shaper (CBS) [2] in-
herited from Audio-Video Bridging have since been extended with
scheduled traffic using the Time-Aware Shaper (TAS) [3] and Asyn-
chronous Traffic Shaper (ATS) [4]. Class A traffic can be guaranteed
to arrive within 2ms in a 100 Mbps network with a maximum of
7 hops. In a 1 Gbps network, TAS can give a 100 `s latency guar-
antee over a 5-hop path but requires substantial configuration and
engineering compared to CBS.

Alongside this, ITU-T has defined Tactile Internet (TI) as an inter-
net network that combines low latency with extremely high avail-
ability and security[12]. With a specified upper end-to-end latency
of 1 ms and a 99.999% availability[12], there are currently no com-
mercially available wireless technologies capable of meeting this
demand. 3GPPs Ultra-Reliable Low-Latency (URLLC) profile from
Release 17 (3GPP Rel17) can be seen as the best approach for this,
especially when combined with TSN as a backhaul network [17].
When taken together, TSN and URLLC provide a deterministic
network for both wired and wireless connections. It is expected
that future Cyber-Physical Systems (CPS) with time-constrained
behavior will rely on TI to realize their potential.

Note: IETF has specified Deterministic Networking (DetNet)
[10] which targets larger networks than TSN. Where TSN is limited
to subnets (i.e. not routable), DetNet targets WAN. It is important
to note that DetNet does not standardize a single networking tech-
nology, but rather provides recommendations and requirements
for underlying networks on top of which a DetNet can be served.
DetNet can run over TSN, Multiprotocol Label Switching (MPLS)
Packet Switched network and URLLC.

2.2 Lingua Franca
Lingua Franca (LF) is a coordination language that adds time and
reactive concurrency to multiple target languages [16]. Execution
of code is performed by actors that react to external events, which
are named reactors in LF. To ensure the deterministic execution
of multiple reactors, LF uses the concept of superdense time and
events between reactors are ordered by “tags” which are advanced
either globally (centralized coordination), or when each reactor can
be sure that no other earlier event can arrive and thus advance the
time in a decentralized fashion. Internal actions are ordered by tag
and micro-steps such that another iteration with the same input
will yield the same execution order. This comes as a contrast to
a traditional multithreaded application where the interleaving of
threads makes the actual execution order unpredictable [14].

From the specification files, which are a mix of LF notation
and target language code, LF will generate a runtime with the
target application embedded. This can be either a single system or
a distributed application where an LF federation consists of a set
of federate reactors, each capable of running on separate hosts. In

344

Bounding the End-to-End Execution Time in Distributed Real-Time Systems:
Arguing the case for Deterministic Networks in Lingua Franca CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

the latter case, time can be coordinated using either a centralized
approach where a runtime infrastructure (RTI) server handles the
advancement of time or a decentralized approach. Reactors in the
latter case adhere to a concept called “Safe to Process” (STP) where
reactors are connected directly (and not via RTI) and will advance
logical time on their own after a safe delay has been observed. To
handle delays beyond what is expected, reactors can specify STP
violation actions where excessive network delays will be handled
should they occur.

3 RELATEDWORK
Timed C [18] is an extension to the C programming language and
a framework somewhat similar to Lingua Franca that elevates time
as a first-order citizen in the system. In Timed C, it is possible to
express directly timeouts and delays for how long subsets of an
algorithm should take, and by expressing timing points as either
soft, firm or hard, different actions can be taken should the system
miss its target.

In [11], Gutiérrez et. al showed that TSN is capable of forwarding
critical control signals to control a robotic arm. Recently, the Insti-
tute of Electrical and Electronics Engineers (IEEE) and International
Electrotechnical Commission (IEC) have started on a joint standard
for TSN in Industrial Automation [19].

The Robot Operating System 2 (ROS2) has chosen Distributed
Data Service (DDS) as the underlying protocol, and Agarwal et. al
showed how determinism and jitter are improved using TSN to
safeguard the traffic [5].

In a project known as “Federated Timed C” [8], Timed C was
extended with net_chan [6] to design and implement a distributed
real-time system. In the end, two separate tasks were synchronized
to 18`s, which was the accuracy of the kernel scheduler running
on the systems.

4 EXTENDING DECENTRALIZED LF WITH
TSN AND NET_CHAN

In a decentralized approach, LF will use STP to determine if it is
safe to advance time. Due to the nature of standard packet-switched
networks, the STP offset value that sets the expected worst-case
delay must be set somewhat arbitrarily. To derive tighter bounds,
explicit QoS measures must be in place and the network stack
configured carefully.

In Fig. 2, we see a distributed system of two tasks, A and B
connected by a channel. For this example, the delay can be selected
arbitrarily but we chose the 2 ms delay guaranteed by TSN’s Class
A. Real-time systems need to verify the total execution times of its
component, and as complex as this task already is, adding unknown
and unpredictable network delays further complicates this matter.
Fig. 2b) shows this, and the main focus of our work here is to make
the network delay a known constant.

In addition, as shown in [8], when combining Timed C and
net_chan, setting the delay to a fixed value, the network channel
becomes composable and independent nodes in the system will
not be affected by interfering traffic. With bounded delays on each
link, it also becomes possible to extend this to larger federates, the
total delay can then be summarized as the individual computational
delay and the upper limit of each network link.

(a) A Lingua Franca model showing a logical channel with a defined
delay to connect to reactors. This can map to a TSN Class A stream.

(b) Total execution time a distributed system consists of local com-
putation and network delay.

Figure 2: Trivial distributed system of two hosts connected
by a TSN Class A link.

The benefits of using fixed delay network channels in combina-
tion with LF are thus:

• Reduced deadline/timeout STP values as the network pro-
vides a known bounded and low latency.

• Guaranteed delivery allows for simplifying error handling
logic. If a packet is delayed beyond the stated latency, it is
safe to assume that the network has become partitioned.

• Nodes become composable as any jitter introduced (within
the delay bounds) is effectively hidden.

• LF can generate TSN stream attributes such as required band-
width, period and network path directly from the LF model.

• LF can reason about total execution time and schedule tasks
accordingly, even in a distributed scenario.

• Critical traffic can coexist with normal, best-effort traffic
on the same network, with no need to move critical and
non-critical traffic into separate networks, making LF a good
candidate for future CPS systems on converged networks.

4.1 Adding net_chan to Lingua Franca
Setting up and configuring TSN channels require a lot of system
knowledge. In net_chan, most of these steps are already taken
and a developer can specify a channel using a “manifest” where all
channels are described. Currently, this file must be createdmanually
as the approach taken in [8] cannot yield this information directly
from the model.
Listing 1: net_chan manifest, all channels must be described
in this format for net_chan, typically within a single file
shared by all nodes.
struct net_fifo net_fifo_chans [] = {{

.dst = {0x01 , 0x00 , 0x5E , 0x01 , 0x11 , 0x03},

.stream_id = 3,

.sc = CLASS_A ,

.size = sizeof(struct sensor_data),

.freq = 10,

.name = "sensor_data"}};

345

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Austad and Mathisen

4.2 Challenges
Currently, this approach will only work on a decentralized LF fed-
eration. In the centralized case, the dependence on the RTI server
would negate the benefit of fast and bounded latency through a
net_chan channel.

To properly use TSN, only a few capable Network Integrated
Cards (NIC) exist. A popular choice is the Intel I210which comes in a
PCIe form factor. Other NICs exist, both Renesas andNXP have TSN-
capable systems. Currently, net_chan supports TSN on Linux and
I210 and this limits the usage to a single OS andNIC. Furthermore, as
LF is a large and complex framework, adding seamless integration
for TSN is a daunting task and should be done carefully. Even
though net_chan removes some of the complexities of managing
TSN streams, it still adds additional software dependencies to LF,
which could frustrate users.

4.3 Roadmap and Current Status
The current outline for testing LF and net_chan is as follows:

(1) The first step is planned as simply linkingwith net_chan from
within an LF module. This will provide a network construct
inside the reactor, but as far as LF is concerned, the reactor is
only writing the value to a local variable. The results yielded
from this step are comparable with what was derived in [8],
and this approach can therefore be considered a “proven
approach”.

(2) The next step is thus to extend LF in a way such that a new
channel is available, similarly to logical channels as the delay
is known and bounded. Even though the network approach
introduces non-determinism, using a deterministic channel
in combination with a fixed delay such as READ_WAIT()
from net_chan, using logical channels with fixed delays, is
the most promising approach.

(3) Building on this, where net_chan requires a manifest to
describe each network channel, once we have this available
from within LF, extracting channel attributes directly from
the model will give LF a tremendous expressive power.

(4) Finally, by using the fixed delay on each channel, we hope to
use this to compute the total execution time for composed,
federated reactors and provide this as additional input to the
task scheduler in LF. As previously stated, estimating WCET
is a tall order, but by introducing upper bounds on network
delays, this at least brings distributedWCET closer to “single
host” WCET estimation. In [20], Zhao et. al derived tighter
bounds for total End-to-End latency in a TSN network using
Network Calculus, and it seems promising to extend the
results to LF and derive end-to-end (E2E) latency bounds.
This remains an interesting venue to explore at a later stage.

4.4 Implementing the First Step - Direct Linking
Currently, LF support distributed computing using federates, and
when configured to run in a decentralized setup, the RTI server is
only used for initial setup and shutdown. It is natural to compare
the current behavior of a federated LF model with a corresponding
model using net_chan.

4.4.1 Initial Integration and Evaluation. We use the same approach
as in [8] and include net_chan as an external library. To achieve
a level of composability, we delay the traffic by 2 ms since TSN
provides an upper bound of 2 ms of all traffic. The code framework
used to demonstrate this approach and the following tests can be
obtained from a public GitHub repository [7], net_chan must be
installed locally. As the goal is to evaluate how deterministic chan-
nels behave conjoined with LF, both the sensor reactor and the
accompanying logic are intentionally kept simple. In the aforemen-
tioned repository, a Lingua Franca federated system is available
under distributed/. This is shown in Fig. 3.

Figure 3: Distributed system used to compare federated LF
with a TSN capable application

Similarly, talker/ and listener/ contains code for separate
reactors that together implement the same behavior as the federated
application. In other words, in this scenario, the two reactors in Fig.
3 each implement a single, standalone application that can run on
separate hosts and is connected using a TSN stream via net_chan.

4.4.2 Small Scale Testing. For TSN and net_chan to behave as
expected, the end stations and network must all support TSN. We
rely on net_chan’s integration with AvNUs mrpd for reservation
messages. linuxptp provides ptp4l for synchronizing the Network
clock and slaving the system clock to the network using phc2sys.
Our end station uses the Intel I210 NIC alongside Linux’s network
subsystem that has supported CBS and TAS for some time and a
pair of Cisco Catalyst switches is used to host the network.

Figure 4: Test system setup where a common link in the
network transports both critical and (from the real-time ap-
plication’s perspective) irrelevant traffic.

We capture timestamps1 when a frame is sent and when it is
received. To reduce unrelated timing errors, both test machines run
1we use lf_time_physical() which on Linux maps directly to CLOCK_REALTIMEwhich
is kept accurate with phc2sys and ptp4l

346

Bounding the End-to-End Execution Time in Distributed Real-Time Systems:
Arguing the case for Deterministic Networks in Lingua Franca CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

Listener Talker
PTP clock PTP clock

F-
LF

Max 17 ns 717 ns 29 ns 796 ns
Avg. 11.1 ns 118.1 ns 16.6 ns 119.9 ns

𝜎 2.0 ns 165.7 ns 3.9 ns 156.3 ns

N
C-
LF Max 18 ns 561 ns 29 ns 512 ns

Avg. 11.2 ns 43.9 ns 16.2 ns 40.6 ns
𝜎 1.9 ns 82.3 ns 3.7 ns 51.8 ns

Table 1: PTP and CLOCK_REALTIME (PTP+phc2sys) accu-
racy during test runs. Federated Lingua Franca (F-LF) runs
decentralized with RTI providing initial startup/shutdown
synchronization. A net_chan-enabled LF model TSN streams
for 2 similar, yet separate reactors.

a real-time Linux kernel (5.16.2-rt19), the applications are shielded
from other tasks using cpusets, interrupts are moved away, memory
is allocated at initialization and locked to avoid page faults, and the
tasks run with a real-time scheduler (SCHED_RR) and priority 70.

We then run both the Federated LF model and the net_chan-
alternative on an idle network as well as a highly saturated network
where two unrelated systems saturate the single, shared link be-
tween the two switches as shown in Fig. 4. As these are early results,
the tests are run for a short time, logging timestamps at 10 Hz for
300 seconds.

4.4.3 Results. The first step is to synchronize and evaluate the
accuracy of the clocks so that we can evaluate the accuracy of the
calculated E2E latency. Both ptp4l and phc2sys log the adjustment
each second which can use to keep track of the clock accuracy. This
is summarized in Table 1 The worst error seen for both tests is
approximately 0.8`s which most likely stems from PCIe jitter, the
network clock is synchronized to within 29ns.

The results of the tests are shown in Table 2. In the “Federated LF”
(F-LF) case, the system shown in Fig. 3 is evaluated. The numbers
under “Noise“ is captured when the Noise Generator is active. In
the idle case, F-LF performs well, it is apparent that the “after 2 ms”
clause is an upper bound. On the other hand, due to the lack of
any QoS mechanisms in play when the network is saturated in the
F-LF case. The worst-case delay is severely affected, and both the
maximum and the standard deviation are increased by 2 orders of
magnitude. Impressively, even with the applied network noise, the
delay added due to retransmissions of lost packets is not increased
much beyond 200ms. A plot of F-LF’s E2E delay (idle) can be viewed
in the topmost plot in Fig. 5, the other F-LF plot was omitted due
to the extreme outliers.

The tests using net_chan can be seen in the last two columns
in Table 2. As can be seen, even during high network load, the
delay hardly changes, but impressive as this may seem, this is also
partly due to usage of READ_WAIT() in net_chan, as the network is
loaded, the e2e invariably increases, just not beyond the guaranteed
2 ms. The lower plot in Fig. 5 shows the delay using net_chan under
heavy network load. The single values are overlaid by a simple
moving average of length 100.

Federated LF net_chan LF
Idle Noise Idle Noise

Min 1 696.46 `s 1 703.31 `s 2 011.55 `s 2 017.61 `s
Max 2 044.30 `s 207 551.63 `s 2 037.43 `s 2 043.21 `s
Avg 1 812.78 `s 2 106.05 `s 2 026.18 `s 2 026.12 `s
𝜎 72.70 `s 5 973.12 `s 0.68 `s 0.74 `s

Table 2: E2E latency for federated and net_chanmodel. Noise
is when a noise-generating application is filling all available
best-effort capacities of the shared link between the two TSN
switches.

5 DISCUSSION AND FUTUREWORK
From the results, protecting the traffic using QoS is self-evident,
and TSN remains an interesting candidate. The amount of code
needed to include net_chan in LF is not excessive, which makes
net_chan an interesting library to experiment with. Although 3
lines of code could be enough, tighter integration with LF would
simplify this even further. As discussed in Sec. 4.3, with the structure
of LF models, deriving stream properties directly from a model is a
tantalizing possibility.

One important takeaway when comparing a federated LF model
to two reactors connected using net_chan, during our tests, the
former ran completely without QoS and comparing the federated
model directly with TSN is unfair. What we aimed to demonstrate
was the usefulness of a TSN channel as the behavior is almost
identical regardless of network load. The results in Table 2 and the
lower plot in Fig. 5 clearly demonstrate this.

In the future, we plan to use Lingua Franca and net_chan to
compose a distributed control system for a robotic arm, in essence,
a Sensor, a controller and an actuator (looking back to Fig. 1). For
each iteration, the error from the desired state is found and a new
set of joint motor speeds are derived to bring the arm and its end-
effector to the correct position. From the results obtained in this
paper, we see that we can expect periodic data to arrive with low
variance regardless of interfering traffic.

6 CONCLUSION
In this paper, we have seen how coordination languages such as Lin-
gua Franca can benefit from having a clear interface to deterministic
networking. By using TSN channels with a low, yet fixed delay, we
can improve the accuracy of execution bounds for distributed tasks
even in the face of severe network interference. We can also use
the same guarantees to substantially reduce the timeout value used
to detect network outages. This allows LF to operate with lower
margins for network delay and can thus achieve higher resource
utilization without sacrificing safety. Finally, by using an external
library such as net_chan to provide such channels, LF can allow
the library to address new networks (such as URLLC), new NICs
and OS interfaces and instead focus on a fairly small, stable API.

REFERENCES
[1] 2010. IEEE Forwarding and Queuing Enhancements for Time-Sensitive Streams.

IEEE Std 802.1Qav-2009 (Amendment to IEEE Std 802.1Q-2005) (2010). https:
//doi.org/10.1109/IEEESTD.2010.8684664

[2] 2010. IEEE Stream Reservation Protocol (SRP). IEEE Std 802.1Qat-2010 (Revision
of IEEE Std 802.1Q-2005) (2010). https://doi.org/10.1109/IEEESTD.2010.5594972

347

https://doi.org/10.1109/IEEESTD.2010.8684664
https://doi.org/10.1109/IEEESTD.2010.8684664
https://doi.org/10.1109/IEEESTD.2010.5594972

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Austad and Mathisen

Figure 5: E2E comparison of an idle, federated system and LF using net_chan under severe network load. Same dataset as used
to generate Table 2

[3] 2016. IEEE Enhancements for Scheduled Traffic. IEEE Std 802.1Qbv-2015 (2016).
https://doi.org/10.1109/IEEESTD.2016.8613095

[4] 2020. IEEE Asynchronous Traffic Shaping. IEEE Std 802.1Qcr-2020 (2020). https:
//doi.org/10.1109/IEEESTD.2020.9253013

[5] Tanushree Agarwal, Payam Niknejad, M. R. Barzegaran, and Luigi Vanfretti.
2019. Multi-Level Time-Sensitive Networking (TSN) Using the Data Distribution
Services (DDS) for Synchronized Three-Phase Measurement Data Transfer. IEEE
Access 7 (2019), 131407–131417. https://doi.org/10.1109/ACCESS.2019.2939497

[6] Henrik Austad. 2023. henrikau/net_chan: v0.1.2. https://doi.org/10.5281/zenodo.
7635611

[7] Henrik Austad. 2023. Lingua Franca net_chan integration. https://github.com/
henrikau/tcrs_lf

[8] Henrik Austad, Erling Rennemo Jellum, Sverre Hendseth, Geir Mathisen, Tor-
leiv Håland Bryne, Kristoffer Nyborg Gregertsen, Sigurd Mørkved Albrektsen,
and Bjarne Emil Helvik. 2023. Composable distributed real-time systems with de-
terministic network channels. Journal of Systems Architecture 137 (2023), 102853.
https://doi.org/10.1016/j.sysarc.2023.102853

[9] Dario Faggioli, Fabio Checconi, Michael Trimarchi, and Claudio Scordino. 2009.
An EDF scheduling class for the Linux kernel. In Proceedings of the 11th Real-Time
Linux Workshop.

[10] Norman Finn, Pascal Thubert, Balazs Varga, and János Farkas. 2019. Deterministic
Networking Architecture. RFC 8655. https://doi.org/10.17487/RFC8655

[11] Carlos San Vicente Gutiérrez, Lander Usategui San Juan, Irati Zamalloa Ugarte,
and Victor Mayoral Vilches. 2018. Time-Sensitive Networking for robotics. CoRR
abs/1804.07643 (2018). https://dblp.org/rec/journals/corr/abs-1804-07643.bib

[12] ITU-T. 2014. The Tactile Internet. https://www.itu.int/dms_pub/itu-t/oth/23/01/
T23010000230001PDFE.pdf

[13] Hermann Kopetz. 2011. Real-Time Systems - Design Principles for Distributed
Embedded Applications. Springer. https://doi.org/10.1007/978-1-4419-8237-7

[14] Edward A Lee. 2006. The problem with threads. Computer 39, 5 (2006).
[15] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multipro-

gramming in a Hard-Real-Time Environment. J. ACM 20, 1 (1973), 46–61.

https://doi.org/10.1145/321738.321743
[16] Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A. Lee. 2021.

Toward a Lingua Franca for Deterministic Concurrent Systems. ACM Trans.
Embed. Comput. Syst. 20, 4 (2021). https://doi.org/10.1145/3448128

[17] Ahmed Nasrallah, Akhilesh S. Thyagaturu, Ziyad Alharbi, Cuixiang Wang,
Xing Shao, Martin Reisslein, and Hesham ElBakoury. 2019. Ultra-Low Latency
(ULL) Networks: The IEEE TSN and IETF DetNet Standards and Related 5G
ULL Research. IEEE Communications Surveys & Tutorials 21, 1 (2019), 88–145.
https://doi.org/10.1109/COMST.2018.2869350

[18] Saranya Natarajan and David Broman. 2018. Timed C: An Extension to the C
Programming Language for Real-Time Systems. In 24TH IEEE REAL-TIME AND
EMBEDDED TECHNOLOGY AND APPLICATIONS SYMPOSIUM (RTAS 2018). IEEE,
227–239. https://doi.org/10.1109/RTAS.2018.00031 [ed] Pellizzoni, R.

[19] Ludwig Winkel. 2023. IEC/IEEE 60802 TSN Profile for Industrial Automation.
[20] Luxi Zhao, Paul Pop, Zhong Zheng, Hugo Daigmorte, and Marc Boyer. 2020.

Latency analysis of multiple classes of AVB traffic in TSN with standard credit
behavior using network calculus. IEEE Transactions on Industrial Electronics 68,
10 (2020), 10291–10302.

348

https://doi.org/10.1109/IEEESTD.2016.8613095
https://doi.org/10.1109/IEEESTD.2020.9253013
https://doi.org/10.1109/IEEESTD.2020.9253013
https://doi.org/10.1109/ACCESS.2019.2939497
https://doi.org/10.5281/zenodo.7635611
https://doi.org/10.5281/zenodo.7635611
https://github.com/henrikau/tcrs_lf
https://github.com/henrikau/tcrs_lf
https://doi.org/10.1016/j.sysarc.2023.102853
https://doi.org/10.17487/RFC8655
https://dblp.org/rec/journals/corr/abs-1804-07643.bib
https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000230001PDFE.pdf
https://www.itu.int/dms_pub/itu-t/oth/23/01/T23010000230001PDFE.pdf
https://doi.org/10.1007/978-1-4419-8237-7
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/3448128
https://doi.org/10.1109/COMST.2018.2869350
https://doi.org/10.1109/RTAS.2018.00031

	Abstract
	1 Introduction and Motivation
	2 Background
	2.1 Time Sensitive Networks and the Tactile Internet
	2.2 Lingua Franca

	3 Related Work
	4 Extending Decentralized LF with TSN and net_chan
	4.1 Adding net_chan to Lingua Franca
	4.2 Challenges
	4.3 Roadmap and Current Status
	4.4 Implementing the First Step - Direct Linking

	5 Discussion and Future Work
	6 Conclusion
	References

