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                                                  I 

PREFACE 
The purpose of this thesis is to demonstrate a proof of concept of a CMUT based chemical 
sensor as a gas detecting unit, that can classify and quantify chemicals with machine learning 
in a real-world application. The thesis is a continuation of research done at Stanford University 
on the CMUT chemical sensor, funded by Fluenta. Data this thesis is built on was collected 
during winter 2017. Collecting the data was repetitive and time consuming, thus the 
development of a robot was suggested. The suggestion was taken seriously which led to the 
design of an autosampler during the course of this thesis. Proving itself as an invaluable tool 
which hopefully will increase the efficiency of the data collection and help build a data library 
for the sensor which future machine learning models can be trained on.  

I am thankful to Eik Idéverksted for the opportunity to partake in the research on the CMUT 
sensor. It has been rewarding and fulfilling, adding to my five years of study. Especially 
learning the methods of machine learning from scratch and successfully employing models on 
the data from the field. A special thanks to Ola and Kristian Omberg whom have been excellent 
consultants for academic feedback and motivation throughout the thesis work. I would also like 
to thank Magnus R. Nyvold for proof reading and my fellow students for support and 
entertainment during the semester. Last but not least a special thanks to my family for love and 
support. 

 

Ås 

May 15th, 2018 

 

Maureen Byrne 
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ABSTRACT  
In a quest for further enhancing human senses, chemical sensors are developed. Chemical 
sensors are proved to diagnose diseases, classify and quantify chemical warfare agents as well 
as measuring air pollution down to parts per billion [1-3]. Connecting multiple devices in large 
networks can help authorities and governments respond faster and make better decisions 
considering  release of emissions and/or dangerous gases. In order to create such networks, a 
inexpensive, robust and portable sensor must be developed. The chemical capacitive 
micromachined ultrasonic transducer (CMUT) might be such a sensor.  

This thesis demonstrates a proof of concept for a CMUT based chemical sensor as a gas 
detecting unit that can classify and quantify chemicals with machine learning in a real-world 
application. The CMUT is a sensor consisting of an array of polymer coated cells adsorbing 
different gases. Adsorption causes a frequency shift in the sensor output. This shift can be 
correlated to chemicals and their concentrations through machine learning. Reference data 
collected for the machine learning models was identified as a time-consuming process. An 
autosampler was devised, reducing time and cost related to the data collection. The CMUT 
sensor was tested in a greenhouse for 4 weeks to measure CO2 concentration in a plant bed 
under varying conditions. Testing the following statement: If the sensor can detect low 
concentrations of CO2 in ambient air it can also detect other compounds. The machine learning 
models were trained on the collected samples, and later compared to find the best model.   

The results showed that the CMUT sensor successfully measured CO2 down to 120 ppm in 
ambient air, the machine learning models could classify between high and low concentrations. 
For classification purposes the neureal network with relu activation showed the best results, 
with a 15% error for both high and low concentrations. Quantification of the data had poor 
performance due to sensor drift. Large RMSE scores was found for all quantification models. 
The drift is most likely caused by the breakdown of the polymer, causing a frequency shift. 
The dataset was unbalanced and had a higher distribution on lower concentrations. Which to 
some extent undermine the results from the machine learning, although giving an indication of 
sensor performance. Further research is recommended to assess the polymer coating on the 
CMUT as well as removing drift. Reducing the size of the sensor and equipment, as well as 
connecting the sensor to a cloud database, is recommended and identified as important steps 
for creating a sensor network.  
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SAMMENDRAG 
I søken etter å forbedre menneskets sanser ønsker man å utvikle kjemiske sensorer. Kjemiske 
sensorer har blitt brukt til å diagnostisere sykdommer, klassifisere og kvantifisere nervegass i 
tillegg til å måle luftforurensing som har svært lav oppløsning. Ved å sette sammen flere 
elektroniske neser i større nettverk vil det bidra med økt informasjon om utslipp i byer. Dette 
vil hjelpe myndigheter med å ta bedre og raskere beslutninger for å unngå spredning av farlige 
kjemikalier og/eller forurensning. For å lage slike nettverk må sensorene som benyttes være 
pålitelige, kostnadseffektive og robuste. En sensor som oppfyller disse kravene er den kjemiske 
kapasitive mikromaskinerte ultralyd transduceren (CMUT).  

Denne oppgaven demonstrerer mulighetene for at en CMUT basert kjemisk sensor kan fungere 
som en gassdetekteringsenhet som kan klassifisere og kvantifisere kjemikalier i luft ved hjelp 
av maskinlæring. CMUT-en består av en rekke polymerbelagte celler som adsorberer ulike 
gasser. Adsorpsjonen forårsaker en frekvensforskyvning i sensorutgangen. Dette skiftet kan 
korreleres til identiteten og konsentrasjonen på det adsorberte kjemikalie ved hjelp av 
maskinlæring. For å benytte maskinlæring trenger man en referanseverdi på de ulike 
frekvensskiftene. Ved å ta referanseprøver, som er korrelert med sensoravlesningen, og som 
senere blir sendt til analyse i en gass kromatograf. Referanseprøveinnhenting viste seg å være 
en tidkrevende prosess, dermed ble en autosampler utvikler. Denne øker produktiviteten ved å 
tillate 30 timers kontinuerlig prøvetakning i tillegg til å redusere kostnader ved å erstatte 
menneskelig arbeidskraft. Autosampleren ble ikke brukt til datainnsamling i denne oppgaven.  

I 4 uker ble CMUT-sensoren plassert i et drivhus og kontinuerlige prøver ble tatt. Målet med 
testen var at CMUTen skulle måle CO2 konsentrasjonen i et plantebed for å teste: hvis sensoren 
kan måle CO2 i lave konsentrasjonen i luft kan den og måle andre kjemikalier i luft. Relevante 
maskinlæringsmodeller ble trent og testet på den innhentede dataen. Resultatene viste at 
sensoren kunne måle CO2 konsentrasjoner ned til 120ppm. Ulike maksinlæringsmodeller ble 
testet. Modellene skulle være i stand til å skille mellom høye og lave konsentrasjoner. Det 
nevrale nettet med relu aktivering hadde best resultat med en  feil på ca 15 % for begge 
konsentrasjoner. Kvantifiseringen av dataen led av lite linearitet da datasettdrift ble observert 
under forsøket. Driften forskjøv frekvensen som virket ødeleggende på lineariteten. 
Kvantifiseringen var altså ikke pålitelig. En viktig erfaring er at maskin-lærings modeller ikke 
blir bedre enn dataen modellen er basert på. Mer data må bli hentet inn. Videre forsking burde 
konsentrere seg om polymerene for å fjerne drift i dataen, hente mer data, minimalisere 
elektronikken samt å implementere en skydatabase for lagring og innhenting av data. Nevnte 
steg er indentifisert som viktige faktorer for å få til ett større sensornettverk med denne typen 
sensor.  
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INTRODUCTION 
Changes in the composition of the air we breathe can be harmful and in some cases lethal. As 
an example the world health organization predicts that 6.5 million deaths globally are caused 
by air pollution [4], another example is the chemical attacks in Syria causing 43 deaths related 
to exposure of highly toxic chemicals in April 2018 [5]. To help authorities and governments 
respond faster and make better decisions for avoidance of emissions and/or dangerous gases, 
real-time data need to be gathered. This data can be gathered by a network of chemical sensors. 

A chemical sensor, often referred to as an electronic nose, consists of an array of sensors used 
to detect various compounds. Although chemical sensors have been researched for several 
years (the first electronic nose was developed in 1964 [6]) no commercial low cost sensor is 
available. Much of the difficulty in providing such a sensor to the market is making an 
inexpensive, precise and easily manufactured sensor that does not require pre-calibration. 
Current conventional sensor networks for detecting compounds are insufficient due to their 
limited number of nodes, large size and dependency on gas chromatographs and spectrometers 
[7].  To provide sufficient data, an increase in density of sensors is needed, thus contributing 
to the drive to develop new multifunctional chemical sensors. 

The chemical sensor used in this thesis, is a capacitive micro machined ultrasound transducer 
(CMUT) for chemical sensing, developed by the Khuri-Yakub Ultrasonic group at Stanford 
University [8]. The sensor is inexpensive and has shown promising results as an electronic 
nose. Stedman, researcher in the Khuri-Yakub group, proved the sensor’s ability to distinguish 
acetone, ethanol, methanol and water with 96% accuracy in a controlled environment [9]. 
Testing the sensor in a real-world situation exposing it to more complex gas mixtures like 
ambient air has still to be performed to evaluating its ability of environmental monitoring. This 
will be the main-focus of this thesis. Ambient air consists of 0.033vol% CO2[10], if the sensor 
is able to detect varying CO2 concentration in air it can also detect other compounds at low 
concentrations. 

To network of sensors that is able to detect compounds at low concentrations, a database of 
chemical concentration fingerprints is required, to train machine learning models. To create 
such a database, large sets of data are needed. Data for the library is gathered sampling sensor 
data and reference data providing the blueprint of chemicals present. A data collection tool is 
suggested in this thesis for efficient collection of reference data. 

This thesis is written in collaboration with Stanford University and Fluenta. A proof of concept 
of a CMUT based sensor as a gas detecting unit that can classify and quantify chemicals with 
machine learning in a real-world application is investigated.  
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Overall research goals  
Overall goal: Demonstrating a proof of concept of CMUT based sensor technology as a gas 
detecting unit that can classify and quantify chemicals with machine learning in a real-world 
application.  

Objectives: 

o Design and build a mobile autosampler tool, for obtaining data points from a field test 
o Compare the CMUT-sensors towards end-user requirements set by the Defense 

Advanced Research Projects (DARPA).   
o Compare the CMUT sensor to available chemical sensor solutions 
o Proof of concept testing of the CMUT sensor 

o Evaluate the viability of the test setup  
o Evaluate the sensor over a period of 4 weeks in a greenhouse 
o Evaluate its response by measuring the absolute CO2 concentration in soil  

o If the sensor can detect low concentrations of CO2 in ambient air, it can 
also detect other compounds 

o Use machine learning to interpret data 
o Identify a suitable machine learning approach and model 
o Evaluate performance of machine learning models 

o Suggest future work 

Limitations 

o Only measure CO2 gas in one plant bed within a greenhouse 
o 4 weeks of intensive sampling  
o Use of CMUT sensor only 
o The autosampler is not used for sampling data in this thesis 
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1 THEORY AND BASIC CONCEPTS  
The theoretical base for this thesis will consist of three parts: sensor technology, commercial 
available products for chemical sensing and a machine learning part. Sensor technology focuses 
on technology related to the detection of compounds in air. After a brief introduction to 
chemical sensing and mass acoustic sensors an overview of mass acoustic sensor technology 
will be provided to help justify the sensor of choice – the CMUT. The technical review presents 
an overview of available chemical sensors to serve as contrasts to the CMUT sensor, and help 
identify important stepping stones for further development of the sensor. The machine learning 
chapter introduces relevant machine learning models and how they are applied for chemical 
identification. Sources of error in machine learning and ways to avoid them are also presented.  

1.1 Chemical sensing 
Human olfactory systems makes it easy to distinguish different smells, it takes seconds to 
distinguish a freshly baked bread from a rotten fruit. Recreating the sense of smell on a chip 
have proved to be challenging. The most common way to distinguish different 
compounds/smells is through gas and mass chromatography. Being selective and sensitive 
makes chromatography a popular method for compound identification. The downside is that 
these machines are large, and analysing tests are time consuming and expensive. To monitor 
larger areas like cities, farms or indoors the sensors must be inexpensive, robust and portable 
[11]. As a result, large efforts to find the best chemical sensor for this purpose it put forth.  

 
Figure 1: The human olfactory system compared with a chemical sensing approach, obtained from [12] 

Chemical sensors recognize different compounds due to their functionalization layers. The 
layers attract specific compounds. When adsorbed, the weight of the compound causes a shift. 
The shift is used as an input in pattern recognition algorithms, and hopefully the algorithm 
finds the origin of the compound (Figure 1). This process is similar to the human olfactory 
system, where olfactory receptors in the nose are used to detect compounds, when detected a 
single is sent through a neuron to the brain for a recognition task.  Chemical sensors  has gained 
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increased attention due to their many usage areas such as; environmental protection and 
monitoring, bio sensors for recognizing chemical warfare agents, toxic gas recognition and 
spoiled food indicators [13]. No large commercial success has been seen, although the 
technology is in place.   

In order to have a successful pattern recognition algorithm a large amount of data must be 
stored for the algorithm to train on. Recent developments in computer storage making it 
inexpensive and efficient to store large data sets, micromachining allows for great complexity 
on a tiny chip, helping to reduce the size of chemical sensors. And the computational power 
have increased over the past decade making it efficient to train machine learning models on 
large data sets. The technology is in place to make a chemical sensor that is inexpensive, robust 
and portable.  
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1.2  Mass acoustic sensors 
Most chemical sensors are of type mass acoustic. Acoustic sensors consist of at least one 
vibrating element that creates acoustic waves. The acoustic waves are either propagated along 
the surface making it surface acoustic or within the material making it bulk acoustic. Mass 
loading of compounds will disturb the wave propagation which results in a frequency shift. 
The frequency shift can be used to identify the chemical [14]. By using chemical coating, often 
made up by polymers, selectivity is obtained. Polymer is a term for simple compounds joined 
together in larger chains. The chain is made up by smaller groups of atoms called monomers. 
In Figure 2 the formation of the polymer nylon from two monomers is illustrated. Monomers 
can range from 1-3 atoms to complex ring structures consisting of more than a dozen of atoms. 
Monomers link together and form the polymers [15]. For chemical sensing purposes polymers 
are functionalized to attract and release different molecules through adsorption, by introducing 
specific chemical groups [16].  

 
Figure 2: The formation of a nylon polymer from two monomers. Obtained from [16] 

In the upcoming section, characteristics of five different acoustic sensors are describes; surface 
acoustic wave, quartz crystal microbalance, thin film bulk acoustic, resonant cantilever and a 
chemical CMUT sensor. The sensors are later compared to each other based on their sensitivity, 
detection range and cost.   
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1.2.1 Surface Acoustic Wave Chemical Sensor 
Surface acoustic wave (SAW) chemical sensors exploits the concepts of surface acoustic waves 
produced by a vibrating element. Utilizing materials with piezo electric properties, like Quartz, 
surface waves appear when the material is subjected to an electric field. The electric field is 
produced by InterDigital transducers (IDT). IDT converts an electric signal into a Rayleigh 
wave. IDTs operate both as transducers and a receivers [17]. Seen in Figure 3, the inputted 
electric signal is converted to a wave that propagates through the sensitive film. The wave 
travels to the IDT on the opposite side which translates the identity of the wave back to an 
electric signal. Interacting with the surroundings the wave velocity and amplitude will change 
[18].  Changes can be caused by mass loadings, mechanical stiffness or changes in the viscosity 
of the material.  

 
Figure 3: Simple design of a surface acoustic wave sensor modified from [19]. The forks represent the IDTs, a 

typical input is an AC signal and the sensitive film can be a polymer, the output is sent to a processor. l represents 
the configuration width of the IDT, effecting frequency. 

The SAW sensors properties are so good that they are expected to meet the increasing demand 
of high performance chemical sensors in industries, military, pollution and emissions. Due to 
the sensors ability to sense both fluids and gases in addition to having an ultra-high sensitivity, 
detecting masses down to picograms [14]. It is also proven to be reliable, with an excellent 
sensitivity, selectivity and response time [20]. Thus capable of sensing numerous gases, 
chemical vapours and warfare agents. The SAW sensor has even been proved to work 
satisfactory even in harsh conditions [21]. Despite its many advantages the SAW sensor suffers 
from poor signal to noise ratio due to their high frequencies, as well as their complex and 
expensive fabrication [22]. 
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1.2.2 Quartz Crystal Microbalances  
Quartz crystal microbalances (QCM) uses the piezoelectric properties of the quartz crystal to 
sense mass changes to its surface. By applying an alternating current to the top and bottom 
electrodes the quartz crystal will vibrate. The vibration results in a wave that travels through 
the bulk of the sensors, with a resonant frequency operating in the megahertz (MHz) range 
[23].  

 
Figure 4: Working principle of a QCM. Showing how the resonant frequency changes when mass is added. Modified 

from [24]. 

The QCM is usually functionalized with recognition sites that attracts specific compounds. 
When a compound is attracted a disturbance in the resonant frequency can be measured. As 
seen in Figure 4, the bulk wave frequency is changed when a mass is loaded on to the sensor. 
The frequency change is proportional to the mass of the adsorbed material [25]. Molecular 
structural changes caused by chemical reactions on the surface can also be measured due to the 
many properties of the functionalization layer. Sensing in both liquid and gaseous 
environments makes it a versatile sensor [26]. Sensing mass changes down to 0.1 nanograms 
makes the QCM able to act as a tuneable chemical sensor for environmental and specific drug 
compounds [27]. Despite its high sensitivity and selectivity, the sensor has a complex 
fabrication procedure involving rare chemicals. Due to surface interference the QCM has a 
poor signal to noise ratio due [23].  
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1.2.3 Thin Film Bulk Acoustic Resonators 
Thin film bulk acoustic sensors (FBAR) is a configuration of the bulk acoustic wave resonator 
(BAR) that exploits acoustic waves to detect gas-induced mass changes [28]. FBARs consist 
of a piezoelectric thin film that is sandwiched between two electrodes (Figure 5). By applying 
an alternating current to the electrodes a standing wave is created. The wave propagates through 
the material, reflected off the interfaces that have a large difference in their acoustic 
impedances [28]. The frequency ranges from 100 MHz to 10 GHz and is decided by the natural 
frequency of the piezoelectric material and its thickness [29].  When a chemical is adsorbed 
the stiffness of the sensing layer changes, causing a change in the resonant frequency of the 
piezoelectric layer. The frequency shift is measured used as an input to the machine learning 
model.  

 

Figure 5: a) Schematic representation of BAR operation b) Schematic representation of a FBAR operation, 
thickness is not shown to scale. Figure modified from [29]. 

SAW and FBAR have quite similar working principles using waves to detect changes although 
it is important to note the difference between the waves. SAW sensors convert mechanical 
energy to Rayleigh waves. Rayleigh waves propagate along the surface of a material. While 
FBAR sensors converts the energy into standing waves, waves that is propagated in the entire 
material. Utilizing standing waves makes the FBAR advantageous to the SAW due to its 
insensitiveness to surface contamination and adsorbates. It also has a better power handling. 
The main disadvantage of the FBAR is that it is dependent on large acoustic impedance 
mismatches on both sides of the reflector. Merging 3 or 4 acoustic dissimilar materials on top 
of each other [30] will create such a mismatch. Although creating the mismatch the process is 
complex to manufacture.  

The FBAR sensor is no bigger than 500 µm allowing multiple FBAR in a single array. An array 
of FBARs can increase the sensibility and precision of the predicted compound [31]. 
Integration with other electronic devices are also possible due to its small size and simple 
operating procedure. These properties and the high frequency range making the FBAR more 
sensitive than the QCM and the SAW [31].  
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1.2.4 Resonant Cantilever Sensors 
Resonant cantilever sensors are microcantilever devices (tiny diving boards) that detects 
changes in cantilever bending or vibrational frequency [32]. Cantilevers have two operation 
modes; static and dynamic (Figure 6). The static mode measures deflection caused by changes 
in temperature, surface stress or changes in electrical or magnetic fields. The Dynamic mode 
measure changes to the frequency of the cantilever, changes are caused by mass loading 
changing the damping of the cantilever [33]. When operated as a chemical sensor the top is 
often coated with a polymer, adsorbing specific compounds and causing different shifts.  Either 
a deflection or change in frequency dependent on the operation mode. 

 

 
Figure 6: Different resonant cantilever operation modes. a) Static mode, cantilever deflection is measured in real 

time. b) Dynamic mode, frequency shifts are measured. Obtained from [34]. 

Cantilevers are fabricated by micromachining and can be made of materials such as silicon 
nitride, polymers and nanowires. The cantilever offers many advantages such as high 
specificity, sensitivity, simplistic and low cost fabrication [32]. Challenges the cantilever 
sensors face are sensitivity to vibrations and high acoustic fields, measurement drift, and 
change in the response of the sensor [33]. Although facing many challenges arrays of resonant 
cantilevers has been proven to work as an chemical sensor, distinguishing certain natural 
flavours and alcohol mixtures [35].  
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1.2.5 Chemical CMUT Sensor 
Capacitive micro-machined ultrasonic transducers (CMUT) can be thought of as structures that 
send and receive acoustic signals in the ultrasonic range. Due to their large bandwidth, easy 
fabrication and the large potential of integration with electronic circuits, they are widely used 
for medical imaging and chemical sensing purposes [8].  

 
Figure 7: General CMUT operation principle a) ultrasound receiver b) ultrasound transmitter. Modified from [36]. 

The main components of a CMUT are two electrodes, bottom and top, separated by an 
insulating layer and vacuum sealed gap. The components are attached in parallel with a 
capacitor cell, seen in Figure 7. By generating an electronic potential between the two 
electrodes ultrasound is emitted due to the electrostatic force between the fixed and movable 
electrode [37]. When the CMUT acts as a receiver the procedure is opposite. This trait allows 
the CMUT to operate in a wide range of resonance frequencies; frequencies where the response 
amplitude is a relative maximum [38]. The large frequency range results in a large bandwidth 
of operation making it able to detect mass changes down to attograms  
(10-18) on its surface [39].  

 
Figure 8: Schematic of a CMUT chemical sensor, the red functionalization layer is silicon oxide which attracts a 

certain compound. Obtained from [9]. 

A chemical CMUT is a CMUT with a functionalization layer that interacts with compounds in 
the surrounding environment. The functionalization layer often consists of polymers that 
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absorbs specific compounds. Making the sensor selective to certain compounds. The small size 
of the CMUT makes it possible to arrange multiple sensors in large arrays. Different sensors 
have different coatings which enables multiple compound detection [40].  

Selective sensing, easy fabrication and reliable operation in harsh environments makes the 
chemical CMUT sensor a strong contender for a portable, inexpensive and robust sensing 
apparatus. Although drift in the data over time due to temperature and pressure differences has 
been observed [9]. This problem was handled in [41], where temperature and pressure sensors 
were implemented on the array board for correction of the data. 
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1.2.6 Summary of mass acoustic sensors 
For enabling scalability, chemical sensors should be robust, portable and be inexpensive. 
Robust is in this case the sensor sensitivity and that it is able to detect small changes in large 
areas. These traits are compared for the sensors presented in the theory chapter.  A score for 
each sensor is put forth. The scores for range and cost are educational guesses based on personal 
communication with Quinten Stedman, PhD candidate in applied physics at the Khuri-Yakub 
group. Sensitivity scores are based on papers that test the sensors response to the recognition 
compound of mustard gas, dimethyl methylphosphonate (DMMP).  Although not comparable 
to all gases it gives an overall indication of how well the sensitivity of the sensors for a chemical 
warfare agent. The scores are presented in Table 1, ranging from 0-10 where 10 describes 
excellent qualities and 0 represents poor qualities. The Range of detection is the volumetric 
area the sensor can sense different compounds in, and will also depend on the chemical being 
tested. Cost scores are based on the processing and the machining process for the different 
sensors.  

Table 1: Comparison of the different mass-loading MEMS sensors. 

Structure Sensitivity Range Cost 

SAW 7 [3] 3 7 

QCM 4 [42] 5 4 
FBAR 6  [43] 6 9 

Resonant 
cantilever 

8  [44] 5 9 

Chemical 
CMUT 

7 [45] 9 9 
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1.3  Technical review of existing chemical sensors 
A technical review of existing chemical sensors is put forth, to contrast the chemical CMUT 
sensor and to identify important steps for further commercialization.  

1.3.1 FBAR Sensors – University of Cambridge 
In 2012 researchers at Cambridge developed a Film Bulk Acoustic Resonator (FBAR) device 
that measures temperature and mass-loadings simultaneously. The sensor can operate both in 
air and liquid environments where the standard functionalisation chemistry allows for FBAR 
sensing [46]. The parallel sensing is a result of the careful design of the resonator structure that 
allows for deconvolution. By having such a control over the microstructure, a resonance that 
its not affected by liquid on its surface is allowed for.   

1.3.2 QCM Sensor – Matrix sensor 
Matrix sensors use a metal-organic framework (MOFs) to adsorb chemicals and a quartz 
resonant mass transducer for measurements. MOFs are recognized by their open framework 
(Figure 9 a) and can be compared to a porous material, almost like a molecular sponge. MOFs 
are used for gas storage, purification, separation as well as a catalyst [47]. MOFs are also easy 
configurable which allows for specific sensing. Specific sensing, low power consumption and 
small size characterizes the matrix sensor. Matrix sensors inc specializes in detecting carbon 
dioxide, methane and toxic gases [48].  

  
Figure 9: a) A metal-organic framework from [49] b) the matrix sensor from [48] 

Inside the black box (Figure 9 b) there is an a pressure and temperature sensors as well as an 
array of matrix sensors. The pressure and temperature sensors are used for self-correction of 
drift due to environmental conditions like temperature and pressure changes. Matrix sensor inc 
claims that their sensor will cost less than 30$, use less than one quarter watt and be smaller 
than 2,5x2,5 cm [50]. Matrix sensors inc have an exclusive license to the most fundamental 
technology, and they have two issued patents and four applications in process.  
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1.3.3 QCM sensor – “Open QCM” by NovaTech 
The OPEN QCMsensor is based on quartz crystal microbalance technology which allows the 
sensor to measure mass loadings at a molecular scale, the sensor is seen in Figure 10 b. 
OpenQCM is applicable in the field of chemistry, biology and material sciences and it is 
promoted as an entire laboratory on the surface of a crystal [51]. The sensor can measure mass 
variations down to 0.1 nanograms in air, vacuum and liquid environments.  

 
Figure 10: a) Open QCM sensor box b) QCM sensor chip both from [52] 

Effective measurements of binding events happening on the QCMs surface makes it a powerful 
tool for sensing DNA hybridization and specific drug compounds. It can also be used as a 
tunable gas sensors monitoring air quality in ambient conditions. OpenQCM focus on being an 
open source platform to engage as many crowd scientists as possible. This will help with the 
improvement of the sensor as well as finding new appliance areas. Research papers using the 
OpenQCM sensor have been published in various fields ranging from detecting explosive 
vapors to detection of parathion in water (type of pesticide) [53][[54]. Although the many usage 
areas the data researchers obtain from the sensors contains a lot of noise. There has been little 
activity since 2017, but the sensor is still available in their online store. Starter kits are available 
at $399, mounted and tested versions cost $499, seen in Figure 10a) [55]. The high price is due 
to the expensive materials, gold and titanium, which is used in fabrication of the sensor chip.  
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1.3.4 Chemi-Resistors – CHEMISENSE 
ChemiSense offers a chemical and particle sensor, providing solutions for the industry, 
commercial- and residential markets. In 2014 they started a crowdfunding campaign for a 
wearable bracelet that measures the air pollutants in a user’s hyperlocal environment [56]. The 
data from the bracelet (Figure 11 a) is sent to the user’s smartphone where machine learning is 
employed to analyse the data (Figure 11 c). If a dangerous threshold of air pollutants is 
measured the user is notified. ChemiSense also want to use the data to make a heat map of air 
quality so inhabitants of large cities can avoid heavily polluted areas or to help authorities 
respond better to pollution. 

 
 

 

 
Figure 11: a) Early prototype of the CHEMISENSE bracelet. b) App that provides realtie data processing both 

from [57] 

ChemiSense uses chemi-resistors to measure pollutants. Chemi-resistors consists of a polymer 
treated with charged nanoparticles of carbon. If a certain chemical is present the polymers 
swell, changing the resistance of the circuit [57]. ChemiSense plans to launch their indoor 
sensor, measuring 10 ppm, in 2018. Although the measurements are not as sensitive as first 
expected, they are aiming for 100 ppb resolution. The sensor can detect about a dozen 
chemicals like benzene, hexane, nitrogen dioxide and carbon monoxide [58]. The last recorded 
activity was in 2016 when their software engineer published his master thesis [59].  
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1.3.5 Port of Rotterdam – We-nose network 
The port of Rotterdam has implemented a network of 250 e-noses, chemical sensors, for 
continuous monitoring of the surrounding air. Four semiconducting sensors make up the e-
nose, developed by Common Invent, giving responsiveness to specific gases [60]. Patterns are 
created by the sensor when exposed to the reactive gases giving each gas a specific fingerprint. 
Through an internet connection the sensors upload the pattern data to a cloud database. In the 
cloud database, the uploaded data is compared to fingerprints of known chemicals. If a 
similarity is found an operator is noticed, either though a phone or desktop application [60]. 
The operator can further investigate the source of such a change. Specifications on the eNose 
is: Length = 11.9 cm, width 16.0 cm and it requires 2W for operations.  

 
Figure 12: Common invents e-Nose used in the sensor network in at the port of Rotterdam. The four metal 

cylinders on top are the semiconducting sensors image from [60]. 
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1.4 Machine learning with chemical sensors 
Machine learning is defined by nVIDIA, a world leading AI provider, as; 

“Machine Learning at its most basic is the practice of using algorithms to parse data, learn 
from it, and then make a determination or prediction about something in the world.”[61] 

In this thesis machine learning is used to analyse sensor data, learn from the data and determine 
the chemicals present and the concentration of the chemical when the data was sampled. The 
two main tasks are: identify the chemical present (qualitative measurement) and determine its 
concentration (quantitative information). 

For a machine learning algorithm to classify a chemical present, several samples of the sensor 
response to the chemical needs to be taken. After the sampling, features representing the 
chemical are extracted. Features are for example; the specific frequency shift of the sensor or 
a distinct response at a given time. Features are used as input to the machine learning models. 
Giving the model data to find patterns in that correlate with the reference data. The patterns 
found are used to define limits between high and low concentrations, or linarites amongst the 
data which can be used for quantification purposes.  

In the specific case of this thesis, the collected data is the frequency shifts from the sensor and 
concentrations from the GC, at given sampling times. Machine learning models are employed 
to find a relationship between these quantities. The main-focus of the machine learning models 
is to minimize the model error and make the most accurate prediction. These models are heavily 
based on statistic tools, for example linear regression. As machine learning and statistical 
modelling lie very close, it is important to separate them from each other. Machine learning 
finds relationships through many iterations, whilst in statistical modelling the modeller needs 
to understand the relation between variables before using them in a statistical model [62]. 
Statistical modelling is also bound by linear boundaries. Machine learning captures patterns 
beyond the linearity and boundaries. Often allowing multiple boundaries in one prediction. 
This section presents machine learning models such as logistic regression, support vector 
machines and artificial neural networks performing classification tasks and regression models 
such as linear, lasso and ridge regression performing quantification tasks. First a brief 
introduction to data pre-processing is given.  
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1.4.1 Data pre-processing 
Before using the data to train machine learning models, the data needs to be pre-processed. 
Strategies for pre-processing the samples vary amongst data scientists; some use the samples 
directly while others scale the data down. Directly utilizing the data results in a 
multidimensional classification and regression problem. If the corresponding dataset is large 
one might be prone to overfitting as well as using a lot of computational power to solve for the 
right algorithm. Sampling down the data results in a multivariate representation of the data, 
and the corresponding model does not take the temporal structure into account [63].  
Normalization and standardization is also common when pre-processing the data, dependent 
on the distribution of data. Normalization is often applied when the data vary in parameters, 
for example if one feature is age and another one is income it is usual to normalize them into 
the range between 0 and 1. Standardization is applied when the features vary in size, if one 
response has a much higher value than the smaller response scaling the features to a unit 
variance between -1 and 1.  

1.4.2 Supervised machine learning 
Supervised machine learning is recognised by mapping an input to an output, and the fact that 
the data scientist acts as a teacher for the algorithm guiding it to its conclusions. One can think 
of supervised learning as taking a labelled set of data and extracting as much information as 
possible from the set [64]. Using the extracted information to predict an unlabelled input. In 
other words; function approximation as seen in eq [1] 

𝑦 = 𝑓 𝑥 1  

Bzdok, Krzywinski and Altman (2018) defines supervised learning algorithms as “algorithms 
extract general principles from observed examples guided by a specific prediction 
objective”[65] . In this thesis the learning is supervised due to the use of input variables to 
predict a given concentration. The output or prediction objective is known.  
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1.4.3 Regression 
Linear regression is both a machine learning and statistic tool as it describes the relationship 
between the input and output variables, based on the assumption that there is a linear 
relationship between them. When multiple features are used as input the problem is of a higher 
dimension, and the line describing the relationship is thus called a hyperplane [66]. A 
hyperplane can be thought of as an n-1dimensional plane divining n-dimensional space into 
two pieces.  

 
Figure 13: Hyperplane with ordinary least squares fitting in a 3-dimensional space. Circles represent data points 

and the lines represent distance to the plane. 

The ordinary method of least squares is used to compute coefficients for the multivariate 
regression. This is done by minimizing the squared distance from the points and the suggested 
hyperplane, seen in Figure 13. To optimize the linear regression lasso and ridge regression 
techniques are used. Lasso and ridge regression has as a goal to minimize the coefficients put 
forth by the least squares method. Implementing lasso and ridge helps avoid overfitting of 
models and improves prediction accuracy [67]. Lasso and ridge makes a regression model 
“optimized for prediction”.   

Ridge regression uses the same formula as ordinary least squares regression to make its 
predictions. The only difference is the penalties added to the loss function. Ridge regressions 
adds a penalty equal to the squared magnitude of a coefficient, as well as satisfying an 
additional constraint. With the constraint being that the coefficients should predict well on the 
training data, and being as close to zero as possible [66]. Indicating that each feature has little 
effect on the output. This is done by adding a penalty equivalent to square of the magnitude of 
coefficients. Ridge regression makes a trade-off between a simplicity and performance of the 
model. 

Lasso regression also restricts the coefficients to be close to zero, but uses a slightly different 
way of regularizing the coefficients. With lasso regression some of the coefficients are exactly 
zero [66], meaning that the model ignores some of the input features. By ignoring less 
important features the most important features are revealed. This is done by adding penalty 
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equivalent to the absolute value of magnitude. Lasso regression makes the model easier to 
understand by revealing the most important features [66].  

1.4.4 Logistic Regression 
Logistic regression is a linear model used for classifying binary problems. It outputs the 
probability of an input belonging to any of the classes suggested by the user. The input is 
usually continuous while the output is discrete, describing the probability of a class 
membership. For example, predicting if a high grade 1, or a low grade 0 is given on a master 
thesis the learning function (eq [2]) obtained from [68], is used to predict the probability of the 
input, this thesis, belonging to the high class. 

ℎ' 𝑥 = 𝑃 𝑦 = 1ô𝑥
1

1 + 𝑒+',-
= 𝜎 𝜃0𝑥 2  

where ℎ' 𝑥  is a function parametrized by 𝜃, x is the input vector and  𝜃0𝑥 is fitted to the 
range (0,1) by the sigmoid function: 

𝜎 𝑧 =
1

1 + 𝑒+3 	 [3] 

so that ℎ' 𝑥 	can be interpreted as a probability with z being loss which iteratively updates 
the	𝜃 function [68]. In words: logistic regression models the probability of an event instead of 
the target [69]. Advantages of the logistic regression is that it does not make any assumptions 
about distribution of classes in feature space. Another advantage is that is has a quick training 
time and it is resistant to overfitting. It disadvantage is that is has a linear decision boundary.  
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1.4.5 Support Vector Machines 
Support vector machines (SVM) uses the extremes of the dataset to set boundaries for the 
classification process. These boundaries are called support vectors and are utilized to find the 
optimal hyperplane for the dataset. The hyperplane is the linear separation line that classifies 
the two groups of data. SVM specialises in finding the optimal hyperplane of the dataset. Figure 
14 a) shows that many hyperplanes can be set to segregate the data, but only one is optimal. 
An optimal plane is a plane that has a maximal distance from the support vectors (Figure 14 
b)).  

 
Figure 14: Classification task for two classes of data, light and dark blue spots a) Many hyperplanes can be defined 
between the two classes, illustrating how hard it can be to find the optimal plane. b) By using the margin method, 

the hyperplane with the largest margin is found 

Chances of misclassification is little is if a maximal distance between the planes is set. As a 
result the model is robust, enabling it to respond well to data that it is not trained on [66]. To 
optimize the model the slack variable can be tuned to balance the bias and variance. Little slack 
allows for errors while fitting the data. This results in a larger margin which might allow the 
model to solve non-linear problems. Larger margins indicate that the classes are less similar. 

 
Figure 15: Transformation from input space to feature space by a kernel function of two different classes of data. 



Maureen Byrne  2018  
   

22 
 

Usually the SVM is kernelized for non-linear problems, for example the data set in Figure 15 
does not separate well by a single line. To solve this a kernel is used, kernels are mathematical 
functions that measures how similar two vectors are and project features into a higher 
dimensional space. Where the data can be linearly separated [66]. The kernels can be linear, 
polynomial or radial basis function (RBF). Figure 16 shows how the different kernels separate 
data, the polynomial and rbf kernel are better at separating non-linear data. SVM are iterative 
training functions aiming at minimizing an error function. SVM balances the trade-off between 
margin width and misclassification. Only a small subset of training points is needed, since the 
model uses few points to decide the support vectors, defining a classification rule [66].  

 
Figure 16: Presenting three different kernel types for a SVM model. The stippled lines present the support vectors 
while the line represents a hyperplane dots represents data. a) Shows a linear kernel b) shows a polynomial kernel 

and c) shows a Gaussian kernel. Image from [70]. 
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1.4.6 Artificial Neural Networks 
An artificial neural network is a learning method developed from the idea of simulating the 
human brain and is a sophisticated way of pattern finding in data with single or multivariate 
analysis. Dr. Robert Hecht-Nielsen the inventor of the first neurocomputers defines a neural 
network as “a computing system made up of a number of simple, highly interconnected 
processing elements, which process information by their dynamic state response to external 
inputs.” [71].  A neural network commonly consists of an input layer, a hidden layer and an 
output layer (Figure 17 a).  

 

 

Figure 17: a) A neural network with an input, hidden and output layer consisting of multiple neurons.  b) A simple 
neuron with inputs X1 to X3 with corresponding weights, a bias, b, and binary output Y. 

The layers consists of multiple processing elements called neurons. Neurons take multiple 
inputs and outputs a binary number, Y, as presented in Figure 17 b). The process is widely used 
to make classification algorithms where the algorithms learns to classify based on given inputs 
from each classification category. A commonly used classification equation is presented below; 

𝑦 = 	
1, 𝑤:𝑥: + 𝑏 > 0

		0, 𝑤:𝑥: + 𝑏	 ≤ 0	
4  

w is the weight, b is the bias and x is the input variable.  

If the sum is above zero the perceptron outputs 1, if it is less than or equal to zero the perceptron 
outputs a zero. Weights, w, are added as the importance of each input value, while the bias, b, 
is a measure of how easy the perceptron outputs 1. A larger bias increases the chance of 
activating the perceptron. Weights and biases are learned parameters that must be tuned and 
updated to improve the output. Small changes to the parameters are recommended so one does 
not get stuck at local minimum or maxima, gradient descent is a commonly used for tuning the 
parameters [72]. Outputting binary values proves challenging as small changes in the 
parameters results in larger changes in the behaviour of the network. To solve this problem the 
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sigmoidal function is used in the final output layer so that a smoother output is achieved. 
Allowing gradual adjustment of the weights and biases. Sigmoidal functions refer to functions 
with S-shaped curves examples of these are softmax, tanh and the well-known sigmoidal 
function [72].         

1.4.7 Evaluation metrics 
Evaluating model performance is key to finding the best machine learning algorithm, 
evaluation metrics are used to evaluate different models. The metrics used, depend on the 
algorithm and are different for classification and regression models. For regression models, the 
mean squared error and the R-squared score is used which is an estimate of the distance 
between the line and points. For evaluating classifications models, the implementation of the 
model needs to be considered. For example, take a model that diagnoses patients as sick or 
healthy, it is worse to diagnose a sick patient as healthy (false negative) than it is to diagnose 
a healthy patient as sick (false positive). To evaluate how the models classify features confusion 
matrixes, accuracy, precision, recall, F1- and F-beta scores are used. Another important 
evaluation metric is the time the model uses to put forth a prediction, time is often a critical 
measure of model performance. A confusion matrix, accuracy and cross validation and is used 
to evaluate classification models. While the root mean squared error and the R-squared score 
is used to evaluate the regression models.  

The confusion matrix presents the accuracy of a model with two or more classes. Returns a 
table that presents predictions on the x-axis and accuracy outcomes on the y-axis where the 
cells represent the predictions made [66]. Confusion matrix gives a visualization of the 
performance of a machine learning algorithm. The diagonal of the matrix represents correct 
predictions. As seen in Figure 18 a) the correctly tuned model gives perfect predictions, and 
the poorly tuned model in Figure 18 b) can correctly classify water but it is struggling to classify 
the other classes. The confusion matrix is a good tool for visually inspecting different machine 
learning algorithms and to inspect what classes are confused with one another.  

 
Figure 18: a) Confusion matrix with a well-tuned algorithm. b) Confusion matrix for bad-tuned algorithm 
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Accuracy is the ratio of the correctly classified points to the total number of points. Suitable if 
there is an equal number of observations in each class, if data is unbalanced accuracy gives a 
false interpretation [66]. Scoring from 0-1, where 1 is the best.  

Cross validation test how the machine learning models generalizes to unseen data by holding 
out different subsets of testing data. Training the model on different subsets and validating the 
model on the remaining data. This is an iterative process, testing different subsets until there is 
no more left. The resulting score is an average of the accuracy of all the subsets [73].  

The root mean squared error (RMSE) Sum of the absolute differences between predictions and 
actual values, in other words; how wrong the predictions are [74]. 0 represents a perfect 
prediction. 

The R-squared score indicates what portion of the total improvement opportunity our model 
covers. Dividing the error of different models using their mean squared error as comparison 
ground [75]. 1 indicates that the model is perfectly fitted.  
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1.4.8 Sources of error in machine learning and ways to avoid them 
In machine learning the overall goal of the algorithm is to find the best fit from the training 
data, if unsuccessful poor results are obtained. The most common cause of poor performance 
in machine learning comes from overfitting the model. Overfitting the model is a result of the 
model learning on all the noise and detail in the dataset instead of generalizing the data points. 
As seen in Figure 19 c) the proposed model will not respond well to new data. To check for 
overfitting different methods of accuracy test are developed. For example, cross validation 
which uses different subsets of the data for testing the model. Cross validation will give an 
insight on how the model behaves to unseen data, by holding one data point out and testing all 
the others. Repeating for all test points available until a generalized error estimate is obtained 
[76].  Another good practice for avoiding overfitting is keeping a couple of samples for the 
dataset and test the samples on the algorithm at the very end of the project, this will give an 
objective idea on the model performance. Another common mistake is underfitting the model, 
seen in Figure 19 a.  

 
Figure 19 Different types of models fitted to data, a) is under fit b) is just right and c) is overfitted 

Underfitting the model means that the model does not generalize well to the training or testing 
data. It is easy to detect when it is present the algorithm chosen cannot describe the underlying 
phenomena in the data seen. If no good predictions are put forth by the model it is most likely 
underfit, failing to describe the underlying phenomena [66].   

1.4.9 Importance of good data 
Machine learning models are only as good as the data they are based on. Bad predictions are 
often a result of bad data. With bad meaning that the collected dataset does not represent the 
true nature of the problem. Datasets used in machine learning should preferably be evenly 
distributed among all concentrations and contain a large amount of data for better 
generalization of machine learning models.  
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1.5 Summary of theory 
Relevant sensor technologies are presented in the theory chapter as well as commercial 
available products, a theoretical background for machine learning models is put forth for 
identification of relevant models. After presenting the different sensors technologies they are 
compared. Justifying the sensor chosen – the CMUT. The review on different sensor 
technologies are later used for comparison purposes in the discussion.  Relevant machine 
learning models presented are: logistic regression, support vector machines and artificial neural 
networks for classification purposes, lasso and ridge regression models are presented for 
quantification purposes. Presented models are compared when used to classify and quantify the 
data.  
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2 CHEMICAL SENSING EXPERIMENT 
In this section, the three main steps of the chemical sensing experiment in the greenhouse are 
put forth, presented in Figure 20. The first step is data collection. Data is collected for the gas 
chromatograph (GC), and used as a reference for the frequency data produced by the CMUT 
sensor. The second step is data analysis. This part consists pre-processing of the data in addition 
to several machine learning models which provide a prediction from the collected frequency 
data, classifying it as high or low and determining its concentration. The GC samples are used 
for training the algorithms. The third step is the prediction. The machine learning model comes 
with a prediction and a score that reflects the accuracy of the prediction. For predicting 
concentration, it is how far the measured points are from the suggested hyperplane. For 
classification, it shows how well the model guesses the different classes.  

 
Figure 20: Information flow for the chemical sensing experiment, first sensor and air sample date are collected, 

further the data is analysed with machine learning before a classification and concentration prediction is proposed 
with a score which reflecting its accuracy. 

The experiment is designed as a proof of concept, testing the following idea: If the sensor can 
detect CO2 at low concentrations in ambient air, the sensor can also detect other compounds 
in ambient air. Following factors are identified as success factors: functional layers selected do 
have a useful response to CO2 and reliable operation of the CMUT over a period of 4 weeks. 
These will contribute to the further learning of the CMUT sensors behaviour over time. As an 
evaluation of performance, the CMUT sensor is compared to end-user requirements defined by 
the Defense Advanced Research Project Agency (DARPA). As a US military supplier, 
DARPAs standards reflect the precision and accuracy demanded, hence reflects the customers 
standard for chemical detection systems. The standards set by DAPRA for a chemical detection 
system are; the sensor should be able to recognize at least 5 different chemical warfare agents, 
determine each chemical with a probability of 85% and the probability for a false alarm should 
be 10-5  % [77].  
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2.1 Data collection tool  
As a tool for data collection an autosampler was developed, allowing efficient and 24/7 
sampling without the need of human operators. Providing continuous samples for analysis 
which is processed by machine learning models. As seen in Figure 21 the human operator can 
be replaced by the autosampler, for inexpensive and more efficient sampling. By replacing the 
human operator one increases the quality of the sampled data as well as obtaining more 
samples. An example of increasing the quality is that the autosampler works on a timer and a 
predefined path, avoiding mixing the vials and uneven sampling periods. Human operators are 
more prone to mixing mistakes and uneven sampling periods. The autosampler was not used 
during the data collection for the thesis as the samples were collected during winter 2017. As 
a proof of concept test the autosampler was stress tested, sampling the same vials 15 times in 
1 hour. 

 
Figure 21: Data collecton: samples from the earth and air are first flushed through the sensor to obtain 

the frequency shifts, before a human operator fills glass vials with air samples from the air and earth and 
sends them to a gas chromatograph to obtain reference concentrations. 
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2.1.1 OpenTron Autosampler 
For machine learning large datasets are an advantage due to the possibility of thoroughly testing 
and tuning the algorithm. Previously, data has been collected by hand, a time consuming and 
expensive effort. Each sample takes 10 minutes, and the cost for manual operation is 210 NOK 
per hour [78]. To sample 1 000 points, which is a large dataset, will cost 350 000 NOK.  A 
suggested replacement is the OpenTron platform, which cost about 40 000 NOK [79]. 
OpenTron is an open source pipetting robot specialised for automating pipetting experiments 
(Figure 22). 

 
Figure 22: OpenTron an open source pipetting robot obtained from [79]. 

OpenTron is made of several stepper motors operating on a metallic framework, by controlling 
these the robot can steer in the X, Y and Z axis within its platform. The robot has metallic 
profiles which makes it easy to customize different arms for the robot, allowing it to perform 
other tasks than pipetting, such as air sampling. The user communicates with the robot through 
a built in graphical user interface (GUI) or through a Jupyter notebook. Custom protocols can 
either be uploaded in the GUI or used directly from the notebook. Thanks to developers all 
over the world contributing to the OpenTron platform, a python library allows custom protocols 
to be written. The community around the OpenTron is a great advantage as scientist all over 
the world contribute to developing and wiring protocols, sharing them on the OpenTron web 
site. In this thesis, the OpenTron platform is customized for continuous air sampling and a 
protocol for sampling is written.  
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2.1.2 Customization of the platform 
Customization is necessary to adapt the OpenTron platform from pipetting to performing air 
sampling tasks. Customized parts to hold syringe and air tube has been design in fusion 360 
and 3D printed (Figure 23). Vial boards are laser cut to reduce the vials from moving out of 
place during operation (Figure 23). The vial board supports the vials at the top and bottom. 
This minimalizes possible movement and helps to maintain a constant distance between the 
vial centres, which is important for the sampling algorithm due to the predefined path.  

 
Figure 23: a) Vial holder that keeps the vials from moving during operation, b) 3D-printed air tube and syringe 

holder. 

2.1.3 Algorithm 
For automatic air sampling a distinct pattern of movement had to be defined. The needle must 
puncture the sealed part of the vial (Figure 24) and avoid puncturing the same spot twice, 
repeating the procedure through all the 15 deck slots with racks consisting of 15 vials in each 
rack. Time for purging, flushing the tubes, and filling the vials must also be set. Avoiding 
puncturing the same spot twice is important to elongate the lifetime of the vial, so that the same 
vial can be used for multiple samples.  

 
Figure 24: The red circle represents the sealed part of the vial, a circle with a diameter of 5 mm. 
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Precision puncturing was done by creating a custom board and defining the puncture area, a 
rotation argument was utilized for avoidance of double puncturing. Time for purging is 
obtained from the field-test protocol and set as a pausing argument. The code flow chart can 
be seen in Appendix B: Code flow charts, and the source code is found in Appendix C: Source 
code and data. Error handling is also implemented. Loss of communication with the master (in 
this case the PC) causes the robot to stop, when connected again the robot must be reset. If an 
endpoint switch is hit unexpectedly the robot stops. After the robot finishes its operation, a .txt 
file is created describing all the operations performed by the robot. This can be used for 
debugging or double checking the samples. 

 
Figure 25: Signal flow (blue arrows) from the b switch circled in red to the valve circuit 

2.1.4 Operation 
Operation of the OpenTron is done through a Jupyter notebook. Jupyter notebook is an IDE 
for different programming languages, where different code can be run independently from each 
other in cells. In the notebook different cells have different functions, the first cell connects to 
the robot over USB, the second cells homes the robot and the third cell contains the sampling 
script. When the third cell is run, the robot starts the sampling procedure. To run the cells one 
simply hits shift and enter. During operation print statements print what sample the robot took 
and if any errors has occurred. For in depth explanation se the operation manual in Appendix 
D: Operation manual. 

For first time operation of the robot with a new script the first vial position and the syringe 
depth needs to be defined. This is done through the OpenTron GUI and is further explained in 
the operation manual found in Appendix D: Operation manual. 24-hour operation with no 
human interference requires a robust code and sources of error handling. Possible errors the 
OpenTron might face during operation are displacement error, jamming of the motors if the 
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robot moves out of bounds, needle malfunction and wrong sampling procedures. Handling 
these errors is not yet implemented.   

2.1.5 Pump and valve circuit 
A special valve circuit has been designed for pumping air and earth air into the tube of the 
autosampler. The valve circuit communicates with the OpenTron by reading its b switch, 
circled in red in Figure 25. By reading the signal from the switch a port is set high on the 
Arduino when the switch is pressed. This is accomplished by homing the b-axis on the 
OpenTron. If the Arduino reads the switch as high the air/earth valve is switched see attachment  
B.2 Valve and pump circuit code for flow chart of the Arduino code. By activating the switch 
after taking a sample, every other vial is thus filled with an air or an earth sample as seen in the 
code flow chart for the Arduino presented in attachment B.3 TakeSample function. The logging 
sequence is logged both from the Arduino and the OpenTron in a separate file if the operator 
becomes unsure of the sampling pattern. 

2.1.6 Pump and valve circuit design 
The electronic circuit consist of an Arduino Uno microcontroller, transistors, diodes and an 
external power supply. Arduino microcontrollers are small computers that can be programmed 
to send and receive electrical signals, allowing it to interact with electronic components. The 
transistor (type 2N2222) is used as a switch, when the current flows in the collector, the base 
and emitter is connected allowing power to flow. The diode (type 1N4007) only allows 
electricity to pass one way, functioning as a failsafe for leakage currents. An external power 
supply is used as source for the circuit as the Arduino cannot deliver the requested power so an 
external power supply that can be regulated is used. Small 3 volt pumps are used to pump air 
from the soil and outside to either the sensor or the OpenTron. Three different  three-way valves 
running on 3 volts, determine the flow of air in the tubes. Either directing the air to the sensor 
or to the OpenTron seen in Figure 26 b). The valves and pumps are activated through a power 
control circuit seen in Figure 26 a).  

 
Figure 26: Showing the power control circuit in a) and the pump and valve setup in b) 
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2.1.7 Autosampler test 
The autosampler setup was stress tested for 1 hour, sampling 15x15 vial samples. All samples 
were taken on the same rack to spare already vacuumed vials for real testing. The vial rack was 
covered with a paper sheet to reveal the circular sampling pattern of the robot arm.  

 
Figure 27: Test setup of the vial rack with the paper sheet on top  

The pump circuit was also tested during the stress test. Due to stability problems with the three-
way valves, caused by poor manufacturing of the valves, they were replaced with lights, 
showing which valve should have been activated.  Figure 28 Shows the valve circuit, the yellow 
cord to the right reads the b-axis from the OpenTron. Signaling to the Arduino when to turn 
the sampling script on. The sampling script is presented in Appendix C: Source code and data.  

 
Figure 28: Pump and valve circuit set-up  
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2.2  Data collection  
For long term testing of the CMUT-sensor it was set in a greenhouse for 4 weeks to obtain CO2 
measurements. The greenhouse environment was humid and the temperature varied from 25 – 
33 OC depending on the outside temperature. During the greenhouse experiment two sources 
of data were collected; frequency shifts produced by the sensor array and reference samples for 
the GC. Ambient air is used as the base line for the samples providing a clear shift when the 
chemical is introduced and to make up for local changes in the ambient air. Soil, known to have 
a high concentration of CO2 due to its high rate of microbial activity [80], is used as the test 
sample. Comparing the soil to the air sample the deviation between the samples results in the 
absolute CO2 concentration in the soil bed. As the sensor outputs the frequency shifts the 
difference between the frequencies is given by; 

∆𝑓 = 𝑓A:B − 𝑓DABEF		 5  

The gas chromatograph measures the concentration of CO2 in ppm for the earth and air samples. 
Differences in concentration between the earth and air samples are used as reference for the 
frequency shifts. The frequency shifts are used as input features in the data analysis part. 
Appendix E: Greenhouse test protocol describes the data collection procedure in detail. 

A mat lab script sets the resonance frequency for the CMUT sensors and logs the frequency 
shifts (Hz) over a time interval of 6 minutes. Using team viewer on the main test computer the 
sensor testing can be done automatically. Air samples for the GC are collected by pumping air 
into vacuumed sealed glass vials, collecting air samples requires a human operator, each sample 
takes about 10 minutes to complete.  

 
Figure 29: Typical setup for a testbed, the bubble stone sparger is represented in blue and is placed beneath the 

soil surrounded by gravel to prevent the saturated soil clogging the air inlet. 

Earth samples are obtained by placing a sparger surrounded by gravel beneath soil (Figure 29). 
Gravel prevents saturated soil from clogging the sparger inlet. Two different types of spargers 
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were used; “gas measuring tube” and a bubble stone (Figure 30), at different heights. The “gas 
measuring tube” is a tool developed for measuring gas in soil. Altering sparger types and their 
height leads to different CO2 concentrations. Soil irrigation was also varied to change the 
composition of the gas mixture. A pump is used to pump air from the soil over the sensor or 
into a glass vial.  

 
Figure 30: Different sparger types, a) ”gas measuring tube”  b) bubble stone sparger 

2.2.1 THE CMUT CHEMICAL SENSOR  
The CMUT chemical sensor used, is developed by Dr. Quintin Stedman [9] and consist of an 
array of 6 sensors with different polymer coatings and one sensor without coating for reference. 
Acting as a general-purpose set of functionalization materials, the polymer coated array can be 
used for a variety of chemical sensing experiments. 

 
Figure 31: The CMUT Chemical sensor with circuit board for determining frequency 
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The different polymers used in the field test and their sensitivities are listed in Table 2. As seen 
in Figure 32 each sensor responds to the sample but each sensor provides a unique frequency 
response. The frequency responses are used as features for the machine learning models.  

Table 2: Polymers used as coatings for the CMUT sensors during the experiment and their sensitivities 

Polymer Sensitivity 
PEO (Polyethylene oxide) Water, acetone, methanol, ethanol, isopropanol. 

 
P4VP (Poly(4-vinylphenol)) Acetone, methanol, ethanol, isopropanol. 
PEI (Polyethylenimine) CO2, some N2O sensitivity, low water sensitivity. 

 
OV-25(OhioValley#25, 
Phenylmethyldiphenylsilicone) 

Good selectivity to isopropanol and acetone over water. 

PMMA (Polymethyl methacrylate) Sensitive to acetone and ethanol. Low sensitivity to water 
vapour. 

PVA (Polyvinyl alcohol) Water vapour 

REF (Reference) No polymer coating, used as reference 

 

 

 
Figure 32: Sensor response to CO2, showing that each functionalization layer have different responses  
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2.2.2 Gas chromatography 
To collect reference samples for the sensor gas chromatography (GC) is used. GC identifies 
volatile substances in the gas phase [81]. During the test the samples were analysed at NMBU 
in collaboration with Dr. Peter Dorsch to detect relevant gases, in this case CO2. The working 
principle of a GC is shown in Figure 33. Here, a desired sampled is injected through a port and 
is transported though the column by a carrier gas. A carrier gas is a gas that is not chemically 
reactive such as nitrogen, helium, argon and carbon dioxide and is used to remove impurities, 
remove water and for transportation [82]. Inside the column, the compounds are heated and 
separated. The column consists of a long tube that is coiled with some liquid coating on the 
tube walls. By attracting some compounds whilst other compounds are repelled the liquid 
coating enables the separation. The separation is dependent on the boiling points of the inserted 
compounds. A compound with a high boiling point is more likely to stick to the sides of the 
column, while a compound with low boiling point would most likely go into gas phase rushing 
through the column without touching the walls. When the compounds have travelled through 
the column they hit a detector. The detector measures the intensity of each compound (how 
many particles are hitting it) over time. This is shown in the chromatogram with peaks 
representing the intensity of each compound. The first peaks in the chromatograms is the 
compound with low boiling point whilst the later peaks are compounds with high boiling 
points. The relative difference between the peaks gives us information on what compounds our 
sample is made of. To get a more precise reading the sample is also run through a mass 
spectrometer.  

 
Figure 33: Simple drawing of a gas chromatograph from [83] 

During the sensing experiment air samples were analysed in a gas chromatography providing 
a chromatogram. Through analysis in excel concentration and chemicals present are obtained 
used as reference for the sensor array. 
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2.2.3 Data analysis 
During the data analysis, data produced by the sensor is used as features and the GC results are 
used as reference values. Both are inputs to the machine learning models. Figure 34 describes 
the main steps; input data are pre-processed before the data is given to a classification or 
quantification model. The model outputs the belonging class or concentration of a given 
sample, in Figure 34 either a high or low concentration. 

 
Figure 34: Steps in machine learning 

In the classification step machine learning was used to classify chemicals and its concentration 
based on the frequency shift produced by the sensor array. Measurements are divided into 
testing and training sets which was fed into a machine learning model. The prediction is cross-
validated and a score based on the output is given used as a comparison factor for the different 
models.  
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2.2.4 DATASET DEVELOPMENT 
197 samples from the greenhouse test were gathered winter 2017 presented in Appendix C: 
Source code and data, and used as input for the machine learning models. In the greenhouse, 
the sensor array was used to identify CO2 at different concentrations in a testbed. After the 
sensor samples were gathered data was processed at Stanford University, while data processing 
of the GC results was done at NMBU. The results were gathered in a comma separated value 
file. The data shows what week the samples were taken in, sample numbers, concentration of 
earth, air and their difference according to the gas chromatography, the frequency shifts from 
the CMUT and the time since start of the set. Features used as input for the machine learning 
algorithm are summed up in Table 3.  

Table 3: Features and reference used as input to the machine learning models 

Feature Type of data 
PEO Sensor response 
P4VP Sensor response 
PMMA Sensor response 
OV25 Sensor response 
REF Sensor response 
PEI Sensor response 
PVA Sensor response 
Classification (used as reference) Concentration over 350 ppm = High (1) 

Concentration below 350 ppm = Low (0) 
 

2.2.5 SOFTWARE 
Data analysis is performed with Python3 and some of parts of the standard libraries; scikit-
learn, numpy, pandas and matplotlib [84-87]. 
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2.2.6 Data preparation  
Data preparation is an important step in machine learning, the foundation of the model 
prediction is set through selecting, cleaning and transforming the data. First the desired data 
needs to be selected and cleaned. Selecting and cleaning the data consist of transforming the 
file format, selecting the data with the most useful information (feature selection) removing or 
recovering missing data or incomplete samples. Secondly the data is transformed. 
Transforming the attributes of the data to a standard Gaussian distribution with a mean of 0 
and a standard deviation of 1 makes algorithms like linear regression and logistic regression 
perform better because all attributes are weighted evenly.  

Data preparation is often an iterative process as different types of transforms exposes different 
structures of the problem. Due to the small number of features present in the dataset few 
iterations were necessary. The preparation steps are implemented before the machine learning 
models were trained. Summed up in Table 4.   

Table 4: Data preparation steps; data hold back, standardization and row removal 

Method Description 
Data hold back Holding back to measurements for final objective test of algorithm 

Standardization Removing mean and scaling to unit variance 
Row removal Removing rows with two or more missing variables 
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2.2.7 MACHINE LEARNING MODELS 
Algorithms tested are the logistic regression,  SVM  with linear, rbf and polynomial kernel as 
well as a neural network. The algorithms are scored by leave one out cross validation and 
accuracy. The data was classified before quantification by regression was performed.  

For all machine learning models the data is split up into random testing and training subsets to 
test the models. sklearn.model_selection.train_test_split [88] was used to split the data into 
testing and training sets. 40% of the data is held back for testing purposes. Splitting the data 
also avoids overfitting models by forcing generalization on the training data.  

2.2.7.1 Classification algorithms 
The main goal of the classification algorithms is to classify a sample as either a high or a low 
concentration of CO2.  For classification purposes attributes that are over 350 ppm are classified 
as high and set to equal 1. Those lower than 350 ppm are set to 0, classified as low.  

Support vector machines (SVM) requires a Gaussian distribution about 0 and data that is within 
the standard range of (0,1) or (-1,1) so that all variables are treated equally. The scaling is done 
with the sklearn.preprocessing.StandardScaler [89] and the SVM is performed with the 
sklearn.SVM.SVC [90], The different kernels used are: polynomial, linear and radial based.  

By tuning the C and g  parameters, modification of boundaries was obtained. The effect each 
parameter has on the boundary is summarized in Table 5. To find the value of  C and g  that 
provides the best result a grid search is performed. The grid search  is done using the 
sklearn.grid_search.GridSearchCV() [91] function. GridSearchCV performs a search of 
specified values for C and g. The algorithm returns the parameters with the highest testing and 
training scores after cross validation. This is time consuming and should only be done once. 
By using grid search, C and  g were found presented in Table 6. 

Table 5: Information summary of C and g parameter  

Parameter Info 
C Penalty parameter or the error term, acts as regularization parameter. Controls 

the trade-off between a smooth decision boundary and classifying the points 
correctly.  
Low values indicates a larger hyperplane and allows for more misclassifications 
[92].  

g Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’ kernels.  
Gamma influences where the decision boundary is set. 
High values of gamma indicate that points close to the decision boundary ae 
heavily weighted, resulting in a wiggly boundary.  
Low values of gamma indicate that points that are further away from the decision 
boundary are heavier weighted, resulting in a straight decision boundary [92].  
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Logistic regression is performed with Sklearn.linear_model.LogisticRegression, and 
parameter C is tuned for the best fit. In logistic regression C gives an indication of how much 
we want to avoid misclassification. C can also be found by using grid search, this was 
implemented. The value the grid search put forth was used as a starting point, little tuning was 
done to find the best parameter of C. C was set to 20.   

A neural network is set up using sklearn.neural_network.MLPClassifier which creates a 
multilayer perceptron classifier. MLP-classifier needs to have a definition of the hidden layer 
size activation and solver. The hidden layer size represents the number of neurons in the hidden 
layer, activation defines an activation function for the hidden layer this is set to relu which is 
the rectified linear unit function while the solver is set to lbfgs which is an optimizer that returns 
f(x) = max(0,x). 

Table 6: Summaries of machine learning models for classifications used and final setting for their parameters   

Algorithm Parameters 
Neural Network 8 layers deep  
Logistic regression C = 20 
SVM Kernel: Gaussian 

C = 10, gamma = 1 
Kernel: Polynomial 
C = 1, g = 0.2 
Kernel: Linear 
g = 1, C = 10 

 

All algorithms were scored by a cross validation, accuracy and a confusion matrix was made 
from the predictions. For a closer detail see the machine learning pipeline code shown in 
Appendix C: Source code and data.  

2.2.7.2 Quantification algorithms 
The goal of the quantification algorithms is to correlate the frequency shift with the CO2 

concentration present, based on linear relationships. 

Regression was performed with Sklearn.linear_model.LinearRegression() , default settings 
were used.  

Lasso regression was done with Sklearn.linear_model.Lasso()  parameters altered was alpha, 
fit_intercept, normalize and max_iter. The alpha value is a constant that multiplies with the L1 
term equivalent to an ordinary least square. The fit intercept is set to false and no intercept is 
used in calculations, this can only be done if the data is centred. Normalize is set to false as the 
data has already been standardized. Max_iter is set to 100000 and is the maximum number of 
iterations performed by the regularizer. Optimization objective for the lasso function is done 
by adding a penalty equivalent to the square of magnitude of coefficients.  
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Ridge regression was performed with Sklearn.linear_model.Ridge()  with alpha set to 0.003. 
Alpha is the regularization strength; large values results in stronger regularization and adds a 
penalty equivalent to absolute value of the magnitude of coefficients.  

 

2.3 Prediction 
When the machine learning algorithm has processed the data, it returns a prediction and a score. 
To be able to tune and evaluate the algorithms, scores are evaluated and further tuning is 
implemented to investigate the possibility of improving the score. After the algorithm has been 
tuned and the score is satisfactory a final model is decided on.  

2.3.1 Evaluation and scoring metrics  
Metrics are used to evaluate machine learning algorithms by looking at the accuracy and 
precision of the algorithms prediction. For the classification problems the classification 
accuracy, logarithmic loss and confusion matrix are used to evaluate the algorithms. And for 
the regression mean absolute error, mean squared error and R-squared are used to evaluate the 
algorithms.  
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2.4 Results 
In this section, results from the chemical sensing experiment and autosampler test is put forth. 
197 samples were collected during the 4 weeks, 67 samples were removed due to human error. 
This left 130 reference samples for air and earth and 130 frequency samples from the sensor, 
for further investigation. From the 130 samples 2 samples were taken out at random to get a 
final evaluation of how well the machine learning models predicts. All graphs and plots are 
produced with the PyPlot library in python. As an added value to the chemical sensor the 
abilities of the autosampler was tested. Sampling 15 vials 15 times on the same rack within an 
hour.   

2.4.1 Data visualisation 
The Gas chromatograph measurements, reference samples for the earth, air and their difference, 
are presented in Figure 35. As seen in Figure 35 the CO2 concentration in the earth is higher 
than the concentration in the air. This is expected due to the nature of soil as explained in 
section 2.2. The difference between the concentrations, air and earth, is the bottom line, used 
as the reference for the machine learning algorithm.  

 
Figure 35: Gas chromatography  results. Earth is presented in green, air in blue and their difference in red. 

Distribution of the reference samples in absolute values are shown in Figure 36. The redline 
indicates 350 ppm, which is used as a cut off limit for the classification. High values are those 
above 350 ppm, and low values are those below 350 ppm. As seen in Figure 36  most values 
are below 350 ppm. Few values are higher than 350 ppm. When most values are concentrated 
in one class the data is said to be unbalanced.  
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Figure 36: Data Distribution of the difference features used as reference for the frequency shifts, a concentration 

among low values are seen 

2.4.2 Classification 
The difference between the earth and the air concentration of CO2 was used as reference for 
training the machine learning models. The first task for the machine learning models were to 
classify samples as either high or low depending on their concentration. All concentrations 
above 350 ppm were marked as high while all below 350 ppm were marked as low. The 
collected data was split into testing and training sets. The models were trained on the training 
data and tested on the test data. Cross validation and accuracy scores were put forth. In Table 
7 the different accuracy scores of the machine learning models are presented. Test size was 
40% of the total training set, all models were trained on 60% of the data.  

Table 7: Accuracy and cross validation scores of the different machine learning algorithms, logistic 
regression, linear SVM, Gaussian SVM and neural networks.  

Algorithm Time 
(s) 

Cross validation score Test Accuracy 

Logistic regression 
(C = 20) 

0.24 0.84 0.83 

Linear SVM 
(C = 1) 

0.24 0.67 0.68 

Gaussian SVM 
(g = 0.5, C=1) 

0.25 0.87 0.84 

Polynomial SVM 
(g = 0.2, C=1) 

0.23 0.88 0.88 

Neural Network 
8 hidden layers, 
relu solver 

0.25 0.56 0.85 

Neural Network 
8 hidden layers, 
logistic solver  

0.26 0.77 0.85 
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Model scores presented in Table 7 shows high scores for all models. It is apparent that all 
models use about the same time to put forth a prediction based on the presented data. With a 
score of 0.88 for both accuracy and cross validation the SVM with a polynomial kernel has the 
best performance of the models. Other models also prove to have a high accuracy, except for 
the neural network with a relu solver. A large deviation between the cross-validation score and 
test accuracy is seen in the neural network which is an indication of overfitting the model.  

Although giving an indication of performance, it is important to keep in mind that the accuracy 
is the number of correct predictions made divided by the total number of predictions. When 
applied on unbalanced data, accuracy scores will also be unbalanced. The cross validation uses 
the entire dataset and cross validates the predictions, but is also affected by the unbalanced 
data. The best indication of model performance is thus the confusion matrix, which presents an 
overview of how the model guesses on the different data. 
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Figure 37: Confusion matrix for a SVM model with a polynomial kernel. 

As seen in Figure 37, the SVM with a polynomial kernel guesses right most of the time. A high 
percentage of false positives is observed. The model guesses high on 23% of the data that is 
classified as low. Guessing low 8% of the time when the concentration is classified as high, the 
model seems to perform well on the concentrations classified as high.  

 
Figure 38: Confusion matrix for a SVM model with a linear kernel 

Figure 38 shows that the linear kernel has a high rate of false negatives, 33%, and a low rate of 
false positives, 15%. The SVM model with a linear kernel shows better performance on the 
concentrations classified as low, and shows a worse performance is shown on the 
concentrations classified as high.  
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Figure 39: Confusion matrix for a SVM model with gaussian kernel 

Figure 39, shows a good performance of the SVM model with a Gaussian kernel on data 
classified as high. Worse performance is seen on the concentrations classified as low, as the 
model predicts high on 69% of the data classified as low.  

 
Figure 40:Confusion matrix for the neural network with RELU activation and 2x2 layers 

Figure 40 presents the confusion matrix for the neural network with relu activation and 2x2 
layers. The model has an even prediction for low and high values, guessing wrong on 13% on 
the high data and 15% on the low data. Showing the most even performance of all models.  
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Figure 41: Confusion matrix for the logistic regression model 

Figure 41 shows that the logistic regression model guesses good on data calassified as high 
only guessing wrong on 5%. Logistic regression guesses wrong on 62% of the data classified 
as low, showing poor performance.   

After all the models were tuned they were tested on the two randomly selected samples. The 
samples had a reference of 228 and 337 ppm with corresponding frequency shifts, and should 
default be classified as low. All models classified the samples right, which is expected as the 
chances of classifying a random sample from the set as low and being right is 77%. 

  



Maureen Byrne  2018  
   

53 
 

2.4.3 Quantification 
To map the input, frequency, to the reference, concentration. Linear, lasso and ridge regression 
models were used. The main difference between the models are their error estimates. 
Parameters are set in the methods chapter and the model errors are shown in          Table 8. The 
models were tested on 40% of the data set, and trained on 60% of the data. Test and train scores 
are the R-squared score for the testing and traning set.  

         Table 8: Regression models and their scores entire data set 

Model RMSE  Test score Train score 

Linear regression 98,3 0,23 0,28 
Lasso regression 98,4 0,22 0,28 
Ridge regression 98,3 0,23 0,28 

 

An interesting result is the similarities of the train and test scores. The scores deviate about 
0,05 from each other indicating that the all the models generalize well to the data and overfitting 
has been avoided. Another interesting observation is that the linear and ridge regression models 
produce the same scores. Indicating that the best fit of the data is indeed a straight line, and that 
all features adds value to the prediction. 

Despite the good generalization, the models show poor performance of predicting well on the 
data. High RMSE scores indicate poor performance. A possible indication of the bad 
performance is seen in Figure 42.  Figure 42 shows each feature mapped independently and a 
linear model fitted to the points. There is no good linear pattern in the points, therefore the data 
was split up into different sampling periods.  

 
Figure 42: Scatter plot and the regression line with 95% confidence interval of the CO2 difference and the different 

frequency responses for the entire dataset 

Figure 43 demonstrates the linearity found in the first period. A linear pattern is in fact seen, 
concentration increases with the frequency for all polymers. Although a linear pattern is found, 
it is important to note that the problem is multidimensional and patterns might be found when 
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looking at the seven-dimensional problem. The two-dimensional plots only give some 
indication of what causes poor performance. 

 

 
Figure 43: Scatter plot and the regression line with 95% confidence interval of the CO2 difference and the different 

frequency responses for week 45-46 with the gas measuring stick 

To further investigate the poor performance different samples for different sampling periods 
were plotted in different colours in Figure 44. Each colour represents a sampling serie 4 is 
when the gas measuring stick was used others use the bubble stone sparger and follow a weekly 
basis. For the PMMA, PEI and the PVA it is evident that the responses at the same 
concentrations are shifted higher up at the end of the sampling period, week 4 and 5. It is also 
seen that high concentrations are all taken in the same period.  

 
Figure 44: Sensor responses plotted in a different colour for different sampling procedures. 

A shift in response is made more evident when looking at the sensor responses. Figure 45 a) 
shows the sensor response in week 1 and Figure 45  b) shows the response at the end of the 4 
weeks. A large increase in response is seen in the PVA functionalized sensor.  
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Figure 45: The difference in sensor response from the first week to the last week of testing. a) week 1 of testing b) 

after 4 weeks of testing 

 

2.4.4 Testing the regression model on unseen data  
After all the models were tuned they were tested on the two randomly selected samples. The 
samples had a reference of 228 and 337 ppm with corresponding frequency shifts. Table 9 
summarizes the predictions. The Lasso model provides the best predictions having the best 
estimate for both samples. All models guess better on the 288 ppm sample which is the lowest 
of the two samples. When running the 337 ppm sample all models guesses a lower number. 
Indicating that the model has better performance on lower concentrations.  

Table 9: Linear, lasso and ridge predictions on left out data 

Value Linear prediction Lasso prediction Ridge prediction 
Value 1 = 288ppm 225 ppm 235 ppm 225 ppm 
Value 2 = 337ppm 224 ppm 238 ppm 224 ppm 
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2.4.5 Autosampler test 
The autosampler was stress tested for 1 hour sampling the 15 vials 15 times. No mistakes were 
done and the robot successfully sampled the vials (Figure 46). The precision of the autosampler 
was shown as the arm created a circular puncturing pattern with a diameter of 2 mm, ensuring 
that no vial was punctured in the same spot twice. Eight punctures can be seen in Figure 46 b), 
the robot followed the exact same pattern for the remaining seven samples with no offset. It is 
important to note the problems that occurred with the three-way valves during early prototyping 
of the circuit. As they were proven to be unstable and should be changed.  

 
Figure 46: Showing results from the sampling test a) robot arm with syringe taking a sample b) distinct sampling 

pattern so that the same spot is not punctured twice 

2.4.6 Summary of results 
Presented in the results chapter is the unbalanced distribution of the sampled data, how well 
the classification models predicted on the data as well as the quantification models predictions, 
and the results of the autosampler test. Classification models were diverse in their predictions, 
the SVM models with polynomial and Gaussian kernels as well as the logistic regression model 
classified better on high data, whilst the SVM model with a linear kernel classified best on low 
concentrations. The neural network with a relu activation classified most evenly between the 
two. Quantification through regression showed more similar results. The models had large 
RMSE due to shift is observed in the data, indicating poor performance. All regression models 
predicted better on lower data than high. The autosampler was successfully tested on 15x15 
samples creating a circular pattern for avoidance of sampling the same spot twice. Proving 
itself to be a valuable sampling tool.  
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3 DISCUSSION  
Over the course of the chemical sensing experiment, the CMUT sensor responded appropriately 
to concentrations of CO2 and had a reliable operation for a time-period of 4 weeks in humid 
conditions. The machine learning models were successfully implemented and provided good 
predictions for the classification task. However, skewed data and sensor drift led to poor 
predictions for the quantification task. Because machine learning models are only as good as 
the data they are trained on, the dataset is paramount to the success of the machine learning 
model. This will be an important topic in this discussion. Further, the chemical sensing 
experiment is discussed: how does it compare to other experiments? And how well does it 
reveal the capabilities of the chemical CMUT sensor? What are the end-user requirements and 
how does the sensor compare to other available sensors? At last the autosampler is discussed 
to identify improvements and shortcomings. 

3.1 A model is only as good as the data its trained on 
Because the machine learning model’s prediction is based on the initial data set, the quality of 
that initial data is important. Of the total 179 samples were collected, 49 samples were removed 
due to human error during the sampling. Leaving 130 points as input to the machine learning 
models. The low amount of data sampled is a result of the labour-intensive nature of collecting 
the samples and analysing the GC data. Multiple research teams use the same GC lab which 
results in ques for analysing samples. Building models on 130 samples might lead to 
overfitting. When too few data points are obtained, little generalization is achieved and the 
model has a higher chance of presenting poor predictions. Consequently, a more accurate 
model would require more data. Data is the key ingredient of a good machine learning model, 
it can be thought of as a limiting factor for good performance.  

A larger range of CO2 concentration should be gathered as imbalanced data lead to poor 
performance of the machine learning models. With imbalanced data, the accuracy paradox 
comes into play. A 78% accuracy will be obtained if a classification model always predicts low 
concentration on any given data from the dataset used in this thesis. In this case, the accuracy 
score only reflects the underlying class distribution. As a result, the accuracy scores obtained 
from the models, are not a good reflection of the models performance. Machine learning 
models discover patterns in the data, when there are a lot of data distributed on low 
concentration the model weighs this heavily, and adjusts better to the data of low concentration. 
As a result, the models are good at predicting low concentrations, but show poorer performance 
at predicting high concentrations. An example of this is seen when the two left out samples are 
tested on the regression models, giving better predictions on the low concentration (288 ppm) 
than the sample with a higher concentration (337 ppm). Although unbalanced the classification 
models showed an ability to classify the samples with low error. With an error of only 13 and 
15 % error, for the neural network and an error of 23 and 8% for the SVM model with a 
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Gaussian kernel, the models showed best performance of all the classification models. 
Comparing the results to the requirements set by DARPA which have a limit 10-5 the models 
have poor performance with a limit of 10-1. Poor performance might be a result of overfitting 
the models. Failing to describe a generalization of the underlying pattern. Thus, failing to meet 
the requirements set by DARPA.  To improve the models, a larger range of concentrations 
should be obtained as it helps exposes underlying phenomena and contribute to balanced 
machine learning models.  

Drift due to polymer degradation was observed and identified as a reason for poor performance 
of the machine learning models. Due to the drift, no clear linear relationship is found between 
concentration and frequency. One explanation to the drift observed is the degradation on the 
polymers making up the functionalization layers. Polymers degrade when they are influenced 
by factors such as heat, light, vapour or other chemicals. The greenhouse was both hot and 
humid which explains the degradation process. To correct for the drift caused by polymer 
degradation, Di Carlo and Falasconi[93] suggest using orthogonal signal correction, fast 
Fourier transform or discrete wavelet transform. Investigation of these methods, as well as 
further research on sensing layers and the effects of humidity, is recommended.  

3.2 Assessing sensor behaviour during chemical sensing experiment  
The test performed in the greenhouse puts the sensor in a real-world environment where a 
mixture of substances is present. To evaluate the CMUT sensor the sensor is compared to a 
standard developed for chemical sensors in the Netherlands [94]. The standard presents 
requirements for chemical sensors used in a real-world environment.  

One of the requirements set by the standard is that the sensor can detect composition changes 
in the ambient air, specifically gaseous emissions that pose a risk of odour nuisance and/or 
safety risks. The results from the greenhouse test show that the sensor responds to low 
concentrations of CO2 in ambient air. For this reason, one can assume that if the sensor is able 
to measure CO2 concentration in ambient air, it can also measure other chemicals at comparably 
low concentrations, consequently reaching one of the standard’s requirements.   

Further, the standard suggests that the local ambient air should be measured at different 
humidity rates, and that the chemical sensor should pose a warning if abnormalities are found. 
Recording the baseline of air will increase the prediction accuracy of the sensor as local natural 
changes to the air composition is taken into consideration. By measuring the local changes to 
the ambient air and looking for abnormalities with one sensor, another sensor could be activated 
when such an anomaly is found.  

The CMUT sensor tested in the greenhouse was exposed to a high humidity and the ambient 
air was used as a reference. Flushing the CMUT sensor with ambient air gave a frequency shift 
equalling the absolute concentration of CO2 in the plant bed.  When the CMUT sensor is placed 
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out in the field one may not be able to perform such a flushing routine. If this is the case the 
ambient air, at different humidity rates, should be recorded to correct the frequency shifts to 
the changes in surrounding air, as suggested by the standard. 

Being able to recalibrate the system through periodic retraining is another requirement set by 
the standard. The ability of recalibrating allows the sensors in the field to adapt to changes such 
as drift and aging. Being able to adapt to these changes would lower the need of maintenance 
and elongate the lifetime of the sensors. Implementing a recalibration procedure for the CMUT 
sensor would require testing to find the behaviour over time for the different functional layers. 
When this is known, recalibration processes can be developed. Recalibration can be performed 
in the software eliminating the need of adjusting the sensors. 

Differentiating the chemical sensing experiment in this thesis from most others is the use of 
ambient air and a long measurement period, as opposed to short experiments performed in a 
controlled environment. A long-term experiment in ambient air will better indicate the sensor’s 
actual performance. Although researchers in  [95]  found that a CMUT sensor was proved to 
detect CO2 and estimate humidity, and Stedman [9],  used the CMUT sensor to classify five 
chemicals and to separate coffee beans by their odour. It is important to note that the 
experiments were all conducted in controlled environments. The chemical sensing experiment 
conducted in the greenhouse will better show the behaviour and drift of the functional layers.  

3.3 Comparing the CMUT sensor to end-user requirements 
To evaluate the CMUT sensors performance, the CMUT sensor is compared to standards set 
by DARPA. Their standards are: a chemical sensor should be able to recognize at least 5 
different chemical warfare agents, determine each chemical with a probability of 85% and the 
probability for a false alarm should be 10-5 %.  

An ability of recognizing different chemicals has already been shown by Stedman in [9], where 
the sensor distinguished 5 differed chemical compounds with  a 90% probability. Despite not 
sensing warfare agents, an excellent selectivity is shown. Reaching the first goal set by 
DARPA. 

One might be concerned about the detection limit of the sensor as warfare agents and explosives 
have low concentrations. For example; the short time exposure limit to mustard gas, recognized 
by its  DMMP concentration, is 17.4 ppb . In [96] researchers proved that the CMUT sensor 
could be used to detect concentration down to 10 ppb of DMMP. Proving the sensor to also be 
sensitive, reaching another requirement set by DARPA. 

No previous research, known to the author, has provided a probability of false alarm. This 
thesis showed the best probability for false positives to be 10-1. Compared to the 10-5 required 
by DARPA the sensor used in the thesis will not be approved. With this in mind, it is important 
to note that the machine learning models’ prediction can be better if the dataset has a larger 
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variety with more samples. As a preparation for the thesis the data Stedman provided in his 
Ph.D. thesis [9], was used for preparation. When testing for false positives a probability of 10-

5 was found for separating all the five chemicals from each other. The data Stedman collected 
was short time, so no drift could have taken place, helping explain the deviation between the 
numbers. Emphasis should be placed on collecting more data as a consequence of the findings.  

3.4 Comparison with available chemical sensor solutions 
Compared to other available chemical sensors solutions, the CMUT sensor is a strong 
contender. Even though little information is found about the available sensors, due to 
competition, some common features are found. They are small, expensive, selective and have 
a short lifetime. Compared to the chemical CMUT sensor which is large, selective, low cost 
and has a short lifetime. The CMUT sensor is promising due to its price, and issues with size 
are already being handled. A suggested way to enhance the sensors lifetime would be to 
develop better polymers or finding a way to handle the sensor drift as mentioned earlier.  

A trend in processing data from the sensor in the “cloud” is also seen amongst the available 
sensors, especially the products aiming at larger markets. For example, CHEMISENSE, 
presented in 1.3.4,  aiming at the consumer market by making a larger heat map, integrates a 
cloud solution in their product.  This enables scalability, faster data processing, recalibration 
and helps make larger sensor networks possible. The ability of tuning and updating the sensor 
software over the cloud can also be achieved. Some of the sensors in the review also have a 
poor selectivity, but, as discussed earlier, the chemical CMUT sensor has excellent sensitivity 
although drift is observed. Although many sensors are on the market no large commercial 
success is seen. One might speculate that this is due to the necessity of a large data library, 
allowing to look up fingerprints for different chemicals and relate them to known 
concentrations.  Developing such a library is a time consuming and expensive process, so 
methods for reducing time and cost should be considered. An example of such a method is 
implementing an autosampler. 

3.5 Autosampler allowing efficient sampling of data  
The autosampler proved itself as an efficient and reliable sampling machine by showing 
capabilities of sampling continuously for 30 hours without problems. The design of the 
autosampler allows for easy modification both in the hardware and software if changes to the 
test setup is made. Although successful, the scalability of the robot is limited to 180 samples 
due to its working area. If more samples are needed another robot must be acquired. 
Restrictions of the autosampler is that there is no way of securely knowing that it does not 
puncture the vial at the same spot twice. Nor does it have any way of giving feedback, for 
example if the arm has gone off track or that the samples are missed. To avoid mistakes like 
these a camera can be mounted on the frame for remote monitoring. 
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Other automation processes identified are the data preprocessing for the gas chromatography 
and watering and irrigation of plants. In the continuation of the project a Fourier transform 
infrared spectroscopy (FTIR) sampling machine will substitute the GC to increase the sampling 
rate. As a result, a larger dataset will be collected for future testing which will give a more 
precise picture of the capabilities of the sensor. 
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4 CONCLUSION  
The aim of this thesis was to determine a proof of concept of a CMUT chemical sensor 
technology as a gas detecting unit that can classify and quantify chemicals with machine 
learning in a real-world situation. Overall the CMUT sensor could detect CO2 in ambient air 
down to 120 ppm, although suffering from data drift and unbalanced data the machine learning 
model could classify and quantify CO2. Data drift due to polymer degradation needs to be 
further researched, more data should be collected over longer time periods. 

As a commercial product, the CMUT sensor can be viable if the sensor drift and miniaturization 
is fixed, compared to DARPAs criteria the sensor did not pass based on the results in the thesis. 
Although previous research has shown promising capabilities. More testing in realistic 
environments should be done. Also sampling data and training machine learning models in the 
cloud should be implemented to be able to compete with electronic noses on market today.  

The autosampler developed proved itself successful during testing and will contribute to make 
future data collection effective. An important contribution to the development of the machine 
learning database. And hopefully an important contribution for further testing of the CMUT 
chemical sensor.  

Detecting compounds in the air has been a time consuming and expensive process. By utilizing 
the autosampler and modular machine learning models testing novel sensor technology can be 
improved. And the CMUT chemical sensor could be the inexpensive, robust and portable 
sensor we have been waiting for. 
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5 SUGGESTED FUTURE WORK  
To further improve the CMUT chemical sensor and the testing procedure following steps are 
presented 

Focus on eliminating drift in dataset 
Drift in the dataset contributed to poor machine learning models further research on how to 
eliminate the dataset drift should be conducted. Also suggested in the discussion is to 
eliminate drift through software by using orthogonal signal correction, fast Fourier transform 
or discrete wavelet transform for correcting drift [93]. Another interesting way to correct 
dataset drift, is through the use of deep learning. In [97] researchers propose a drift 
compensation for a gas sensor using a deep learning model, showing it to be successful and 
outperforming the regular SVM model. This should be looked further into. Deep learning 
models are not useful on small datasets as there is a great risk of overfitting, so the deep 
learning method should be tested on a larger dataset than the one gathered for the CMUT 
sensor. Consequently, more data must be gathered.  

Sample more data and develop standard for database 
Machine learning models are only as good as the data the model is based on. In the case of 
machine learning, more data opens the possibilities to more algorithms as well as ensuring 
that the prediction is based on a good foundation, eliminating the risk of overfitting and 
allowing generalization of the data. Arguably one can not put more emphasis on how 
important it is to collect a high quality dataset. With high quality meaning a large amount of 
evenly distributed data.  The importance for long time testing in ambient air is also important 
as it reveals how the product will behave in real-world situations. Researchers should think 
about a standard for collecting data. So that the collected from early stage testing can be 
useful at later stages and used in the machine learning database. Having a standard collecting 
procedure, and data format also allows the machine learning models to be reused, reducing 
work.  

Implement the autosampler as a part of the field test  
The autosampler developed should be integrated in the field testing setup. Timers need to be 
set in the Arduino and autosampler code so that the autosampler moves in correct order in 
accordance to the sampling script already developed. A better way of implementing the 
autosampler system should also be researched. For example, replacing the Arduino chip with 
an IoT chip to allow remote controlling of the circuit is one example of improvement. Further 
the pump and valve circuit can be miniaturized by making a circuit board from. The valves 
also need replacing as they proved not to be thrust worthy. More vial boards and a better way 
to secure them should also be done before implementing the autosampler in the hardware set 
up by Stanford.  
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Miniaturization of the sensor and cloud connection 
Reducing the sensor size increases the application areas as well as increasing the 
competitiveness of the sensor. Miniaturization of the sensor enables it to be placed and 
carried around almost anywhere. As seen in available chemicals sensor solutions, available 
products connecting the sensor to the cloud is an important step towards a larger networks of 
sensors. Cloud connection could be done by implementing a WiFi or a cellular WiFi on the 
chip and regularly uploading the data collected by the sensor. Several companies such as 
Amazon, IBM and Azure deliver database solutions and the possibility for implementing 
machine learning models.  
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APPENDIX 
Appendix A: Linear regression models on a weekly basis 

 

 
Figure 47: Scatter plot and the regression line with 95% confidence interval of the CO2 

difference and the different frequency responses for week 44 with the gas measuring tube 

 
Figure 48: Scatter plot and the regression line with 95% confidence interval of the CO2 

difference and the different frequency responses for week 44 with bubble column 

 
Figure 49: Scatter plot and the regression line with 95% confidence interval of the CO2 

difference and the different frequency responses for week 44-45 with the gas measuring tube 
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Figure 50: Scatter plot and the regression line with 95% confidence interval of the CO2 

difference and the different frequency responses for week 44-45 with the gas measuring tube 

  



Maureen Byrne  2018  
   

3 
 

 

Appendix B: Code flow charts 

B.1 Jupyter notebook code 

 

Figure 51: Flow diagram for the main process of the robot arm 
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B.2 Valve and pump circuit code 

	
	

Figure	52:	Flow	chart	of	the	Arduino	code	for	the	valve	circuit	
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B.3 TakeSample function 

 
Figure 53: Take sample function 
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Appendix C: Source code and data 

C.1 Source code 
To download original files go to: 

https://eduumb-
my.sharepoint.com/:f:/g/personal/krom_nmbu_no/EoeRjNSSmSlEkbOAPAsYG1wB0oavZ5
FAw1oV2Bc_exuoQA?e=exoejJ 

All scripts are presented below: 

CLASSIFICATION.py 

Script for performing classification in python, returns Crossvalidation and accuracy scores as 
well as confusion matrixes.  

1. import numpy as np    
2. import matplotlib.pyplot as plt   
3. import pandas as pd   
4. import itertools   
5. from time import time   
6. from collections import Counter   
7. from sklearn import grid_search    
8. from sklearn.cross_validation import train_test_split, LeaveOneOut   
9. from sklearn.preprocessing import StandardScaler   
10. from sklearn.linear_model import LogisticRegression, Ridge   
11. from sklearn.pipeline import make_pipeline   
12. from sklearn.svm import SVC   
13. from sklearn.metrics import confusion_matrix   
14. from sklearn.model_selection import GridSearchCV   
15. from sklearn.metrics import classification_report   
16. from sklearn.pipeline import Pipeline    
17. from sklearn.neural_network import MLPClassifier   
18.    
19. #Import data file   
20. excel_file = 'co2_measurements.xlsx'   
21.    
22. held_out1_ = [[-37903, -13031, -7362,   -2427,  -2955,  -15761, -54334]]   
23. held_out2_ = [[-21094, -22111, -10072, -2591,   -2801, -24575,  -100092]]   
24. print(held_out1_)   
25. #Convert excel fie to panda dataframe, skip the two first rows as they do not conta

in usefull information   
26. measurements_raw = pd.read_excel(excel_file, "Sensor_Responses", skiprows=2)   
27. #Drop columns with autogenerated data   
28. measurements_drop = measurements_raw.drop(columns=['Unnamed: 0', 'Earth.1','Air.1',

    
29.                                                     'Difference.1','Unnamed: 16',   
30.                                                     'OK?', 'Sample Number'])   
31. #Drop rows with more than 2 missing values   
32. measurements= measurements_drop.dropna(thresh = 2)   
33. #Standard scaler object   
34. sc = StandardScaler()   
35.    
36. #Set frequency responeses as features   
37. features_ = measurements.loc[:, 'PEO':'PVA']   
38. print(len(features_))   
39. #Set target values, for concentraitons over 350ppm  = 1, lower than 350 = 0   
40. target_df = pd.DataFrame(np.where(measurements['Difference'] >= 350, 1, 0))   
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41. print(target_df.count())   
42. #convert to array    
43. target = target_df.as_matrix().ravel()   
44. #print size of target array   
45. print(Counter(target))   
46. #scale features and the two ledt out datapoints   
47. features = sc.fit_transform(features_)   
48. held_out1 = sc.transform(held_out1_)   
49. held_out2 = sc.transform(held_out2_)   
50. def plot_confusion_matrix(cm, classes,   
51.                           normalize=False,   
52.                           title='Confusion matrix',   
53.                           cmap=plt.cm.Blues):   
54.     """  
55.     This function prints and plots the confusion matrix.  
56.     Normalization can be applied by setting `normalize=True`.  
57.     """   
58.     if normalize:   
59.         cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]   
60.         print("Normalized confusion matrix")   
61.     else:   
62.         print('Confusion matrix, without normalization')   
63.    
64.     print(cm)   
65.     plt.imshow(cm, interpolation='nearest', cmap=cmap)   
66.     plt.title(title)   
67.     plt.colorbar()   
68.     tick_marks = np.arange(len(classes))   
69.     plt.xticks(tick_marks, classes, rotation=45)   
70.     plt.yticks(tick_marks, classes)   
71.    
72.     fmt = '.2f' if normalize else 'd'   
73.     thresh = cm.max() / 2.   
74.     for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):   
75.         plt.text(j, i, format(cm[i, j], fmt),   
76.                  horizontalalignment="center",   
77.                  color="white" if cm[i, j] > thresh else "black")   
78.    
79.     plt.tight_layout()   
80.     plt.ylabel('True label')   
81.     plt.xlabel('Predicted label')   
82.     return   
83.    
84. #Function that selects the best parameters for the SVM model with three different k

ernels   
85. def svc_param_selection(X, y, nfolds):   
86.     '''''  
87.         inputs:  
88.         X - feature data  
89.         y -  target data  
90.         nfolds- amout of folds if grid search with corss validation  
91.         is to be performed  
92.     '''   
93.     Cs = [0.01, 0.1, 1, 10, 100]   
94.     gammas = [0.01, 0.1, 1, 10, 100]   
95.     kernels = ['poly', 'rbf', 'sigmoid']   
96.     param_grid = {'C': Cs, 'gamma' : gammas, 'kernel':kernels}   
97.     #grid_search = GridSearchCV(svm.SVC(kernel='poly'), param_grid, cv=nfolds)   
98.     grid_search = GridSearchCV(SVC(), param_grid)   
99.     #fit model to data   
100.     loo = LeaveOneOut(nfolds)   
101.     grid_search.fit(X, y)   
102.     #Find best parameters based on accuracy   
103.     grid_search.best_params_   
104.     return grid_search.best_params_   
105.    
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106. print(svc_param_selection(features, target, 20))   
107. #Function to make prediction though pipeline   
108. def ml_pipeline(data_x, data_y, learner):   
109.     '''''  
110.         Function returns cross validation score of the machine learning mode

l  
111.         inputs:  
112.         data_x - feature data  
113.         data_y -  target data  
114.         learner- machine learning models  
115.     '''   
116.     #Make pipeline with standard scaler and classifier of choice   
117.     pipeline = make_pipeline(sc, learner)   
118.     #Split data   
119.     X_train, X_test, y_train, y_test = train_test_split(data_x, data_y, test

_size=0.40, random_state=42)   
120.     #Start timer for finding prediction time   
121.     start = time()   
122.     #fit pipeline on data   
123.     pipeline.fit(X_train, y_train)   
124.     #Predict on X_test data to make test predictions   
125.     y_pred = pipeline.predict(X_test)   
126.     #Stop timer   
127.     stop = time()   
128.     #Make classification report,gives more info than the cross val score.    
129.     report = classification_report(y_test, y_pred)   
130.     #Calculate prediction time     
131.     pred_time = stop-start   
132.     print("Prediction time", pred_time)   
133.     print("Predicted by learner", learner.predict(held_out2))   
134.     #Plot confusion matrix with normalization   
135.     cnf_matrix = confusion_matrix(y_test, y_pred)   
136.     np.set_printoptions(precision=2)   
137.     plt.figure()   
138.     plot_confusion_matrix(cnf_matrix, classes = ["HIGH", "LOW"], normalize =

 True, title='           ')   
139.     return report   
140.    
141.    
142. #Initializing machine learning models   
143. #CHANGE C and gamma parameters for tuning   
144. log_reg = LogisticRegression(C=20)    
145. SVM_linear = SVC(kernel='sigmoid', gamma=1, C=10)   
146. SVM_gauss = SVC(kernel='rbf', gamma=0.5, C=100)   
147. SVM_poly = SVC(kernel='poly', gamma=0.2, C=1)   
148. mlp = MLPClassifier(hidden_layer_sizes=(2,2), activation = 'relu', solver = 

 'lbfgs')   
149.    
150. #Loop though list of the differnt machine learning models and run them in th

e pipeline   
151. for clf in [log_reg, SVM_gauss, SVM_linear, SVM_poly, mlp]:   
152.     print("CLASSIFIER", clf)   
153.     print(ml_pipeline(features, target, clf))   
154.     plt.show()   
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REGRESSION.py 

Script for performing regression in python. Returns RMSE test and traning scores. 

1. import numpy as np    
2. import matplotlib.pyplot as plt   
3. import pandas as pd   
4. from scipy import stats   
5. from sklearn import linear_model, metrics   
6. from sklearn.linear_model import Ridge   
7. from sklearn.cross_validation import train_test_split   
8. from sklearn.model_selection import LeaveOneOut, cross_val_score, KFold, ShuffleSpl

it, cross_val_predict, learning_curve   
9. from sklearn.metrics import mean_squared_error, r2_score, mean_absolute_error   
10. from sklearn.preprocessing import PolynomialFeatures, normalize, StandardScaler   
11. from sklearn.svm import SVR   
12.    
13.    
14. #Import data file from excel   
15. excel_file = 'co2_measurements.xlsx'   
16. #Convert data to panda dataframe,skip two first rowa   
17. measurements_raw = pd.read_excel(excel_file, "Sensor_Responses", skiprows=2)   
18. #Drop columns with autogenerated data   
19. measurements_drop = measurements_raw.drop(columns=['Unnamed: 0', 'Earth.1','Air.1',

 'Difference.1','Unnamed: 16', 'OK?', 'Sample Number'])   
20. #Drop measurements with two or more missing column and take the absolute value of t

he rest   
21. measurements= measurements_drop.dropna(thresh=2).abs()   
22. #Standard scaler initializer   
23. sc = StandardScaler()   
24.    
25. held_out1_ = [[-37903, -13031, -7362, -2427,  -2955,  -15761, -54334]]   
26. held_out2_ = [[-21094, -22111, -10072, -2591, -2801, -24575,  -100092]]   
27. #Splitting data into different weeks   
28. #WEEK 44s   
29. ts = measurements.loc[:,'Difference':'PVA']   
30. print(len(ts.Difference))   
31. ts1 = measurements.loc[0:49, 'Difference':'PVA']   
32. #WEEK 44-45 gas measuring tube   
33. ts2 = measurements.loc[50:70, 'Difference':'PVA']   
34. #WEEK45-46 lowered in soil   
35. ts3 = measurements.loc[72:104, 'Difference':'PVA']   
36. #TODO: make foor loop for plotting, iterate thorugh list of dataframes   
37. #WEEK 45-46 sampling with:    
38. ts4 = measurements.loc[105:110, 'Difference':'PVA']   
39. #WEEK 45.46 cont samp   
40. ts5 = measurements.loc[112:124, 'Difference':'PVA']   
41. #WEEK50 bubblestone   
42. ts6 = measurements.loc[128:175, 'Difference':'PVA']   
43.    
44. #String containing all the measurements   
45. time_series = [ts1, ts2, ts3, ts4, ts5, ts6]   
46. #Function calculating absolute error in percentage between ture and predicted value

s   
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47. def mean_absoulte_error_perc(y_true, y_pred):   
48.   y_true, y_pred = np.array(y_true), np.array(y_pred)   
49.   return np.mean(np.abs((y_true-y_pred)/y_true))*100   
50.    
51. #Regression for testing different models   
52. def reg_model(model, x_data, y_data, test_size):    
53.     '''''  
54.       inputs:  
55.      - model: the learning algorithm to be trained and predicted on  
56.      - test_size: the size of samples (number) to be drawn from training set  
57.      - x_data: features input  
58.      - y_data: target input  
59.      '''   
60.     #Splitting data into testing and training sets   
61.     x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=t

est_size, random_state = 42)   
62.     #fitting the machinelearning model to the data   
63.     model = model.fit(x_train, y_train)   
64.     #Making a prediction with the fitted model on the test data   
65.     predict= model.predict(x_test)   
66.     #Calcultaing a r2 scre based on the actual and predicted data   
67.     r2 = r2_score(y_test, predict)   
68.     #Calculating RMSE score based on the actual and predicted data   
69.     RMSE = np.sqrt(mean_squared_error(y_test, predict))   
70.     #if the training and test score has large differece the model is overfit   
71.     print("R2 score",r2)   
72.     print("MAPE", mean_absoulte_error_perc(y_test, predict))   
73.     #Printing testing and training score, if they differentiatie a lot you are over

fitting   
74.     print("test score", model.score(x_test, y_test))   
75.     print("train score", model.score(x_train, y_train))   
76.     print("PREDICT 1", model.predict(held_out1_))   
77.     print("PREDICT 2", model.predict(held_out2_))   
78.     #printing root mean squared error   
79.     print("RMSE",RMSE)   
80.    
81.     return    
82.    
83. #Initializing the different regression models    
84. #CHANGE parameters for tuning   
85. regr = linear_model.LinearRegression()   
86. lasso= linear_model.Lasso(alpha = 0.0001, fit_intercept = True, normalize=False, ma

x_iter =100) #l1 regularization, automatic feature selection   
87. ridge = Ridge(alpha = 0.01) #l2 regularization    
88.    
89. #Function that shows the distribution of data   
90. def distribution(data, transformed = False):   
91.     """  
92.     Visualization code for displaying distrobution of the data  
93.     inputs:  
94.     - data: data that is going to be visualized  
95.     """   
96.        
97.     # Create figure   
98.     fig = plt.figure(figsize = (11,5));   
99.    
100.     # Skewed feature plotting   
101.     for i, feature in enumerate(['Difference']):   
102.           ax = fig.add_subplot(1, 1, i+1)   
103.           ax.hist(data[feature],bins = 40, color = '#4682B4')   
104.           ax.set_title("'%s' Feature Distribution"%(feature), fontsize = 14)

   
105.           ax.set_xlabel("CO2 concentration diff")   
106.           ax.set_ylabel("Number of Records")   
107.     # Plot aesthetics   
108.     if transformed:   
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109.         fig.suptitle("Log-
transformed Distributions of Continuous Census Data Features", fontsize = 16, y = 1
.03)   

110.         plt.xticks(np.arange(100, 600, step = 50))   
111.     else:   
112.         fig.suptitle("Skewed Distributions of Continuous Census Data Feature

s", fontsize = 16, y = 1.03)   
113.         plt.xticks(np.arange(100, 600, step = 50))   
114.         fig.tight_layout()   
115.         fig.show()   
116.    
117. #Show distribution of data   
118. distribution(measurements)      
119. plt.show()   
120.    
121. #Pick X and y data (features, target)   
122. X = ts.loc[:, 'PEO':'PVA']   
123. #Normalize  x data row vise   
124. X_norm = normalize(X, axis = 0)   
125. X_test = X_norm[6]   
126.    
127. y = ts['Difference']   
128. y_res = y.values.reshape(-1,1)   
129. #normalize y data column vise. .ravel() makes a np array   
130. y_norm = normalize(y_res, axis = 1).ravel()   
131. #Loop thorugh models in list and test them through the regeression model fun

ction   
132. for model in [regr, lasso, ridge]:   
133.   print("MODEL", model)   
134.   reg_model(model, X, y_res, 0.40)   
135.   plt.show()   
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OT_sampling_jupyter.py 
Sampling script for the opentron, ran in jupyter notebook.  

The sampling script defines the path of the robot arm, sampling everyother vial as earth and 
air. A rotation argument is utilized to avoid puncturing the same spot twice. Timers in the code 
should be set to match the timers in the Arduino code.  Path taken by the robot is outputted in 
a .txt file.  

1. #only needs to run once   
2. get_ipython().system('pip install --upgrade opentrons')   
3.    
4.    
5. # In[5]:   
6.    
7.    
8. #Create container, only needs to be ran once on new computer   
9. containers.create(   
10.     '5x3_CG',     #name   
11.     grid = (3, 5), #(columns, rows)   
12.     spacing = (27.5, 23.5 ), #distances (mm) between each (column, row)   
13.     diameter = 20.74,     #diameter (mm) of each well on the plate   
14.     depth = 8     #Depth (mm) of each well on the plate   
15. )   
16.    
17.    
18. # In[1]:   
19.    
20.    
21. from opentrons import instruments, robot, containers   
22. from opentrons.util import environment   
23.    
24. robot.connect(robot.get_serial_ports_list()[0])   
25. environment.refresh() #point jupyter to your apps calibration file   
26.    
27.    
28. # In[14]:   
29.    
30.    
31. #robot._driver.send_command('G28.2 Z')   
32. #robot.resume()   
33. robot.home()   
34. #robot.move_head(z = 1)   
35. #syringe.reset()   
36.    
37.    
38. # In[13]:   
39.    
40.    
41. import csv   
42.    
43.    
44. #Variables, start theta at 0 degrees   
45. theta = 0   
46. time = 0   
47. h = -0.7   
48. #Create instrument   
49. syringe = instruments.Pipette(   
50.     axis='b'   
51. )   
52.    
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53. #Creating container plates   
54. air_plate = containers.load('5x3_CG', 'A1')     #Load container and its postiton   
55. earth_plate = containers.load('5x3_CG', 'B1')   #Load container and its position   
56.    
57. #for name, container in robot.get_containers():   
58. print("Container: ", air_plate.get_type())   
59.    
60.    
61.    
62. #Function for sampling, delays for purging implemented   
63. def sampler (plate, theta):   
64.     for i in range(len(plate.wells())):   
65.         robot._driver.send_command('G28.2 Z')   
66.         syringe.delay(seconds=2)   
67.         robot.home('b')   
68.         robot.comment('move')   
69.         #Move syringe to the first position of the plate, direct = direct, arc = ob

st avoidance   
70.         #move around a circle with raduis (r) and theta (degrees)   
71.         well_edge = plate.wells(i).from_center(r = 0.12, theta = theta, h = h)   
72.         destination = (plate.wells(i), well_edge)   
73.         syringe.move_to(destination, strategy ='arc')   
74.         #CHANGE delay if necessary   
75.         syringe.delay(seconds=5)  #Delay so position is set before inserting needle

   
76.         print("sample taken")   
77.         #Lift needle and purge   
78.         #robot.move_head(z=)   
79.         # home z axis only   
80.         #home b to tell arduino that the new sample is taken.    
81.         print("changing air supply. ")   
82.         # CHANGE delay to increase purge time   
83.         syringe.delay(seconds=5)  # pause seconds   
84.     robot.comment('finished current plate')   
85.     #theta += 0.785  #move penetration point with 45deg for each function call.   
86.     return   
87.    
88.    
89. #robot starts o theta = 0.314  
90. #If there area ny warning reset and go home 
91. if robot.get_warnings():   
92.     print("WARNING", robot.get_warnings())   
93.     robot.reset()   
94.     robot.home()   
95. else:   
96.     #Start sampling   
97.     robot.comment('Starting')   
98.     robot.home('z')  
99. #Sample 15 times the same rack 
100.     for i in range(15):   
101.         sampler(earth_plate, theta)  #Air plate sampling   
102.         theta += 0.785   
103.     #Go home robot   
104.     robot.home()   
105.     #print out robot path   
106.     commands = robot.commands()   
107.     #Write all commands to txt file, can be used as error report.    
108.     with open("output.txt",'w') as resultFile:   
109.         wr = csv.writer(resultFile)   
110.         wr.writerow(commands)   
111.    
112.    
113.    
114. # In[27]:   
115.    
116.    
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117. robot.reset()   
118. robot.home()   
119. #Restart entierly by restarting kernel   
120.    
121.    
122. # In[5]:   
123.    
124.    
125. """""""""  
126. Returns:  
127. axis_homed - axis that are currently in home postion  
128. switches - end stop switches currently hit  
129. steps_per_mm - steps per millimeter calibraiton values for x and y  
130. """""""""   
131. robot.diagnostics()   
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OT_sampling.py 

Calibration script for the OpenTron. Should be uploaded in the Opentrons 2.0 GUI, and 
calibrate the plates.  

1. from opentrons import instruments, robot, containers   
2. import csv   
3.    
4. #Variables, start theta at 0 degrees   
5. theta = 0   
6. time = 0   
7.    
8. #Create instrument   
9. syringe = instruments.Pipette(   
10.     axis='b'   
11. )   
12.    
13. #Creating container plates   
14. air_plate = containers.load('5x3_CG', 'A1')     #Load container and its postiton   
15. earth_plate = containers.load('5x3_CG', 'B1')   #Load container and its position   
16.    
17. #for name, container in robot.get_containers():   
18. print("Container: ", air_plate.get_type())   
19.    
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Pump_and_valve_circuit.ino 

Script for the pump and valve circuit used on the Arduino. The script turns the pumps on and 
off based on timers set in the code. Valves alre also opened and closed by the script to direct 
the flow of air either to the openTron or to the sensor. Timers must be set inaccordanc to the 
sampling script for the opentron.  

1. //Initialize pins on the arduino   
2. int OT_PIN = 2;   
3. int earth_valve = 6;    
4. int air_valve = 9;   
5. int ot_valve = 11;   
6. int air_pump = 5;   
7. int earth_pump = 10;   
8. int light = 12;   
9. //Initializa global variables   
10. int open_valve = 255; //Send max analog signal out to open the transistor   
11. int close_valve = 0; //min analog vlaue to close transistor   
12. int i = 0;  //Counter   
13. int buttonState = 0; //start buttonstate as 0   
14. String pump1 = ""; //Empty string for filling in pump name   
15. bool start = false;  //start with start == off   
16. bool air = false; //start with air as false   
17.    
18. void setup() {   
19.   //Start communication with serial port   
20.   Serial.begin(9600);   
21.   //DEfine pins as output or inpit   
22.   pinMode(air_valve,OUTPUT);   
23.   pinMode(earth_valve,OUTPUT);   
24.   pinMode(air_pump,OUTPUT);   
25.   pinMode(earth_pump, OUTPUT);   
26.   pinMode(light, OUTPUT);   
27.   pinMode(OT_PIN, INPUT);   
28.   //Light to indicate that everything is OK is turned on   
29.   digitalWrite(light, HIGH);   
30. }   
31.    
32. void loop() {   
33.   //Read button state   
34.   buttonState = digitalRead(OT_PIN);   
35.   //If button state high start program   
36.   if(buttonState == LOW){   
37.     Serial.println("Robot has started ");   
38.     delay(500);   
39.     start = true;   
40.   while(start){   
41.     if(air == true){   
42.       //Feed the sampling function with input   
43.       takeSample(ot_valve, earth_pump, "earth ");   
44.       delay(5000); //CHANGE: When defining a field test edit this parameter for tim

ing   
45.       Serial.print("air");   
46.       air = false;   
47.     }else{   
48.     //While robot has started, engage pumps   
49.     takeSample(air_valve, air_pump, "air ");   
50.     delay(5000); //CHANGE: When defining a field test edit this parameter for timin

g   
51.     Serial.print("earth");   
52.     air = true;   
53.     }   
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54.     Serial.println("FINISHED");   
55.     start = false;   
56.     }   
57.   }else{   
58.     Serial.println("Waiting for activation to start");   
59.   }   
60. }   
61.    
62. void takeSample(int valve, int pump, String type)   
63. {   
64.   Serial.println("Starting " +  type);   
65.   //Turn pump on   
66.   digitalWrite(pump, HIGH);   
67.   pump1 = String(pump);   
68.   Serial.print(pump1);   
69.   Serial.println("opening " + type);   
70.   Serial.print(valve);   
71.   //Open valve   
72.   analogWrite(valve, open_valve);   
73.   delay(25000); //CHANGE: When defining a field test edit this parameter for purgin

g   
74.   Serial.println("closing " + type);   
75.   Serial.print(valve);   
76.   //close valve   
77.   analogWrite(valve, close_valve);   
78.   //Turn pump off   
79.   digitalWrite(pump, LOW);   
80. }   
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C.2 Data collected 
Data collected from the greenhouse experiment. 

For download of the excel file  

https://eduumb-
my.sharepoint.com/:f:/g/personal/krom_nmbu_no/EoeRjNSSmSlEkbOAPAsYG1wB0oavZ5
FAw1oV2Bc_exuoQA?e=exoejJ 

Data is presented below:  
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  CO2	 CMUT	Chemical	Sensor	Δf	(Hz)	
	 Sample	Number	 Earth	 Air	 Diff	 PEO	 P4VP	 PMMA	 OV25	 REF	 PEI	 PVA	

Week	44	 1	 	          
 2	 790	 554	 237	 -36077	 -12689	 -7170	 -2350	 -2750	 -15403	 -50542	

	 3	 789	 552	 237	 -34216	 -12203	 -7023	 -2251	 -2720	 -14944	 -46832	
	 4	 796	 570	 226	 -38630	 -12631	 -7157	 -2072	 -2824	 -15601	 -53047	
	 5	 824	 500	 324	 -36752	 -12543	 -7228	 -2256	 -2898	 -15464	 -50764	
	            

 7	 831	 532	 299	 -38766	 -13741	 -7806	 -2753	 -2857	 -15480	 -77808	
	 8	 768	 489	 279	 -30127	 -12901	 -6474	 -2404	 -2253	 -13203	 -41095	
	 9	 784	 514	 270	 -52902	 -14927	 -10436	 -3575	 -4203	 -19355	 -117362	
	 10	 729	 535	 194	 -39059	 -13068	 -5676	 -364	 -1650	 -13721	 -73724	
	 11	 	   		 	      

 12	 740	 546	 194	 -49317	 -15912	 -9762	 -3202	 -3857	 -18612	 -21559	
	 13	 730	 577	 153	 -49008	 -16023	 -9915	 -3277	 -3862	 -18594	 -52904	
	 14	 730	 510	 220	 -49169	 -15595	 -9813	 -3157	 -3837	 -18542	 -60959	
	 15	 702	 584	 119	 -30694	 -11477	 -6741	 -2518	 -2448	 -13209	 -64035	
	 16	 	          

 17	 762	 542	 220	 -38011	 -13421	 -7390	 -2489	 -2672	 -15457	 -50207	
	 18	 756	 541	 215	 -38011	 -13421	 -7390	 -2489	 -2672	 -15457	 -50207	
	 19	 774	 560	 213	 -37794	 -13053	 -7505	 -2525	 -2751	 -15359	 -49103	
	 20	 754	 563	 191	 -40453	 -13476	 -7901	 -2569	 -2870	 -16107	 -52341	
	 21	 	          

 22	 951	 705	 246	 -36155	 -9971	 -6303	 -1513	 -2590	 -13853	 -37144	
	 23	 931	 650	 281	 -34703	 -8893	 -5759	 -1398	 -2474	 -12721	 -28187	
	 24	 	          

 25	 856	 601	 255	 -24555	 -9990	 -4985	 -1422	 -1417	 -11570	 -528	
	 26	 819	 650	 169	 -26548	 -10398	 -5430	 -1703	 -1676	 -12592	 -16544	
	 27	 677	 458	 220	 -29493	 -10978	 -5870	 -1824	 -1932	 -13572	 -22475	
	 28	 	          

 29	 720	 469	 250	 -45394	 -13408	 -8184	 -2453	 -3058	 -17708	 -22827	
	 30	 683	 458	 225	 -49212	 -13604	 -8800	 -2700	 -3457	 -18531	 -21376	
	 31	 665	 471	 195	 -29907	 -8965	 -5778	 -1513	 -1767	 -13086	 2714	
	 32	 676	 550	 126	 -29907	 -8965	 -5778	 -1513	 -1767	 -13086	 2714	
	 33	 648	 498	 150	 -22708	 -8208	 -4801	 -1388	 -1385	 -11036	 3674	
	 34	 666	 547	 119	 -23773	 -8578	 -5554	 -2113	 -1231	 -11522	 -1444	
	 35	 675	 556	 119	 -19616	 -7965	 -4507	 -1396	 -1219	 -10489	 22957	
	 36	 682	 500	 183	 -20946	 -8397	 -4753	 -1472	 -1386	 -10838	 22025	
	 37	 711	 487	 224	 -24862	 -8972	 -5318	 -1544	 -1795	 -12428	 -32038	
	 38	 712	 467	 245	 -34626	 -10034	 -6230	 -1629	 -2312	 -14376	 -53450	
	 39	 665	 471	 194	 -45790	 -11144	 -7614	 -2043	 -3032	 -16668	 -71617	
	 40	 670	 478	 192	 -45411	 -11671	 -8061	 -2227	 -3293	 -17304	 -45230	
	 41	 676	 490	 186	 -53001	 -13792	 -12784	 -7410	 -6627	 -22088	 -69459	
	 42	 641	 457	 184	 -47265	 -11822	 -8160	 -2394	 -3542	 -16264	 -61019	
	 43	 631	 454	 177	 -38168	 -10637	 -7063	 -1996	 -2757	 -14481	 -6799	
	 44	 	          
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 45	 642	 449	 193	 -19306	 -8360	 -5026	 -2032	 -1773	 -10411	 2368	
	 46	 662	 454	 208	 -22088	 -8475	 -4954	 -1318	 -1623	 -11116	 -4830	
	 47	 	          

 48	 685	 478	 207	 -21691	 -8181	 -4914	 -1196	 -1838	 -11175	 -25642	
	 49	 670	 469	 201	 -14873	 -5244	 -4186	 -812	 -1688	 -9307	 -1205183	
	 50	 653	 465	 187	 -28305	 -8063	 -6154	 -1694	 -2485	 -13336	 -22968	

Week	44-45	 55	 712	 511	 201	 -36499	 -9802	 -7072	 -1744	 -2794	 -15323	 -10072	
	 56	 	          

 57	 680	 500	 179	 -18033	 -7099	 -4224	 -1370	 -1231	 -9768	 -21675	
	 58	 691	 496	 195	 -24823	 -8771	 -5421	 -1440	 -1831	 -12638	 312656	
	 59	 691	 485	 206	 -40291	 -10679	 -7658	 -2194	 -2968	 -16237	 -58165	
	 60	 	          

 61	 	          
 62	 694	 511	 183	 -69729	 -13584	 -10682	 -3391	 -4670	 -21152	 -53490	

	 63	 682	 498	 184	 -25144	 -7442	 -5033	 -1156	 -1467	 -11473	 -42375	
	 64	 695	 523	 172	 -18893	 -6686	 -4465	 -1394	 -1370	 -10087	 -15209	
	 65	 671	 522	 149	 -16547	 -6262	 -4040	 -1294	 -1135	 -9431	 -719453	
	 66	 691	 514	 178	 -18508	 -7188	 -5396	 -2483	 -2056	 -10397	 -545557	
	 67	 655	 515	 140	 -16779	 -6359	 -4069	 -1240	 -1202	 -9658	 -561757	
	 68	 691	 506	 185	 -19921	 -6838	 -4547	 -1335	 -1431	 -10570	 -67852	
	 69	 689	 504	 185	 -20152	 -6710	 -4696	 -1338	 -1543	 -10622	 -62248	
	 70	 709	 520	 189	 -24840	 -7583	 -5374	 -1551	 -2014	 -11962	 -54100	
	 71	 687	 500	 187	 -39369	 -8474	 -6911	 -1857	 -2391	 -14835	 -36389	
	 72	 672	 486	 186	 -22292	 -6107	 -4507	 -821	 -1084	 -10915	 16515	
	 73	 690	 484	 207	 -20200	 -5899	 -4182	 -1042	 -904	 -10217	 -40422	
	 74	 680	 499	 182	 -22454	 -6562	 -4533	 -1286	 -1050	 -11014	 -49717	
	 75	 685	 501	 184	 -34320	 -8566	 -6373	 -1815	 -2121	 -14667	 -2529	
	 76	 	          

Week	45-46	 1	 1111	 564	 547	 -24625	 -6621	 -4807	 -1437	 -1352	 -11145	 -35675	
	 2	 	          

 3	 	          
 4	 	          
 5	 	          
 6	 1083	 548	 534	 -35471	 -9096	 -6631	 -1311	 -1098	 -13425	 -21642	

	 7	 	          
 8	 	          
 9	 954	 507	 446	 -13179	 -4696	 -3840	 -1542	 -1098	 -8969	 -34576	

	 10	 	          
 11	 1081	 619	 462	 -29260	 -9458	 -6714	 -2226	 -2047	 -14713	 25073	

	 12	 985	 532	 453	 -28556	 -9734	 -6818	 -2227	 -2001	 -14863	 -11195	
	 13	 923	 533	 391	 -18635	 -6653	 -6140	 -3167	 -2581	 -11995	 -26719	
	 14	 	          

 15	 	          
 16	 945	 525	 420	 -20875	 -7165	 -5093	 -1756	 -1458	 -11736	 98404	

	 17	 	          
 18	 963	 522	 441	 -12319	 -4411	 -3894	 -1091	 -762	 -9793	 -24154	
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	 19	 923	 539	 384	 -11414	 -4046	 -4271	 -1707	 -1249	 -9776	 -34930	
	 20	 934	 491	 443	 -13862	 -5380	 -4739	 -1877	 -1412	 -10686	 -41444	
	 21	 	          

 22	 941	 519	 422	 -23399	 -8159	 -6486	 -2234	 -1991	 -13830	 -22426	
	 23	 880	 555	 325	 -32420	 -9627	 -7151	 -2203	 -2241	 -15048	 -95507	
	 24	 	          

 25	 	          
 26	 913	 627	 286	 -22898	 -7317	 -5753	 -1930	 -1705	 -12658	 -38071	

	 27	 846	 568	 278	 -30682	 -8361	 -7083	 -2223	 -2047	 -15045	 545397	
	 28	 846	 591	 255	 -26059	 -7876	 -6537	 -2123	 -1860	 -13758	 -362201	
	 29	 868	 550	 318	 -27688	 -8928	 -6889	 -2529	 -2192	 -14295	 716936	
	 30	 853	 556	 297	 -13673	 -4923	 -4940	 -1766	 -1412	 -10762	 -12376	
	 31	 826	 517	 309	 -14180	 -4604	 -4545	 -1499	 -1173	 -10377	 -16727	
	 32	 816	 512	 304	 -29708	 -6707	 -5496	 -1535	 -1624	 -12620	 -232960	
	 33	 760	 535	 225	 -21856	 -5730	 -5499	 -1614	 -1521	 -12236	 180057	
	 34	 826	 510	 316	 -25069	 -5529	 -7651	 -3669	 -3453	 -16380	 405678	
	 35	 941	 512	 429	 -26352	 -7749	 -6704	 -2050	 -2002	 -14468	 598310	
	 36	 	          

 37	 949	 511	 438	 -6952	 -2570	 -5090	 -1676	 -1465	 -10663	 -12315	
	 38	 943	 516	 427	 -6794	 -2645	 -5032	 -1697	 -1502	 -10739	 -9423	
	 39	 925	 658	 267	 -5226	 -2557	 -4806	 -1694	 -1442	 -10162	 -20876	
	 40	 	          

 41	 937	 490	 447	 -13823	 -3770	 -6149	 -2105	 -2014	 -12891	 -29714	
	 42	 900	 485	 415	 -13794	 -3671	 -6043	 -2015	 -1901	 -12648	 -26596	
	 43	 946	 488	 459	 -16071	 -3943	 -6323	 -2188	 -2084	 -13018	 -27196	
	 44	 956	 493	 462	 -14740	 -3981	 -6356	 -2104	 -2065	 -13101	 -29182	
	 45	 975	 498	 477	 -16512	 -4428	 -6611	 -2215	 -2132	 -13663	 -32872	
	 46	 962	 492	 470	 -17256	 -4530	 -6665	 -2365	 -2298	 -14031	 -36056	
	 47	 	          

 48	 971	 495	 476	 -18846	 -4853	 -6861	 -2295	 -2219	 -14223	 -37367	
	 49	 978	 491	 487	 -19261	 -5041	 -6978	 -2374	 -2290	 -14485	 -38118	
	 50	 980	 492	 489	 -20009	 -4927	 -7054	 -2414	 -2350	 -14609	 -40968	
	 51	 944	 493	 451	 -19563	 -4969	 -7072	 -2421	 -2376	 -14538	 -37589	
	 52	 993	 522	 471	 -18736	 -6319	 -6882	 -2295	 -2211	 -14344	 -35320	
	 53	 1016	 517	 499	 -19254	 -6134	 -6941	 -2392	 -2306	 -14571	 -38692	
	 54	 	          

Week	50	 1	 	          
 2	 	          
 3	 830	 499	 330	 -31278	 -17563	 -7828	 -2296	 -2450	 -16678	 -83207	

	 4	 802	 506	 295	 -25624	 -24224	 -10587	 -2638	 -2940	 -23968	 -117773	
	 5	 858	 506	 352	 -24672	 -24339	 -10989	 -3082	 -3299	 -24809	 -119569	
	 6	 844	 491	 353	 -24551	 -24314	 -11364	 -3376	 -3487	 -25676	 -120442	
	 7	 885	 516	 369	 -23530	 -23556	 -11093	 -3167	 -3306	 -25549	 -116003	
	 8	 822	 513	 308	 -22986	 -23133	 -10915	 -3154	 -3251	 -25417	 -111910	
	 9	 838	 517	 321	 -22186	 -22690	 -10783	 -3190	 -3281	 -25331	 -110342	
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 11	 800	 509	 291	 -20546	 -21985	 -10288	 -3056	 -3177	 -24823	 -96435	
	 12	 767	 505	 262	 -19810	 -20895	 -10378	 -3104	 -3253	 -24425	 -95794	
	 13	 740	 511	 229	 -18042	 -20320	 -9547	 -2507	 -2689	 -23205	 -92034	
	 14	 774	 515	 259	 -17710	 -20378	 -9705	 -2871	 -2947	 -23199	 -90098	
	 15	 830	 517	 313	 -16995	 -20309	 -9445	 -2481	 -2653	 -22692	 -88812	
	 16	 722	 511	 212	 -16081	 -20073	 -9300	 -2512	 -2652	 -22306	 -86535	
	 17	 789	 562	 227	 -15835	 -19992	 -9213	 -2564	 -2683	 -22208	 -85731	
	 18	 775	 567	 208	 -17813	 -21182	 -12016	 -5624	 -4945	 -24647	 -87316	
	 19	 804	 548	 256	 -14624	 -19877	 -8982	 -2407	 -2528	 -21526	 -83471	
	 20	 740	 556	 184	 -15055	 -20018	 -9204	 -2495	 -2726	 -21804	 -84005	
	 21	 	          

 22	 	          
 23	 	          
 24	 	          
 25	 751	 519	 232	 -20947	 -11870	 -5816	 -1408	 -1911	 -11380	 -79239	

	 26	 	          
 27	 	          
 28	 	          
 29	 	          
 30	 	          
 31	 	          
 32	 	          
 33	 	          
 34	 	          
 35	 	          
 36	 	          
 37	 725	 503	 221	 -19561	 -11554	 -10213	 -1999	 -2210	 -22863	 -84642	

	 38	 679	 500	 179	 -20333	 -12738	 -10522	 -2332	 -2348	 -22982	 -88802	
	 39	 744	 501	 242	 -19589	 -13290	 -10284	 -2242	 -2261	 -22559	 -88292	
	 40	 752	 490	 263	 -17807	 -13659	 -9782	 -1969	 -2017	 -21615	 -86249	
	 41	 736	 476	 260	 -17705	 -14351	 -9839	 -2214	 -2194	 -21448	 -85721	
	 42	 692	 477	 215	 -17449	 -14691	 -9640	 -2066	 -2087	 -21184	 -86087	
	 43	 755	 476	 279	 -17306	 -15152	 -10031	 -2527	 -2435	 -21396	 -86009	
	 44	 716	 485	 231	 -16887	 -15333	 -9525	 -2111	 -2218	 -20754	 -84881	
	 45	 759	 485	 274	 -14863	 -15458	 -9144	 -2072	 -2044	 -19950	 -81381	
	 46	 705	 498	 207	 -14835	 -15728	 -9197	 -2222	 -2247	 -19810	 -79604	
	 47	 652	 516	 136	 -13601	 -15852	 -8667	 -1751	 -1860	 -19227	 -79036	
	 48	 769	 496	 273	 -13214	 -15965	 -8442	 -1565	 -1747	 -18828	 -77845	
	 49	 695	 486	 209	 -12850	 -16310	 -8662	 -1929	 -2026	 -18907	 -76807	
	 50	 723	 494	 228	 -11875	 -16363	 -8198	 -1657	 -1779	 -18116	 -74687	
	 51	 	          
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Appendix D: Operation manual 
Operation manual OpenTron and Arduino circuit 

• How to calibrate the OpenTron autosampler 
• Running the Jupyter notebook 
• Running the Arduino circuit   

How to calibrate the OpenTron autosampler 

• Go to the following web page for calibration procedure:  
• http://docs.opentrons.com/calibration.html 
• Use: OT_sampling.py when asked for protocol file. 
• Calibrate all slots listed.  

IMPORTANT to disconnect the robot in the GUI before running the Jupyter notebook. 

 

 

Running the Jupyter notebook 

Setup jupyter notebook on your computer 

Setup video for Jupyter notebooks with python is found here: 
https://www.youtube.com/watch?v=HW29067qVWk 

In terminal: Navigate to the folder that contains the notebook code and open the jupyter 
notebook on your computer by running in the terminal: 

jupyter notebook 

The following screen should now open  
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If it is the first time you run the notebook code on the computer do the following steps 

• Run the block: !pip install --upgrade opentrons 
• Run the block thar creates the container: containers.create( 
• Running blocks of code in Jupyter is done by hitting shift and enter simultaneously  
• Run the connection block one time 
• Home the robot by running the home block 
• Run the sampling code  
• The robot should now be sampling and saving the sampling procedure in a .txt file. 

Tips&tricks 

• To edit the place where the looping txt file is placed edit the following line of code 
specifying its path.  

• Add custom blocks of code by adding more cell blocks, remember to define the type 
of well in the calibration script 

• For adding a custom well see: http://docs.opentrons.com/containers.html 
• For general questions about the OpenTron API see: http://docs.opentrons.com/ 
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Running the Arduino circuit 

Install Arduino IDE on your computer, follow this tutorial 
https://www.arduino.cc/en/Main/Software 

Open the script: pump_and_valve_circuit.ino 

Your screen should look like this 

 

Connect the Arduino board to your computer 

Verify and upload the code to the Arduino board 

 

Open the serial monitor located right on the Arduino IDE 

 

The serial monitor should now show 

“Waiting for activation to start” 

When the b switch is hit the valve circuit starts and the following message will show in the 
serial monitor: 

“Robot has started Starting pump x, opening valve x, closing valve x” 

When the loop is ran every time the b switch is hit, if the b switch is not hit the circuit will go 
into standby.  
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Tips&tricks 

• If you get a connection error with the board go to tools à board and check if the 
board Arduino Genuino Uno is chosen, then go to toolsà port and chose the port 
which the USB is connected though.  

• If your serial monitor outputs alien language, check that the baud rate is set to 9600 
baud 
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Appendix E: Greenhouse test protocol 
Equipment list:  

CMUT sensor: 

- Fitted on PCB.  

Electronics:  

- -60V power supply  
- -15V power supply 
- -5V power supply  
- 3 V power supply 
- Oscilloscope   
- Frequency counter  
- Bias voltage power supply 

o +- 5 V dual power supply 
- Bias voltage regulator  
- Multimeter  

o HP34401a 

Controlling mass flow:  

- Mass flow controller  

Primary testbed 

- Three pallets with soil and plants in closed greenhouse.  

Analyzing the air samples  

- Gas Chromatographer (GC). 
- Air sampling bags. 

o Multi-Layer	Foil	Gas	Sampling	Bags. 
o Ca 20 Glass vials  

Misc: 

- Computer with Matlab and GPIB adaptor 
- GPIB cable 
- Serial cable  
- 3V micro vacuum pumps with tubing and bubble stone. 
- Nitrogen tank with 30 bar regulator. 
- Power strips  
- 2 Transformer (step down from 220-110V).   



Maureen Byrne  2018  
   

28 
 

Field test set-up 

The test bed and pump set-up:  

The pump setup will have one inlet of air from the greenhouse, and one inlet of air from the 
soil through a bubble stone that is placed into the soil of the plants. This system will have a 
pump capacity of 280ml/min, but will alternate between inlets and pump for 10 seconds at a 
time every 45 min. The pumps will direct the air currents to the sensors which is placed in a 
sensor box. During this testing there will be access to a gas tank with CO2 so that the 
atmosphere in the greenhouse can be modified. 

To avoid air pockets in the soil filling up with water the inlet must be placed in a way that 
does not direct water when irrigating to the inlet. This is illustrated in figure 1 how a pump 
set-up should look like if one would prevent the room around the stone from being filled with 
water and how the actual pump set-up looks like. The inlet with the bubble stone is placed at 
a 10 cm depth covered with soil.  

  
Figure 54 the placement of the pump inlet that is connected to the bubble stone surrounded by gravel to prevented 

saturated soil clogging the inlet. 

In the specifications for the pump, the flowrate was set to 280ml/min and will pump air for 10 
seconds every 45 minute so the sample will be about 40ml. The air will then flow over the 
CMUT sensor and is then collected in air sample bag (Multi-Layer Foil Gas Sampling Bags) 
or in a glass vial. The glass vials should be the best option.  
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Figure 2 Overview of the testbeds (from left to right): Box 1, Box 2 and Box 3. 

Electronics:  

Biased voltage regulator 

 
Figure 3 Overview of the bias voltage regulator which deliver a low noise stable 60V. Note the input voltage would 

give a +3V to the output (57V in = 60V out). 
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Figure 4: Overview of the CMUT sensor set-up on PCB, sensor(White), +5V power supply (light green), bias 

voltage (pink), pressure sensor output (orange),from right to left (ground, +5 V digital output to the digital IO 
(1.4,1.5,1.6), Chemical sensor (blue (from top to bottom), Ground, +5V, 0.0, 0.1, 0.2, 0.3 ) and the – 5V (bright 

yellow). 

 

 

 
Figure 5 Overview of the electronic set up (From left to right): Power supply to pump (earth), Frequency counter, 

CMUT sensor and voltage regulator (aluminum boxes), power supply to pump (air), power supply to the sensor set-
up, the multimeter and computer where we run the Matlab Script. 
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Installing and setting up the equipment 

The sensor will now run for five days (mon – fri) measuring every hour.  

Each result will be uploaded to a joint dropbox account.  

Initiating the sensor and the pump sequence: 

• Start-up the Computer 
o Prepare the matlab script  

• Set the electronical equipment to “On” 
o The order doesn’t matter.  
o The power supply from “Stanford research systems” needs to be set to 63V in 

order for the CMUT sensor to get a 60V voltage.  
§ Push “on” (far right button) 
§ Then push “on” far left button.  
§ Set the voltage by using the arrow and push enter for each 10 voltage to 

50 voltage. 
§ From 50V use single voltage slot to achive a voltage of 63V.  

 
Figure 6: The SRS PS325 Power supply that supplies the CMUT sensor 

§ Never go beyond 63V on the sensor bias voltage. 
• Can cause the “membrane” to collapse.  
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• set the multimeter to four wire measurements. 
o Shift button -> 4W 

• Test the sensor readings by running the program “NI Max”. 
o In “Devices and interfaces” ->  

 
o Then enter the “Test panel” tab. This will display the following overview here 

one can display each of the polymer arrays (total 8, but in our setup 7) through 
the binary selection.  
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If the sensor works properly, each of the polymer array should display a frequency of 30 MHz 
in the frequency counter (remember to use channel 2 to display the frequency) as seen in the 
following figure.  

 
Figure 7 Overview of the Keysight 53230A Frequency  Counter 
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Running the matlab script 

Start Matlab.  

In the command window: 

Write soil then press Tab to generate a overview of different scripts that start single pump 
frequency as illustrated by the following pictures. 

 
Figure 8 The matlab script nd some basic commands to run the experiment 
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In order to initiate the test, call on the function “soil_measurement_script”. If successful the 
matlab command window will display the following  

 
Figure 8 Output from a succsessful iniation of the matlab script 

And the pump sequence will be initiated. 

In order to iniated the automatic sampling use the “automated_soil_measurment” function the 
Matlab command window.  

 
Figure 9 How to start the automated measurement sequence  

This script has a runtime of 18 hours and will run the pumps each hour for 5 minutes.  
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Problemshooting the sensor Set-up  

If the sensor readings seems to be affected or greatly differs from previous readings try to  

• Turn the power completely power off  
• Tighten the cables running in to biased voltage regulator 
• Turn on the power for the set-up 
• Run “NI Max” to check the frequency over each sensor array.  
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Experimental procedure  

To verify the results from the sensor it is necessary to extract air samples parallel to the sensor. 
The samples will be then analyzed with a GC and used as a reference point. It will only be need 
for samples at crucial times when the plant nutrient and air supply is being altered.  Most likely 
variations are  

• Alter the air supply from greenhouse air to outside air.  
o Changing the position to different heights.  

• Add different chemicals to the plant soil f.ex ammonia, fertilizer, Alcohol. 
• Water the plants when measuring 
• Add a chamber over the earth inlet.  
• Increase the height of the soil layer in one of the boxes.  
• Use different kind of tubing 

o PVC 
o PE 
o Silicon 

• Gas stripper  
o Absorption column to remove the humidity from the air.  

§ Placed at the inlet and outlet 
§ Silica Gel or Zeolites (Inert material) 

 

Preparation:  

1. Obtain a reference sample and get this analyzed in the GC. 
a. Air (from Greenhouse) and the soil (this is done).  

In order the get good results it is important to sync the “manual” sampling with the automatic 
sampling.  

Every hour the sensor will measure the air that is pumped over the sensor. 
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Protocol - chem sensor measurement 

By manually regulated the power supply(Keysight E3647A) for the two pumps one can 
preform sampling by adjusting the voltage on the different outputs (1 and 2).  

 
Figure 10: By using output 1 and 2 you can regualte manually the micro vaccum pumps by 

applying 3 Volts, the picture to the right show how to collect samples for the GC. 

• The pump sequence during the “manual” sampling is: 
• soil pump purge 10s (marked E#) 
• soil pump collect 25 s 
• air pump purge 10s 
• air pump collect 25as 

It is important to log the measurements and comment the alteration done in the experiment in 
the excel sheet “CMUT logging” in the field test folder in “onedrive”.   
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Standard set-up  

Overview of the experimental set-up (electronic plus testbed) which will be referred to 
“standard set-up” and will modified during the field trials.   

 
Figure 11 Overview of the test set-up 

 

 
Figure 12: Soil sample pump (left) and Air sample pump (right) 
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Overview of the different modifications applied during the field test.  

Pump holder  

During the measurements the pumps are very sensitive to vibrations, a single touch will affect 
the measurements. Therefore, a holder for the pump was installed as illustrated in the following 
picture.  

 
Figure 14 3D-printed pumpholders 

 

Outside air supply  

In order to obtain outside air as a reference a hole was cut trough the Greenhouse wall as seen 
in the following picture.  

 
Figure 16 The outside airsource inlet used as a reference  
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Alterations done I Box 1 and 2 

In order give the experiments a more realistic setting, box one and two was expanded in order 
to hold more soil in addition to several measuring points as seen in Figure. This will allow us 
some more degrees of freedom when preforming the experiments. 

 
Figure 18 The modified boxed in order to accommodate more soil. 

In this new set-up the project group will test out a “gas measuring tube” which is development 
for the single purpose of measuring gas in the soil.  The tube consist of “silencer” (a product 
from Rexroth) attached to PVC tube. In the tube a silicon tube is coiled and is attached to a PE 
tube that’s works as an outlet.  The idea behind this device is that the surrounding gas diffuses 
through the “silencer” and fills up the silicon tube coil. When the pump starts the sensor will 
measure the content of the tube and reduces the probability of drawing surface air through the 
set-up.  

 
Figure 19 The new measuring device for measuring gas in soil. 
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