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a b s t r a c t 

The paper studies stochastic dynamics of a two-degree-of-freedom system, where a primary linear sys- 

tem is connected to a nonlinear energy sink with cubic stiffness nonlinearity and viscous damping. While 

the primary mass is subjected to a zero-mean Gaussian white noise excitation, the main objective of this 

study is to maximise the efficiency of the targeted energy transfer in the system. A surrogate optimisa- 

tion algorithm is proposed for this purpose and adopted for the stochastic framework. The optimisations 

are conducted separately for the nonlinear stiffness coefficient alone as well as for both the nonlinear 

stiffness and damping coefficients together. Three different optimisation cost functions, based on either 

energy of the system’s components or the dissipated energy, are considered. The results demonstrate 

some clear trends in values of the nonlinear energy sink coefficients and show the effect of different cost 

functions on the optimal values of the nonlinear system’s coefficients. 

© 2022 The Author(s). Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and 

Applied Mechanics. 
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( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

i

o

a

e

e

i

l

s

a

w

t

c

b

r

a

m

w

v

a

t

p

o

o

f

v

r

o

b

[

i

o

d

t

e

h

2

C

Targeted Energy Transfer (TET) phenomenon has been attract- 

ng attention of researchers worldwide in last 20 years, focusing 

n the essence of the irreversible energy transfer between linear 

nd nonlinear elements in nonlinear systems. TET can be used for 

ffective vibration mitigation, energy harvesting and in other rel- 

vant applications [1–5] , thus it can be encountered in mechan- 

cal, electrical and biological systems on both macro- and micro- 

evels. In recent years the TET phenomenon has been extensively 

tudied on an exemplary two-degree-of-freedom systems, where 

 primary linear oscillator (LO), under a deterministic excitation, 

as connected by a nonlinear (cubic) spring to a secondary sys- 

em, which is often called as a Nonlinear Energy Sink (NES). Typi- 

ally, the aim of introducing the secondary mass is to mitigate vi- 

rations of the LO by transferring and dissipating its energy. This 

easonably simple nonlinear setup, however, cannot be treated an- 

lytically exactly, thus it has to be studied either using approxi- 

ately analytical methods or numerically. Treating the system as 

eakly-nonlinear [6,7] have shown that TET can be effective in 
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icinity of 1:1 resonance depending on the values of the mass ratio 

nd damping coefficient. However, recent study [8] have revealed 

hat a combination of a linear and nonlinear springs of the cou- 

led secondary system can also be very effective over a wide range 

f excitation parameters in the free vibration problem. Application 

f approximate methods, although provides some insight into the 

undamentals of TET, cannot reveal its properties in full due to ob- 

ious limitations of these methods, which require the system’s pa- 

ameters to be small, i.e. O (ε) . Perhaps, the only well-known class 

f nonlinear systems that can be treated exactly analytically is vi- 

roimpact systems with inelastic instantaneous impacts. In Refs. 

9–14] the authors treated this system using approximate analyt- 

cal, numerical and experimental approaches. Most recent devel- 

pments in TETs can be found in seminal review paper [15] . 

Stochastic TET systems has been studied much less, than their 

eterministic counterparts. In Ref. [16] the authors have shown 

hat for a weakly coupled system the deterministic regime of en- 

rgy transfer is preserved, when the excitation is Gaussian and ad- 

itive. In Ref. [17] the authors used complexification averaging ap- 

roach to treat the system analytically and an efficiency of the NES 

s a function of its parameters and noise intensity was demon- 
ety of Theoretical and Applied Mechanics. This is an open access article under the 
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trated. In particular it was shown that for low values of noise in- 

ensities energy transfer was not very efficient. At high values of 

he noise intensity, where the approximate solution may not work, 

he energy transfer and dissipation through the nonlinear system 

as more effective, but it was not growing linearly, for example, 

ith increasing mass ratio. Another interesting observation made 

n Ref. [17] was regarding the NES’s damping coefficient, which in- 

reasing values improved nonlinearly the NES’s dissipation perfor- 

ance. These observations have motivated the authors of this pa- 

er to study the optimal performance of such a system when both 

ES’s parameters, its stiffness and damping coefficients, are opti- 

ised through a numerical optimisation algorithm. To implement 

he optimisation algorithm the problem is addressed numerically, 

hich also removes the limitations on the system’s parameters val- 

es, which otherwise have to be small for an approximate analyti- 

al treatment. 

To study the TET mechanism, the classical two-degree-of- 

reedom system a with cubic nonlinearity is considered: 

m 1 ̈x 1 + k 1 x 1 + c 1 ̇ x 1 + c 2 ( ̇ x 1 − ˙ x 2 ) + α1 (x 1 − x 2 ) 
3 = σ1 ζ (t)

m 2 ̈x 2 − c 2 ( ̇ x 1 − ˙ x 2 ) − α1 (x 1 − x 2 ) 
3 = 0 . 

(1) 

here m 1 , m 2 are the primary and secondary masses, x 1 , x 2 are the

orresponding displacements from the equilibrium positions, k 1 is 

he linear stiffness coefficient of the linear oscillator, α1 is the cu- 

ic stiffness coefficients of the nonlinear spring connecting the LO 

nd the NES, and c 1 , c 2 are the viscous damping (friction) coeffi- 

ients, ζ (t) is a zero-mean Gaussian white noise and σ 2 
1 is the 

oise intensity. Following Ref. [17] one can introduce a new set of 

arameters, ε = m 2 /m 1 , �
2 = k 1 /m 1 , σ = σ1 /m 1 , λ1 = c 1 /m 1 , λ2 =

 2 /m 1 and λ3 = α/m 1 , so that Eq. (1) can be rewritten as: 

ẍ 1 + �2 x 1 + λ1 ̇ x 1 + λ2 ( ̇ x 1 − ˙ x 2 ) + λ3 (x 1 − x 2 ) 
3 = σζ (t) , 

εẍ 2 − λ2 ( ̇ x 1 − ˙ x 2 ) − λ3 (x 1 − x 2 ) 
3 = 0 . 

(2) 

he main goal of this study is to find the optimal values of the 

tiffness and damping coefficients of the NES and establish an em- 

irical relationship with the noise intensity. To implement this ef- 

ectively an optimisation algorithm should be used, which will de- 

iver an extremum to a selected cost function. The choice of the 

atter is not unique and thus a number of cost functions will be 

sed, so that the efficacy of the NES can be compared. 

To use the optimisation algorithm and explore non-small non- 

inearity cases (large values of noise intensity, mass ratio, etc.) 

he problem is treated numerically. The surrogate optimisation ap- 

roach is used to optimise the TET in Eq. (2) by selecting the 

est possible values of the nonlinear system parameters depend- 

ng on the values of other given parameters and noise intensity. 

he surrogate optimisation provides an attractive numerical ap- 

roach based on simple interpolation or regression models built 

rom objective function values at a limited number of sample 

oints and update these models iteratively. These approximate ob- 

ective function are called surrogates. The surrogate optimisation is 

 powerful alternative to the gradient-based methods, which may 

ring the system to a local extrema instead of the global one. 

oreover, due to the surrogate optimisation algorithm, it is of- 

en used when the cost function evaluation is expensive or com- 

licated, like in stochastic systems, for instance. The optimisation 

lgorithm searches for a global extremum and alternates between 

wo phases: the phase of generating or updating a surrogate and 

he phase of performing global optimisation via the current sur- 

ogate. The stopping criterion is usually specified just by limiting 

he number of iterations or objective function evaluations. Since 

ystem of Eq. (2) is stochastic, it is required to have either long 

nough time series or very representative sample of the response 
2 
o collect its statistical properties for a given set of the system’s 

arameters and the excitation. The resulting dependence of the pa- 

ameters of the nonlinear system on the noise intensity and values 

f other parameters can be approximated via an interpolation or 

egression technique. We propose to use Kriging [18] (which is a 

orm of Gaussian process regression) for that purpose. 

In other words the adapted algorithm of surrogate optimisation 

or this problem has the following steps [19,20] : 

1. Construct a quasi-random initial grid in the bounded space of 

parameters to be optimised. The grid is constructed from a lim- 

ited number of quasi–Monte Carlo nodes using Latin Hypercube 

sampling algorithm [21] . In general, quasi–Monte Carlo grids 

reduce the clamping of standard Monte Carlo grids, which is 

critical to high-dimensional problems, and can rely on Halton, 

Sobol, or Faure quasi-random number sequences [22,23] .; 

2. Evaluate the cost function at the current grid nodes in the pa- 

rameters space. This is performed by numerically integrating 

the differential Eq. (2) using the Monte-Carlo simulations and 

Runge-Kutta algorithm with the time step 	t = 0 . 01 . Since the

process is random, a relatively long time interval is selected 

(around 10 5 T n , where T n was the natural period of the LO. This 

procedure executed 20 times, generating each time a different 

random excitation sequence, to obtained a mean value of the 

cost function at the node; 

3. Construct a quickly computable surrogate approximation of the 

cost function based on the grid data; 

4. Solve an auxiliary optimisation problem for the surrogate ap- 

proximation and include the obtained solution in the grid; 

5. Evaluate the original cost function at the new grid point, as ex- 

plained in step 2 above, and update the best solution in case of 

improvement; 

6. Trace if the maximum number of cost function evaluations is 

reached, which was set to 50 in this study. If not repeat from 

step 2, otherwise stop. 

It should be noted that although there are some results on con- 

ergence of the built surrogate to the true cost function with in- 

reasing number of node, it is hard and expensive to estimate the 

aximum error numerically. The reason is that the surrogate pro- 

ides a good and fast-computed estimation of the cost function, 

hich is very expensive to calculate by the classical methods. The 

alues of the surrogate coincide with the cost function values at 

he nodes only, therefore to calculate an error it is required to cal- 

ulate the surrogate and the true cost function within the entire 

pace of parameters. 

When the damping coefficient λ2 is given in advance, the stiff- 

ess coefficient value λ3 can be optimised according to a selected 

ost function. The cost function significantly influences the out- 

ome of the optimisation, thus it should be carefully chosen. More- 

ver, the cost function of a single parameter (for instance for λ3 ), 

ptimisation may differ from the results obtained in two param- 

ters optimisation ( λ2 and λ3 ), thus these two cases are consid- 

red separately in the following paragraph. The values of the other 

onstant parameters are taken similar to Ref. [17] , namely, �2 = 1 , 

1 = λ2 = 0 . 005 . To implement the optimisation approach one can 

hoose to maximise the following measure, defined as: 

max λ3 ∈ [0 ,λ3 R ] ηd , ηd = 

λ2 
T 

T ∫ 

0 

( ̇ x 1 (t) − ˙ x 2 (t)) 2 d t 

<E T > 
· 100% , 

(3) 

here λ3 R is the specified top bound of the nonlinear stiffness pa- 

ameter λ3 , < E T > is the averaged total energy of the system 

< E T > = 

1 
2 

< 

˙ x 2 1 > + 

ε
2 

< 

˙ x 2 2 > + 

�2 

2 
< x 2 1 > + 

λ3 

4 
< (x 1 − x 2 ) 

4 > 

(4) 
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Table 1 

Validation of optimal results for ε = 0 . 3 and σ = 0 . 3 , where ∗ indicate the optimal 

values according to Eq. (6) . 

λ3 0.005 0.02 ∗ 0.1 0.5 1.0 10 

< E NES > 0.5082 1.022 1.3882 1.4091 1.3614 1.3506 

< E T > 2.8470 3.5123 6.0716 7.8554 8.0926 9.5086 

ηks (%) 17.8496 29.0982 22.8642 17.9386 16.8254 14.2037 
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b 3  
nd T is a sufficiently large time horizon to capture the statistics of 

he excitation and response. The top of this fraction is the amount 

f energy dissipated by the secondary system, which should be 

aximised. It can be seen that this function reaches maximum 

hen the difference between the velocities is maximal, which ob- 

iously occurs when both the masses oscillate in anti-phase, i.e. 

hen x 1 (t) and x 2 (t) have different signs. It should be noted that

hen the damping coefficient is also optimised this measure may 

ot be very suitable since it is proportional to the damping coef- 

cient and it may lead to a trivial result of the largest damping 

oefficient value out of the given interval. 

Another useful measure is the amount of averaged kinetic en- 

rgy left in the LO, which has to be minimised: 

in λ3 ∈ [0 ,λ3 R ] ηkp , ηkp = 

1 
2 < ̇ x 

2 
1 > 

<E T > 
· 100% , (5) 

owever, this measure does not show whether the energy is dissi- 

ated or simply stored in the secondary system. The third option 

s to maximise the amount of kinetic energy in the secondary sys- 

em: 

ax λ3 ∈ [0 ,λ3 R ] ηks , ηks = max λ3 

ε
2 < ̇ x 

2 
2 > 

<E T > 
· 100% , (6) 

The limitation of this measure is that the optimisation algo- 

ithm will try to find the nonlinear stiffness coefficient such that 

he energy is transferred to the secondary system rather than be- 

ng dissipated, when the damping coefficient λ2 is fixed. When 

2 is an optimisation parameter, it would be reasonable to expect 

hat it could be as small as possible to keep a high energy level

f NES. Although in this paper the above optimisation criteria are 

sed separately to identify the fundamental trends and features f 

he stochastic system, it is possible to combine them to potentially 

chieve a better result. 

Figure 1 demonstrates the results of λ3 optimisation for differ- 

nt values of ε and noise intensity σ . The left column represents 

he optimal values of λ3 coefficient according to the selected crite- 

ia, whereas the right column represents the measures described 

y Eqs. (3) , (5) and (6) . The presented patterns in the left col-

mn of Fig. 1 are similar, the higher the noise intensity values 

he lower the values of λ3 , which provide maximum to the cor- 

esponding measure. It should be noted that the nonlinear decay- 

ng trend can be accurately approximated by ≈ C/σ 2 curve, where 

is a constant. The effect of increasing ε can also be seen com- 

aring the curves in the same plots, where the values of optimal 

3 grow up with increasing ε. This result agrees with observations 

eported in Ref. [17] where basically the authors showed that in- 

rease in ε may be beneficial to some extend for a given value 

f the system parameters and noise intensity. One can also see 

hat the values of λ3 obtained based on ηkp and ηks are always 

igher than those obtained for optimal ηd value. However, care- 

ully assessing the results presented in the right column one can 

ake two important observations. Firstly, for a given value of ε
he extreme values of the measures are independent of noise in- 

ensity σ 2 . This is a very interesting and counter-intuitive result, 

ince one would expect higher value of these measures at higher 

alues of noise intensity. Practically, this result indicates that the 

ES of the stochastic system with a particular set of parameters 

an absorbed and damped a certain maximum amount of energy. 

econdly, the behaviour of all three measures is different, as can 

e seen in Fig. 2 , where the values of ηkp , ηks and ηd have been

lotted as a function of ε for σ = 0 . 01 , although, as we know now

rom the above observation, it does not matter what value of σ is 

aken. 

One can observe in Fig. 2 that ηd measure can reach its maxi- 

um value within the considered interval, fading out for increas- 

ng values of ε. It should be noted that measure Eq. (5) is just

 half of the total energy, since the potential energy due to lin- 

ar spring ( 0 . 5�2 x 2 ) has not been used in Eq. (5) . This measure

1 

3 
akes its maximum value at very low values of ε and slowly decays 

ith increasing ε, whereas ηks demonstrates an opposite trend and 

rows with increasing ε. These curves indicate that to reach low 

nergy of the primary system, ε should be large, which also leads 

o high energy of the NES, however, energy losses in this case will 

e small, at least when the viscous damping is used. 

The obtained numerical results, presented in Fig. 1 , have been 

alidated by taken some non-optimal values of λ3 and calculat- 

ng the total and the NES energies. These results are presented 

n Table 1 . The value λ3 = 0 . 02 is the optimal according to crite-

ia as Eq. (6) , and with this value the energy of NES reaches 29%,

emonstrating its relatively high efficiency. It can also be seen that 

he total energy of the system grows with increasing value of λ3 , 

hereas the NES energy demonstrates a negative parabolic trend. 

The time history of the LO and NES for λ3 = 0 . 02 and λ3 = 1 . 0

re presented in Fig. 3 a and 3 b respectively. Lower response am- 

litude of the LO ( x 1 ) and high response amplitude of the NES 

 x 2 ) can be clearly seen in these figures for the optimal value of

3 . This demonstrates the effectiveness of the proposed optimisa- 

ion algorithm in selecting the optimal parameters of NES. Plots in 

ig. 3 c and 3 d demonstrate the time history of the response for 

he optimal values of λ3 based on measure Eqs. (3) and (5) corre- 

pondingly. It should be noted, that due to the stochastic nature of 

he problem, the algorithm proposes the optimal values of the pa- 

ameters based on averaged values, practically relying on station- 

ry properties of the response, which may not be the case when 

he noise sample is too short or not very representative. Thus, a 

ery representative noise sample is essential for perfect selection 

f the parameters, which is not computationally expensive due 

o the features of the surrogate optimisation algorithm combined 

ith Latin Hypercube sampling. 

In Ref. [17] the authors claimed that for very small values 

f noise intensity the NES was not effective. Figure 4 demon- 

trates the results for σ = 0 . 005 , ε = 0 . 05 and two values of the

ES’s stiffness coefficient: the optimal value λ3 = 10 . 43 , provided 

y the optimisation algorithm and non-optimal optimal one, e.g. 

3 = 1 . 0 . These values are very similar to those selected in Ref.

17] . Figure 4 a clearly demonstrate the fact that with very small 

alues of noise intensity ( σ << 1 ) the NES can still be effective as

ong as its parameters have been optimised. In the optimal case 

he efficiency reaches ηks = 15 . 94% , which may not be as high as

n some other above mentioned cases, whereas ηks = 0 . 35% when 

3 = 1 . 0 , as shown in Fig. 4 b, where the NES is highly inefficient.

he optimal λ3 value can be further improved by tuning λ2 and ε
alues. This clearly demonstrates the need for optimising the sys- 

em’s parameters based on the noise intensity and show that at 

ow values of noise intensity the NES can be effective. 

It should be mentioned that when the NES’s viscous damping 

oefficient is increased the optimal values of λ3 are also affected. 

igure 5 presents the optimal values of λ3 , shown in red, as a func- 

ion of λ2 . Figure 5 a demonstrates the optimal λ3 values and the 

orresponding peaks of ηks , indicating that the NES energy is be- 

ng reduced with increasing value of NES’s damping coefficient λ2 . 

igure 5 b demonstrates the optimal λ3 and the corresponding ηd 

alues, where the latter grows initially, reaching its peak value, and 

hen dropping down with further increase of λ2 . It is also observed 

y comparing Fig. 5 a and 5 b that optimal values of λ are higher
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Fig. 1. Optimal values of λ3 in log format (left column) and the corresponding measure (right column) for ηd ( a,b ), ηkp ( c,d ) and ηks ( e,f ). 
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or ηks than that for ηd . Thus, to achieve the maximum energy dis- 

ipation via the NES the viscous damping coefficient does not have 

o be as high as possible, as could be intuitively expected, but it 

ather has to be properly tuned based on the values of the sys- 

em’s parameters. 

Table 2 presents the results of two-parameter optimisation 

ased on ηd measure. In this case the damping coefficient of the 

ES λ2 is optimised together with the stiffness coefficient λ3 , 

eeping the rest of the coefficients as above. It can be seen that λ2 

alues have been relatively identical, close to 0.02 value, as well 
4 
s the extreme values of ηd , however, the values of λ3 were going 

own with increasing noise intensity values. Values of two other 

easures are also presented in the table and they are relatively 

he same over the range of considered σ values. These results also 

ndicate that the optimal λ2 remains the same for different values 

f the noise intensity. 

The paper studies numerically the targeted energy transfer 

echanism in a classical two-degree-of-freedom system consist- 

ng of the linear oscillator (LO) and the nonlinear energy sink 

NES) connected to the LO by a cubic spring. To achieve the maxi- 
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Fig. 2. The extreme values of ηkp , ηks and ηd obtained for σ = 0 . 3 . 

Fig. 3. Time response of the primary mass and NES for values for σ = 0 . 3 and ε = 0 . 3 with ( a ) optimal λ3 = 0 . 02 based on Eq. (6) , ( b ) non-optimal λ3 = 1 . 0 , ( c ) optimal 

value λ3 = 8 . 4 × 10 −3 based on Eq. (3) and ( d ) optimal value λ3 = 0 . 0161 based on Eq. (5) . 
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Fig. 4. Time response of the primary mass and NES with optimal λ3 = 10 . 43 ( a ) and non-optimal λ3 = 1 . 0 ( b ) values for σ = 0 . 005 and ε = 0 . 05 . 

Fig. 5. The optimal values of λ3 based on measures from Eq. (6) ( a ) and Eq. (4) ( b ), correspondingly for σ = 1 . 0 and ε = 0 . 3 . 

Table 2 

Two-parameter ( λ2 and λ3 ) optimisation according to Eq. (3) for 

ε = 0 . 3 and different values of σ . 

σ λ3 λ2 ηd (%) ηkp (%) ηks (%) 

0.01 242.03 0.0208 18.448 38.7845 13.1245 

0.1 2.359 0.0211 18.419 39.1321 12.7281 

0.3 0.2596 0.0213 18.456 39.0794 12.724 

1.0 0.0215 0.0205 18.427 39.7639 12.9824 

m

a

T

i

r

f

t

c

o

t

w

i

e

e

i

t

f

u

m

N

r

s

i

i

u

w

o

o

w

s

d

p

A

d

i

n

t

m

lems. 
um targeted energy transfer efficiency of the NES, its parameters 

re optimised by implementing a surrogate optimisation algorithm. 

his algorithm is based on a machine-learning procedure of build- 

ng a surrogate objective function and finding an optimal set of pa- 

ameters according to a selected cost function. Three different cost 

unctions have been considered and implemented to obtain the op- 

imal values of the nonlinear stiffness λ3 and damping λ2 coeffi- 

ients for one- and two- parameter optimisation procedure. The 

ther system’s parameters were kept constant, with values similar 

o Ref. [17] , whereas the mass ratio ε and the noise intensity σ
ere varied. 

It has been established that for a given value of ε and increas- 

ng values of σ the optimal values of the nonlinear stiffness co- 

fficient λ3 decreases as ≈ 1 /σ 2 . It has been also shown that the 

xtreme values of the measure, proposed in this work, has been 

ndependent of the noise intensity. For a given value of noise in- 
6

ensity, the optimal λ3 values have demonstrated different trends 

or the three considered measures. Namely, with increasing val- 

es of mass ratio ε, the mean nondimensional energy of the pri- 

ary system decays, whereas the mean nondimensional energy of 

ES increases. At the same time, the energy dissipated by the NES 

eaches its peak not at the end points of the interval. Thus, a rea- 

onable NES efficiency can be achieved for small values of noise 

ntensity, by adjusting the mass ratio coefficient ε and the damp- 

ng coefficient λ2 for a specific noise intensity value. 

Thus, the NES’s damping coefficient influence the optimal val- 

es of NES’s stiffness coefficient, where the latter was increasing 

ith increasing values of damping, thereby reducing the energy 

f the NES. Based on the obtained results, a relatively low values 

f the NES’s damping coefficient can improve the energy losses as 

ell as keep high energy level in the NES. One of the possible rea- 

on for this is the phase shift between the LO and the NES, which 

epends on λ2 and should provide an anti-phase response. 

The present work validates the proposed optimisation approach, 

roven to be reasonably accurate and computationally efficient. 

 mathematically strict error analysis cannot be effectively con- 

ucted, therefore the obtained results were validated by compar- 

ng to the results obtained by crude Monte-Carlo simulations with 

on-optimal values of the parameters. Despite some progress in 

he area of surrogate optimisation, further studies and develop- 

ents are required to improve the algorithm for stochastic prob- 
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