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Abstract

Transport of electrolytic solutions under influence of electric fields occurs in phenomena ranging from biol-
ogy to geophysics. Here, we present a continuum model for single-phase electrohydrodynamic flow, which
can be derived from fundamental thermodynamic principles. This results in a generalized Navier–Stokes–
Poisson–Nernst–Planck system, where fluid properties such as density and permittivity depend on the ion
concentration fields. We propose strategies for constructing numerical schemes for this set of equations,
where the electrochemical and the hydrodynamic subproblems are decoupled at each time step. We provide
time discretizations of the model that suffice to satisfy the same energy dissipation law as the continuous
model. In particular, we propose both linear and non-linear discretizations of the electrochemical subprob-
lem, along with a projection scheme for the fluid flow. The efficiency of the approach is demonstrated by
numerical simulations using several of the proposed schemes.

Keywords: electrokinetic flow, electrohydrodynamics, energy-stable numerical schemes

1. Introduction

Electrokinetic or electrohydrodynamic flow concerns the coupled transport of charged species and fluid
flow in the presence of electric fields [1]. Such phenomena have gained increasing attention in recent years
due to the rise of the fields of micro- [2] and nanofluidics [3]. Important technological applications include
biomedical lab-on-a-chip devices [4], electrophoretic separation of macromolecules such as DNA and RNA
[5], battery and fuel cell technology [6, 7], desalination of water [8], and the possibility of harvesting of
energy due to salinity gradients (“blue energy”) [9]. Further, electrokinetic effects can be important within
geophysics [10, 11], as fluid flow through charged pores induces a streaming potential that counteracts
the fluid motion and increases the apparent viscosity [12–15]. In fluid-saturated porous rocks, large-scale
transport can be mediated by electrochemical gradients [16]. Upscaling of the pore-scale electrokinetic
description to the macroscale remains an important and challenging research topic [17–22].

Electrohydrodynamics is usually described by coupling incompressible fluid flow, governed by the
Navier–Stokes equations, to solute transport, governed by the Nernst–Planck equations, and electrostat-
ics, governed by a Poisson equation, thereby neglecting magnetic forces. This results in the nonlinearly
coupled Navier–Stokes–Poisson–Nernst–Planck (NSPNP) system of equations [23]. Numerical approaches
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have often aimed for the steady-state solution to the governing equations [15, 24]. To this end, commercial
multi-physics software packages (e.g. Comsol) are available, and have long been successfully applied to
simulate a variety microfluidic systems. With regard to the transient development of streaming potential,
detailed simulations have often been limited to two-dimensional or axisymmetric geometries such as finite-
length symmetric channels [25, 26]. In studies of electroconvection near permselective membranes [27],
both finite element [28] and (pseudo-) spectral methods [29–31] have proven efficient. Recently, a spec-
tral method was also applied in a study of the interaction between electrokinetics and turbulent drag [32].
In simulations of electrokinetic flow, the electrolyte solutions are usually assumed to be dilute enough for
density, viscosity and permittivity to be independent of the local ion concentrations. The ion mobilities are
usually taken to be proportional to the concentrations.

For the separate subproblems comprising the NSPNP problem, there exists many efficient numerical
methods. For the Poisson–Nernst–Planck (PNP) problem, efficient approaches have been demonstrated for
semi-conductors [33] and biological ion channels [34], where e.g. dispersion and size effects of ions can
be included. For transient simulation of the Navier–Stokes equations, projection methods that date back to
Chorin [35, 36] (see also Guermond, Minev, and Shen [37]), have imparted speedup compared to solving
the monolithic problem, since it effectively decouples the computation of velocity and pressure (although at
the cost of some reduced accuracy). For the full NSPNP problem, however, less is certain, but it seems clear
that succesful numerical schemes should aim to decouple, at least, the fluid mechanical subproblem from
the electrochemical subproblem, and thus take advantage of the progress made in numerically resolving
each of these, although a direct combination does not necessarily yield a successful scheme.

In the field of diffuse-interface (or phase-field) methods for two-phase flow, recent years have seen
progress in developing energy-stable numerical schemes. Such schemes are appealing because they share
a common property with the physical models in the sense that they, in the absence of external driving
forces, unconditionally dissipate energy. (We give a precise definition of this concept in Sec. 4.) Hence,
the schemes can be said to be thermodynamically consistent. Schemes that do not respect this energy law
are prone to numerical errors and instabilities near singularities [34, 38], particularly applicable to flows
involving sharp gradients such as both two-phase and electrohydrodynamic flow. Further, the energy laws
permit to establish results on the convergence of numerical schemes. Schemes that require solving the fully
coupled (nonlinear) problem implicitly can relatively easily be constructed to satisfy this property, while
a splitting stategy introduces additional difficulty [39, 40]. Notably, Shen and Yang [34] presented linear,
decoupled schemes for phase-field models with density contrast, relying in part on a projection method for
the NS equations and a stabilization method for the phase-field equation.

The NSPNP system with two chemical species has been extensively studied by, e.g., Prohl and Schmuck
[41–44] who considered also the construction of an energy-stable scheme [43] with a coupling between the
PNP and NS subproblems. Schemes for multi-ion electrohydrodynamics are also available [45]. An energy-
stable splitting scheme for a thermodynamically consistent model for two-phase electrohydrodynamics [46]
was presented and recently elaborated by Metzger [47, 48].

1.1. Contributions of this work
The objective of this paper is twofold. One is to obtain a generalized, thermodynamically consistent,

model for electrohydrodynamics where the density, viscosity, mobilities, and permittivity depend on the ion
concentrations. The second is to construct decoupled energy-stable and linearized numerical schemes for
this model. To this end, we will consider a general, thermodynamically consistent model for single-phase
flow including electric fields and transport of ions, i.e. a generalized NSPNP system. The subproblems
of fluid flow and electrochemistry will be decoupled, where the key to energy-stability lies in a forward-
projected velocity that enters in the advection term in the solute transport equation, an idea which builds
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heavily on approaches used in two-phase flow models [34, 39, 40, 47]. For the electrochemical suproblem
we propose discretization strategies that suffice to satisfy energy stability [43], one of which consititutes a
linear scheme. For the fluid-mechanical part we consider two linear approaches, both a coupled strategy
and a projection scheme for this subproblem. To the authors’ knowledge, it is the first time an energy-
stable projection scheme has been presented for electrohydrodynamic flow, in particular with concentration-
dependent densities, viscosities and permittivities. Our schemes are shown to be numerically convergent
by means of an electrohydrodynamic Taylor–Green vortex; to be numerically energy stable by a stress test
of ions flowing in a closed container; a reaction cell to test the reliability of the reaction kinetics; and
lastly applied to a geophysical setting, a porous media flow, to demonstrate the potential of the schemes in
practical simulations.

1.2. Outline

The outline of the paper is as follows. In Sec. 2, we present a derivation of the model for electrohy-
drodynamic flow that we consider, and in Sec. 3, we investigate some properties of the resulting model. In
Sec. 4 we present discretization strategies for the model, i.e. numerical schemes for the electrochemical and
hydrodynamical subproblems. Further, in Sec. 5 we present numerical simulations using combinations of
the numerical schemes presented, for the case of the conventional NSPNP model, and in Sec. 6 we conclude
and provide a brief discussion.

1.3. Notation

It is useful to present some remarks on notation before we embark on the main part of the paper. We
will denote an integral of a general quantity f over the domain Ω by∫

Ω

f dΩ. (1)

The L2 inner product of the quantities a and b is denoted by (a, b). For scalars f and g, the inner product is
defined by

( f , g) =

∫
Ω

f g dΩ, (2)

while for two d-dimensional vectors f and g, and two d × d matrices F and G, respectively, it is defined by

(f, g) =

∫
Ω

f · g dΩ and (F,G) =

∫
Ω

F : G dΩ. (3)

Herein, F : G =
∑d

i=1
∑d

j=1 Fi jGi j where Fi j and Gi j denote the components of F and G, respectively. The
L2 norm of a general quantity a is denoted by ‖a‖. In particular,

‖ f ‖2 = ( f , f ) =

∫
Ω

| f |2 dΩ. (4)

The L2 norm of a quantity a over the boundary ∂Ω is denoted by ‖a‖∂Ω, that is,

‖ f ‖2∂Ω =

∫
∂Ω

| f |2 dΓ (5)

A general time-discretized quantity a evaluated at the time step k is denoted by a superscript, ak. For the
time discretization strategies in the forthcoming, we will make use of the backwards-differencing discrete
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differential operator. For the sake of simplicity, we adopt the following notation for a discrete time deriva-
tive:

∂−τ f k =
f k − f k−1

τ
, (6)

where f is a general function (scalar or vector), and τ is a discrete time step.

2. A general model for single-phase electrohydrodynamics

Physically, single-phase electrohydrodynamic flow consists of the coupled system of fluid flow, ion
transport and electrostatics. Such a continuum modelling approach is realistic down to the scale of a few
nanometers. We will in the coming sections present a derivation, using variational principles, of a thermo-
dynamically consistent and frame-invariant model of electrohydrodynamic flow, where the fluid properties
are allowed to depend on the local concentrations of the chemical species. The main approximation under-
lying the model is that the volume of a fluid element does not change with increasing concentrations, only
the mass, and hence the velocity field can be taken to be solenoidal. We will end up with the following
partial differential equations, evolving in the spatial coordinate x ∈ Ω ⊂ Rd, where Ω is the domain and d is
the dimension, and in time t:

ρ({c j})∂tu + (m · ∇)u − ∇ · (2µ({c j})Du) + ∇p = −
∑

i

ci∇gi, (7)

∇ · u = 0, (8)

∂tci + u · ∇ci = ∇ ·
(
Ki({c j})∇gi

)
+ Ri (9)

gi =
∑

j

∂M j

∂ci
+ ziV −

∂ρ

∂ci
ag · x −

1
2
|∇V |2

∂ε

∂ci
, (10)

∇ · (ε({c j})∇V) = −
∑

i

zici. (11)

Here, the following quantites are involved.

ρ — fluid density,
u — fluid velocity field,

m — advecting momentum (defined below in Eq. (13)),
µ — dynamic viscosity,
p — pressure,
ci — concentration of ion species i ∈ 1, . . . ,N,
gi — the chemical potential associated with species i,
Ki — the mobility of species i,
Ri — reaction source term for species i,
Mi — a specific energy related to having ion species i dissolved,
zi — valency of species i,

ag — the gravitational acceleration,
V — electric potential,
ε — electric permittivity.
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In this general formulation, the fluid properties ρ, µ, Ki, Mi, and ε are allowed to depend on the set of
concentrations {c j}

N
j=1, abbreviated as {c j}. In particular, we assume that the following linear equation of

state holds for the density:

ρ({c j}) = ρ0 +

N∑
j=1

∂ρ

∂c j
c j. (12)

Here, ρ0 is the density of the “background” fluid, typically water, and the constant ∂ρ/∂ci = Mwi, where
M is a constant conversion factor and wi is the number of nuclei in a given species j. Together with Eq. (8),
Eq. (12) implies that the chemical species that enters into a volume element does not change its volume, but
only its local mass. This is a simplifying assumption, and is distinct from the related model by Dreyer et al.
[23] who assume a constant number density to close the equations.

Note that in our formulation of the model (7)–(11), we have reduced the number of parameters to a
minimum, such that some prefactors have been absorbed into the relevant variables.

Eqs. (7) and (8) are the Navier–Stokes equations with variable density. Here, the advecting momentum

m = ρu −
∑

i

∂ρ

∂ci
Ki∇gi, (13)

differs from the canonical momentum ρu due to mass diffusion and migration through ci. This reflects the
difference between the mass-averaged velocity umass = m/ρ and the fluid velocity u. The fluid velocity
corresponds to the motion of the background fluid, which by assumption is the only substance that occupies
space. It therefore corresponds to the interpretation of u as a volume-averaged velocity field, as often
employed in diffuse-interface models of two-phase flow [46, 49]. This difference has been noted previously
in the literature, as in the series of papers by Brenner [50–52]. , and is standard for diffuse-interface models
for two-phase flow

An unconventional forcing term on the right hand side of (7), −
∑

i ci∇gi can by a redefinition of the
pressure, and integration by parts, be written as the more conventional

ρag − ρe∇V −
1
2
|∇V |2∇ε, (14)

which reveals the origin of the (conservative) driving forces that may be present in the system. The terms
represent, respectively, gravity, electric force, and a Helmholtz force due to permittivity gradients. However,
the formulation of the right hand side in (7) has e.g., numerical advantages, as gi is constant at equilibrium,
and therefore near equilibrium, the term −

∑
i ci∇gi will be less prone to catastrophic cancellation and

pressure-buildup in the electric double layer [6].
Further, the symmetric gradient entering into the viscous term is defined by Du = sym(∇u) = (∇u +

∇u>)/2. Eqs. (9) and (10) can be seen as a generalized Nernst–Planck equation for transport of species.
Finally, Eq. (11) is the Poisson equation, or Gauss’ law for electrostatics, with non-constant permittivity.
Note that Eq. (11) is expected to be valid provided that charges move sufficiently slow for magnetic forces
to be neglected (and thus there is no magnetic body force contribution in Eq. (7)).

2.1. Typical modelling assumptions
Typically in electrohydrodynamics, the standard Nernst–Planck equation is used, and the mobility that

enters here is then given by Ki = Dici, where Di is the diffusion constant of species i. Herein, the entropic
contribution to the specific free energy M j is classically given by

M j = c j(ln c j − 1) + β jc j, (15)
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where β j is a constant that can be related to reactions with other species, and shall be elaborated on later,
specifically towards the end of Sec. 3.4 and in Appendix A. Note that in general, as it does in Eq. (15),
M j contains logarithmically divergent terms that require special care both numerically and within stability
proofs. Regularisation of the divergent behaviour in Eq. (15) is discussed in Sec. 4.8.1 and in Ref. [48].

In equilibrium and for constant dielectric permittivity ε, Eq. (11) together with (9) and (10) for two
symmetric species of opposing charge (z+ = −z− = z), will reduce to the standard Poisson–Boltzmann
description of electrokinetic phenomena.

2.2. Boundary conditions

To close the system, we need to assign boundary conditions on the boundary ∂Ω of Ω.

• Velocity boundary condition: On the velocity field u, we assign a general Navier slip condition (see
e.g. [53, 54]),

u · n̂ = 0, (16a)[
λu + 2µDu · n̂

]
· t̂ = 0, (16b)

which is quantitatively correct at the smallest scales and particularly relevant for superhydrophobic
surfaces [55]. Herein, λ({ci}) describes the contact line friction, n̂ is a unit vector pointing out of the
domain, and t̂ is a unit tangent vector. The function λ is related to the slip length `slip through the
relation `slip = µ/λ. In the case where λ → ∞ (`slip → 0), we retrieve the commonly used no-slip
condition:

u = 0, (17)

which is realistic even on small scales, and extensively used for example in studies of electrokinetic
instability [30, 31] and microchannel flows [6]. Note that in the numerical simulations presented in
Sec. 5, we shall assume that (17) holds.

• Electrostatic potential boundary condition: On the electrostatic potential V , the two condtions

n̂ · ε∇V = σe, and V = V0, (18)

can be applied to separate parts of the domain. In Eq. (18), σe is the assigned surface charge of the
boundary, and V0 is a given potential at the boundary. While σe may vary in space, V0 will in the
forthcoming be assumed to take a constant value to avoid injecting energy into the closed system (for
which we will prove energy stability). Without loss of generality, we will thus fix V0 = 0 henceforth.

• Chemical species boundary conditon: For each chemical species ci, we assume that the diffusive
flux across the boundary vanishes, i.e.

n̂ · Ki∇gi = 0. (19)

Together with Eq. (16a), Eq. (19) represents impenetrable boundaries for the chemical species.

2.3. Reaction terms

With regard to modelling the reaction terms Ri, we consider a sequence of reactions m ∈ 1, . . . ,M,
where each reaction m can be written in the compact form

0 

∑

i

νm,iχi, (20)
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where νm,i is the net stoichiometric coefficent (products minus reactants) of ion i in reaction m, and χi is the
chemical symbol of ion i. In Appendix A, we argue that we can model

Ri =
∑

m

νm,iRm with Rm = −Cm ·
∑

j

νm, jg j, (21)

where Cm ≥ 0 is a function of the involved variables. Such modelling of the reaction term was also
considered by, e.g., Refs. [47–49]. Note that Cm can also be a function of the spatial coordinate x, i.e., a
reaction can be promoted or demoted in a certain region of the domain; effectively allowing to simulate,
e.g., catalytic or other electrochemical systems.

2.4. Derivation of the model

We now present a derivation of a model for general electrohydrodynamic flow. The forthcoming anal-
ysis is similar to that considered by previous authors [46, 49]. We seek to formulate a model where the
fluid properties are allowed to depend on the concentrations, which is both frame-invariant (Galilei in-
variant), thermodynamically consistent (dissipates free energy), and where the velocity field is solenoidal
(divergence-free). The latter point limits the generality of the model, in the sense that we consider quasi-
incompressible fluids; such that the local concentration fields only makes a fluid element heavier, but does
not make it expand. This is a fair assumption for e.g. dissolving table salt in water under certain condi-
tions. In general, however, liquids can both contract and expand with the addition of another component.
Moreover, this behaviour can be non-monotonous.

The evolution of the concentration fields ci can in general be written as the advection–diffusion–reaction
equation

∂tci + ∇ · (ciu) = −∇ · Jci + Ri, (22)

where Jci is a hitherto undetermined diffusive flux, and Ri is a reaction source term. The left hand side is
for convenience written in the convective form.

For the density field we assume the linear equation of state (12). With the quasi-incompressible assump-
tion, the velocity field will still, as without any solutes, be solenoidal, i.e.,

∇ · u = 0. (23)

Using (12), (23) and (22) we can derive the evolution of the density,

∂tρ + ∇ · (ρu) =
∑

i

∂ρ

∂ci
[∂tci + ∇ · (ciu)] (24)

=
∑

i

∂ρ

∂ci

[
−∇ · Jci + Ri

]
(25)

= −∇ ·

∑
i

∂ρ

∂ci
Jci

 , (26)

or
∂tρ + ∇ · (ρu) = −∇ · Jρ, (27)

where we have used the condition that a reaction does not change the density, i.e.,
∑

i Ri∂ρ/∂ci = 0. This
follows from the quasi-incompressible condition, and the fact that mass is conserved in a reaction (for all
practical purposes, as the binding energy is, as far as these conservation laws are concerned, negligible
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compared to the rest energy of an atom or molecule). We have also implicitly defined the diffusive density
flux,

Jρ =
∑

i

∂ρ

∂ci
Jci . (28)

Eq. (27) suggests that the mass is transported by the velocity

umass = u + ρ−1Jρ. (29)

Following the discussion in Refs. [46, 49], in order for the model to be frame-invariant and not to introduce
further nonlinearities, the momentum should be transported by the same mass-averaged velocity umass. This
gives the following evolution equation for the momentum:

ρ∂tu + (m · ∇)u − ∇ · S + ∇p = K, (30)

where K is a forcing term that will be determined by thermodynamic consistency, S is a stress tensor to be
decided, and m = ρumass = ρu + Jρ.

The electric field E = −∇V can be found through Gauss’ law:

∇ · [ε({ci})E] = ρe, (31)

where the total charge is
ρe =

∑
i

zici. (32)

In Eq. (31) we have taken the permittivity, ε, to be a function of the concentrations. This is motivated by,
e.g, studies on aqueous NaCl solutions where it has been observed that the permittivity can be significantly
reduced due to multibody effects [56]. For simplicity we have dropped the weak dependence of permittivity
on the electric fields [57] which for most purposes are insignificant [12]. Now, using (32) and (22) we can
write

∂tρe + ∇ · (ρeu) = −
∑

i

∇ · (ziJci),= −∇ · Je, (33)

where we have used that
∑

i ziRi = 0 due to charge conservation in a reaction, and defined Je =
∑

i ziJci .
Using (31), we find

∂t [ε({ci})E] + ρeu = −Je. (34)

or
ε∂tE = −ρeu − Je −

∑
i

E
∂ε

∂ci
∂tci. (35)

We can now define the following general free energy density f :

f [u, {ck},E](x, t) =
1
2
ρ({ck})u2 +

∑
i

Mi({ck}) +
1
2
ε({ck})E2 − ρ x · ag (36)

and thus the total energy density

F =

∫
Ω

f dΩ. (37)

Now,
dF
dt

=

∫
Ω

u · ρ∂tu +
∑

i

∂ f
∂ci

∂tci + E · ε∂tE
 dΩ. (38)
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Further,
∂ f
∂ci

=

(
u2

2
− x · ag

)
∂ρ

∂ci
+

∑
k

∂Mk

∂ci
+

E2

2
∂ε

∂ci
, (39)

and hence

dF
dt

=

∫
Ω

[
u · (−(m · ∇)u + ∇ · S − ∇p + K) +

∑
i

∂ f
∂ci

∂tci − E ·
ρeu + Je +

∑
i

E
∂ε

∂ci
∂tci

 ] dΩ. (40)

Integrating by parts, using that all normal fluxes vanish at the boundary, we obtain

dF
dt

=

∫
Ω

[∑
i

(gi − ziV)∂tci + u ·K − ρeE · u − E ·
∑

i

ziJci

]
dΩ +

∫
∂Ω

n̂ · S · t̂u dΓ −

∫
Ω

Du : S dΩ (41)

where we have used that u = t̂u on the boundary ∂Ω, and defined the chemical potential

gi =
∂ f
∂ci
−

1
2

u2 ∂ρ

∂ci
− E2 ∂ε

∂ci
+ ziV (42)

= −x · ag
∂ρ

∂ci
+

∑
k

∂Mk

∂ci
−

E2

2
∂ε

∂ci
+ ziV. (43)

Now, ∑
i

∫
Ω

(gi − ziV)∂tcidΩ = −
∑

i

∫
Ω

(gi − ziV)(∇ · (ciu + Jci) − Ri) dΩ (44)

=
∑

i

∫
Ω

(∇gi + ziE) · (ciu + Jci) dΩ +
∑

i

∫
Ω

giRi dΩ, (45)

such that

dF
dt

=

∫
Ω

u ·
[
K + ci∇gi

]
dΩ +

∫
∂Ω

n̂ · S · t̂u dΓ −

∫
Ω

Du : SdΩ +
∑

i

∫
Ω

Jci · ∇gi dΩ

+
∑

i

∫
Ω

giRi dΩ. (46)

To choose the fluxes according to Onsager’s variational principle (as in Refs. [46, 49]), we identify

Jci = −Ki({ck})∇gi, (47)

where Ki ≥ 0 are the mobilities. Further, the viscosity tensor can be modelled with the Newtonian form,

S = 2µ({ck})Du. (48)

Note that the viscosity µ ≥ 0 can also depend on Du to model non-Newtonian fluids, but we shall not
consider that here. To ensure that the contribution from the boundary integral be dissipative, we may choose
the velocity boundary condition

n̂ · S · t̂ = −λt̂u = −λu, (49)

with λ ≥ 0. Finally, to minimize the dissipation we choose the forcing term according to

K = −
∑

i

ci∇gi. (50)

The motivation for modelling the last term in (46) is given in Appendix A.
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Remark 1. In the definition of the force density in Eq. (36), we could have used the mass-averaged velocity
umass instead of the fluid (volume-averaged) velocity u, which would have lead to a slightly different model.
However, for simplicity, numerical purposes and to be consistent to two-phase flow models [46, 49], we
have used the latter. volume-averaged velocity u. For more in-depth discussions on the subtle difference
between the mass-averaged and the volume-averaged velocity, we refer to the literature [50–52].

3. Properties of the model

In this section, we inspect some properties of the model presented in the preceding section.

3.1. Evolution of ion concentration

The first notable feature of the model is that the total ion concentration evolves only due to the reaction
source term Ri:

d
dt

∫
Ω

ci dΩ =

∫
Ω

∂tci dΩ = −

∫
Ω

∇ · (uci − Ki∇gi) dΩ +

∫
Ω

Ri dΩ =

∫
Ω

Ri dΩ. (51)

When no reactions occur, the number of ions (integrated concentration) is conserved.

3.2. Mass conservation

The evolution of the density ρ can be expressed by using Eqs. (12) and (9):

∂tρ =
∑

i

∂ρ

∂ci
∂tci =

∑
i

∂ρ

∂ci
(−∇ · Ji + Ri) = −∇ ·m, (52)

where we have, as in the previous section, used the condition that a reaction can not change the density, i.e.,∑
i
∂ρ
∂ci

Ri = 0. Thus mass is conserved in the model:

d
dt

∫
Ω

ρ dΩ =

∫
Ω

∂tρ dΩ = −

∫
Ω

∇ ·m dΩ = 0. (53)

3.3. Free energy

Associated with the above system we have the free energy

F =

∫
Ω

1
2
ρ|u|2 +

1
2
ε |∇V |2 +

∑
i

Mi − ρ ag · x
 dΩ, (54)

where the first term represents the kinetic energy, the second the electric field energy, the third term the
chemical energy, and the last term the gravitational energy.

Energy-stability imparts that, in the absence of external driving forces, the total free energy F in the
closed domain does not increase in time; that is, dF/dt ≤ 0. In order to inspect whether the model respects
this, we are now interested in an explicit expression for the evolution of the free energy in time, i.e. dF/dt.
We therefore decompose the free energy F into the following contributions:

F = Fu + FV +
∑

i

Fci + Fg, (55)

10



where

Fu =

∫
Ω

1
2
ρ|u|2 dΩ, (kinetic energy) (56a)

FV =

∫
Ω

1
2
ε|∇V |2 dΩ, (electric field energy) (56b)

Fci =

∫
Ω

Mi dΩ, (chemical energy) (56c)

Fg = −

∫
Ω

ρ ag · x dΩ. (gravitational energy) (56d)

Now, we seek the temporal evolution of each term in order to find the temporal evolution of the sum of
them.

• The kinetic energy: Differentiating Eq. (56a) with respect to time, integrating by parts, and using
(7), (8), and the boundary conditions (16a), (16b) and (19), we obtain

dFu

dt
=

∫
Ω

∂t

[
1
2
ρ|u|2

]
dΩ

= (u, ρ∂tu) +

(
1
2
|u|2, ∂tρ

)
= (u,∇ · (2µDu) + ∇p −

∑
i

ci∇gi)

= −
∥∥∥∥√

2µDu
∥∥∥∥2
−

∥∥∥∥√λu
∥∥∥∥2

∂Ω
−

∑
i

(u, ci∇gi)

= −
∥∥∥∥√

2µDu
∥∥∥∥2
−

∥∥∥∥√λu
∥∥∥∥2

∂Ω
−

∑
i

[
(gi, ∂tci) +

∥∥∥∥√
Ki∇gi

∥∥∥∥2
− (gi,Ri)

]
, (57)

where we have used the fact that Ki is non-negative. Note that for the standard Nernst–Planck as-
sumption Ki = Dici, this relies on having established a non-negativity result for ci, or alternatively
using a regularised Ki = Di max(ci, 0). For the standard Nernst–Planck equations, a non-negativity
result for ci was provided in [42]. In Appendix B, we outline a simple proof for the model considered
here.

• The electric field energy: Differentiating Eq. (56b), integrating by parts and using Eq. (11) and the

11



boundary conditions (18), we obtain

dFV

dt
=

d
dt

∫
Ω

1
2
ε|∇V |2 dΩ

= (∇V, ε∂t∇V) +

(
1
2
|∇V |2, ∂tε

)
= (∇V, ∂t(ε∇V) − ∇V∂tε) +

(
1
2
|∇V |2, ∂tε

)
= (∇V, ∂t(ε∇V)) −

(
1
2
|∇V |2, ∂tε

)
= −(V, ∂t∇ · (ε∇V)) −

∑
i

(
1
2
|∇V |2,

∂ε

∂ci
∂tci

)
=

∑
i

(ziV −
1
2
|∇V |2

∂ε

∂ci
, ∂tci) (58)

• The chemical energy: Differentiating Eq. (56c) with respect to time and using the assumption that
Mi only depends on the set of concentrations {ck}, we can write

dFci

dt
=

∫
Ω

∂t Mi dΩ =
∑

j

∫
Ω

∂Mi

∂c j
∂tc j dΩ. (59)

• The gravitational energy: By differentiation of Eq. (56d) and using Eq. (12), we obtain

dFg

dt
= −

∫
Ω

∂tρ ag · x dΩ

= −
∑

i

(
∂ρ

∂ci
ag · x, ∂tci

)
. (60)

Using Eqs. (55), (57), (58) and (60) and the definition of gi in Eq. (10) we obtain:

dF
dt

= −
∥∥∥∥√

2µDu
∥∥∥∥2
−

∥∥∥∥√λu
∥∥∥∥2

∂Ω
−

∑
i

∥∥∥∥√
Ki∇gi

∥∥∥∥2
+

∑
i

(gi,Ri) . (61)

Clearly, the three first terms on the right hand side of Eq. (61) are negative. Thus, what remains is to model
the reaction terms Ri in such a way that the last term is also negative. Inserting Eq. (21) (as discussed in
Appendix A) into the last term leads to∑

i

(gi,Ri) = −
∑

i

(gi,
∑

m

νm,iCm ·
∑

j

νm, jg j)

= −
∑

m

Cm

∫
Ω

∑
i

νm,igi

2

dΩ. (62)

The sought evolution equation is now readily available. In particular, we obtain from Eqs. (61) and (62)
the free energy evolution

dF
dt

= −
∥∥∥∥√

2µDu
∥∥∥∥2
−

∥∥∥∥√λu
∥∥∥∥2

∂Ω
−

∑
i

∥∥∥∥√
Ki∇gi

∥∥∥∥2
−

∑
m

Cm

∫
Ω

∑
i

νm,igi

2

dΩ ≤ 0. (63)
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Hence the free energy is decaying in time — i.e. the model is dissipative. This is an important property,
as it guarantees that, in the absence of external driving forces, the system at all instances does not produce
energy, i.e. it evolves towards a state of lower energy. Hence, a proper time discretization scheme should
also have this property, in order to avoid spurious energy blow-up.

3.4. Modelling choices

Note that we will not attempt to quantitatively model the reaction function Cm (apart from the example
considered in Appendix A). This will in general require more detailed or phenomenological modelling of
the particular chemical reaction m.

In the remainder of this article, we will for concreteness consider the chemical energy functions

Mi({ck}) = α(ci) + βici, (64)

where βi are constants. The role of βi is to energetically penalize (or promote) the presence of a species ci

in comparison to other species. Hence, the set {βi} should fix a (chemical) equilibrium state of the system.
In particular, for the common form α(ci) = ci(ln ci − 1), we can write

βi = − ln c0
i , (65)

where c0
i is a reference concentration which defines the equilibrium concentration of species ci. (See Ap-

pendix A for its relation to the solubility product.)
The derivative of Mi that enters into the model can be expressed by

∂Mi

∂c j
= α′(c j)δi j + β jδi j, (66)

where δi j is the Kronecker delta function, and we have used the short-hand derivative α′(c j) = ∂α/∂c j. Note
that since the βi are constant, they will not affect the system through the chemical diffusive fluxes (∝ Ki∇gi),
but will enter in the reaction term Ri.

Further, we will consider only permittivities which can be written in the form

ε({c j}) = ε0 +

N∑
j=1

ε j(c j), (67)

where, in particular, no cross terms are present. Here, ε0 is not the vacuum permittivity, but the permittivity
of the background fluid. Note that on physical grounds ε > 0 (in particular, the vacuum permittivity is
an absolute lower bound). The formulation (67) is consistent, e.g., with the empirical relation found in
simulations by Hess et al. [56] for a NaCl solution, where a relation 1/ε(c) ∝ 1 + kc (k is a constant)
was reported. Gavish and Promislow [58] found a somewhat more complicated, but qualitatively similar,
functional relation, valid for a variety of salts and concentrations.

4. Energy-stable time discretization

We will in the forthcoming consider schemes that are finite difference in time, and suitable for spatial
discretization using the finite element method. in space. We present schemes to simulate the general model
for single-phase electrohydrodynamics which was describedpresented in the previous section. In this sec-
tion, we will first present the schemes and afterwards the appropriate variational form which is used in the
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finite element spatial discretization. In the forthcoming, our main focus is on the temporal discretization of
the model. Nevertheless, we provide the variational forms which constitute the backbone of a fully discrete
finite-element spatial discretization. To this end, for the velocity components we define the function space
V as

V = {u ∈ (H1(Ω))d : u · n̂ = 0 on ∂Ω} (68)

where H1(Ω) is the Sobolev space containing functions f such that f 2 and |∇ f |2 have finite integrals over
Ω. To ease notation in the following, we will for the remaining, scalar fields use the spaces X which we
define as simplyV without the boundary restrictions, i.e. X = H1(Ω).

Since a central point of this article is to construct energy-stable schemes, it is necessary to define what
this concept imparts. Analogous to previous work in the literature, e.g. [34, 39, 40, 59], we state the
following definition.

Definition 4.1 (Energy stability). Recall that the model (7)–(11) is associated with the free energy functional
F, stated in Eqs. (55) and (56). The temporal derivative of F satisifies the inequality

dF
dt
≤ 0, (69)

as stated in Eq. (63), meaning that free energy is dissipated.
Now, let Fk be the discrete counterpart of F – that is, an approximation to F at time tk (at time step k).

If a temporal discretization scheme unconditionally satisfies the discrete counterpart of Eq. (69), that is,

∂−τ Fk ≤ 0, (70)

where we have used Eq. (6), then that scheme is said to be energy stable.

Note that for a scheme to be admissible, it must obviously also approximate the underlying model to
the required order in the time step size τ. As is remains unclear how to construct temporally second-order
schemes that are simultaneously energy stable, we consider only first-order schemes in the present work.

4.1. Decoupled schemes
We will in this paper adopt a strategy known from simulating, e.g., two-phase flow. It is beneficial to

split the problem in a hydrodynamical step and an electrochemical step, since it is in general harder both
to effectively precondition and to solve the coupled system. On the other hand, there exists approaches for
efficient solution of the separate subproblems; i.e., for the PNP system (for the electrochemistry) and for
the NS system (for the hydrodynamics). The decoupling strategy may also enable the construction of linear
schemes, instead of non-linear, thus possibly saving the excess computatation related to nonlinear iterations.

The main advantage of the schemes presented here is that the computation of the electrochemical prob-
lem is decoupled from the hydrodynamic problem, while we are still able to guarantee the energy dissipation
associated with the physical problem.

Hence, we shall now consider schemes which employ a divide-and-conquer strategy, with two subprob-
lems to be solved sequentially at each time step k:

1. Electrochemistry: Using information from the previous time step k − 1, i.e., {uk−1, pk−1, ck−1
1 , . . .,

ck−1
N , Vk−1}, obtain a numerical approximation of the primary electrochemical variables, i.e. {ck

1, . . .,
ck

N , Vk} at the present time step k.
2. Hydrodynamics: Using the newly updated electrochemical variables {ck

1, . . ., ck
N , Vk} and hydrody-

namic variables {uk−1, pk−1} from the previous time step k−1, obtain an approximation of the primary
hydrodynamical variables, i.e. {uk, pk} at the present time step k.
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4.2. Strategy for the electrochemistry step
Scheme. Suppose {uk−1, pk−1, ck−1

1 , . . . , ck−1
N ,Vk−1} are given. Now, to obtain {ck

1, . . . , c
k
N ,V

k}, solve

∂−τ ck
i − ∇ ·

(
u∗c̃i

)
− ∇ ·

(
K̃i∇gk

i

)
= R̃i, for i ∈ [1,N], (71a)

∇ ·
(
εk
∇Vk

)
=

∑
i

zick
i , (71b)

where
gk

i = α̃′ + βi + ziVk −
1
2
|∇Vk|2ε̃′i −

∂ρ

∂ci
x · ag. (71c)

Here, α̃′(ck
i , c

k−1
i ) is a numerical approximation to α′(ξk), where min(ck

i , c
k−1
i ) ≤ ξk ≤ max(ck

i , c
k−1
i ). Further,

K̃i(ck
i , c

k−1
i ) ≥ 0 approximates Ki, c̃i(ck

i , c
k−1
i ) is an approximation to ci, and R̃i is an approximation to Ri.

We use the generally formulated terms K̃i, c̃i, and R̃i, to keep the analysis as general as possible, and valid
for both explicit (dependent on ck−1

i ) and implicit (dependent on ck
i ) discretizations. Later, we will discuss

concrete examples of the stated terms.
Moreover,

ε̃′i (ck
i , c

k−1
i ) =


εi(ck

i )−εi(ck−1
i )

ck
i −ck−1

i
for ck

i , ck−1
i ,

∂εi
∂ci

(ck−1
i ), for ck

i = ck−1
i ,

(72)

is an approximation to ∂εi/∂ci. Recall also that ∂ρ/∂ci is a constant.
The following boundary conditions are enforced on the boundary ∂Ω

n̂ · K̃i∇gk
i = 0, (73a)

n̂ · εk
∇Vk = σe or Vk = 0. (73b)

In Eq. (71a) we have used the definition:

u∗ = uk−1 −
τ

ρk−1

∑
i

c̃i∇gk
i , (74)

which is a forward-projection of the velocity based on the chemical fluxes, and introduces a first-order
error in τ. This projection is a key ingredient to obtaining energy-stability and is inspired by schemes for
two-phase flow [34, 39, 47]. Note that when the system approaches equilibrium, the second term, which is
already close to equilibrium, vanishes.

In practice, the inverse density 1/ρk−1, which enters in the second term of Eq. (74), must be approxi-
mated by finite element functions. On P1 elements, it can be straightforwardly approximated by pointwise
interpolation on the mesh nodes, as done herein. Other interpolation procedures are possible, but we have
not considered these here, as our focus is primarily on temporal rather than spatial discretization strategies.

Variational form. A variational form of Eqs. (71a) to (71c) can be written as the following.
Find (ck

1, . . . , c
k
N , g

k
1, . . . g

k
N ,V

k) ∈ XN×XN×X, such that for all (b1, . . . , bN , h1, . . . hN ,U) ∈ XN×XN×X,
we have (

∂−τ ck
i , bi

)
−

(
u∗c̃i,∇bi

)
+

(
K̃i∇gk

i ,∇bi
)

=
(
R̃i, bi

)
, (75a)(

gk
i , hi

)
=

(
α̃′ + βi + ziVk −

1
2
|∇Vk|2ε̃′i −

∂ρ

∂ci
x · ag, hi

)
(75b)

(
εk
∇Vk,∇U

)
−

∫
∂Ω

σeU dΓ =

N∑
i=1

(
zick

i ,U
)
. (75c)
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4.2.1. Free energy evolution
Property 1. For the electrochemical step, the following inequality holds:

∂−τ Fk
EC ≤

∑
i

(
u∗, c̃i∇gk

i

)
−

1
τ

∑
i

∆Fk
ci

+
∑

i

(
R̃i, gk

i

)
. (76)

Here, the discrete electrochemical energy is given by

Fk
EC =

∑
i

Fk
ci

+ Fk
V + Fk

g, (77)

and we have defined
∆Fk

ci
= τ

(
α̃′(ck

i , c
k−1
i ) + βi, ∂

−
τ ck

i

)
− Fk

ci
+ Fk−1

ci
, (78)

which represents an approximation error in the free energy introduced by the numerical approximation
α̃′(ck

i , c
k−1
i ) to α′(c). If ∆Fk

ci
≥ 0, it can be seen as an excess free energy.

Proof. By testing Eq. (75a) with bi = gk
i , we get:

(
∂−τ ck

i , g
k
i

)
−

(
u∗c̃i,∇gk

i

)
= −

∥∥∥∥∥√
K̃i∇gk

i

∥∥∥∥∥2

+
(
R̃i, gk

i

)
, (79)

and further, testing Eq. (75b) with hi = ∂−τ ck
i , we obtain:(

gk
i , ∂
−
τ ck

i

)
=

1
τ

(
α̃′(ck

i , c
k−1
i ) + βi + ziVk −

1
2
|∇Vk|2ε̃′i −

∂ρ

∂ci
x · ag, ck

i − ck−1
i

)
= ∂−τ Fk

ci
+

∆Fk
ci

τ
+

(
ziVk, ∂−τ ck

i

)
−

(
1
2
|∇Vk|2, ∂−τ ε

k
i

)
−

(
∂ρ

∂ci
x · ag, ∂

−
τ ck

i

)
, (80)

where we have introduced the splitting (78) and the shorthand definition of the discrete total chemical
energy:

Fk
ci

=

∫
Ω

[
α(ck

i ) + βick
i

]
dΩ. (81)

By defining the shorthand discrete gravitational energy,

Fk
g = −

∫
Ω

ρk x · ag dΩ, (82)

where ρk = ρ({ck
i }), we find that the sum over the phases in the last term in Eq. (80) becomes

∑
i

(
∂ρ

∂ci
x · ag, ∂

−
τ ck

i

)
=

x · ag, ∂
−
τ

ρ0 +
∑

i

∂ρ

∂ci
ck

i

 =
(
x · ag, ∂

−
τ ρ

k
)

= −∂−τ Fk
g. (83)

We also define the discrete electric energy by

Fk
V =

∫
Ω

1
2
εk|∇Vk|2 dΩ. (84)

Now, testing Eq. (75c) with U = Vk yields:(
εk
∇Vk,∇Vk

)
−

∫
∂Ω

σeVk dΓ =
∑

i

(
zick

i ,V
k
)
. (85)
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Considering Eq. (75c) with k → k − 1, and testing it with U = Vk, yields:(
εk−1
∇Vk−1,∇Vk

)
−

∫
∂Ω

σeVk dΓ =
∑

i

(
zick−1

i ,Vk
)
. (86)

Subtracting Eq. (86) from Eq. (85) and dividing by τ gives∑
i

zi
(
∂−τ ck

i ,V
k
)

=
1
τ

(
∇Vk, εk

∇Vk − εk−1
∇Vk−1

)
=

(
Ek + Ek−1

2τ
+

Ek − Ek−1

2τ
, εk

(
Ek − Ek−1

))
+

(
Ek, ∂−τ ε

kEk−1
)

=
1
2τ

(
εk, |Ek|2 − |Ek−1|2

)
+

1
2τ

∥∥∥∥√
εk

(
Ek − Ek−1

)∥∥∥∥2
+

(
Ek, ∂−τ ε

kEk−1
)

= ∂−τ Fk
V +

1
2τ

∥∥∥∥√
εk−1

(
∇Vk − ∇Vk−1

)∥∥∥∥2
+

1
2

(
∂−τ ε

k, |∇Vk|2
)

(87)

Now, combining Eqs. (79), (80), (83) and (87), we obtain∑
i

∂−τ Fk
ci

+ ∂−τ Fk
V + ∂−τ Fk

g = −
1
τ

∑
i

∆Fk
ci

+
∑

i

(
u∗, c̃i∇gk

i

)
−

∑
i

∥∥∥∥∥√
K̃i∇gk

i

∥∥∥∥∥2

−
1
2τ

∥∥∥∥√
εk−1

(
∇Vk − ∇Vk−1

)∥∥∥∥2
+

∑
i

(
R̃i, gk

i

)
. (88)

which yields Eq. (76) and thus completes the proof.

4.3. Strategies for the hydrodynamic step
For the hydrodynamic step, we can consider either the standard coupled approach, which is to solve the

velocity and pressure simultaneously at each time step, or an approach which decouples the velocity and
pressure at each step. We shall denote the former as Scheme I and the latter as Scheme II.

4.3.1. Scheme I: Coupled hydrodynamics
Scheme. The first scheme can be written in variational form as the following. Suppose that {uk−1, pk−1,

ck−1
1 , . . . , ck−1

N , ck
1, . . . , ck

N , gk
1, . . . , gk

N} are given. Now, in order to obtain {uk, pk}, we solve

ρk−1∂−τuk + (mk−1 · ∇)uk − ∇ ·
(
2µkDuk

)
+ ∇pk +

1
2

uk
(
∂−τ ρ

k + ∇ ·mk−1
)

= −
∑

i

c̃i∇gk
i , (89a)

∇ · uk = 0. (89b)

Here, we have discretized the advecting momentum m, see Eq. (13), as

mk−1 = ρk−1uk−1 +
∑

i

∂ρ

∂ci
Kk−1

i ∇gk
i . (90)

Note that the last two terms on the left hand side of Eq. (92a) are an approximation to the mass conservation
equation (52), i.e., ∂tρ + ∇ · m = 0. The incorporation of these terms is a standard way of satisfying the
discrete energy law at each time step (see e.g. [34]). The equations (89a) and (89b) are solved in combinaton
with the Navier slip condition (cf. Eq. (16)),

uk · n̂ = 0, (91a)[
λkuk + 2µkDuk · n̂

]
· t̂ = 0, (91b)

on the boundary ∂Ω.
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Variational form. Find (uk, pk) ∈ V × X such that for all (v, q) ∈ V × X,(
ρk−1∂−τuk, v

)
+

(
(mk−1 · ∇)uk, v

)
+

∫
∂Ω

λkuk · v dΓ +
(
2µkDuk,Dv

)
−

(
pk,∇ · v

)
+

1
2

(
uk∂−τ ρ

k, v
)
−

1
2

(
mk−1,∇(uk · v)

)
= −

∑
i

(
c̃i∇gk

i , v
)
, (92a)

(
q,∇ · uk

)
= 0, (92b)

with the Dirichlet no-penetration boundary condition (91a) on ∂Ω.

4.3.2. Scheme II: Fractional-step hydrodynamics
Instead of solving for velocity and pressure in a coupled manner, we may use a projection method

to decouple the velocity computation from the pressure. Such a scheme describing the somewhat similar
equations of two-phase flow, was already proposed by, e.g., Shen and Yang [34].

Scheme. In the spirit of the latter reference, the scheme is given by the following. Suppose that {uk−1, pk−1,

ck−1
1 , . . . , ck−1

N , ck
1, . . . , ck

N , gk
1, . . . , gk

N} are given.

• Tentative velocity step: To obtain the intermediate velocity ũk, solve

ρk−1 ũk − uk−1

τ
+ (mk−1 · ∇)ũk − ∇ ·

(
2µkDũk

)
+ ∇pk−1

+
1
2

ũk
(
∂−τ ρ

k + ∇ ·mk−1
)

= −
∑

i

ck−1
i ∇gk

i , (93)

with the Navier slip boundary condition

ũk · n̂ = 0, (94a)[
λkũk + 2µkDũk · n̂

]
· t̂ = 0, (94b)

on ∂Ω.

• Pressure correction step: To obtain the corrected pressure pk, solve

∇
2(pk − pk−1) =

ρ0

τ
∇ · ũk, (95)

with the artificial Neumann condition n · ∇(pk − pk−1) = 0. Note that this introduces an O(τ) error at
the boundary.

• Velocity correction step: To obtain the final velocity uk, solve

ρk uk − ũk

τ
= −∇

(
pk − pk−1

)
, (96)

with the Dirichlet boundary condition n̂ · uk = 0, which supresses the error from the Neumann
condition above.

Together with the analysis in the previous section, this constitutes a scheme which is decoupled between
the three parts electrostatics, velocity and pressure. Therefore, it is significantly easier to solve than the fully
coupled problem, and easier than solving for only velocity and pressure in a coupled manner.
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Variational form.

• Tentative velocity step: Find ũk ∈ V such that for all v ∈ V,(
ρk−1 ũk − uk−1

τ
, v

)
+

(
(mk−1 · ∇)ũk, v

)
+

∫
∂Ω

λkũk · v dΓ +
(
2µkDũk,Dv

)
−

(
pk−1,∇ · v

)
+

1
2

(
ũk∂−τ ρ

k, v
)
−

1
2

(
mk−1,∇(ũk · v)

)
= −

∑
i

(
ck−1

i ∇gk
i , v

)
, (97)

with the Dirichlet boundary condition (94a) on ∂Ω.

• Pressure correction step: Find pk ∈ X such that for all q ∈ X, we have(
1
ρ0
∇(pk − pk−1),∇q

)
= −

1
τ

(
∇ · ũk, q

)
. (98)

• Velocity correction step: Then, find uk ∈ V such that for all v ∈ V,(
ρk uk − ũk

τ
, v

)
=

(
pk − pk−1,∇ · v

)
, (99)

which we solve by explicitly imposing the Dirichlet boundary condition n̂ · uk = 0.

Note that using v = (ρk)−1∇q in Eq. (99) yields, in combination with Eq. (98)(
∇ · uk, q

)
= τ2

((
1
ρk −

1
ρ0

)
∇(∂−τ pk),∇q

)
, (100)

i.e., that the fractional-step scheme introduces a weak compressibility of order O(τ2), which becomes in-
creasingly small when ρk ' ρ0. When the density does not vary with concentration, ρk = ρ0 and the final
velocity field uk is divergence free.

Remark 2. With a slight reformulation of the variational problem, we can simplify the computation of
the velocity steps ũk and uk, by solving for each of the components successively, since in the decoupled
approach none of the components ũk

j and uk
j, j ∈ {1, . . . , d} of ũk and uk, respectively, depend on the other

components. This simplification is fairly commonplace [60]. We shall leave this technical detail for further
work.

4.3.3. Free energy evolution
Now we set out to show that a free energy inequality is satisfied for a discrete time update.

Property 2. For the hydrodynamic step, the following inequality holds:

∂−τ Fk
NS ≤ −

∑
i

(
c̃i∇gk

i ,u
∗
)
, (101)

where

Fk
NS =

Fk
u for Scheme I,

Fk
u + τ2

2

∥∥∥∥ 1√
ρ0
∇pk

∥∥∥∥2
for Scheme II.

(102)

Here, the discrete kinetic energy is defined by

Fk
u =

∫
Ω

1
2
ρk|uk|2dΩ. (103)

Proof. We will first show that Eq. (101) holds for Scheme I, and subsequently that it holds for Scheme II.
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Scheme I. First, note that Eq. (92a) can be written as(
ρk−1 uk − u∗

τ
, v

)
+

(
(mk−1 · ∇)uk, v

)
+

∫
∂Ω

λkuk · v dΓ +
(
2µkDuk,Dv

)
−

(
pk,∇ · v

)
+

1
2

(
uk∂−τ ρ

k, v
)

+
1
2

(
uk
∇ ·mk−1, v

)
= 0. (104)

Testing this with v = uk yields:

1
2τ

∥∥∥∥∥√
ρkuk

∥∥∥∥∥2
−

1
2τ

∥∥∥∥∥√
ρk−1u∗

∥∥∥∥∥2
= −

∥∥∥∥√
λkuk

∥∥∥∥2

∂Ω
−

∥∥∥∥∥√
2µkDuk

∥∥∥∥∥2
−

1
2τ

∥∥∥∥∥√
ρk−1(uk − u∗)

∥∥∥∥∥2
, (105)

since (
(mk−1 · ∇)uk,uk

)
+

1
2

(
uk
∇ ·mk−1,uk

)
= 0. (106)

By considering Eq. (74), and taking the inner product of it with ρk−1u∗, we obtain

1
2τ

∥∥∥∥∥√
ρk−1u∗

∥∥∥∥∥2
−

1
2τ

∥∥∥∥∥√
ρk−1uk−1

∥∥∥∥∥2
= −

∑
i

(
c̃i∇gk

i ,u
∗
)
−

1
2τ

∥∥∥∥∥√
ρk−1(u∗ − uk−1)

∥∥∥∥∥2
. (107)

Summing Eqs. (105) and (107) yields

∂−τ Fk
u = −

∥∥∥∥√
λkuk

∥∥∥∥2

∂Ω
−

∥∥∥∥∥√
2µkDuk

∥∥∥∥∥2
−

1
2τ

∥∥∥∥∥√
ρk−1(uk − u∗)

∥∥∥∥∥2

−
∑

i

(
c̃i∇gk

i ,u
∗
)
−

1
2τ

∥∥∥∥∥√
ρk−1(u∗ − uk−1)

∥∥∥∥∥2
. (108)

Using Eq. (102), this yields Eq. (101).

Scheme II. The analysis for this scheme follows the same lines as in the above and closely resembles the
procedure by Shen and Yang [34].

Testing Eq. (97) with ũk and using the definition of u∗ yields

1
2τ

∥∥∥∥∥√
ρkũk

∥∥∥∥∥2
−

1
2τ

∥∥∥∥∥√
ρk−1u∗

∥∥∥∥∥2
+

1
2τ

∥∥∥∥∥√
ρk−1(ũk − u∗)

∥∥∥∥∥2
+
∥∥∥∥√

λkũk
∥∥∥∥2

∂Ω
+
∥∥∥2µkDũk

∥∥∥2
=

(
pk−1,∇ · ũk

)
. (109)

Testing Eq. (98) with τpk yields(
∇ · ũk, pk

)
= −τ

(
1
ρ0
∇(pk − pk−1),∇pk

)
(110)

= −
τ

2

∥∥∥∥∥∥ 1
√
ρ0
∇pk

∥∥∥∥∥∥2

+
τ

2

∥∥∥∥∥∥ 1
√
ρ0
∇pk−1

∥∥∥∥∥∥2

−
τ

2

∥∥∥∥∥∥ 1
√
ρ0
∇(pk − pk−1)

∥∥∥∥∥∥2

. (111)

Testing Eq. (99) with ũk, yields:

1
2τ

∥∥∥∥∥√
ρkuk

∥∥∥∥∥2
−

1
2τ

∥∥∥∥∥√
ρkũk

∥∥∥∥∥2
−

1
2τ

∥∥∥∥∥√
ρk(uk − ũk)

∥∥∥∥∥2
=

(
pk − pk−1,∇ · ũk

)
. (112)
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We also have that, from Eq. (96),

∥∥∥∥∥√
ρk(uk − ũk)

∥∥∥∥∥2
=

∥∥∥∥∥∥∥ 1√
ρk
∇(pk − pk−1)

∥∥∥∥∥∥∥
2

τ2. (113)

Combination of Eqs. (107), (109) and (111) to (113) gives

1
2τ

∥∥∥∥∥√
ρkuk

∥∥∥∥∥2
−

1
2τ

∥∥∥∥∥√
ρk−1uk−1

∥∥∥∥∥2
+
τ

2

∥∥∥∥∥∥ 1
√
ρ0
∇pk

∥∥∥∥∥∥2

−
τ

2

∥∥∥∥∥∥ 1
√
ρ0
∇pk−1

∥∥∥∥∥∥2

= −
τ

2

∫
Ω

(
1
ρ0
−

1
ρk

)
|∇(pk − pk−1)|2 dΩ −

∑
i

(
c̃i∇gk

i ,u
∗
)
−

1
2τ

∥∥∥∥∥√
ρk−1(u∗ − uk−1)

∥∥∥∥∥2

−
1
2τ

∥∥∥∥∥√
ρk−1(ũk − u∗)

∥∥∥∥∥2
−

∥∥∥∥√
λkũk

∥∥∥∥2

∂Ω
−

∥∥∥2µkDũk
∥∥∥2
. (114)

The first term on the right hand side is positive, since ρ0 ≤ ρ
k. Now, Eq. (101) follows trivially by noting

the definition (102). This concludes the proof.

Remark 3. Compared to Scheme I, the free energy in Scheme II has an extra O(τ2) term related to pressure
variations, cf. Eq. (102). This is related to the weak numerical compressibility introduced by the splitting
approach.

4.4. Free energy evolution for the combined steps

Property 3. For the schemes presented above, the following free energy inequality holds:

∂−τ Fk ≤ −
1
τ

∑
i

∆Fk
ci

+
∑

i

(
R̃i, gk

i

)
, (115)

where the discrete total free energy is given by

Fk = Fk
NS + Fk

EC. (116)

Proof. This follows directly by summing Eqs. (76) and (101).

We will now consider approximations α̃′(c) of the derivative α′(c) of the chemical energy α(c) in order
to satisfy the condition ∆Fk

ci
≥ 0, which will lead to a discrete energy stability, that is,

∂−τ Fk ≤ 0, (117)

given also that the reaction terms R̃i are properly approximated. The latter will be considered in Sec. 4.6.

4.5. Approximating the chemical energy

In the previous section, several quantities were undefined. We now consider various numerical approx-
imations of the chemical energy derivative α̃′.
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Nonlinear discretizations.

NL1 The first option is to use the non-linear approximation

α̃′(ck
i , c

k−1
i ) =

α(ck
i ) − α(ck−1

i )

ck
i − ck−1

i

, (118)

which yields ∆Fk
ci

= 0. This gives the least possible dissipation, while still leading to the correct
inequality. Note that this only holds true when the integrals are computed exactly. On the downside,
the expression (118) is ill-defined when |ck

i − ck−1
i | � 1, and in order not to focus on this issue we will

not consider implementations of this approximation in the present paper.
NL2 A second option is to use the non-linear (unless α′(c) ∼ c) approximation

α̃′(ck
i , c

k−1
i ) = α′(ck

i ). (119)

Taylor expansion around ck
i and the mean value theorem gives

Fk
ci
− Fk−1

ci
=

∫
Ω

[
α′(ck

i )(ck
i − ck−1

i ) −
α′′(ξk)

2
(ck

i − ck−1
i )2

]
dΩ (120)

where ξk ∈ [min(ck−1
i , ck

i ),max(ck−1
i , ck

i )]. This gives

∆Fk
ci

= τ
(
α̃′(ck

i , c
k−1
i ), ∂−τ ck

i

)
− Fk

ci
+ Fk−1

ci
(121)

=

∫
Ω

1
2
α′′(ξk)(ck

i − ck−1
i )2 dΩ. (122)

Typically, α′′(c) > 0, such as for a weak solution, where α(c) = c(log c − 1). The latter leads
to the common Nernst–Planck equation for the ion transport. For such a system, where α′′(c) ≥
0 everywhere, the inequality is satisfied. Note that if α′′(c) < 0 anywhere, a locally higher ion
concentration would be favoured energetically, and effectively we could then have a negative mobility
(which is mathematically ill-posed).

Linear discretizations.

L1 Another option is to use the linear approximation

α̃′(ck
i , c

k−1
i ) = α′(ck−1

i ) + γα′′(ck−1
i )(ck

i − ck−1
i ). (123)

Taylor expansion around ck−1
i and the mean value theorem gives

Fk
ci
− Fk−1

ci
=

∫
Ω

[
α′(ck−1

i )(ck
i − ck−1

i ) +
α′′(ck−1)

2
(ck

i − ck−1
i )2 +

α′′′(ξk)
3!

(ck
i − ck−1

i )3
]

dΩ, (124)

where ξk ∈ [min(ck−1
i , ck

i ),max(ck−1
i , ck

i )]. This gives

∆Fk
ci

= τ
(
α̃′(ck

i , c
k−1
i ), ∂−τ ck

i

)
− Fk

ci
+ Fk−1

ci
(125)

=

∫
Ω

[(
γ −

1
2

)
α′′(ck−1

i ) −
α′′′(ξk)

3!
(ck

i − ck−1
i )

]
(ck

i − ck−1
i )2 dΩ. (126)

If γ > 1/2 the first term will be positive. For sufficiently small τ, it will dominate over the second
term. However, we have in general no control over neither sign nor magnitude of the second term.
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L2 To circumvent the latter problem, we may introduce a regularisation of α(c), denoted by ᾱ(c). As-
suming α′′(c) is always positive and monotonously non-increasing, we define

ᾱ′′(c) = α′′(max(c, cδ)), (127)

where cδ is a small cut-off concentration. Hence 0 ≤ ᾱ′′(c) ≤ ᾱ′′(cδ). We use the linear numerical
approximation

α̃′ = ᾱ′(ck−1
i ) +

[
γᾱ′′(ck−1

i ) +
1
2
ᾱ′′(c0)

]
(ck

i − ck−1
i ), (128)

where the second term inside the brackets is a stabilizing term of order τ, similar to what was used
by Shen and Yang [34] for the case of two-phase flow. We expand around ck−1

i :

Fk
ci
− Fk−1

ci
=

∫
Ω

[
ᾱ′(ck−1

i )(ck
i − ck−1

i ) +
ᾱ′′(ξk)

2
(ck

i − ck−1
i )2

]
dΩ. (129)

This gives

∆Fk
ci

=

∫
Ω

[
γᾱ′′(ck−1

i ) +
1
2

(
ᾱ′′(c0) − ᾱ′′(ξk)

)]
(ck

i − ck−1
i )2 dΩ (130)

≥ γ

∫
Ω

ᾱ′′(ck−1
i )(ck

i − ck−1
i )2 dΩ ≥ 0, (131)

where we have used that ᾱ′′(c0) − ᾱ′′(ξk) ≥ 0, that γ ≥ 0, and that ᾱ′′(c0). Hence, we have de-
rived a linear and energy stable scheme, which approximates the equations of electrohydrodynamics,
given some rather general assumptions on, and a regularisation of, α(c). A similar regularisation was
considered recently by Metzger [48].

In order to ensure that the whole electrochemical step is linear, it is necessary to model K̃i and c̃i to
depend on the previous time step. To this end, we will set

K̃i = K̃i(ck−1
i ), and c̃i = ck−1

i . (132)

We have now considered general numerical schemes for electrohydrodynamics, and it is now necessary to
give a brief summary and come with some concrete expressions.

Remark 4. The regularisation defined in Eq. (127) can be applied also to the non-linear schemes to ensure
that the energy is defined even if concentrations are numerically slightly negative, which might occur in
simulations of highly depleted solutions, e.g. simulations of electrokinetic instabilities.

4.6. Approximating the reaction term
It is in place to approximate the discrete reaction term R̃i which enters in (115). This term was modeled

in the continuous model in (21) and discussed in Appendix A. Using (21), we can write the discrete version
as

R̃i = −
∑

m

C̃m

∑
j

νm,iνm, jgk
j. (133)

Here, the reaction functions C̃m can be modelled as C̃m = Ck
m, i.e. using values from the current step, for a

non-linear scheme, or as C̃m = Ck−1
m , i.e., using values from the previous step, for a linear scheme. In either

case, we have that ∑
i

(
R̃i, gk

i

)
= −

∑
m

∥∥∥∥∥∥∥
√
C̃m

∑
i

νm,igk
i

∥∥∥∥∥∥∥
2

≤ 0, (134)
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where the last equality holds given that C̃m ≥ 0. For the remainder of this article, we shall for concreteness
assume the explicit treatment C̃m = Ck−1

m .

4.7. Tentative summary
It is now appropriate to briefly summarize the major results so far.

Property 4. Any decoupled scheme consisting of the combination of Scheme I or Scheme II (for the hydro-
dynamics), the chemical discretizations NL1, NL2 or L2, and the reaction term formulation (133), is energy
stable.

Proof. This follows from Property 3 and the results for ∆Fk
ci

in the definitions of the discretizations NL1,
NL2, L2 above, along with the result (134) for the source term.

Remark 5. Because of the mentioned problem with the chemical discretization L1, this approximation is
not generally energy stable. The discretization L1 can only be energy stable provided that α′′′(c) = 0.

Remark 6. When taking into account the lowest-order dissipative terms in the full expression for the free
energy inequality (cf. Eq. (115)), we obtain

∂−τ Fk ≤ −

∥∥∥∥√
λkuk

∥∥∥∥2

∂Ω
−

∥∥∥∥∥√
2µkDuk

∥∥∥∥∥2
−

∑
i

∥∥∥∥∥√
K̃i∇gk

i

∥∥∥∥∥2

, (135)

which bears striking similarity with its continuous counterpart, Eq. (61). In particular, it can be verified
that the terms that differ between ∂−τ Fk and ∂tF are of order O(τ).

4.8. Concretization and specification
The analysis thus far has considered quite general forms of the chemical energy α, that we have pre-

sented energy-stable approximations of, the mobility K̃i, and the chemical concentration c̃i. To be more
specific, we therefore consider concrete forms of the undefined approximations that will be discretized and
tested numerically.

4.8.1. Chemical energy function, mobility and permittivity assumptions
We consider the Nernst–Planck equation for solute transport. For the continuous equations, this imparts

the following:
α(ci) = ci(ln ci − 1), and Ki(ci) = Dici, (136)

where Di is the diffusion coefficient of ion species i. This corresponds to dilute ionic solutions. Since
α′(c) = ln c is undefined when c → 0, we can regularise α below a small cut-off cδ, as outlined above.
Then, in the next time step, we assign ck−1

i ← max(ck−1
i , cδ). An examplary regularisation of the functional

form α(c) = c(ln c − 1) is shown in Fig. 1. The regularised functional forms are:

ᾱ′′(c) =
1

max(c, cδ)
, (137)

ᾱ′(c) =

ln c for c > cδ,
ln cδ + c

cδ
− 1 for c ≤ cδ,

(138)

ᾱ(c) =

c(ln c − 1) for c > cδ,

c(ln cδ − 1) +
c2−c2

δ

2cδ
for c ≤ cδ.

(139)

The same regularisation was assumed by Metzger [48].
Further, we will for simplicity assume in our simulations that the permittivity does not depend on the

concentrations. Nevertheless, the schemes themselves support energy stability also in this case.
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Figure 1: Regularisation of the chemical energy function α(c) = c(ln c − 1), with the artificially high cutoff concentration cδ = 0.5
for visual clarity. The cutoff concentration is indicated by a dotted vertical line.

4.8.2. Schemes used in simulations
We define now the different schemes that will be used in simulations, and the associated approximations

to (136) that will be used. In general, the approximations should be chosen to impart soluble equation
systems, i.e., for which the finite element method yields spatial convergence.

We will in this work focus on the following discretizations:

NL2 Since the discretization NL2 is non-linear, it is necessary to use e.g. a Newton solver, where the
matrices will be reassembled at each iteration, to solve this step. A weak coupling between the
Nernst–Planck and Poisson equations can be obtained by

K̃i = Dick−1
i and c̃i = ck−1

i . (140)

L2 The linear discretization in L2 imparts the following:

K̃i = Di max(ck−1
i , cδ) and c̃i = ck−1

i . (141)

Without further ado, we might set γ = 0 to minimize the dissipation in this scheme.

Remark 7. A stronger coupling between the Nernst–Planck and Poisson equations in the non-linear scheme
NL2, could be obtained by letting K̃i = Dick

i and c̃i = ck
i . In general, we cannot control the sign of K̃i here,

since we solve for ck. Hence, if ck becomes (numerically) negative, we are not guaranteed to dissipate energy
(but then the energy is not defined either). This issue could possibly be mitigated by a regularisation.

5. Numerical simulations

We have in the previous section shown how various discretization schemes satisfy a free energy inequal-
itity, which is also present in the models they are meant to approximate. In this section we proceed to show
and compare the effectiveness of these schemes. The schemes have been implemented and simulations are
carried out within the Bernaise framework, developed by the authors [61]. Bernaise is a flexible simulation
environment for two-phase electrohydrodynamic flow [62], which is built on top of the Dolfin [63] interface
to Python within the finite element framework Fenics [64]. As Fenics, Bernaise is open-source and the
latest version can be found at the online GitHub repository [65]. Since single-phase flow is a special case
of two-phase flow, Bernaise works equally well for single-phase flow, which we consider in this paper. For
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all simulations we use triangular meshes and piecewise quadratic (P2) finite elements for the velocity field,
and piecewise linear (P1) elements for the remaining fields. We use meshes that resolve the spatial problem
sufficiently well for the error to be dominated by the time discretization errors.

In the following, we consider simulations of a few interesting cases.1

• First, to test the accuracy of the schemes, we consider the convergence towards an analytic solution.

• Second, to demonstrate the energy stability of the schemes, we consider an isolated, closed system
of a concentration spreading in a charged cell. We display the various terms in the free energy and
compare the various schemes evolving in time, with varying time step τ.

• Third, we consider a reaction cell to test the reaction part of the numerical schemes.

• Fourth, we show for a system the efficiency of the schemes to approach a steady state in an open
complex geometry (porous medium) where energy is injected through a body force.

The schemes we consider are denoted by the following:

• I-NL2: Scheme I with the non-linear NL2 discretization.

• I-L2: Scheme I with the linear L2 discretization.

• II-NL2: Scheme II with the non-linear NL2 discretization.

• II-L2: Scheme II with the linear L2 discretization.

5.1. Accuracy test: Manufactured solution
Now we verify the accuracy of the schemes by inspecting whether the scheme converges to a manufac-

tured analytical solution. Taylor–Green flow is one of a few cases for the Navier–Stokes equations where
analytical solutions are available, and is therefore standard to use for validation purposes. To this end, we
consider a two-dimensional Taylor–Green flow extended to account for electrohydrodynamics. The deriva-
tion of this manufactured solution is given in Appendix C. We consider flow of two counterions i = ±, such
that z± = ±1, and assume constant density ρ, viscosity µ, and permittivity ε, and neglect gravity.

We consider the doubly periodic domain x ∈ [0, 2π] × [0, 2π], where the pressure p and the electric
potential V is set to zero at x = (π/4, π/4) to fix the pressure and potential gauges, respectively. We obtain
an analytical solution augmenting Eq. (9) with the source term q on the right hand side, where

q(x, y) =
Dc2

0C2(t)
2ε

[
cos 2x + cos 2y + 2 cos 2x cos 2y

]
. (142)

The analytical solution to this Taylor–Green vortex is given by:

u = U(t)(x̂ cos x sin y − ŷ sin x cos y), (143)

p = −
1
4

ρU2(t) +
c2

0C2(t)
ε

 (cos 2x + cos 2y) −
c2

0C2(t)
4ε

cos 2x cos 2y (144)

c± = c0(1 ± cos x cos y C(t)) (145)

V = −
c0

ε
cos x cos y C(t) (146)

1Note the test cases considered herein are found as four separate scrips, that is, problem modules (see [61]), in the latest
version of Bernaise. Respectively, the problem modules are single_taylorgreen, single_cell, single_reaction, and
single_porous. As such the results presented here are directly reproducible given a working installation of Bernaise. For usage
of the latter, we refer to the paper describing the software [61].
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where

U(t) = exp(−2µt/ρ), (147)

C(t) = χ exp
(
−2D

(
1 +

c0

ε

)
t
)
. (148)

Further, the coordinates are given by x = (x, y) and x̂ is the unit vector along x and ŷ is the unit vector along
y. A constraint ensuring that c± > 0 is 0 ≤ χ < 1. The parameters used in these simulations are ρ = 3,
µ = 2, D = 2, c0 = 1, ε = 2, and χ = 0.5. Further, we stop the simulation after a final time T = 0.25, and
measure the error norm respective to the analytical solution.

To get an impression of how spatial errors influence the simulations, we first investigate the relation
between the global error (L2) and the grid resolution; in particular the linear grid spacing h. We use a fine,
regular triangular mesh with diagonals from top left to bottom right. The L2 error is shown in Fig. 2 for
two of the schemes (I-NL2 and II-NL2) for a constant time step τ = 0.002. Since we are using Pk elements
for all fields, with k ≥ 1, we expect second-order convergence. As shown in Fig. 2, this is fullfilled for
sufficiently large h. However, for h ' 2π/64 and below, the error becomes dominated by the time step size
and thus the error saturates.
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Figure 2: Spatial convergence of the schemes considered in the electrohydrodynamic Taylor–Green vortex case. The plots (a) and
(b) show the L2 error norm for the various schemes for all fields compared to the reference analytical solutions as a function of
time step τ. The simulations are in good compliance with the theoretical first-order convergence prediction, indicated as a black
solid slope (same in all plots).

We now investigate the dependence of the error on the time step size. Based on the above observation,
in order to rule out the error contribution from the spatial discretization, we use a grid size h = 2π/128
(such that the for τ ' 0.001 and larger, the error is expected to be dominated by the time step size τ.) In
particular, the discretized domain consists of 128 × 128 × 2 isosceles right triangles.

In Fig. 3, we show convergence in the L2 error norm for the four schemes considered. Schemes I and
II are virtually indistingushable. The errors are about an order of magnitude smaller for the nonlinear NL2
scheme than for the linear L2 scheme, which is not unexpected as the NL2 provided a better approximation
of the derivative of α. Nonetheless, all schemes seem to be reliable in that they achieve the expected O(τ)
convergence.

5.2. Stress test: Ion spreading in a charged reservoir
To numerically test the energy stability of the schemes in a complex and challenging setting, we con-

struct a system setup where the individual contributions to the free energy from inertia, chemistry and elec-
trostatics are of comparable magnitude during the simulation. The aim of this system is not to be physically
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Figure 3: Temporal convergence of the schemes considered in the electrohydrodynamic Taylor–Green vortex case. The plots
(a)–(d) show the L2 error norm for the various schemes for all fields compared to the reference analytical solutions as a function
of time step τ. The simulations are in good compliance with the theoretical first-order convergence prediction, indicated as a black
solid slope (same in all plots).

realistic, but to reveal possible weaknesses of the schemes. We consider a fixed domain Ω = [0, 1] × [0, 2],
which could represent a microchannel. The geometry and initial state is sketched in Fig. 4.

On the lower boundary, we assume a uniform surface charge σe, and the upper boundary is assumed
to be grounded, i.e. V = 0. The left and right boundary are assumed to be insulators. All four walls are
subject to no-slip boundary conditions on the velocity, u = 0. We consider an initial state where a Gaussian
concentration profile of negatively charged species is placed above and to the right, and the same profile
of positively charged species is placed below and to the left of the center of the microchannel. The initial
concentration distributions are given by:

c±(x, y, t = 0) =
C0

2πR2 exp
− (x − Lx/2 ± `x)2 + (y − Ly/2 ± `y)2

2R2

 , (149)

where the parameters Lx, Ly, `x, `y, and R are given in Table 1.
The electrochemical interaction between the upper and lower boundaries and the two species in the bulk

leads to motion due to two mechanisms. The fluid regions with positive and negative charge are pulled (i)
towards each other, and most prevalently, (ii) attracted towards opposite ends of the reservoir. This creates
a flow in the system which eventually decays due to dissipation.

The simulation parameters are listed in Table 1. Note that we have assumed here a linear dependency
of the viscosity upon the concentrations, i.e.,

µ(c±) = µ0 +
∂µ

∂c+

c+ +
∂µ

∂c−
c−, (150)

where the constant coefficients ∂µ/∂c± are given in Table 1. Chosing ∂µ/∂c± ≥ 0 ensures that the viscosity
is always positive. We have also assumed a dependency of the density upon the concentration, given through
the parameters ∂ρ/∂c± > 0. As in the previous test case, we use a regular triangular mesh, now with grid
size h = 1/64 (such that the discretized domain consists of 64 × 128 × 2 isosceles right triangles).

We first inspect the evolution of the total free energy in time, which should unconditionally decrease
for energy-stable schemes. The various contributions to the total free energy, integrated over the domain,
are shown in Fig. 5. Here, we have compared the two chemical discretization strategies L2 and NL2, and
two time step sizes. From the latter figure, it is evident that the schemes approach the same equilibrium
state regardless of the time step size τ and discretization. We observe that the increased dissipation due to a
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Figure 4: Schematic set-up of the initial state in the test case of ion spreading in a charged reservoir.

larger time step size results in lower fluid speed, which in turn leads to delayed equilibration. Moreover, as
expected, the linear L2 scheme is more dissipative than the NL2 scheme and requires much a smaller time
step to produce a reliable kinetic energy development, cf. Fig. 5. Nonetheless, the schemes always decrease
the total free energy in every time step, as expected.

It is also interesting to investigate visually how the flow behaves in this setup. In Fig. 6 we show
snapshots from a simulation of this system at several instances of time.

5.3. Reaction cell

To verify the modelling and implementation of the reaction term, we now simulate a reaction cell test
case. We consider the simple reaction

A+ + B− 
 AB. (151)

We define cA+ , cB− and cAB to be the associated concentrations. The associated stoichiometric coefficients
are now νA+ = νB− = −1 and νAB = 1. We let the reference concentrations (at equilibrium) be defined by
c0

A+ = c0
B− ≡ c0 = 3 and c0

AB = 1. We consider reaction kinetics as the example discussed in Appendix A,
i.e.,

C = C0
egAB − e−gA+−gB−

gAB − gA+ − gB−
, (152)

which is a generalization of the law of mass action. Here, C0 is a constant coefficient. The same reaction
kinetics was considered, e.g., by Metzger [48], Campillo-Funollet et al. [49]. Hence, in equilibrium, we
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Table 1: Parameters used in the case of ion spreading in a reservoir.

Parameter Symbol Value

Base density ρ0 1.0
Base dynamic viscosity µ0 0.08
Diffusivity D 0.01
Permittivity ε 0.5
Surface charge σe 1.0
Density per concentration ∂ρ/∂c± 0.02
Dyn. viscosity per concentration ∂µ/∂c± 0.001
Solute mass per species C0 3.0
Initial spread of concentration (std. dev.) R 0.25
Width of domain Lx 1
Height of domain Ly 2
Horizontal displacement of initial conc. `x 0.125
Vertical displacement of initial conc. `y 0.5
Total simulation time T 10
Cut-off concentration (only L2) cδ 0.1

should have

gAB − gA+ − gB− = 0, which gives
cA+ · cB−

cAB
=

(
c0

)2

c0
AB

= K−1
sp = 9. (153)

We consider a domain Ω = [−0.5, 0.5] × [−0.5, 0.5], where we start out the simulation with a Gaussian
distribution of neutral species AB centered at (0, 0) and with a standard deviation R = 0.15:

cAB(x, y, t = 0) =
c0

2πR2 exp
(
−

x2 + y2

2R2

)
. (154)

At the bottom boundary we apply a surface charge σe, and the top boundary is grounded. At the left
and right boundary we apply no-flux conditions, and all boundaries are subject to the no-slip condition
u = 0 on the velocity field. We take the initial average concentration of the chemical species AB in
the domain to be c0 = 10. The other ions are set initially to a constant (negligibly) low concentration
cA+ = cB− = 10−4. Hence, in the absence of an applied electric field, the uniform equilibrium concentrations
should be cA+ = cB− = 6 and cAB = 4.

The equilibrium state with an applied electric field is also possible to find quasi-analytically. The solu-
tion will thus only depend on the vertical coordinate y. We consider a domain y ∈ [−`, `]. At equilibrium,
the electrochemical potentials must be constant:

gi = ln
ci(y)

c0
i

 + ziV(y) = const. (155)

Without loss of generality, we take the electrostatic potential V(y) to be antisymmetric about y = 0 (and
thus omit the grounded boundary condition at the top). Thus, V(0) = 0. Further, due to symmetry, the
concentrations cA+(0) = cB−(0) ≡ c̄ (const.) here. Therefore, the constant gi = ln

(
c̄/c0

i

)
for i ∈ {A+,B−},

and
ci(y) = c̄e−ziV(y) for i ∈ {A+,B−}. (156)
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Figure 5: Free energy in time. All simulations are done using fractional step hydrodynamics, i.e., Scheme II. Note that, cf. Eq.
(102) for Scheme II, we have defined Fp = 1

2ρ
−1
0 τ2

∥∥∥∇pk
∥∥∥2

, which represents a compressive energy related to the splitting, and has
a negligible contribution to the total free energy F for these simulations. (Fc− has been omitted, as it is identical to Fc+ .)

The neutral concentration will be uniform, i.e., cAB = Kspc̄2. This gives, in the Poisson equation,

ε
d2V
dy2 = −cA+ + cB− = 2c̄ sinh(V), (157)

where we still need to determine the value of the unknown constant c̄.
The average number of ions must be conserved. We started out with an average concentration c0 of only

AB which contains both A+ and B−. Conservation of both ions can, e.g., be written as:

cAB +
1
2`

∫ `

−`

cA+ + cB−

2
dy = c0, (158)

since we have already assumed that that the total number of ions of A+ and B− is equal. Inserting for cAB
and cA+ , cB− , we get

Kspc̄2 + c̄
∫ `

−`
cosh(V) dy = c0. (159)

The charged boundary condition can be written as

dV
dy

= −
σe

ε
(160)

at both the upper and the lower boundary. We thus have to solve the nonlinear Poisson–Boltzmann equation
(157) with the Neumann boundary conditions (160) coupled with the integral (159). This can be done
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(a) t = 0 (b) t = 0.25 (c) t = 0.5 (c) t = 1.0 (c) t = 2.5 (c) t = 5 (c) t = 10

Figure 6: Snapshots in time of the ion spreading simulation case. The flow lines are normalized for each simulation and omitted
in the first and last snapshots. The color indicates the net charge, red is positive, blue is negative, and gray is neutral. The related
color scale is normalized for the entire simulation. For this simulation, Scheme II-NL2 with a time step τ = 0.005 was used.

numerically with standard ordinary differential equation solvers. With the chosen parameters, we obtain
FV = 1.5516, FcA+ = FcB−

= −0.6890 and Fcn = 0.9927.
We choose also the dynamic parameters D = 0.01, C0 = 10, ∂ρ/∂cA+ = ∂ρ/∂cB− = 0.1, ∂ρ/∂cAB = 0.2,

∂µ/∂cA+ = ∂µ/∂cB− = 0.02, ∂µ/∂cAB = 0.04, a time step τ = 0.01 and a total simulation time T = 10.
For the spatial discretization, we use a uniform grid size h = 1/128 with isosceles right triangles whose
diagonals all go from top left to bottom right.

In Fig. 7 we demonstrate how the energy decays towards the calculated energy values for the scheme
II-NL2. As shown in the inset, the values are fairly close to the equilibrium values although we have not
simulated many diffusive time scales. Therefore the (total) chemical energy is slightly above the equilibrium
values. The other schemes yield similar results, but are omitted in the figure for visual clarity.
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Figure 7: Free energy in time for the reaction cell simulation case. These simulations were carried out using Scheme II-NL2. The
inset shows a close-up of the data (except the total energy, for clarity).

5.4. Application: Electrohydrodynamic flow in a charged porous medium

Finally, we test the applicability of the schemes in a case where energy is injected into the system. The
overall discrete free energy inequality will then be broken. Energy stable schemes are nevertheless useful,
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since the dissipation guarantee in the bulk will still hold. The departure from global energy dissipation will
be controlled by the flux through the inlet and the outlet of the system.

We consider flow in a two-dimensional domain Ω = {(x, y) ∈ [−Lx/2, Lx/2] × [−Ly/2, Ly/2]}, where
Lx, Ly are domain size along the x, y directions, respectively, and Lx > Ly. The domain is taken to be
periodic in the y-direction. Within the domain, there are N = 8 circular obstacles with radius R placed
randomly within the subdomain [−Ly/2, Ly/2]× [−Ly, Ly/2], but no closer to any other obstacle than R. We
assume the no-slip boundary condition, u = 0, on the obstacles, and p = 0 on left and right boundaries. The
flow is driven by an average pressure gradient, implemented as a uniform body force fb = fbx̂. Further, a
constant concentration c+ = c− = c0 is assumed at both inlet and outlet. The left side is grounded, V = 0,
and on the right side we assume a no-flux condition on the electric field, n̂ · ∇V = 0. These boundary
conditions are fairly standard in this kind of computation [15, 25, 26].

We will now compare the time-dependent solution using the schemes presented herein to the steady-state
solution provided by the independently developed solver presented in a preceding paper by the authors [15].
The simulations parameters are given in Table 2. An unstructured triangular mesh, with a fine typical linear
size h ≈ 0.25 was used to minimize errors from the spatial discretization. In particular, the mesh consists of
78280 triangles and 39898 nodes. Based on the resulting maximum velocity U ' 3 ·10−1, the pore radius R,
and the kinematic viscosity µ/ρ, we can estimate the Reynolds number to be Re = ρUR/µ ' 0.02. Further,
the Schmidt number can be estimated to Sc = µ/(ρD) ' 100, and Péclet number Pe = UR/D = Re · Sc ' 2.
We can also estimate the Debye length in these units to be λD =

√
ε/(2c0) ' 1.5, i.e., the dimensionless

Debye length to pore size is λD/R ' 0.5.

Table 2: Parameters used in the simulations of electrohydrodynamic flow in a charged porous medium.

Parameter Symbol Value

Domain length along x Lx 60
Domain length along y (periodic direction) Ly 30
Number of obstacles N 8
Obstacle radius R 3.0
Concentration c0 1
Surface charge σe −5
Density ρ 0.02
Dynamic viscosity µ 4.5
Permittivity ε 4.5
Diffusivity of ions D 0.457
Average pressure gradient fb 0.09

The steady-state solver was run with the same settings as the time-dependent solver, only differing in
the fact that the velocity field is periodic also in the x-direction (while the ionic system is finite in the
x-direction), and that the inertial term is completely ignored (Re = 0). Hence, this steady-state should
represent a minimum of dissipation. The electric potential of the steady-state solver is presented in Fig. 8a
and the velocity field is shown in Fig. 8b. In Fig. 9, we measure in time the potential at the right boundary,
i.e. the streaming potential, as a function of time, obtained with the various time-dependent schemes. Also
plotted is the reference streaming potential obtained with the steady-state solver. The total simulation time
is T = 50. We may define a diffusive time scale τD based on the Debye length, τD = λ2

D/D ' 5; hence we
have simulated here over about 10 of this diffusive time scale. This time scale may be present in the fast
decay seen in the initial stages in Fig. 9. From Fig. 9, it is clear that the time step τ has a relatively strong
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Figure 8: Steady state fields for the case of electrohydrodynamic flow in a porous medium. (a) Electric potential. (b) Velocity field.

effect on the resulting streaming potential. In particular, the O(τ) dissipative term that will be present in
the steady state, due to the presence of u∗ in the scheme, has consequences also for the streaming potential.
Hence, good agreement is only found for relatively fine time steps. Finally, we conclude from this figure
that the linear EC scheme L2 is less precise than the NL2 scheme, and hence NL2 may be required for
this type of computation. For this particular problem, there does not seem to be a pronounced difference
between the coupled and the splitting scheme.

6. Discussion and conclusion

The contribution of the work presented here is twofold. Firstly, we have presented a general model
for single-phase electrohydrodynamic flows, where the fluid properties are allowed to depend on the con-
centrations of ions. Secondly, we have proposed discretization strategies for the resulting set of equations.
The proposed schemes impart decoupled computation of electrochemistry and hydrodynamics, while still
satisfying the same free energy inequality as the underlying model. In particular, as opposed to schemes
that do not satisfy the latter property, this guarantees that we do not violate basic physical features of the
underlying model regardless of time step size.

The results presented allow for the following discussion.

• The model presented in this work is fairly general, and provides a consistent way of including permit-
tivity gradients, gravitational effects and viscosity dependence on salinity in simulations of electro-
hydrodynamics. This also imparts that the model can be used to study simplified systems, such as the
effects of salinity gradients in the absence of electric fields. Further, the effects of non-constant den-
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sity and permittivity can be included in studies of electrokinetic instabilities beyond the Boussinesq
approximation (see e.g. [66]).

• The limitations of the model are (i) that we have assumed quasi-incompressibility (solenoidal velocity
field), and (ii) that we have assumed isothermal flow. The first assumption is commonplace even
beyond the Boussinesq approximation, see e.g., [67, 68]. The second is standard in electrokinetics.

• The assumption of a linear equation of state (12) combined with a solenoidal velocity field (8) can in
some settings be overly restrictive, particularly for less dilute solutions. Ideally, more general density
descriptions should be considered. In this respect, the model by Dreyer et al. [23] is particularly
relevant, and could be a starting point for further improvement. Instead of Eqs. (8) and (12) they
assume a constant number density to close the model, while real systems would be located somewhere
between the two models. It should be stressed that developing stable and efficient schemes for such
models would remain an important and challenging research topic.

• Dependence on the electric field strength, in particular for the permittivity, has been ignored in the
model, although studies indicate that it might be significant at high field strengths [12, 57]. It is in
principle trivial to include this effect by letting ε be a function of |E|2 (as well as {ci}) in (31).

• The decoupling strategy is highly efficient, in the sense that it permits the use of specialized numerical
routines for the resulting subproblems. Hence, the schemes should facilitate efficient simulations of
electrohydrodynamic flows in arbitrary complex geometries.

• In particular, the fractional-step method (Scheme II) for the hydrodynamics leads to significant speed-
up compared to the coupled hydrodynamics (Scheme I). Combined with the linear chemical dis-
cretization L2, which is based on a regularisation and a stabilization of the chemical potential, it
yields a completely linear scheme that can be solved at each time step.
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• Since the velocity field will typically have to be resolved with a higher spatial order than the pressure
field (e.g., P2-P1 elements for the mixed problem) to deal with the Babuszka–Brezzi condition [69],
the main computational cost may still be associated with computing the velocity field. In these cases,
choosing a nonlinear chemical discretization (e.g., NL2) might be worthwhile, as it gives a more
accurate solution while not contributing significantly to the computational runtime. The results shown
in Sec. 5.4 underpin this observation.

• The decoupling between electrochemistry and hydrodynamics introduces a time step restriction (re-
lated to the Courant number), since the advective term in the chemical transport equation is integrated
explicitly. Thus, fully implicit methods will possibly be more stable, allowing larger time steps, and
may for certain applications be more efficient.

• The work presented here, in particular related to the numerical schemes, builds on many known results
from the literature, e.g. [34, 39, 40, 47, 48]. A main novelty in the present work is to combine the
results on chemical potential stabilization and fractional schemes known from phase-field simulations
of two-phase flows [34] with electrochemical gradients [47, 48]. Further, these methods have been
adapted to the case where fluid properties depend on concentrations rather than an order parameter
(phase) field.

• Rigorously proving existence of solutions and convergence of the proposed numerical schemes is a
challenge that has not been undertaken in the present work. Progress here could be made along the
lines of related work, see e.g., Ref. [34, 48].

In future work, the model and scheme should be generalized to multiphase systems. In particular, this would
impart a combination of the present work and the model by Campillo-Funollet et al. [49]. To simulate solid-
liquid interaction, the geometry could be described by a phase field which could evolve due to chemical
reactions at the interface, i.e., the function C could be nonzero only here. Then phase transformations from
solute to could occur only at the phase field interface and proportionally (or another functional dependence)
to the concentration of a given species. This could provide a refinement to other studies [70, 71].

A more challenging, but highly physically relevant, extension of the model would be to extend it to
encompass both non-isothermal flow and non-solenoidal velocity fields. This would require a derivation
taking into account entropy production rather than free energy dissipation. Non-solenoidal velocity fields
would also require more sophisticated numerical schemes for reliable and efficient simulation.

Appendix A. Modelling the reaction terms

Here we consider the modelling of the reaction terms Ri. The dissipation related to the reaction is given
by (cf. (46)) ∑

i

∫
Ω

giRi dΩ. (A.1)

We consider a set of M possible reactions including all N chemical species, where we can write the reactions
in the following way:

ν1,1χ1 + . . . + ν1,NχN 
 0,
...

νM,1χ1 + . . . + νM,NχN 
 0,

36



where χi symbolizes the chemical species, and νi is the corresponding net stoichiometric coefficent. The
latter is such that νi > 0 for (net) products and νi < 0 for (net) reactants. If the chemical species does not
enter into the reaction, νi = 0. More compactly, we can write∑

i

νm,iχi 
 0, ∀m ∈ [1,M]. (A.2)

Note that due to charge conservation in a reaction,
∑

i ziνm,i = 0 and due to mass conservation in a reaction,∑
i νm,i∂ρ/∂ci = 0, for all reactions m. For each reaction m we have a reaction rate Rm. The reaction source

term that enters in the concentration equation of species i, can be written as

Ri =
∑

m

νm,iRm. (A.3)

Now, what remains is to define Rm on physical grounds. We have from statistical mechanics that in equilib-
rium, the reaction (A.2) is given by ∑

i

νm,ig0
i = 0, (A.4)

where the superscript “0” indicates local equilibrium. This suggests that a form

Rm = −Cm ·
∑

i

νm,i(gi − g0
i ) = −Cm ·

∑
i

νm,igi, (A.5)

where Cm ≥ 0, should drive the species towards equilibrium; in the sense that

• a term with gi > g0
i should promote generation of more reactants (νm,i < 0) and less products (νm,i >

0),

• a term with gi < g0
i should push towards less reactants and more products, and

• a term with gi = g0
i should not contribute.

Inserting (A.3) and (A.5) into (A.1),∑
j

∫
Ω

g jR j dΩ = −
∑

m

Cm

∑
i

∑
j

∫
Ω

g jνm, jνm,igi dΩ (A.6)

= −
∑

m

Cm

∫
Ω

∑
i

νm,igi

2

dΩ ≤ 0, (A.7)

which is clearly dissipative.
Note that in general, no assumptions were made about Cm except that it should be nonnegative. For

dilute systems described by the classical Nernst–Planck equations this is in general satisfied. Here, gi =

ln ci − ln c0
i + ziV , and in general, we can model by statistical rate theory:

Rm = −kb,m

∏
νm,i>0

cνm,i
i + kf,m

∏
νm,i<0

c−νm,i
i (A.8)

=

−kb,m

∏
νm,i>0

(c0
i )νm,ie

∑
νm,i>0 giνm,i + kf,m

∏
νm,i<0

(c0
i )−νm,ie−

∑
νm,i<0 giνm,i

 e−
∑
νm,i>0 ziνm,iV . (A.9)
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Here, kf,m] is the forward reaction rate and kb,m the backward rate. The references c0
i are defined through the

equilibrium condition

0 = −kb,m

∏
νm,i>0

(c0
i )νm,i + kf,m

∏
νm,i<0

(c0
i )−νm,i , (A.10)

which relates to the solubility product Ksp through the law of mass action,

Ksp,m =
kf,m

kb,m
=

∏
νm,i>0(c0

i )νm,i∏
νm,i<0(c0

i )−νm,i
. (A.11)

Inserting into the above,

Rm = −kb,m

∏
νm,i>0

(c0
i )νm,ie−ziνm,iV

[
e
∑
νm,i>0 giνm,i − e−

∑
νm,i<0 giνm,i

]
(A.12)

= −kb,m

∏
νm,i>0

(c0
i )νm,ie−ziνm,iV e

∑
νm,i>0 giνm,i − e−

∑
νm,i<0 giνm,i∑

i giνm,i

∑
i

giνm,i (A.13)

= −Cm

∑
i

giνm,i. (A.14)

Where we have identified

Cm = kb,m

∏
νm,i>0

(c0
i )νm,ie−ziνm,iV e

∑
νm,i>0 giνm,i − e−

∑
νm,i<0 giνm,i∑

i giνm,i
(A.15)

Note that for any x1, x2 ∈ R,
ζ(x1) − ζ(x2) = ζ′(x)(x1 − x2), (A.16)

for some x ∈ [min(x1, x2),max(x1, x2)]. Since [exp(x)]′ ≥ 0 for all x, we have that Cm ≥ 0.

Appendix B. Proof of non-negative concentrations

Here we establish that the concentrations are always non-negative for the case when the mobility is
modelled as Ki = Dici. For the case of standard Nernst–Planck transport, this result was shown by Schmuck
[42]. To this end, we follow in the lines of [42] and introduce an auxiliary problem,

∂tc + u · ∇c − ∇ · ((c)+∇g((c)+,V)) = R+ − R−(c)+, (B.1)

where (·)+ = max(0, ·). The contributions to the reaction terms are R+,R− ≥ 0, such that the first term on the
right hand side represents the creation of the species c from other chemicals and the second term represents
the removal of it. We now define C+ = (c)+ and C− = (−c)+, such that we can write c = C+ − C−. Testing
Eq. (B.1) with C− and integrating by parts yields

−
1
2

d
dt

∥∥∥C−
∥∥∥2

= −
(
C+
∇C−,∇g

)
+

(
R+,C−

)
+

(
R−C+,C−

)
=

(
R+,C−

)
. (B.2)

Integrating over time s ∈ [0, t] yields

1
2

∥∥∥C−
∥∥∥2 (t) =

1
2

∥∥∥C−
∥∥∥2 (0) −

∫ t

0

(
R+,C−

)
(s) ds ≤ 0. (B.3)

Since C−(x, 0) = 0 and R+C− ≥ 0 for all t, the last inequality holds. Thus we have that C−(x, t) = 0 for all
x, t, and c = C+ ≥ 0. This concludes the proof.
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Appendix C. Derivation of manufactured solution

Here we derive the analytical solution used to show convergence. We will assume an incompressible
flow where neither density nor permittivity depends on the ion concentrations.

A Taylor–Green vortex flow in the periodic domain (x, y) ∈ Ω = [0, 2π] × [0, 2π], is given by

u = U(t)(x̂ cos x sin y − ŷ sin x cos y), (C.1)

c± = c0(1 ± cos x cos y C(t)). (C.2)

Solving the electrostatic problem yields

ρe = 2c0 cos x cos y C(t) (C.3)

V =
c0

ε
cos x cos y C(t) (C.4)

which gives a residual of order O(c0/ε). We assume the mobilities K± = Dc±, and the chemical energy
function α(c) = c(ln c − 1).

The divergence criterion is obtained by taking the divergence of the Navier–Stokes equations with con-
stant density ρ:

ρ(∇u)T : ∇u + ∇ · (ρe∇V) = −∇2

p +
∑

i

ci

 = −∇2 p (C.5)

Hence, inserting the manufactured solutions Eqs. (C.1) and (C.2) yields

−∇2 p = −ρU2(t)(cos 2x + cos 2y) −
c2

0C2(t)
ε

(cos 2x + cos 2y + 2 cos 2x cos 2y) (C.6)

= −

ρU2(t) +
c2

0C2(t)
ε

 (cos 2x + cos 2y) −
2c2

0C2(t)
ε

cos 2x cos 2y (C.7)

we find that the pressure is

p = −
1
4

ρU2(t) +
c2

0C2(t)
ε

 (cos 2x + cos 2y) −
c2

0C2(t)
4ε

cos 2x cos 2y (C.8)

We have that

ρe∇V = −
c2

0

2ε
C2(t)

[
x̂ sin 2x(1 + cos 2y) + ŷ(1 + cos 2x) sin 2y

]
(C.9)

and that

∇p =
1
2

ρU2(t) +
c2

0C2(t)
ε

(1 + cos 2y)

 sin 2xx̂ +

ρU2(t) +
c2

0C2(t)
ε

(1 + cos 2x)

 sin 2yŷ
 (C.10)

so that

∇p + ρe∇V =
ρU2(t)

2
[
sin 2xx̂ + sin 2yŷ

]
(C.11)

and since

u · ∇u = x̂(ux∂xux + uy∂yux) + ŷ(ux∂xuy + uy∂yuy) (C.12)

= −
U2(t)

2
[
x̂ sin 2x + ŷ sin 2y

]
. (C.13)
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Hence, the Navier–Stokes equations give

U′(t)
U(t)

= −
2µ
ρ

=⇒ U(t) = exp(−2µt/ρ). (C.14)

Further, the ion transport equations must both be augmented by a carefully chosen source term q:

∂tc± + u · ∇c± − D∇ · (∇c± + z±c±∇V) = q(x, y), (C.15)

where

q(x, y) =
Dc2

0C2(t)
2ε

[
cos 2x + cos 2y + 2 cos 2x cos 2y

]
. (C.16)

This gives local charge conservation, but a local reaction changes the concentration of both ions.
Insertion gives us that

C(t) = χ exp
(
−2D

(
1 +

c0

ε

)
t
)
. (C.17)

Hence the concentrations decay to the equilibrium concentrations. Note that χ < 1 in order for the ion
concentrations to stay positive.
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