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Abstract

Modern data acquisition techniques in healthcare generate large collections of data
from multiple sources, such as novel diagnosis and treatment methodologies. Some
concrete examples are electronic healthcare record systems, genomics, and med-
ical images. This leads to situations with often unstructured, high-dimensional
heterogeneous patient cohort data where classical statistical methods may not
be sufficient for optimal utilization of the data and informed decision-making. In-
stead, investigating such data structures with modern machine learning techniques
promises to improve the understanding of patient health issues and may provide
a better platform for informed decision-making by clinicians. Key requirements
for this purpose include (a) sufficiently accurate predictions and (b) model inter-
pretability. Achieving both aspects in parallel is difficult, particularly for datasets
with few patients, which are common in the healthcare domain. In such cases,
machine learning models encounter mathematically underdetermined systems and
may overfit easily on the training data. An important approach to overcome this
issue is feature selection, i.e., determining a subset of informative features from
the original set of features with respect to the target variable. While potentially
raising the predictive performance, feature selection fosters model interpretability
by identifying a low number of relevant model parameters to better understand
the underlying biological processes that lead to health issues.

Interpretability requires that feature selection is stable, i.e., small changes in the
dataset do not lead to changes in the selected feature set. A concept to address
instability is ensemble feature selection, i.e. the process of repeating the feature se-
lection multiple times on subsets of samples of the original dataset and aggregating
results in a meta-model. This thesis presents two approaches for ensemble feature
selection, which are tailored towards high-dimensional data in healthcare: the Re-
peated Elastic Net Technique for feature selection (RENT) and the User-Guided
Bayesian Framework for feature selection (UBayFS). While RENT is purely data-
driven and builds upon elastic net regularized models, UBayFS is a general frame-
work for ensembles with the capabilities to include expert knowledge in the feature
selection process via prior weights and side constraints. A case study modeling
the overall survival of cancer patients compares these novel feature selectors and
demonstrates their potential in clinical practice.

Beyond the selection of single features, UBayFS also allows for selecting whole
feature groups (feature blocks) that were acquired from multiple data sources, as
those mentioned above. Importance quantification of such feature blocks plays a
key role in tracing information about the target variable back to the acquisition
modalities. Such information on feature block importance may lead to positive
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effects on the use of human, technical, and financial resources if systematically
integrated into the planning of patient treatment by excluding the acquisition of
non-informative features. Since a generalization of feature importance measures
to block importance is not trivial, this thesis also investigates and compares ap-
proaches for feature block importance rankings.

This thesis demonstrates that high-dimensional datasets from multiple data sources
in the medical domain can be successfully tackled by the presented approaches for
feature selection. Experimental evaluations demonstrate favorable properties of
both predictive performance, stability, as well as interpretability of results, which
carries a high potential for better data-driven decision support in clinical practice.
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Sammendrag

Moderne datainnsamlingsteknikker i helsevesenet genererer store datamengder fra
flere kilder, som for eksempel nye diagnose- og behandlingsmetoder. Noen konkrete
eksempler er elektroniske helsejournalsystemer, genomikk og medisinske bilder.
Slike pasientkohortdata er ofte ustrukturerte, høydimensjonale og heterogene og
hvor klassiske statistiske metoder ikke er tilstrekkelige for optimal utnyttelse av
dataene og god informasjonsbasert beslutningstaking. Derfor kan det være lovende
å analysere slike datastrukturer ved bruk av moderne maskinlæringsteknikker for
å øke forst̊aelsen av pasientenes helseproblemer og for å gi klinikerne en bedre plat-
tform for informasjonsbasert beslutningstaking. Sentrale krav til dette form̊alet
inkluderer (a) tilstrekkelig nøyaktige prediksjoner og (b) modelltolkbarhet. Å
oppn̊a begge aspektene samtidig er vanskelig, spesielt for datasett med f̊a pasienter,
noe som er vanlig for data i helsevesenet. I slike tilfeller m̊a maskinlæringsmodeller
h̊andtere matematisk underbestemte systemer og dette kan lett føre til at model-
lene overtilpasses treningsdataene. Variabelseleksjon er en viktig tilnærming for
å h̊andtere dette ved å identifisere en undergruppe av informative variabler med
hensyn til responsvariablen. Samtidig som variabelseleksjonsmetoder kan lede til
økt prediktiv ytelse, fremmes modelltolkbarhet ved å identifisere et lavt antall
relevante modellparametere. Dette kan gi bedre forst̊aelse av de underliggende
biologiske prosessene som fører til helseproblemer.

Tolkbarhet krever at variabelseleksjonen er stabil, dvs. at sm̊a endringer i dataset-
tet ikke fører til endringer i hvilke variabler som velges. Et konsept for å adressere
ustabilitet er ensemblevariableseleksjon, dvs. prosessen med å gjenta variabelselek-
sjon flere ganger p̊a en delmengde av prøvene i det originale datasett og aggregere
resultater i en metamodell. Denne avhandlingen presenterer to tilnærminger for
ensemblevariabelseleksjon, som er skreddersydd for høydimensjonale data i hel-
sevesenet: ”Repeated Elastic Net Technique for feature selection” (RENT) og
”User-Guided Bayesian Framework for feature selection” (UBayFS). Mens RENT
er datadrevet og bygger p̊a elastic net-regulariserte modeller, er UBayFS et generelt
rammeverk for ensembler som muliggjør inkludering av ekspertkunnskap i vari-
abelseleksjonsprosessen gjennom forh̊andsbestemte vekter og sidebegrensninger.
En case-studie som modellerer overlevelsen av kreftpasienter sammenligner disse
nye variabelseleksjonsmetodene og demonstrerer deres potensiale i klinisk praksis.

Utover valg av enkelte variabler gjør UBayFS det ogs̊a mulig å velge blokker
eller grupper av variabler som representerer de ulike datakildene som ble nevnt
over. Kvantifisering av viktigheten av variabelgrupper spiller en nøkkelrolle for
forst̊aelsen av hvorvidt datakildene er viktige for responsvariablen. Tilgang til
slik informasjon kan føre til at bruken av menneskelige, tekniske og økonomiske
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ressurser kan forbedres dersom informasjonen integreres systematisk i planleggin-
gen av pasientbehandlingen. Slik kan man redusere innsamling av ikke-informative
variabler. Siden generaliseringen av viktighet av variabelgrupper ikke er triviell,
undersøkes og sammenlignes ogs̊a tilnærminger for rangering av viktigheten til
disse variabelgruppene.

Denne avhandlingen viser at høydimensjonale datasett fra flere datakilder fra det
medisinske domenet effektivt kan h̊andteres ved bruk av variabelseleksjonmeto-
dene som er presentert i avhandlingen. Eksperimentene viser at disse kan ha
positiv en effekt p̊a b̊ade prediktiv ytelse, stabilitet og tolkbarhet av resultatene.
Bruken av disse variabelseleksjonsmetodene bærer et stort potensiale for bedre
datadrevet beslutningsstøtte i klinisk praksis.
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Chapter 1

Introduction

1.1 Motivation
Data science is a rapidly growing field that has spread into various application
domains within the last decades, including the medical and healthcare sector [26,
55, 65, 99]. Due to digitalization and the availability of high-end equipment, it
is possible to collect data from multiple sources and use those to make informed
decisions regarding patient diagnosis, and treatment [16, 59]. Such data sources
can be the acquisition of medical images for tumor segmentation to plan radiation
therapy, gene expression data, or basic blood values.

The application of machine learning techniques for outcome prediction and in-
terpretation of patient data carries a high potential to enhance state-of-the-art
procedures in the clinic [87]. Benefits include more precise diagnoses and decisions
via automatized analysis of large datasets and personalized disease treatment [26].
On the one hand, treatment strategies can be transferred from one patient group to
another patient group with similar clinical attributes. On the other hand, unsuc-
cessful treatment strategies could be terminated and replaced with more efficient
alternatives. Moreover, data science can help assess assumptions made by experts
in the healthcare field regarding their statistical evidence, as well as provide new
insights from detecting latent/hidden information in the data [28]. Although there
are promising examples of successful implementation of data science in the field of
healthcare, caution is required. Interpretation and use of poor models may have a
big negative impact on a patient’s treatment. A negative example is IBM’s Wat-
son supercomputer that recommended incorrect cancer treatments1. For training
the underlying model, the software relied only on synthetic cancer patients rather
than real patients. Furthermore, only a few clinicians per cancer type consult the

1https://www.statnews.com/wp-content/uploads/2018/09/
IBMs-Watson-recommended-unsafe-and-incorrect-cancer-treatments-STAT.pdf, 14.01.2023

1
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Chapter 1. Introduction

software development by giving their treatment recommendations. Overall, the
supercomputer could not represent the real world, so its recommendations were
unreliable.

The transition from acquisition to tabular data often results in high-dimensional
data, especially when parameters from images or genes are extracted. In general,
measurements are referred to as features. Features are variables that characterize
and describe a patient. Imagine a linear regression model where features define
the explanatory variables, such as a person’s height or age. Thereby, the columns
of a data matrix are features.
Features can be of various types. While many features represent dates such as
the ”date of diagnosis” or ”start of treatment”, features resulting from question-
naires are strings or categorical. Furthermore, the feature space of an object can
be high-dimensional due to modern collecting techniques. Not all measurements
are commonly conducted on each patient, leading to missing values in datasets.
Imagine two patients, where one requires surgery and the other not – all features
describing surgery or its effects are given only for one of the two patients.

Compared to the number of features, the number of patients in a study is often
small. In this thesis, we refer to such datasets as short-wide datasets (fewer samples
than features). From a mathematical perspective, datasets with a small number
of samples (patients) and a high number of features can lead to underdetermined
problems when training a machine learning model, i.e., model parameters are
not unique. Therefore, the interpretation of such a model is less reliable. As
a consequence, the application of machine learning methodology is not trivial
and needs thorough validation. Furthermore, models may suffer from the curse
of dimensionality, i.e., the higher the dimension, the harder the problem [107].
High-dimensionality in this thesis refers to underdetermined problems where the
number of features is higher than the number of samples and cannot be compared
to high-dimensionality in natural language processing or streaming data.

Many different component-based approaches, such as principal component analy-
sis, exist to cope with the high-dimensionality of healthcare datasets. Even though
the dimensionality decreases, those approaches transform the original features into
another subspace, making feature interpretation difficult. Hence, it would be ad-
vantageous to remain in the space of the original features, provided that it is
possible to remove redundant and non-informative features. If possible, feature
selection, i.e., selecting a subset of original, explanatory features or variables con-
taining relevant information from the dataset, is the better alternative to reduce
dimensionality than transformation-based methods. Smaller models are more in-
terpretable and less affected by the curse of dimensionality. With the side effect
of noise removal and variance reduction, feature selection can improve machine
learning outcome predictors in terms of performance and speed [32].

While many different feature selection approaches are available, from supervised to
semi-supervised and unsupervised, from filter to wrapper and embedded methods,
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1.2 Challenges

one important criterion is the stability of the feature selection. In this context,
stability means that when slightly changing the training data, the selected feature
set should not vary much [78]. When adding new objects to a short-wide dataset,
the selected feature set may change. Hence, two independent sample sets from
the same data distribution, where only the number of samples varies, can lead to
different results. One possible reason is collinearity between features, i.e., corre-
lations between predictor features in the dataset. Therefore we take advantage of
this by selecting features using an ensemble of feature selectors. In this way, we
can gain insight into the stability of which features are selected and which are not.
This strategy delivers a feature statistic, allowing for better stability of the feature
set. We address this issue in papers I and II of this thesis by inventing the stable
ensemble algorithms RENT [46], and UBayFS [48].
In addition, medical experts can provide prior knowledge of feature importance.
It may be advantageous to include this knowledge in addition to the data-driven
acquisition of feature selections as done in UBayFS.
Feature selection or importance ranking on multi-source data can be applied
source-wise, as well. Paper III [44] introduces different strategies to quantify the
importances of different sources in artificial neural networks.

1.2 Challenges
Training statistical machine learning models on a short-wide dataset causes math-
ematical issues when trying to invert the data matrix. The system is underde-
termined, and optimization may lead to an infinite number of optimal solutions.
Therefore, the system is unstable and neither reliable nor interpretable. Alge-
braically this can be explained by the example of ordinary least squares estimators
of a linear model [34] (without intercept)

y = Xβ + ε,

where y ∈ Rm represents the target, X ∈ Rm×n is a data matrix, β ∈ Rn the data
coefficients, and ε ∈ Rm is an error term. More information about linear models
is provided in Section 3.

Definition 1.2.1 (Rank) Let X ∈ Rm×n be a data matrix. The row and column
ranks of X are the number of linearly independent rows and columns, respectively.
The rank of X is defined as the number of linearly independent columns, i.e.,
rank(X) ≤ min(m, n).

Row- and column ranks are always equal. As a result of Definition 1.2.1, rank(X) =
rank(XT ) = rank(XT X). Furthermore, X has full rank when rank(X) =
min(m, n).

The ordinary least squares estimator for a linear model is given as

β̂ = (XT X)−1XT y,

3



Chapter 1. Introduction

where dim(XT X) = n × n. In case that m < n, XT X does not have full
rank, since rank(XT X) = rank(X) ≤ m < n. A short-wide data matrix X
resulting from real-world data with lots of numerical measurements cannot have
n − rank(X) linearly independent columns, which results in the underdetermined
system. Hence, there is no unique solution for β̂. The instability hinders reliable
interpretation of the model and the contributing features. Technically, two ways
to resolve this issue exist:

1. To increase the sample size; this is not easy as the generation of reliable
training samples is not easy. Especially in healthcare, the collection of new
patients is limited to the number of people suffering from a disease, data
protection regulations, and privacy issues.

2. To decrease the number of features with dimensionality reduction tools.

Especially in healthcare, the information to predict treatment outcomes accurately
can be distributed over multiple inhomogeneous data sources, see Figure 1.1. One
of the most common sources is clinical data, including measurements that can be
easily taken from patients, such as blood values and disease stages. Frequently,
patient histology is known, which reveals information about previous diseases and
treatments of patients.
Additionally, a huge number of features can be extracted from different medical
imaging modalities, i.e., MRI, CT, or PET images. By means of image process-
ing software, texture features can be extracted and represented as tabular data.
Quantitative features extracted from regions of interest in medical images are usu-
ally referred to as radiomics data [67,104].
It is challenging to model inhomogeneous data sources jointly — with machine
learning techniques, we aim to fill this gap.

Features can be of different types, making data sources inhomogeneous. While
gene expression data are usually numerical, different disease stages or patients’
answers to patient questionnaire evaluations can be in text format, ordinal cate-
gories, or nominal categories. When collecting dates from treatments, we face a
lot of features describing dates - from which usable features must be calculated.
Hence, different encoding strategies are necessary to make collected data suitable
for machine learning algorithms.

Another relevant issue is missing data. Not all patients receive identical treatment
or are measured with the same parameters. A person from whom no medical
images are taken has much fewer features present than a person with images. In
a perfect world with thousands of samples, we would omit the patients where any
feature is missing, but considering the fact that we have only a limited number
of patients available, this approach is not a viable option. Data imputation is
a relevant approach when considering healthcare data but must be handled with
great care, as imputation algorithms often reduce feature variances and distort the
analysis [85].
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Figure 1.1: Examples of different data sources.

When predicting a patient’s overall survival, the target function is typically cen-
sored [83]. The follow-up status of each patient is measured for a certain period
up to the maximum follow-up time. If the person dies within this period, the tar-
get has detailed information about how long the patient lived, and the patient’s
lifetime is not censored. However, if a patient is still alive after the maximum
follow-up time, the lifetime is right-censored. Nevertheless, patients can die within
the follow-up period due to other causes, such as car accidents. The lifetime of
such patients is right-censored, too, because we cannot follow up on the event of
interest (death caused by the disease) anymore [60]. Hence, premature death due
to other causes is not properly reflected in the dataset. Right censoring due to
other events is called loss-to-follow-up censoring. It is essential to consider pa-
tient censoring to adequately preprocess a dataset for ML models, which are not
targeted toward survival analysis [97].

Once the preprocessed dataset is available, it is challenging to choose an optimal
strategy for analysis. Specifically, the data interpretation is only meaningful when
we can be sure that the feature set is stable and delivers an accurate prediction of
the target function when used for an ML model [51]. Unstable feature selection can
result in the selection of irrelevant features and potentially erroneous interpreta-
tions and conclusions. Clinical experts usually know the dataset’s most important
key parameters from previous or similar analyses. Hence, combining their exper-
tise with data-driven methodology may lead to accurate and interpretable feature
selection [69].

In addition, the selection of an appropriate machine learning model is crucial.
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Healthcare data can be nonlinear [37], and often linear models are not sufficient
to cover the full complexity of the problems. Deep learning models can model
non-linear data efficiently but easily overfit when only few samples are available
for training. Furthermore, the question of data-source importance arises — do
we need all data sources, or are some redundant? This is an important issue
as healthcare systems could reduce costs by skipping unimportant measurements
for new patients knowing those sources provide non-informative data that may
not contribute positively with regard to model performance. Furthermore, expert
knowledge about feature importance is often available from previous analyses of
similar datasets and scientific literature. This information should be incorporated
into the analysis but many algorithms do not provide this option.

1.3 Research questions
This thesis aims to develop feature selection algorithms to detect and interpret the
most important key parameters in high-dimensional datasets with potential block
structures. We set a focus on healthcare datasets where the number of features
often exceeds the number of samples. Not only do we consider single feature
importances but also the importance of whole feature-blocks acquired from various
sources. To ensure reliable results, the predictive performance of machine learning
models, which relies on the selected features, has to be considered, as well. With
these challenges at hand, the thesis aims to make contributions to the following
research questions (RQs):

RQ1 How can we perform feature selection with a low number of samples in high-
dimensional datasets to support a good tradeoff between predictive perfor-
mance and model interpretation?

RQ2 How can we exploit background knowledge from experts in order to extend
the capabilities of data-driven methods to make feature selection more in-
terpretable and accurate?

RQ3 How can the concept of block methods, i.e., considering each data source as
a separate data block and considering the block structure when modeling,
deliver additional information to improve data interpretation and outcome
prediction?

Paper I [46] targets the first research question (RQ1) using a data-driven ensemble
feature selection approach. Performing feature selection on distinct subsets of the
training data delivers a statistic about selected features and feature importance.
Compared to a single feature selection model, where a feature may be selected
based on spurious correlations, ensemble models provide more stable and reliable
features, as we can build statistics such as the count of how often a feature is
selected.

The second paper [48] extends the data-driven approach by including prior knowl-
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edge directly in the feature selection process, contributing to RQ2. With the help
of Bayesian methodology, we build a model where we combine data-driven feature
selection with domain expertise.

Paper III [44] introduces different strategies for quantifying block importances in
a neural network architecture. This approach enables the importance ranking of
different data sources contributing to the model.

Paper IV [50] shows a real-world application of the invented ensemble feature
selectors on a cancer dataset. Feature selection with and without prior knowledge
is compared, and the corresponding feature sets are analyzed from a data-scientific
and clinical perspective.

1.4 Structure of the thesis
Chapter 2 describes different machine learning applications in healthcare. The spe-
cial focus lies on feature selection methodology and stability of feature selection.
Chapter 3 introduces the machine learning methodology that is used throughout
the thesis. The topics include regularization, data preprocessing, outcome predic-
tion models, and outcome prediction metrics. In Chapter 4, we present outlines
of the research papers of this thesis. Finally, Chapter 5 summarizes and discusses
methods and main results presented in this thesis. Furthermore, an outlook on
possible future work is provided.
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Chapter 2

Background

2.1 Machine learning and statistics in healthcare
The applications of machine learning algorithms in healthcare are vast, includ-
ing, amongst others, medical image analysis, decision support, and personalized
treatment.

Widely used for clinical trials, statistical hypothesis testing is the most traditional
way of using statistics in medical applications. Hypothesis testing determines
whether certain parameters are influential or whether a test group differs from a
control group based on a certain probability [82]. The Null-hypothesis, e.g., med-
ication has the same effect on the test, and the control group is tested versus an
alternative hypothesis, stating that the influence is not equal. The decision de-
pends on a significance level and the corresponding p-value. Typical tests include
versions of Student’s t-test, or analysis of variance (ANOVA). Classical statistics
and hypothesis tests cannot be necessarily applied to all types of data that are
produced today. More advanced tasks like handling a high number of input fea-
tures or the delineation of tumorous tissue require more advanced methods from
the field of machine learning.

With medical image analysis, tumor delineation of cancerous images from different
imaging techniques such as MRI, CT, or PET is done with the help of machine
learning models, including shallow learning methods, deep learning techniques, or
different thresholding strategies [12,31,79,80]. Convolutional neural networks can
detect patterns in medical images, and with enough training data, algorithms find
tumors on new images with high accuracy [64, 86, 108]. Prominent architectures
for image segmentation tasks are Ronneberger’s U-net [24], a 2D segmentation
technique, and different 3D extensions [20, 73], which can be beneficial as medi-
cal images consist of multiple slices and are hence considered 3-dimensional. The
challenges of medical image segmentation are limited annotated data, model over-
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fitting, and excessive training times [36]. For the first issue, data augmentation
and transfer learning are common approaches. It is necessary to adjust the net-
work architecture to prevent overfitting and to limit the computational complexity.
Furthermore, the target organ, i.e., the region that needs to be identified and delin-
eated, varies in size, position, and shape from patient to patient, making accurate
delineations even more challenging.

Another prominent field within medical image analysis is the extraction of radiomic
features from medical images to support informed decision-making [93, 101]. Ra-
diomics are different parameters, such as image textures, assuming that features
can quantify tumor characteristics as tumorous tissue differs from surrounding
tissue. Usually, radiomic features are high-dimensional, including, amongst oth-
ers, first-order statistics and shape-based 2D and 3D parameters [104]. As the
number of extracted radiomic features is user-defined and ranges from a few to
thousands, feature selection is essential since they are used for outcome prediction
or treatment selection [13,105].

Outcome prediction on healthcare data is another important topic. Due to the
increasing number of measurements, information from data can be extracted, and
accurate models can be trained. For example, assume we aim to predict the sur-
vival time of a patient (output) based on their clinical measurements (input).
Such models may provide valuable insight into what input features can lead to
longer survival. Underlying algorithms are linear/non-linear, adjustable for re-
gression and classification tasks, and supervised/semi-supervised or even unsu-
pervised [5, 27, 91]. Treatment outcome prediction has to be performed with low
uncertainty as wrong outputs can be fraught with consequences for patients [90].

Machine learning for personalized treatment selection is another important pillar
of healthcare data science, as it is difficult to draw general conclusions for a patient
cohort. It is an evolving field with lots of potential but also many challenges [26].
Since medication in personalized treatment is adapted to the patient, a better
effect can be reached for individuals, and the negative side effects of wrong treat-
ments can be reduced. Furthermore, offering more patient-tailored medication
might lead to cost savings and a better experimental design for new medication.
On the other hand, healthcare data are complex, non-linear and noisy, making
modeling challenging. Furthermore, there might be information leaking in the
data, which directly affects the predictive performance. Small patient cohorts and
latent variables, such as social and environmental influences, do not make person-
alized treatment decisions and the interpretation of machine learning easier. A
relevant future perspective of personalized treatment is causal inference modeling,
for example, causal Bayesian networks [8].

Targets such as overall survival or time to disease recurrence are (right-)censored,
meaning patients are not further tracked after a maximal follow-up time is reached.
Hence, the target informs us about events before the maximal follow-up time rather
than about the time after. Imagine two patients where one dies a few days after
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the maximal follow-up time, and the other is still alive after several years. From
a pure data perspective, they are handled equally even though their treatment
outcomes differ significantly. Another issue originates from patients that leave
the study such that the practitioners do not know how the disease proceeded.
Commonly such events are modeled with statistical lifetime/survival models such
as Cox-Regression [116] or Kaplan-Meier models [21].
Recently, the use of machine learning methodology for survival analysis has gained
more interest [98, 109]. The issue with high-dimensional data is present, which is
why combining survival models with feature selection is an interesting research
topic [96]. Even though survival analysis is not the focus of this thesis, research
on feature selection of high-dimensional data for survival modeling would be a
natural future research area.

2.2 Feature selection in high-dimensional datasets
Dimensionality reduction is the process of reducing the feature space of a dataset
by different algorithms or transformation approaches. Especially component-
based methods are standard linear approaches to reduce the dimensionality of
a dataset [66,94]. Component-based methods find a lot of applications in the field
of chemometrics [56]. The most basic method is Principal Component Analysis
(PCA) [2], where the dataset is represented in a vector space that is spanned by
its eigenvectors. The new features, known as components, are linear combina-
tions of the original features. PCA relies on a variance decomposition where the
amount of represented variance in the data decreases with the increasing num-
ber of components. By containing the main systematic variation in the first few
components, PCA can be considered a noise-filtering method, as the remaining
components contain mainly noise. In this way, only the first few components need
to be considered for interpretation (instead of many original features) whilst the
noise removal makes interpretation easier [14]. Being completely unsupervised,
PCA is not ideal for performing outcome prediction. In other terms, the data
dimensionality can be reduced, but a separate prediction model must be trained
on top. Principal component regression (PCR) is a well-established method that
takes this approach. First, we extract principal components with PCA and then
train a linear regression model with those components as input and the given
target as dependent variable [74]. Another supervised approach is called Partial
Least Squares Regression (PLSR) [1], where the target and the data are decom-
posed together, adjusting the model to both input and output. Unsupervised and
supervised extensions of component-based approaches for multiple data sources
exist, such as Multiple Factor Analysis (MFA) [3], Sequential and Orthogonalized
Partial Least Squares Regression (SO-PLS regression) [75], or the Response Ori-
ented Sequential Alternation (ROSA) [63]. Those methods are capable of reducing
dimensionality while accounting for block structures. Furthermore, the output can
be multivariate as well. Still, the components are combinations of the original fea-
tures. what hampers the interpretation of original features if a high number of
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variables is present in the data.

A non-linear unsupervised alternative to PCA for dimensionality reduction is
UMAP - Uniform Manifold Approximation and Projection [70], which models the
manifold with a fuzzy topological structure.

Feature selection has become a prominent research field with the aim of developing
algorithms where the number of variables can be reduced to make data interpre-
tation easier, remove noise, and make the training of machine learning algorithms
faster and more resource efficient. Different approaches can be used either to clean
the data on a low level, i.e., remove features that represent only noise and keep
the rest, or on a broad level where only the most relevant features shall be kept.
Various feature selectors exist for supervised, unsupervised, or semi-supervised
tasks [11,72,92,95]. Figure 2.1 illustrates how feature selection works intuitively.

Figure 2.1: In feature selection, the complete feature space is reduced to a smaller set of rele-
vant features. Redundant features are removed.

2.2.1 State-of-the-art feature selectors
Basically, feature selection techniques have been divided into three groups, filter,
wrapper, and embedded methods [32]. Filter approaches are independent of a ma-
chine learning algorithm. They rely on different statistical measurement criteria,
such as correlation coefficients between features, correlation coefficients between
features and targets, or mutual information metrics. Usually, the top-k features
are evaluated with the statistical criterion.
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Three established filter approaches are the Laplacian score, Fisher score, and the
minimum Redundancy Maximal Relevance criterion (mRMR).

The Laplacian score [35] relies on Laplacian eigenmaps. The main concept and
algorithm is described here - for more detailed information, see [7]. Basically,
we compute a k nearest neighbor (kNN) graph of the samples. Let si, and sj

be two samples (rows of the data matrix X), i, j ∈ {1, . . . , m}, and S ∈ Rm×m

be a weight matrix describing the local structure of the data space. If si and
sj are neighbors, then Si,j = exp(− ∥si−sj∥2

γ ), where γ is a constant; otherwise
Si,j = 0. An unweighted, binarized version of S would be equivalent to the
adjacency matrix. Furthermore,

1m =

 1
...
1

 ∈ Rm×1

D =diag(S · 1m)
L =D − S,

where D is used to center S, resulting in the graph Laplacian matrix L. We define
for feature r ∈ {1, . . . , n}, let

x̃r = xr − xT
r D1m

1T
mD1m

1m

Then the Laplacian score L is defined as

Lr = x̃T
r Lx̃r

x̃T
r Dx̃r

The Laplacian score can be used for unsupervised and supervised feature selection.
The label information can be included in the graph structure for supervised use
cases.

The Fisher score [35] is a supervised filter method for classification problems. Let
yi ∈ {1, . . . , c} denote a categorical target variable of sample i ∈ {1, . . . , m}, where
c defines the number of distinct classes. Further, let µ(r) ∈ Rc, σ(r) ∈ Rc, and
ν(r) ∈ Rc denote the mean, standard deviation, and number of samples in each
class with respect to feature r, respectively, and let µ(r) denote the mean of feature
r across all samples of the dataset. The Fisher score for feature r is then defined
as

Fr =
(
ν(r))T (

µ(r) − µ(r)1c

)2(
ν(r)

)T (
σ(r)

)2 ,

where exponents are applied element-wise to the vectors.
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The minimum Redundancy Maximal Relevance criterion (mRMR) [81] can be
used for regression and classification tasks. It relies on the concept of mutual
information I, which is defined for two random variables X1 and X2 as follows:

I(X1, X2) =
∑

x1∈S(X1)

∑
x2∈S(X2)

pX1,X2(x1, x2) · log pX1,X2(x1, x2)
pX1(x1) · pX2(x2) ,

where pX1,X2 denotes the joint density function of X1 and X2, pX1 , pX2 denote
the marginal density functions of X1, and X2, respectively, and S(.) denotes the
support of a random variable. Mutual information quantifies the amount of infor-
mation obtained about X2 through observing X1, and vice versa. If X1 and X2
are independent, the mutual information is 0.

As the name suggests, mRMR combines the maximal relevance and the minimal
redundancy criterion. Assuming that δ ⊆ {1, .., n} is a feature set, the maximal
relevance criterion aims to maximize the following expression

max
δ

I({xi, i = 1, . . . , n}, y)

Hence, the maximal relevance criterion tries to find a feature set that jointly has
the largest dependence on the target y. Unfortunately, the criterion is prone to
selecting many redundant variables. Therefore, the minimum redundancy criterion
comes into play. The minimum redundancy criterion minimizes the expression

min
δ

1
|δ|2

∑
i,j∈δ

I(xi, xj)

The mRMR criterion maximizes the difference between the maximal relevance and
the minimal redundancy criteria, i.e.,

max
δ

I({xi, i = 1, . . . , n}, y) − 1
|δ|2

∑
i,j∈δ

I(xi, xj)

Filter methods are fast compared to the wrapper and embedded approaches but
neglect performance, as no ML model is trained [32]. Wrapper techniques are
often search-based optimization algorithms like forward selection, backward elim-
ination, or genetic algorithms. Different feature sets are selected in each iteration
and evaluated via a ”fitness” function. The feature set is increased/decreased by
some criterion in the next iteration and re-validated.
For example, consider a forward selection based on a linear regression model. In
the first step, we build a linear regression model with each of the n features sepa-
rately, i.e., n models with only one covariate. The fitting of a linear model happens
under the Null-hypothesis that feature coefficients are zero. Hence, the first and
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”best” feature that is selected is the one with the smallest p-values. The evaluation
of the p-value represents the fitness function. In the second step, we fix the first
selected feature and fit n−1 models where we combine the first feature with every
other feature. Again, the feature combination with the lowest p-value is chosen.
This procedure continues until we reach the significance level.
Backward elimination with linear regression models is similar. We start with
the full feature set and recursively remove features. The genetic algorithm is a
well-established discrete optimization procedure with binary encoding, i.e., 1 if a
feature is selected and 0 if not. Hence, it can easily be used for feature selection.
A description of the genetic algorithm is provided in Paper II.
Unfortunately, wrapper approaches are hard to apply for high-dimensional datasets
as they easily overfit and are time-consuming.

A good compromise is to use embedded feature selectors, i.e., machine learning
models that integrate the feature selection directly, such as Lasso regression, elastic
net regression or decision trees, see Section 3. Extensions and combinations of the
different techniques exist. Especially filter and wrapper methods are often applied
in a combined framework. Those types are called hybrid feature selectors [39].

A term related to feature selection is feature importance ranking [38, 110]. While
feature selection reduces the total number of features, feature importance ranking
quantifies how much each feature contributes to a learning algorithm.

2.2.2 Stability in feature selection
A selected feature set is stable if minor changes in the dataset or the initialization
of the feature selection algorithm do not lead to a huge variation of the selected
features. Otherwise, we speak of an instable feature selector [51].

To compensate for the lack of stability, ensemble approaches have become of in-
terest [9, 10]. Based on the principle of ensemble learning, where we assume that
computing multiple models is better than one, the concept is transferred to feature
selection. Hence, we apply the same feature selector to either the same data with
different model initialization or to different subsets of the data. Assuming that
we have K different models, we receive a feature set δk, k = 1, . . . , K for each
model. The use of distinct algorithms is possible but not recommended for high-
dimensional datasets [89]. With multiple feature sets, we can apply a function
to δ1, . . . , δK to investigate the common information of the feature selectors. An
easy example of ensemble feature selection is counting how often each feature is
selected across all feature sets δk, i.e., the final feature set is determined as

δ⋆ =
{

i ∈ {1, . . . , n} : 1
K

|{k : i ∈ δk}| ≥ t

}
,

where t defines the threshold indicating a minimum frequency of feature i in the
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ensemble. With this counting strategy, the final feature set δ⋆ is less prone to
contain unimportant features and more stable than each individual feature selector
δk [71].

Similarity-based measures are the conventional way of measuring the stability of
feature selectors. Assuming that a dataset has n features, we perform K distinct
feature selection runs. Let Z = {δ1, . . . , δK} be the different feature sets. Further-
more, Φ is the stability function. The similarity-based stability measure is defined
as

Φsim(Z) = 1
K(K − 1)

K∑
i=1

K∑
j=1
j ̸=i

ϕ(δi, δj), (2.1)

where ϕ is a similarity measure, such as Hamming distance or the Jaccard index.
The higher Φsim(Z), the more stable is the feature selector.

Nogueira et al. [78] propose five desirable properties of a stability measure, where
the similarity-based approach does not fulfill all of them. Therefore, the authors

propose a new measure. For this purpose, we denote k̄ = 1
K

K∑
i=1

|δk| as the average

number of selected features, and fj = 1
K |{k ∈ {1, . . . , K} : j ∈ δk}| as the average

number of features sets containing feature j. Then, the proposed stability measure
ΦNog(Z) is defined as

ΦNog(Z) = 1 −

1
n

n∑
j=1

K
K−1 fj(1 − fj)

k̄
n

(
1 − k̄

n

) . (2.2)

ΦNog fulfills all desirable properties presented in [78]. A perfectly stable feature
selector has ΦNog = 1. The lower bound of ΦNog is − 1

K−1 .

2.3 Multi-source data analysis
In this thesis, multi-source data describes the same cohort of samples with multi-
ple distinct feature sets, e.g., image features, genetic features, or clinical features.
Multi-source data can be homogeneous or heterogeneous, where the feature sets
provide complementary information to characterize samples [62]. Due to the dis-
tinct perspectives from which we observe the sample cohort, we can sustain a good
understanding of the data and push machine learning models in performance.

Nevertheless, multi-source data are not trivial to model and need good prepara-
tion, data arrangement, and approaches from data scientists. In [77], the authors
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propose to split the modeling of multi-source data into three types: early, interme-
diate, and late integration methods. While in early integration, the distinct data
sources get concatenated right before modeling, late integration trains a separate
model for each source first. It combines the outputs to make a final prediction.
Intermediate models combine information from data sources at one point inside
the learning algorithm. Even though early integration by concatenating features is
the most intuitive approach and can improve outcome prediction, information may
get lost due to the different data source characteristics and scales. The variance in
each data source may be different, which may affect algorithms. Multi-source data
appear in various formats, including categorical features, text features, and image
features. Combining and scaling data can remove internal structure information,
e.g., local information on image data. Support vector machines and Lasso regular-
ized models are the most used methodologies for modeling concatenated features.
Especially as ensemble learners, regularized models can deliver stable results, also
in terms of feature selection. Group lasso is a regularized linear regression on data
with underlying group structure (i.e., sources) [25]. It incorporates a group-wise
regularization penalty in the loss function. Depending on the regularization pa-
rameters, an entire group of coefficients may become zero during optimization.
Hence, it can be a good choice for multi-source data [18].

In [62], the authors propose the efficiency of Bayesian networks and tree-based
models for multi-source data. Bayesian networks naturally model different data
structures and simultaneously include prior knowledge. Decision trees can be used
as early or late integration. They do not require data scaling or transformation as
they follow a rule-based approach. Hence, decision trees preserve the local struc-
ture of all data sources. Furthermore, kernel-based models and artificial neural
networks where data sources are modeled separately and merged in a later step
are introduced. Regularized, Bayesian and tree-based models serve as embed-
ded feature selectors, as well, making them even more valuable for multi-source
data [112].
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Chapter 3

Methods

This section addresses a general overview of the methodology used in this thesis,
including model regularization, data preprocessing, outcome prediction models,
and performance metrics. We focus on short-wide datasets.

3.1 Statistical fundamentals
As one main pillar of data science, statistics offers many useful methods that can
be applied to various use cases. We also use Bayesian statistics in this thesis,
which is why the fundamentals are described in this section as well. The two
main concepts, a) linear regression, which is the basis of many statistical modeling
approaches, and b) the foundations of Bayesian statistics, will be introduced.

Two essential terms in machine learning affecting the performance of outcome
prediction models are overfitting, and underfitting [85]. Overfitting occurs when
the model learns patterns/details in the training data that may not be relevant
or present in the testing data. When fitting the training data exactly, the model
starts incorporating noise, is poorly generalizable, and hence, becomes unreliable.
Especially when the number of covariates largely exceeds the number of samples,
the model might give a perfect fit on the training data. Still, due to almost
zero variation, the prediction of the testing data will be inaccurate. Models that
overfit have a low bias but high variance. Approaches to prevent overfitting are
regularization, feature selection, or collecting more training data.

On the other hand, a model underfits if it cannot capture the trend or the data
structure well enough. Such models have a low variance but high bias. For ex-
ample, underfitting occurs if we try to fit non-linear data with a linear model.
Underfitting can be resolved by collecting more features via feature extraction or
by using an ML algorithm that is capable of capturing the non-linear nature of
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the dataset.

To determine an appropriate machine learning model, we aim to optimize the
tradeoff between bias and variance — both should be low. An illustration of
overfitting, ideal fitting, and underfitting is shown in Figure 3.1.

Figure 3.1: Comparison of an overfitting, an underfitting, and an ideal model.

3.1.1 Linear regression
Let X ∈ Rm×n = (x1, x2, · · · , xn) be a data matrix consisting of n features
or covariates, and let y be the target. The linear regression model [34] without
intercept is given as

y = β1x1 + β2x2 + · · · + βnxn + ε = XT β + ε, (3.1)

where β = (β1, · · · , βn) are the model coefficients (feature weights in machine
learning terminology), and ε is the error term. In a linear regression model with
intercept, replace X by the design matrix X̃ = (1m, X), and β by β̃ = (β0, β).
Each linear regression model with intercept can be transferred to a linear regression
model without intercept by standardizing the data a-priori.

If X has full rank, the ordinary least squares estimate β̂ is unique and can be
computed explicitly as

β̂ = (XT X)−1XT y.

However, short-wide datasets where X does not have full rank lead to the problem
with underdetermined systems, see Section 1.3.
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A linear regression model requires some assumptions that should be checked

• Linearity: As its name says, a linear regression can only capture the linear
relationship between features and the target.

• Normal distributed error: ε must be i.i.d. normally distributed, ε ∼
i.i.d.

N (0, σ2).

• Variance homogeneity: σ2 is independent of the covariates.

Linear Regression builds the foundation for different generalized linear models,
such as logistic regression, an outcome prediction model for classification problems.

3.1.2 Logistic regression
Other than in linear regression setups, logistic regression [34] aims to model and
predict classes rather than numerical values.

Based on Equation 3.1, we need a transformation of yi, resulting in zi = g(yi)
to get P (yi = 1) for some sample i ∈ {1, . . . , m}, i.e., the probability of class 1,
when classes 0 and 1 are possible in a binary setup. In logistic regression, the
probabilities are obtained by using the sigmoid function, s.t. g(yi) = 1

1+exp (−yi) .
Hence, if

lim
yi→∞

g(yi) = 1

lim
yi→−∞

g(yi) = 0

lim
yi→0

g(yi) = 0.5

The closer the predicted value is to 1, the more likely the predicted sample belongs
to class 1. On the other hand, the closer the prediction is to 0, the more likely the
sample belongs to class 0. Maximum likelihood estimation is used to determine
the model coefficients β̂.

3.1.3 Regularization
One solution to prevent overfitting in machine learning models is regularization.
Prominent approaches include adding Ridge, Lasso, and elastic net penalty terms
to the optimization of (generalized) linear models [34]. Regularized models can
simultaneously improve the outcome prediction and remove redundant features.

Ridge regression - L2 Penalty

The Ridge regularization adds an L2 term to the optimization of β, shrinking the
coefficients towards zero. The optimal β̂ is determined as follows
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β̂Ridge = argmin
β

{
∥y − Xβ∥2

2 + λ∥β∥2
2
}

.

The parameter λ ∈ R+ controls the strength of shrinkage - the higher λ, the more
the coefficients are forced towards zero. In matrix terms, the optimal beta is given
as

β̂Ridge =
(
XT X + λIn

)−1
XT y,

where In is the (n × n) identity matrix, which makes the term
(
XT X + λIn

)
invertible, even if XT X does not have full rank. By introducing a small bias in
the coefficient estimates, their standard errors reduce; hence, the estimates are
more accurate in the case of multicollinearity than ordinary least squares [34].

Figure 3.2 illustrates how Ridge regularization affects the optimization of an un-
regularized regression model for the 2-dimensional case. Considering the term
∥y − Xβ∥2

2, the optimal β̂ is represented by a grey dot. For the optimal solution,
the model overfits maximally. Non-optimal solutions are illustrated as ellipses
around the grey dot, where the target value is constant for each contour. On
the other hand, the optimal β̂ for the penalty term λ∥β∥2

2 is in the center of the
coordinate system (blue dot), i.e., when both β1 and β2 are zero. In this case, the
model underfits maximally as there is practically no model since all coefficients
are zero. Again, non-optimal solutions are represented by circle-shaped contour
lines around the blue dot. The optimal β̂ is the red dot, where the ellipse and
the circle intersect. Hence, we determine the compromise between the two parts.
Hence, we reach a balance between over- and underfitting of the model.

min λ∥β∥2
2

min ∥y − Xβ∥2
2

min ∥y − Xβ∥2
2 + λ∥β∥2

2

β1

β2

Figure 3.2: Optimizing β̂ for the 2-dimensional case in Ridge regression setups based on [34].
All minimizations are referred to β.
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Even though the β̂ values are pushed against zero, they are most likely not exactly
zero. This scenario is tackled with Lasso regression.

Lasso regression - L1 penalty

Similar to Ridge regression, a parameter λ together with an L1 penalty term
shrinks the coefficients towards zero. The Lasso estimate is given as follows [34]:

β̂Lasso = argmin
β

{
∥y − Xβ∥2

2 + λ∥β∥1
}

,

where ∥β∥1 =
∑n

j=1 |βj | denotes the L1-norm.

Due to the L1 regularization, the circle in Figure 3.2 is exchanged with a rect-
angle, see Figure 3.3 (a). Hence, it is more likely that some estimated β̂ values
are exactly zero, offering the additional advantage of integrated feature selection
directly during the regression.

The higher λ is, the stronger the regularization affects the optimization, and the
more coefficients are set to zero. The estimation of β̂Lasso is solved using quadratic
optimization algorithms, see [34].

Comparison between Lasso and Ridge regularization

Ridge regression reduces the complexity of the model but not the number of fea-
tures. Lasso does shrinkage simultaneously with feature selection, but the feature
selection can be unstable, especially for high-dimensional datasets [113]. Imagine
two highly correlated features on which we perform feature selection. In two dif-
ferent feature selection runs, either feature can be selected randomly and without
any reason why that particular feature was preferred over the other. Hence, the
interpretation of selected features can be difficult.

In general, more options to choose the penalty are available through Lp, p ≥ 0
norms. These regularizers are called Bayes estimates and are beyond the scope of
this thesis.

Independent of the regularize, feature scaling is important to ensure that different
features are not affected differently by the penalty based on their units.

Elastic net regularization

Elastic net regression is a combination of Lasso and Ridge, that uses the advantages
of both, see Figure 3.3 (b). On the one hand, it is capable of removing unimportant
features like Lasso regression. On the other hand, it can handle multicolinearities
by shrinking all coefficients towards zero like Ridge regression. The estimate is
computed as follows:
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β1

β2

(a) Lasso.

β1

β2

(b) Elastic net.

Figure 3.3: Shapes of the penalty terms in the optimization formula for Lasso regularization
and elastic net regularization in the 2-dimensional case based on [34].

β̂elastic net = argmin
β

{
∥y − Xβ∥2

2 + λ
(
α · ∥β∥2

2 + (1 − α) · ∥β∥1
)}

,

where α ∈ [0, 1] is the parameter balancing the Ridge and Lasso terms. If α = 1,
the formula reduces to Ridge regression; for α = 0, we get the Lasso penalty. A
good tradeoff must be found for each setup individually.

3.1.4 Overview Bayesian statistics
The two pillars of statistics are a) frequentist statistics and b) Bayesian statistics.
The main difference is that from a frequentists perspective, an unknown parameter
θ is assumed to have a fixed value which is usually estimated with methods such
as maximum likelihood, or method of moments, while from a Bayesian point of
view, the unknown parameter follows a probability distribution [29]. Hence, θ can
be characterized by a full probability density function. The basics of Bayesian
statistics will be explained for a one-dimensional variable θ but is easily adapted
for a parameter vector θ.

Bayes’ theorem [29] plays a major role in Bayesian inference. To define the theo-
rem, we need to introduce the concept of conditional probability first.

Definition 3.1.1 (Conditional Probability) Let A and B be two random vari-
ables or events. The conditional probability

P (A|B) = P (A ∩ B)
P (B)

is the probability of A given that B is true. If A and B are independent, P (A∩B) =
P (A) · P (B) and hence, P (A|B) = P (A).

As an example, imagine event A represents heart attack and B, smoker and high
cholesterol. Given B, the probability of A will be higher than for people who do
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not smoke and have a low cholesterol level. Otherwise, if B represents the event
blond hair, the events A and B are independent and the probability of a heart
attack will not change if the person has blond hair or not.

For Bayes’ theorem we assume that an unknown parameter θ and some observed
data y are given. The theorem states that

P (θ|y) = P (y, θ)
P (y) = P (y|θ) · P (θ)

P (y) ∝ P (y|θ) · P (θ).

While P (y|θ) represents information from data (collected based on the true un-
derlying parameter θ), P (θ) describes the prior knowledge about θ. While in
frequentist statistics, no prior knowledge is considered, a Bayesian framework as-
sumes that we have some prior information about θ given.

Evaluating the normalization constant is necessary to explicitly calculate proba-
bilities from Bayes’ theorem. As p(y) is a high-dimensional integral

P (y) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
P (y1, y2, . . . , yn)dy1, dy2, . . . , dyn,

the computation requires computational statistics such as Monte Carlo Markov
Chain algorithms to be solved. Dependent on the problem, it can be enough to
consider that P (θ|y) ∝ P (y|θ) · P (θ), as P (y) is independent of θ and hence, only
a scaling factor.

Likelihood

To find the optimal parameter θ, frequentist statistics focuses on the optimiza-
tion of the likelihood p(y|θ), a distribution describing the data. With maximum
likelihood strategies, the optimal θ is determined by swapping the two variables
and considering p(θ|y). This strategy corresponds to a uniform (and therefore, in
most cases, non-informative) prior, in accordance with Bayes’ theorem. Here, θ
is a single numeric value when optimized. In Bayesian statistics, we combine the
likelihood distribution with a prior distribution to infer the posterior distribution
of θ, as shown in the third picture of Figure 3.4, offering more flexibility than a
single value. In this example, p(θ|y) is Beta distributed.

Prior, posterior and parameter estimation

As its name indicates, the prior distribution p(θ) models a-priori knowledge about
the underlying parameter θ. Different types of prior knowledge are available, also
for cases where nothing is known. Imagine a random person whom we want to
estimate the probability of a heart attack but no information about the person or
their lifestyle is known. To still use a Bayesian framework, non-informative priors
can be used to model the probability.
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Bayesian models often rely on the use of conjugate priors, which massively reduce
the computational burden associated with inference tasks by allowing for analytical
solutions. The defining characteristic of conjugate priors is that the posterior
distribution remains within the same distribution family as the prior [54]. In this
case, only parameter updates must be computed, but the numeric computation of
p(y) is obsolete. For example, when the likelihood is binomial, and the prior is
Beta distributed, the posterior follows a Beta distribution as well [54], see Figure
3.4.

The probability mass function of the Binomial distribution is given as follows:

P (y|θ) =
(

N

y

)
θy(1 − θ)N−y,

where N denotes the number of draws, θ ∈ Θ = [0, 1] indicates the success proba-
bility, and y is the number of successes. As a prior distribution, we assume a Beta
distribution with parameters α and β, which has the density function

P (θ) = 1
B(α, β)θα−1(1 − θ)β−1,

where B(., .) is the Beta function.

Then,

P (θ|y) = P (y|θ)P (θ)∫
Θ P (y|η)P (η)dη

=
(

N
y

)
θy(1 − θ)N−y · 1

B(α,β) θα−1(1 − θ)β−1∫ 1
0

(
N
y

)
ηy(1 − η)N−y · 1

B(α,β) ηα−1(1 − η)β−1dη

=
(

N
y

) 1
B(α,β) · θy+α−1(1 − θ)N−y+β−1

(
N
y

) 1
B(α,β) ·

∫ 1

0
ηy+α−1(1 − η)N−y+β−1dη︸ ︷︷ ︸

B(y+α,N−y+β)

= Beta(y + α, N − y + β)

Once the posterior distribution is estimated, we can compute different statistics
from the distribution of θ. A common estimate is the mean value. Also confidence
intervals are possible, as we consider a distribution and not a single value.

3.2 Data preprocessing
Data preprocessing is the most important and time-consuming work for data sci-
entists. In a perfect world, datasets have no missing data, only numeric columns
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Figure 3.4: Illustration how to combine prior and likelihood to posterior distribution (Bayesian
inference) based on [54]. In the likelihood, y defines the number of heads when throwing a
(biased) coin N times.

on the same scale and enough samples to train a machine learning model. Reality
is different, though - datasets come in various formats, including text features,
dates, or numeric and integer features, have missing data, can have duplicates
in rows and columns, outliers, or are on completely different scales. To train an
adequate model, data scientists have to prepare a dataset carefully in advance.

3.2.1 Data scaling and transformations
Data features are usually on different scales. Imagine two features x1, and x2,
where x1 ∈ [0, 1]m, and x2 ∈ [103, 104]m. Furthermore, assume that we know x1
is informative, while x2 is non-informative. Without data scaling, feature x2 might
indicate a higher influence on the machine learning model due to its absolute scale,
even though in reality the feature has no information at all. In use cases where
data is collected from different sources, preprocessing is extremely important as
different sources may have an even higher chance of being on different scales. When
bringing all features to the same scale, they have equal conditions when training
a model [85]. Another advantage of feature scaling is faster convergence for spe-
cific algorithms such as gradient descent, where the feature directly influences the
weight update, i.e., without scaling, weights of features with higher values would
update faster. Furthermore, many statistical models require scaled features, such
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as kNN-clustering, where a distance metric between features is computed, or PCA,
where feature variance plays a major role. Features with larger ranges also have
higher variances and would be prioritized in the algorithm without preprocessing.
Nevertheless, scale-invariant algorithms exits, such as tree-based methods that rely
on decision rules.

The most common scaling strategies are normalization and standardization. We
also consider Yeo-Johnson transformation in this work.

Normalization

Normalization, also known as Min-Max scaling, transforms the data to a common
range [0, 1]. A feature x is normalized with the following formula [85]:

xnorm = x − min(x)
max(x) − min(x) (3.2)

Especially in image analysis with RGB images (pixels values between 0 and 255),
normalization is a frequently used preprocessing strategy.

Standardization

With standardization we center x at mean 0 and with standard deviation 1:

xst = x − µ(x)
σ(x) ,

where µ(x) is the mean, and σ(x) is the standard deviation of x. With this
transformation, mean and standard deviation are equal to those of a standard
normal distribution, what can be advantageous when training a machine learning
model in terms of convergence and speed. Furthermore, a model with standardized
features is less prone to outliers than a model with normalized features [85].

Yeo-Johnson transformation

The Yeo-Johnson transformation [114] is an extension of the Box-Cox transforma-
tion, with the aim of stabilizing and making the data more normally distributed.
The basic Box-Cox transform for a feature x and sample i ∈ {1, . . . , m} is given
as

xbx
i =


xλ

i − 1
λ

if λ ̸= 0

ln(xi) if λ = 0,

where λ ∈ R.
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Box-Cox is only defined for positive x, i.e., features must not contain negative
values. As this is usually not the case in data analysis, a more powerful trans-
formation is needed: Yeo-Johnson offers a solution by allowing negative and zero
values. Yeo-Johnson transformation is defined by

xyj
i =



((xi + 1)λ − 1)
λ

if λ ̸= 0, xi ≥ 0

log(xi + 1) if λ = 0, xi ≥ 0

− ((−xi + 1)2−λ − 1)
2 − λ

if λ ̸= 2, xi < 0

− log(−xi + 1) if λ = 2, xi < 0.

For positive xi, Yeo-Johnson transformation is a Box-Cox transformation with
input xi + 1. Specifically, Yeo-Johnson transformation has different powers for
positive and negative values and is more flexible than Box-Cox transformation.

3.2.2 Outlier detection and handling of missing data
Outliers in datasets appear frequently [100]. Reasons may be measurement er-
rors in technical equipment, human-made errors when collecting data, or simply
samples that behave differently from the majority. Dependent on the use case, it
must be discussed whether outliers should be removed or if a model should take
them into account. Outliers can disturb the training of machine learning models
by introducing a bias. On the other hand, they may capture information from
extreme cases and help models to learn the corresponding information. We will
focus briefly on outlier removal techniques in this chapter. For one-dimensional
variables, different approaches exist. The most intuitive approach is to check the
estimated quantiles of the dataset’s distribution — a boxplot can be a useful tool
to get a quick graphical overview [100]. One-dimensional approaches determine
outliers in each feature separately. Hence, if a sample is an outlier in one of the
features, it is removed from the dataset. For high-dimensional datasets, isolation
forests and the local outlier factor algorithm are established tools [17].

Missing data imputation is another big issue related to the fact that the sample
set should not get too small by removing too much data [85]. When a feature
is not measured for a sample (e.g., no MRI measurements for a patient), the
corresponding dataset entry is denoted as missing. In datasets with thousands of
samples, those with missing values can be easily removed, and still enough data
for training remains. Otherwise, for datasets with few samples, data imputation
makes more sense. While common univariate feature imputation methods rely
on summary statistics like mean, median, and quantiles, multivariate imputing is
more challenging and has to consider more than one feature simultaneously.

In paper 4, we use the Nearest Neighbor imputation strategy [102] to compensate
for missing values. Assume that a feature is missing for a specific sample. The
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imputed value is defined as a (weighted) average of the values across its k-nearest
neighbors, with no missing value in that specific feature. The k-nearest neighbors
are determined with the Euclidean distance that can handle missing data [23].
Specifically, the metric computes the distance between all complete features, i.e.,
features where no entry is missing.

3.2.3 Data encoding
Machine learning models cannot interpret categorical features [85]. Therefore, cat-
egorical features must be encoded, i.e., converted to a numerical scale, beforehand.
The encoding strategy depends on whether the categories are ordinal or not. If
no order is given, such as the feature describing the hospital where a person is
treated, one-hot encoding is a good choice. We generate a separate column for
each unique hospital and insert a 1 at position i of hospital j if patient i is treated
in hospital j. For the other hospitals, we insert 0 at position i.

Otherwise, if a feature contains an order, we aim to retain this information when
training a model. With one-hot-encoding, any order would get lost. Ordinal en-
coding is a good way to encode a categorical feature and simultaneously preserve
the order of the feature. Imagine the feature describing a disease stage. Intuitively,
the higher the stage, the more progressed the disease and the more dangerous it is
for a patient. In this example, ordinal encoding assigns an integer to each unique
stage. The higher the stage, the higher the integer. Usually, the ”lowest” category
receives 0 or 1. The numbers are increasing monotonically. Even though ordinal
encoding preserves an order, we cannot assume that the step width between two
consecutive stages is equal. Hence, we propose a slight adaption of ordinal encod-
ing, where a feature is encoded in multiple columns, similar to one-hot encoding.
The columns represent the categories in an increasing order. Sample i gets a 1 in
column j if its category is below j or equal to j. An example is given in Table 3.1.

Table 3.1: Examples of different feature encoding strategies. Ordinal strategies assume that
the levels are ordered as follows: A < B < C < D.

feature level one-hot encoding ordinal encoding proposed encoding
A 1 0 0 0 0 1 0 0 0
B 0 1 0 0 1 1 1 0 0
C 0 0 1 0 2 1 1 1 0
D 0 0 0 1 3 1 1 1 1

3.3 Outcome prediction models
Real-world datasets can be complex, and thus, linear approaches are often in-
sufficient to achieve high predictive performance. In this section, we will briefly
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summarize the outcome prediction models used in the papers of this thesis, beyond
(generalized) linear models. In the following, we cover kNN regressors/classifiers,
decision trees, and artificial neural networks.

3.3.1 kNN regression and classification
The kNN method for regression or classification [34] is a non-linear approach
pursuing an intuitive and interpretable concept. Given a training and a testing
set, we determine the k-nearest neighbor samples Nk(si) in the training set for
each sample si in the testing set based on the Euclidean distance on the feature
space. We predict the output yi either with the average output value (regression)
or with the modal value (classification) of its k-nearest neighbors from the training
set:

ŷi =


1
k

∑
l∈Nk(si)

yl for regression

mode{yl : l ∈ Nk(si)} for classification,

where mode denotes the modal value of a given set of discrete values.

Although kNN is an efficient non-linear approach, its limitation is that it weights
all features equally when computing the neighborhood based on a Euclidean dis-
tance in the feature space. Thus, no preference is given to more informative
features, and scaling has a strong impact on the neighborhoods.

3.3.2 Decision trees
Decision trees are supervised algorithms pursuing the idea of binary decision rules.
Starting from a root node, a new sample is propagated through a tree until it
reaches a leaf node [85]. Each internal node represents a binary decision based
on thresholding a single feature, which determines whether the left or right child
node is used. Leaf nodes describe the outcome (the class for classification setups
or the numeric estimate in the case of regression). The size of the tree depends on
the number of features and some user setups.

An example of a decision tree is given in Figure 3.5, where we classify three different
animals (bird, elephant, and cat) based on key features such as the ability to fly or
weight. A new sample enters the root node, where either the left or the right child
node is selected, depending on the ability of the new animal to fly. If the right
child node is selected, another split is done based on the weight of the animal.

The advantages of tree-based methods are good interpretability and the ability
to handle categorical as well as numerical variables. Decision trees are recursive
methods, meaning that a splitting rule is applied in each internal node. Once
the tree is built, the prediction of new samples is easy by just starting at the
root and propagating downwards. A challenge when working with decision trees
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is determining which feature to use in each node, e.g., the root node. The most
common approach for the training process is to use a purity measure given by the
Gini index [84], which is related to the concept of entropy.

Figure 3.5: Exemplary decision tree example to predict classes bird, elephant, and cat.

For regression trees, other criteria based on error terms, such as the mean squared
error (MSE), are used [85].

When a tree exceeds a certain depth, i.e., a high number of internal nodes between
the root node and leaf nodes, overfitting is possible. This issue occurs frequently
if a leaf node is classified based on a low number of samples — a possible counter-
measure is pruning, i.e., restricting the depth of a tree.

Decision trees are known to be unstable as the choice of the feature for a given
node is dependent on the input samples [61]. A single-tree model can be extended
to a random forest with multiple trees, increasing the stability of the outcome pre-
diction and preventing overfitting. For random forests, multiple trees are trained
on different subsamples of the training data. The subsamples are not mutually
exclusive, i.e., a sample can appear in more than one tree. In the end, a majority
voting decides which class an object is assigned to, i.e., the class which is selected
most times among the trees wins.

3.3.3 Artificial Neural Networks
Artificial Neural Networks (ANNs) were first introduced in the 1940s [68] with the
intention of understanding the human brain. During the last decades, they have
gained attention, especially since modern hardware has sufficient computational
power to perform large-scale computations. Due to their flexibility and broad
applicability, ANNs are used in different setups, including image analysis, model-
ing sequential and time series data, or basic outcome prediction for (multi-class)
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classification and regression tasks [85]. In this thesis, we consider only the basic
structure of ANNs; extensions can be found in [4, 85].

ANNs have a complex model structure and comprise a large number of param-
eters. The basic concept behind them is the adaptive linear neuron (Adaline)
for binary classification [85], shown in Figure 3.6. The first part is similar to a
linear regression model, where features are multiplied with weights. A bias term
of 1 represents the intercept. This multiplication leads to the layer output z. In
mathematical terms

z = wT x.

On top of z, we apply an activation function φ, where we denote the activated
layer output as a = φ(z). The activation is linear in the case of Adaline, i.e.,
a(z) = z, but can be non-linear in more advanced network architectures. To
obtain the binarized output y, Adaline uses a threshold function h(.) to convert
the continuous value z, i.e.,

y = h(z) =
{

1 if z ≥ 0
−1 if z < 0

.

In Adaline, the weights w are estimated via gradient descent. Among other set-
tings, the user must define a learning rate and a loss function [40] to train the
model. Computing the error with the continuous a(z) instead of the binarized y
is more efficient and leads to faster convergence [85]. An Adaline model can be
converted to a logistic regression model by exchanging the linear activation with
a sigmoid activation and by adjusting the loss function.

1
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xn

w0

w1

w2
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h
∑
z
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Figure 3.6: Adaline classifier based on [85].

For more advanced architectures, non-linear activation functions such as tanh, relu,
or sigmoid are used to a large extent.
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A multilayer ANN is the concatenation and stacking of multiple layers of neurons,
see Figure 3.7. If the number of layers is high, we arrive at so-called deep artificial
neural network. The features x of a sample enter the network through the input
layer. The sample propagates through a network of different linear operations and
(non-)linear activations until it reaches the output layer y. Each layer contains a
bias term, denoted as b(0), b(1), b(2) in Figure 3.7. The backpropagation algorithm is
the most common approach to training ANN parameters. It relies on a composition
of the chain rule; for more details, see [85]. In general, ANNs offer a large range
of layer architectures to the user, making the model flexible.
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Figure 3.7: Multilayer perceptron model based on [85].

An efficient network architecture is beneficial for training. Even though deep
networks can incorporate non-linear relations in the data, they are prone to over-
fitting due to the high number of weight parameters that must be estimated while
training. A considerably large sample size is necessary to train a neural network
reliably. In addition, neural networks are often called ”black-box” models, mean-
ing that it is difficult to interpret them and understand the inner process of the
architecture, especially for deep ANNs.

3.4 Performance metrics
Performance metrics are tools for measuring the performance of machine learning
models. They are closely connected to loss functions, which are used during model
training [85]. Measuring the performance of a machine learning model quantifies
how well it predicts data. Furthermore, performance metrics can indicate if a
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model overfits when used together with various validation techniques.

3.4.1 Classification
Assuming a binary classification problem with a negative and a positive class,
performance measures are usually combinations of four expressions:

1. True Positive (TP): number of samples correctly predicted as positive;

2. False Positive (FP): number of samples incorrectly predicted as positive;

3. True Negative (TN): number of samples correctly predicted as negative;

4. False Negative (FN): number of samples incorrectly predicted as negative.

The most basic performance measure for classification setups is accuracy (ACC),
where we compute the percentage of correctly classified samples among all samples

ACC = TP + TN
TP + TN + FP + FN .

Even though accuracy is an intuitive metric, it is not a good choice for unbalanced
datasets. Assume a dataset where 90% of the test samples belong to the negative
and only 10% to the positive class. Even if all samples are assigned to the negative
class, the accuracy would be exactly 90% and hence, suggests that the model works
well. On the contrary, we are not able to predict the positive class at all, in this
case. Accuracy is appropriate if we do not focus on incorrect predictions but rather
on how many data samples were predicted correctly. When either class positive
or class negative is of particular interest, F1 score is the better choice. The F1
score metric is the harmonic mean between precision and recall. While precision
measures the amount of TP over all positively predicted samples, recall determines
the number of TP over all truly positive samples.

precision = TP
TP + FP (3.3)

recall = TP
TP + FN (3.4)

F1 = 2 precision · recall
precision + recall = 2TP

2TP + FP + FN (3.5)

The outcome prediction performance is considered as good if the F1 score in a
binary setup is high, no matter which of the two classes is considered the ”positive”
class. All metrics (accuracy, precision, recall, F1 score) are bounded between 0
and 1, where 0 means that all samples are incorrect and 1 represents perfect
performance.

F1 score shows two weaknesses. First, the metric is different for both classes mak-
ing interpretation not trivial, and second, it does not consider the TN samples at
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all. A solution to these issues is the usage of the Matthews Correlation Coeffi-
cient (MCC) as performance metric [19]. It is bounded between -1 and 1, where
-1 indicates total disagreement, 0 means random class assignment, and 1, perfect
prediction. The metric is a combination of all four – TP, FP, TN, and FN:

MCC = TP · TN − FP · FN√
(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

All metrics are applicable to multiclass problems by using macro-, or micro-
averaging [115].

Definition 3.4.1 Let B be an arbitrary classification metric, and c the number
of distinct classes. Then,

Bmacro =1
c

c∑
j=1

B(TPj , FPj , TNj , FNj)

Bmicro =B

 c∑
j=1

TPj ,
c∑

j=1
FPj ,

c∑
j=1

TNj ,
c∑

j=1
FNj

 ,

where TPj is the number of true positive samples for class j. The same applies to
TN, FN, and FP, correspondingly.

3.4.2 Regression
The output of a regression model is a numeric value. Hence, performance metrics
are based on distances between the output and the ground truth. The most
common metric is the mean squared error (MSE) [85]. Assuming that ŷ represents
the predictions,

MSE = 1
m

m∑
i=1

(yi − ŷi)2.

Considering the formula, the squaring has the effect of penalizing large errors more
than small errors. Intuitively, MSE shall be minimized. The smaller, the better
the model. The interpretation of MSE is difficult due to a) squared effects, and
b) it has a lower bound of 0 (perfect prediction) but no upper bound. A good
strategy to estimate model performance is to compare the MSE to the MSE of a
poor baseline model, defining an upper bound by that.

Different extensions of MSE exist with the aim of normalizing the error in some
way. One method is called root mean squared error (RMSE). As the name already
indicates, it computes the root of MSE:

RMSE =
√

MSE.
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The advantage of RMSE over MSE is that the error is on the same scale as y.
A useful adaption of RMSE is the root mean squared error inter-quantile range
(RMSEIQR) which is less sensitive to extreme values because RMSE is divided by
its inter-quantile range (IQR), which is the difference between the 75th and 25th
percentiles of the data:

IQR = Q(0.75) − Q(0.25),

where Q represents the empirical quantile function of the data.

Easier to interpret, the coefficient of determination (R2 score) [22] is defined as

R2 = 1 −

SSR︷ ︸︸ ︷
m∑

i=1
(yi − ŷi)2

m∑
i=1

(yi − ȳ)2

︸ ︷︷ ︸
SST

,

where ȳ is the mean of y. The metric has an upper bound of 1, which means perfect
prediction. R2 score computes the ratio between the residual sum of squares (SSR)
and the total sum of squares (SST).
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Paper Summaries

This thesis contains four main publications. While papers I-III provide feature
selection methodology, paper IV presents an application in the healthcare domain.

In paper I, we present a data-driven ensemble feature selection approach (RENT)
that delivers stable feature sets on high-dimensional datasets.

While RENT performed well in multiple data-driven scenarios, additional user
knowledge is often available for many datasets and could be utilized in the mod-
eling process. Thus, paper II introduces a user-guided Bayesian framework that
combines data-driven feature selection with prior information.

Paper III relates to papers I and II in terms of ranking features in block-wise
data, targeting a similar problem to feature selection. The article incorporates an
artificial neural network with block-wise input data. Using different concepts of
ranking block-feature importances, paper III additionally allows us to understand
black-box models better.

Finally, paper IV demonstrates how RENT and UBayFS can be applied to de-
termine the most important features of a dataset modeling the overall survival of
cancer patients.

4.1 Paper I
The first paper describes the repeated elastic net technique for feature selection
(RENT). The method relies on an ensemble of generalized linear models with
elastic net regularization trained on distinct subsets of the data.

Rather than evaluating a single feature selection run, the ensemble of models eval-
uated by RENT explores a summary statistic over the frequency of each feature
being selected throughout the ensembles. The empirical distribution of feature
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coefficients across elementary models gives us important feedback about its im-
portance and stability, see Figure 4.1.

Figure 4.1: RENT workflow based on [46]. First, we split the training data into distinct sub-
sets. We run a feature selection algorithm on each subset and consider the feature coefficients
from which we build an empirical distribution for each feature. Different statistics are com-
puted from this distribution.

Hence, we introduce three criteria that must be met by a feature in order to be
selected. The first criterion τ1 requires that a certain ratio of elementary models
must select a feature, i.e., the frequency throughout the ensemble is sufficiently
high. Furthermore, the stability of the sign of the feature coefficients is evaluated,
as alternating signs indicate instability (second criterion τ2). The third criterion
τ3 introduces a Student’s t-test to assess whether the feature coefficients differ
significantly from zero. It may be the case that a feature fulfills the first two
criteria but has small coefficients among the elementary models. The contribution
is still minimal, and the feature can be discarded.

Finally, we select a feature i if it exceeds pre-defined cutoff values t1, t2, t3 for all
three criteria, i.e., τ1(i) > t1, τ2(i) > t2, and τ3(i) > t3. The paper suggests
to select the cutoff criteria either via the Bayesian information criterion [76], or
through any other hyperparameter selection technique, which is up to the user.
While high cutoff values deliver a small feature set with important features, low
cutoff values can serve as a noise-removal and general cleaning of the dataset by
removing features with little or no contribution. The use of the presented criteria
makes the method stable and applicable to short-wide as well as long-thin datasets.
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Another benefit of the ensemble approach is that the user obtains a predictive per-
formance value from each elementary model on the left-out validation set. With
this information, we can detect an outlier in the data sample efficiently by control-
ling the rate of incorrect classifications throughout the ensemble. If this number
is high, the sample might be an outlier and either removed from the dataset for
subsequent analysis steps or investigated further.

In the paper, a comparison with the stability selection framework [71] and random
forests shows that RENT delivers a) a high F1-score for the predictive performance
of a model trained with the selected features and b) high stability of the selected
feature set, already for a low number of ensembles. In comparison with RENT, the
stability selection framework has high stability but a weaker performance, while
random forest delivers more accurate predictions for new samples but is unstable.

In summary, the paper illustrates that RENT is a valid and well-performing ex-
tension of the body of research on feature selection. RENT outperforms state-
of-the-art ensemble approaches regarding the tradeoff between performance and
stability.

4.2 Paper II
Paper II introduces UBayFS, a (U)ser guided (Bay)esian Framework for (F)eature
(S)election, an ensemble feature selector embedded in a Bayesian framework.
UBayFS relies on two sources of information: data and domain knowledge. Infor-
mation from data is modeled via a multinomial likelihood function. Specifically,
we build an ensemble of an arbitrary feature selector and determine the selection
frequency for each feature, similar to the approach in Paper I. A multinomial dis-
tribution describes the probability distribution of the feature selection frequency
counts of all features. Due to its generic framework, UBayFS allows any arbitrary
feature selector to be used as elementary model.

In many situations, prior knowledge about feature importance is available from
experts or prior analyses of similar data. By including relevant prior information,
UBayFS incorporates prior feature weights via a Dirichlet prior. Features with
higher prior importance get a higher weight than the remaining features. As
the Dirichlet distribution is the conjugate prior with respect to the multinomial
likelihood, the posterior distribution is of Dirichlet type, as well.

With this information, we aim to infer the underlying feature importances. In
addition, UBayFS allows for additional side constraints, such as a maximal num-
ber of features, must-link constraints, indicating which features must be selected
together, or cannot-link constraints, where at most one out of a set of features can
be selected. As an example, a cannot-link constraint is useful for highly correlated
features.

The Bayesian model and the side constraints are optimized jointly via a genetic
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algorithm [30], which returns the final feature set. Constraints may be defined
between whole data sources. Furthermore, the penalty strength of violating side
constraints is steered by a separate parameter, giving the user even more flexibility.
An illustration of UBayFS is provided in Figure 4.2.

Figure 4.2: UBayFS framework [43]. The framework combines information from data with
prior feature importance knowledge and additional side constraints.

The presented feature selection framework is flexible and can include different types
of user knowledge in the feature selection procedure. We show that incorporating
prior information in the UBayFS setup can improve the performance of an outcome
prediction model and the stability of the feature set. In addition, the use of
ensemble feature selection as likelihood ensures the stability of the selected feature
set.

UBayFS can also be used for feature-block selection and thereby represents an
alternative to group Lasso [25].

4.3 Paper III
While papers I and II propose methods to select a subset of features from the
training dataset, the approach in paper III quantifies block-feature importance as
a post-hoc step in ANNs. Therefore, paper III relates to papers I and II in the
following aspect: first, paper III particularly targets ANNs, while paper I and II
leave the choice of the predictive model open - thereby, paper III contributes to
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the understanding of feature importance in black-box models. Further, the article
explicitly ranks the feature blocks by their importance to the outcome prediction
model. Even though ANNs are state-of-the-art models in machine learning, they
are often described as ”black-box” models because of their difficult interpreta-
tion. Once enough data for training a network is available, those architectures are
promising and can easily outperform classical approaches.

Hence the presented approach is a post-processing technique where we assume
that all data are used to train the network. The article’s primary goal is to
quantify block importance, i.e., which data source contributes most, second most,
or least. Hence, we get some information from the ANN. We use a multiblock-
ANN strategy for the block-wise data, where each data block enters the network
through a separate branch. The branches are merged in a concatenation layer
where the information propagates forward until it reaches the output layer, see
Figure 4.3.

Figure 4.3: Illustration of a Multiblock Artificial Neural Network [44]. Each data source enters
the network through a separate branch. The information is merged in a concatenation layer.

We propose three distinct strategies to quantify block-feature importance. The
first strategy is the easiest and relies on summary statistics of single features.
Strategy two and three are the main contributions and are illustrated in Figure
4.4.

In the first strategy, we claim that a feature block is important if it consists of
features with high individual importance, which is measured based on variational
gradients. The block with the highest average feature importance is ranked most
important.
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(a) Strategy 2. (b) Strategy 3.

Figure 4.4: Strategies to quantify feature-block importance [44].

The second strategy considers how a block is important if it can explain a large part
of the model output on its own, which is computed based on a mutual information
criterion.

Strategy three is similar to strategy two, but in this scenario, we quantify a block
as important if its removal significantly changes the model output.

The presented architectures can be used for single-feature importance quantifica-
tion, as well, by considering each feature as a separate block. Furthermore, beyond
the paper’s content, the approach can also be used for feature selection and is es-
pecially useful for categorical features. Once a categorical feature is encoded, we
can define all encoded variables as a block and carry out the presented procedure.

Different simulation studies show that all three criteria are well-defined and rank
the features correctly.
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4.4 Paper IV
The last article puts the approaches developed in papers I and II into practice [50].
On a real-world cancer dataset, the goal is to compare how purely data-driven fea-
ture selection behaves compared to feature selection with integrated expert knowl-
edge. We show that RENT and UBayFS are able to reveal relevant information for
novel clinical insights and interpretation and hence, have the potential to impact
research in the field of healthcare.

The investigated dataset contains clinical features from patients with gastroen-
teropancreatic neuroendocrine neoplasms, a heterogeneous type of malignancy. A
neoplasm is an abnormal and excessive growth of tissue, and neuroendocrine tu-
mors are such neoplasms that affect cells in the endocrine and nervous systems.
Patients have a low survival prognosis - mostly below two years. Features from five
heterogeneous data sources are available. Those comprise patient characteristics,
baseline blood values, histology, imaging, and treatment. After preprocessing, we
obtain a total of 113 features. As this type of cancer is rare, the cohort consists of
only 63 patients, which induces an underdetermined system when training machine
learning models. In the presented paper, we determine a set of most influencing
features on the overall survival of patients. As an additional level of complexity,
the dataset consists of both, censored and uncensored samples. We use a target
transformation to avoid conflicts resulting from censored data.

Two different experiments show how RENT and UBayFS select features on this
dataset. Due to the small sample size and the desired stability analysis of the two
ensemble feature selectors, we split the data into five folds, where four folds are
used for feature selection and subsequent outcome prediction modeling, and the
remaining fold is used for testing. To measure the predictive performance of the
selected features we use a kNN, and a linear model, which are evaluated in terms
of root mean squared error. Multiple studies have shown that several features,
such as age, tumor differentiation, or the primary tumor site, impact the overall
survival of patients. The second experiment deals with the integration of those
features into UBayFS.

In experiment 1, we assume no prior knowledge about feature importances - we
compare the selected features of RENT and UBayFS by determining whether
the feature sets delivered by each method are similar, and how many of the a-
priori important features get selected. The results indicate that overall, the two
methods deliver a large overlap in their selected feature sets, out of which a high
number is also identified as important by experts. The average correlation between
selected features is below 25% for both methods, indicating that they do not select
redundant features. The stability of the selected feature sets among five folds is
slightly higher for UBayFS (≈ 0.60) compared to RENT (≈ 0.50). We show that
the predictive performance of selected features is dependent on the data fold —
as there are only 12-13 patients in each test fold, a single outlier can have a huge
impact on the performance.
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Experiment 2 demonstrates how UBayFS integrates prior knowledge into the fea-
ture selection process. Hence, we increase the prior weights of the established
features and start the feature selection. While the predictive performance is on a
similar level (slightly better) as in experiment 1, the feature set stability increases
with the height of the prior weight. Still, the average feature correlation is low.

Overall, the paper demonstrated the practical use of both feature selectors in
clinical practice and shows promising insights, which have the potential to improve
the understanding of cancer.
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Discussion & Conclusion

This thesis makes a contribution to the development of stable and interpretable fea-
ture selection algorithms for high-dimensional datasets with possible block struc-
tures. Especially the incorporation of expert knowledge into ensemble feature
selection models, together with block-structured datasets, goes beyond the capa-
bilities of state-of-the-art methodology in the area.

In this chapter, we discuss the results of this thesis in the context of the research
questions defined in Chapter 1 and present an outlook for future research.

5.1 Research Question I
The first research question deals with the problem of selecting stable and inter-
pretable features in short-wide datasets. With the results of this thesis, including
experimental results associated with RENT and UBayFS, as well as a real-world
use case on cancer data (paper IV), we can show that ensemble feature selection
is a valid and efficient approach to overcoming the challenges associated with RQ
I. We show that RENT outperforms state-of-the-art feature selectors in terms of
performance and stability in multiple scenarios. The method removes irrelevant
features and demonstrated to provide good and stable results on short-wide as
well as long-thin datasets in the experiments conducted in paper I. Furthermore,
due to its ensemble basis with underlying regularized linear models, RENT offers
a framework to analyze samples and features simultaneously, which delivers deep
insight into the datasets and helps to interpret results. Beyond feature selection,
RENT may be used to detect sample outliers in the dataset by evaluating the
average classification accuracy for each sample across elementary models (if the
probability of a sample being assigned class 1 is 0.55, it is above the threshold of
0.5 and assigned to class 1, but the decision was associated with a high level of
uncertainty). The different cutoff criteria and the possible interpretations make
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RENT a powerful extension of the established stability selection framework [71].

Some capabilities of RENT are extended by UBayFS in paper II, which can incor-
porate prior weights and constraints to improve model interpretation even more.
For instance, a dataset with a categorical feature requires encoding into multiple
binary features during preprocessing. While ordinary ensemble feature selectors
randomly select a subset of these encoded features, UBayFS can be steered via
a constraint to select all or none of the corresponding binary features. In case
a dataset contains an intrinsic block structure, e.g., from different data sources,
UBayFS can include this type of information in the model, as well.

In summary, UBayFS does not beat the predictive performance of RENT and
group Lasso in each scenario, but its increased flexibility to incorporate user in-
formation (see RQ 2) and information about the data structure in the model
facilitates interpretation and allows for a larger scope of applications compared
to state-of-the-art feature selection frameworks. Using the proposed methods, we
provide a tool for a large range of scenarios of high-dimensional feature selection.

A main limitation of the presented feature selection frameworks is the sampling
strategy of ensemble feature selectors for small sample sizes: common data-splitting
strategies are cross-validation and random sampling. Both are not ideal as the
sample size of a single ensemble model becomes even smaller, which increases
the errors of the model [106]. The problem of modeling small sample sizes has
been addressed in literature such as [52, 103]. Consequences of small datasets
are a lack of generalization (target distributions are not well represented in the
data) and difficulties in optimization (overfitting, even more, underdetermined
systems). Anyway, using a single train/test split on small datasets would lead to
non-representative results, which makes ensembles inevitable [6]. Hence, further
research is required on integrating more accurate sampling strategies into RENT
and UBayFS. For instance, an extension of RENT [111] suggests to use a bagging
and boosting strategy. Instead of computing an elastic net regularized model in
each step of the ensemble, they propose to use a boosted elastic net version in-
stead. Furthermore, a bootstrapping strategy determines subsamples to train the
ensemble models on. The authors claim that the presented extension of RENT
further improves the stability of a feature set.

Another known downside is that feature selection does not always have a unique
optimum. In some cases, pairs of features are redundant and, consequently, ex-
changeable in a final feature set. This issue has only a minor effect on predictive
performance as long as at least one optimal feature set can be found. However,
the stability and interpretability of selected feature sets by human experts are
likely to decline. In order to raise awareness of this issue, a close investigation
of the correlation structure of datasets as part of an exploratory data analysis is
recommended.

Apart from real-world redundancies between features, spurious correlations in the
feature space of a short-wide dataset are likely to occur and need to be treated
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with care. In [15], the authors show that high-dimensional datasets may contain
an arbitrary number of spurious feature correlations. The computation of corre-
lation matrices during exploratory data analysis helps to detect high correlations
between features. Nevertheless, randomly removing features because of existing
correlations with other features can be risky because context may be lost. Since
a distinction between spurious and real-world correlations is mostly infeasible in
short-wide datasets, expert information is often the only solution to this issue.
Data providers can help to determine whether correlations are spurious or not.
More research on how to efficiently handle the risk of spurious correlations based
on expert knowledge is yet required.

5.2 Research Question II
One possibility to distinguish between spurious and proper correlations in a dataset
is to use expert knowledge. Domain experts are commonly able to provide valu-
able insights into the processes underlying the collected datasets and have a good
understanding of which correlations appear on purpose and which do not. RQ II
raises the question of how to incorporate prior expert knowledge about features
into a feature selection model.

UBayFS delivers, to the best of our knowledge, unique properties in the field
of feature selection. Incorporating prior information has not yet been extensively
considered in feature selection publications. The capability to combine data-driven
methods with prior information and additional side constraints of the features
increases the scope of potential applications and allows the user to make use of all
information at hand.

By assigning prior importance weights, we steer the model towards selecting fea-
tures that optimize the utility function together with the important features. Nev-
ertheless, a separate parameter can regularize to which degree the model shall take
prior information into account when selecting features. Hence, the user can adjust
the strength of the provided prior knowledge.

The possibility of including side constraints makes UBayFS even more flexible.
We can define block structures, the maximal number of blocks or features to be
selected, or incorporate feature correlations.

In the article, we could show that the UBayFS framework delivers interpretable
and accurate results and is more flexible than other methods presented in the
literature.

Although experimentation with defining hypothetical expert knowledge is possi-
ble with UBayFS, care must be taken if such unverified expert knowledge is taken
into account to reach scientific conclusions about treatment outcomes or feature
importance. Otherwise, the risk of self-reinforcement of decisions is high. Sta-
tistically, prior weights act as a bias which may be intended if the prior weights
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are well grounded in the existing literature. However, using speculations as prior
knowledge would lead to unreliable results and may be misinterpreted by users.

Finally, a limitation of UBayFS is that its model structure is more complex com-
pared to data-driven ensemble feature selectors. Therefore, understanding how
different inputs interact when determining a final feature set requires a good model
understanding and statistical expertise.

5.3 Research Question III
Component-based models such as SO-PLS [75] and the group Lasso [25] are state-
of-the-art to model feature blocks. Even though both consider block structure in
the data, both approaches are based on linear models and cannot capture more
complex dependencies in the data.

Our proposed methods, UBayFS and the block-quantification approach presented
in paper III, give insight into block importance.

UBayFS offers block-wise constraints, e.g., the model must not select two or more
blocks simultaneously. In paper II, we use max-size constraints to limit the number
of blocks from which features are selected. This, again, demonstrates the flexibility
of UBayFS being applicable to a broad range of application scenarios. However,
UBayFS cannot be applied a posteriori, i.e., it is not able to shed light on the
dependency structure of black-box models, such as Artificial Neural Networks.
For this purpose, the methods proposed in paper III can be used.

Paper III relies on multiblock artificial neural networks, where we assume that a
network already delivers a good performance and can model complex data. Gen-
erally, ANNs can capture non-linearities and are more powerful than traditional
approaches. As every block enters the network through a separate branch, we
defined three strategies to quantify the network’s feature-block importance and
open the ”black box” of neural networks. Furthermore, the method can be used
to quantify single-feature importance, as well, by considering each feature as a
separate block.

The downside of ANNs is their need for large sample sizes. The deeper the net-
work is, the more parameters need to be estimated. Hence, for datasets with few
samples, the network overfits easily and is unreliable. Since the proposed block
ranking is applied post-hoc, however, tuning ANNs to gain a good performance is
out of the scope of this work.

When using the methods proposed in paper III, we assume that the extracted
features in each block ideally represent the information contained in the block.
Still, we do not know whether the feature extraction pipeline is optimal or leaves
options for improving the data representation, which is beyond the scope of this
thesis.
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5.4 Outlook
The broad field of feature selection in healthcare opens many future research direc-
tions. In paper IV, we presented one possible solution for censored data - anyway,
the approach might not be applicable to other datasets. Developing feature se-
lection methods for censored data is an important topic that requires even more
attention. Lifetime models are state-of-the-art in statistics but do not always sat-
isfy the requirements of predictive machine learning models. For instance, the Cox
proportional hazard model models individual risks of patients but is not suitable
for making lifetime predictions directly. Thus, results from this model cannot
be directly integrated into the proposed frameworks discussed in this thesis. An
interesting future goal would be to integrate censoring information directly into
established machine learning methods.

Regarding the methods developed within this thesis, we might consider other base-
line models for RENT instead of the generalized linear model with Lasso regular-
ization. Using algorithms that handle censored data instead might have a huge
impact, especially combined with non-linearity. Hence, research in that direction
is needed. UBayFS, on the other hand, is a general framework where adaptions
with censored feature selection algorithms could be made easily. For the feature-
block importance ranking in paper III, we aim to evaluate the method on a larger
dataset with neural networks capable of integrating censored data. Much research
is targeted to the field of ANNs in combination with lifetime models [58,117].

Another future goal is to extend this work for setups with more complex target
variables, such as multi-class, ordered categorical, or even multivariate responses.
Methodologically RENT and UBayFS are capable of modeling multi-class tar-
gets in their existing frameworks, yet implementations must be adapted for such
scenarios. On the other hand, multivariate target variables require fundamental
changes to the feature selection frameworks, for instance, by using multi-target
regression models [53]. The same holds for ordinal categorical targets, which may
be described by ordinal logistic regression models [33].

As paper IV showed interesting results based on the proposed feature selectors,
we aim to extend our research to different cancer types or even other diseases.
This gives us new insights from a clinical perspective but also to understand the
behavior of RENT and UBayFS better.

From a long-term perspective, one could focus on decision support systems, where
the developed methodology is integrated into personalized treatment planning.
A sophisticated understanding of biological processes with help of data science
is likely to lead to better prognoses for patients and may facilitate treatment in
the clinic. Ultimately, the conclusions from this thesis may contribute to the im-
provement of treatment plans for serious diseases like cancers and thereby benefit
healthcare professionals and patients.
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Mathematical notations
X ∈ Rm×n data matrix
X̃ ∈ Rm×(n+1) data matrix with intercept term
n ∈ N number of features/variables (columns of X)
m ∈ N number of samples/observations (rows of X)
y ∈ Rm target feature/variable
β ∈ Rn+1 or Rn regression parameters (with or without intercept)
ε ∈ Rm model error term
1k ∈ Rk k-dimensional vector of ones
δ ∈ {0, 1}n feature set
c ∈ N number of classes
K ∈ N number of models in an ensemble
S ⊆ Rk support of a k-dimensional probability distribution
p : S → R+ probability density function
t ∈ R threshold
λ ∈ R+, α ∈ [0, 1] regularization parameters
θ ∈ R or θ ∈ Rk general model parameter(s)

Abbreviations
MRI magnetic resonance imaging
CT computer tomography imaging
PET positron emission tomography imaging
ML machine learning
RQ research question
ANOVA analysis of variance
PCA Principal Component Analysis
PCR Principal Component Regression
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PLSR Partial Least Squares Regression
SO-PLS Sequential and Orthogonalized Partial Least Squares
ROSA Response Oriented Sequential Alternation
MFA Multiple Factor Analysis
UMAP Uniform Manifold Approximation and Projection
mRMR minimum Redundancy Maximal Relevance criterion
RENT Repeated Elastic Net Technique for Feature Selection
UBayFS User-Guided Bayesian Framework for Feature Selection
ANN Artificial Neural Network
kNN k-nearest neighbors
ACC accuracy
(R)MSE (root) mean squared error
IQR inter-quartile range
R2 coefficient of determination
MCC Matthews Correlation Coefficient
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IWANN 2005, Vilanova i la Geltrú, Barcelona, Spain, June 8-10, 2005. Pro-
ceedings 8. pp. 758–770. Springer (2005)

[108] Vivanti, R., Joskowicz, L., Lev-Cohain, N., Ephrat, A., Sosna, J.: Patient-
specific and global convolutional neural networks for robust automatic liver
tumor delineation in follow-up CT studies. Medical & biological engineering
& computing 56(9), 1699–1713 (2018)

[109] Wang, P., Li, Y., Reddy, C.K.: Machine learning for survival analysis: A
survey. ACM Computing Surveys (CSUR) 51(6), 1–36 (2019)

[110] Wojtas, M., Chen, K.: Feature importance ranking for deep learning. Ad-
vances in Neural Information Processing Systems 33, 5105–5114 (2020)

[111] Wong, L.M., Ai, Q.Y.H., Zhang, R., Mo, F., King, A.D.: Radiomics for
discrimination between early-stage nasopharyngeal carcinoma and benign
hyperplasia with stable feature selection on MRI. Cancers 14(14), 3433
(2022)

65



BIBLIOGRAPHY

[112] Wu, C., Zhou, F., Ren, J., Li, X., Jiang, Y., Ma, S.: A selective review of
multi-level omics data integration using variable selection. High-throughput
8(1), 4 (2019)

[113] Xu, H., Caramanis, C., Mannor, S.: Sparse algorithms are not stable: A
no-free-lunch theorem. IEEE transactions on pattern analysis and machine
intelligence 34(1), 187–193 (2011)

[114] Yeo, I.K., Johnson, R.A.: A new family of power transformations to improve
normality or symmetry. Biometrika 87(4), 954–959 (2000)

[115] Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. IEEE
transactions on knowledge and data engineering 26(8), 1819–1837 (2013)

[116] Zhang, Z., Reinikainen, J., Adeleke, K.A., Pieterse, M.E., Groothuis-
Oudshoorn, C.G.: Time-varying covariates and coefficients in Cox regression
models. Annals of translational medicine 6(7) (2018)

[117] Zhao, L., Feng, D.: Deep neural networks for survival analysis using pseudo
values. IEEE journal of biomedical and health informatics 24(11), 3308–3314
(2020)

66



Appendix A

Papers I & Ia

title: RENT—Repeated Elastic Net Technique for Feature Selection
authors: Anna Jenul, Stefan Schrunner, Kristian Hovde Liland,

Ulf Geir Indahl, Cecilia Marie Futsæther, Oliver Tomic
date: 11/2021
publication: IEEE Access
doi: https://doi.org/10.1109/ACCESS.2021.3126429

title: RENT: A Python Package for Repeated Elastic Net Feature
Selection

authors: Anna Jenul, Stefan Schrunner, Bao Ngoc Huynh, Oliver Tomic
date: 07/2021
publication: Journal of Open Source Software
doi: https://doi.org/10.21105/joss.03323

67

https://doi.org/10.1109/ACCESS.2021.3126429
https://doi.org/10.21105/joss.03323


Received October 17, 2021, accepted October 29, 2021, date of publication November 8, 2021, date of current version November 18, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3126429

RENT—Repeated Elastic Net Technique
for Feature Selection
ANNA JENUL , (Graduate Student Member, IEEE), STEFAN SCHRUNNER, (Member, IEEE),
KRISTIAN HOVDE LILAND , ULF GEIR INDAHL, CECILIA MARIE FUTSÆTHER,
AND OLIVER TOMIC
Faculty of Science and Technology, Norwegian University of Life Sciences, 1430 Ås, Norway

Corresponding author: Anna Jenul (anna.jenul@nmbu.no)

This work was supported by the Norwegian Cancer Society under Grant 182672-2016.

ABSTRACT Feature selection is an essential step in data science pipelines to reduce the complexity
associated with large datasets. While much research on this topic focuses on optimizing predictive per-
formance, few studies investigate stability in the context of the feature selection process. In this study,
we present the Repeated Elastic Net Technique (RENT) for Feature Selection. RENT uses an ensemble
of generalized linear models with elastic net regularization, each trained on distinct subsets of the training
data. The feature selection is based on three criteria evaluating the weight distributions of features across all
elementary models. This fact leads to the selection of features with high stability that improve the robustness
of the final model. Furthermore, unlike established feature selectors, RENT provides valuable information
for model interpretation concerning the identification of objects in the data that are difficult to predict
during training. In our experiments, we benchmark RENT against six established feature selectors on eight
multivariate datasets for binary classification and regression. In the experimental comparison, RENT shows
a well-balanced trade-off between predictive performance and stability. Finally, we underline the additional
interpretational value of RENT with an exploratory post-hoc analysis of a healthcare dataset.

INDEX TERMS Elastic net regularization, exploratory analysis, ensemble feature selection, generalized
linear models, selection stability.

I. INTRODUCTION
A predictive task involves a dataset consisting of
N -dimensional row vectors X = (xT1 , . . . , x

T
I ) ∈ RI×N and

an associated vector of target values y = (y1, . . . , yI ) ∈ TI ,
where the target space T may represent a set of classes (clas-
sification task) or a subset of the real numbers (regression
task). In this study, our focus lies on generalized linearmodels
(GLMs), which model the target as a linear combination
of the inputs with weights β ∈ RN , followed by a trans-
formation. The columns of the data matrix describe object
characteristics, denoted as features. Since data acquisition
techniques evolve steadily, situations where the number of
features N exceeds the number of objects I often occur.
In such setups, mathematical obstacles, like spurious correla-
tions and multicollinearity issues causing model overfitting,
trigger the necessity to reduce the number of features by using

The associate editor coordinating the review of this manuscript and

approving it for publication was Yi Zhang .

some feature selection approach [1]. These issues are char-
acteristic of various domains, including healthcare [2], [3],
biomedicine [4], text mining [5] and botany [6]. A successful
feature selection approach will decrease the model complex-
ity, improve the model stability and provide more useful
model interpretations.
A feature selector θF decomposes the data space into a

direct sum of selected features (V1) and non-selected features
(V2) according to the given feature set F ⊂ {1, . . . ,N },

RN
= V1 ⊕ V2, s.t.V1 ∼= R|F | and V2 ∼= RN−|F |,

and projects all objects from RN to the subspace V1, i.e.

θF : RN
→ V1, θF (x) = projV1 (x).

The goal of good feature selection is to determine the
feature set F?, which enables a predictive model to obtain the
most accurate prediction. Predictive quality ismeasured using
a metric q

(
ŷ, y
)
, such as F1 score, where ŷ, y ∈ TItest denote

the vectors containing predicted target values ŷ after feature
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selection and ground truth target values y, both referring to a
set of test data Xtest of size |Xtest| = Itest. An optimal feature
set F? is characterized by

F? = arg max
F⊂{1,...,N }

q(ŷF , y).

A taxonomy of feature selection techniques distinguishes
between filter, wrapper, and embedded approaches. Filter
approaches rank features by an importance criterion, such as
mutual information or correlation coefficients between fea-
tures and target variables. Baseline filters include the Fisher
score [7] and the Laplacian score [8] as well as algorithms
from the relief family [9]. Approaches like mRMR [10] or the
stratified feature weight method [11] aim to resolve the issue
that correlated and redundant features are not well handled
by classical filters [12]. A combination of different filter
approaches is suggested in [13]. Wrapper approaches select
features concerning their prediction performance. By training
supervised models on different subsets of the entire feature
set, the subset delivering the most accurate predictions on
a test set is chosen. This strategy often causes overfitting
issues and high computational costs [14]. Prominent wrapper
approaches are forward/backward selection, such as recursive
feature selection [15], and heuristic searches like simulated
annealing or genetic algorithms [16].
The third category of feature selection methods, embedded

feature selection, integrates the selection step directly into
the learning algorithm. A class of embedded methods, which
is particularly important in this work, comprises regulariza-
tion for GLMs: During parameter estimation, regularization
terms are added as penalties to the target function. While
the well-established LASSO [17] uses an L1 term λ1(β) =
|β| for this purpose and delivers a sparse parameter vector,
L2-regularization λ2(β) = ‖β‖2 handles multicollinearities
by pulling the L2-norm of the parameter vector β towards
zero. The effects of both regularization terms are combined
in the elastic net λenet (β) [18], defined as

λenet (β) = γ [αλ1(β)+ (1− α)λ2(β)], (1)

with parameters α ∈ [0, 1] and γ to weight the regularization
terms and to define the regularization strength, respectively.
Other representatives of embedded feature selection mod-
els are tree-based models, such as decision trees or regres-
sion trees. Ensembles of tree-based architectures are called
random forests [19]. Graph-based approaches together with
elastic net regularization further play a key role in recent
works [20]–[22], where the authors demonstrate a graph-
based structurally interacting elastic net method incorpo-
rating pairwise relationships between objects via a feature
graph, or [23], proposing a solution for `2,0-norm regularized
feature selection via linear discriminant analysis.
Most feature selection approaches suffer from the phe-

nomenon that minor changes in the random initialization
or train-test-split of the model lead to major variations in
the selected feature set—this issue is referred to as lack

of stability and is investigated in [24] and [25]. In agree-
ment with [26] and [27], the authors argue that L1 regu-
larisation on GLMs is generally unstable. They claim that
the issue can be resolved by investigating ensemble feature
selection, where θF is derived from a set of independently
trained (elementary) feature selectors θF1 , . . . , θFK , such that
θF = φ

(
θF1 , . . . , θFK

)
. The operator φ acts as a meta-model

based on information from the elementary models θFk , k =
1, . . . ,K . A basic approach is to build such a meta-model by
counting the frequency of selection for each feature across all
feature sets Fk , expressed by

F? =
{
i ∈ {1, . . . ,N } : τ1(i) =

1
K
|{k : i ∈ Fk}| ≥ t1

}
,

where t1 ∈ [0, 1] is a scalar representing a minimum selec-
tion frequency threshold. This approach assumes that each
elementary feature set Fk consists of a subset of impor-
tant features (with correspondingly higher probabilities for
being selected), and a small, random subset of unimportant
features. The final, selected feature set F? is less likely to
contain unimportant features than each of the elementary
feature sets Fk . Hence, model stability is increased as shown
by Meinshausen and Bühlmann [28], who propose such a
feature selector named stability selection. Even though the
stability selection framework is intuitive and reasonable, the
corresponding feature weights may be small—not signifi-
cantly different from zero—or have alternating signs across
the elementary models. Thus, features might be selected
although resulting in ambiguous or contradictory information
and hence, deteriorating interpretability and predictive per-
formance. This means that further insights into the predictive
power of features have to be gained from the distribution
of weights, which is not considered by Meinshausen and
Bühlmann [28].
The present work suggests the novel repeated elastic net

technique (RENT) for feature selection. RENT is based on the
idea of model ensembles discussed in [28]. Besides merely
calculating the frequency of each feature, we also focus on the
empirical distribution of the feature weights resulting from
elastic net regularized models. Thereby, we extend the model
ensemble framework to combine three rigid selection criteria:
1) how often is a feature selected?; 2) to which degree do
the feature weights alternate between positive and negative
values?; 3) are feature weights significantly different from 0?
The final feature selection of RENT consists of the features
that satisfy all three selection criteria. When required, the
RENT framework can be extended with additional custom
criteria to refine the feature selection process according to the
user’s a priori insights and requirements. By taking elastic
net regularization into account, RENT aims at optimizing
predictive performance and model stability simultaneously.
In contrast, the concept of stability selection focuses onmodel
stability as the primary target. We suggest a hyperparameter
selection procedure based on the Bayesian information cri-
terion (BIC) to balance the number of features and the pre-
dictive performance. In the experiments section, we explore
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FIGURE 1. RENT feature selection pipeline. When using other feature selection methods, the blue frame is replaced by the other feature
selectors, listed in Table 3.

and evaluate RENT extensively using real-world datasets
for both classification and regression problems. In addition,
we use the information provided by the ensemble models
for an exploratory post-hoc analysis with statistical tools,
including principal component analysis. Our implementation
(in Python code) is publicly available and published in the
Journal of Open Source Software [29].

II. REPEATED ELASTIC NET TECHNIQUE FOR FEATURE
SELECTION
In this section, we present the methodological concept of
RENT which relies on regularized logistic regression for
binary classification problems and regularized linear regres-
sion for regression problems. We introduce the idea of elas-
tic net regularization combined with repeated training of
machine learning models on unique subsets of the train-
ing data to investigate feature selection stability. Finally,
we define three quality metrics that influence the feature
selection.

A. ENSEMBLE TRAINING AND SELECTION CRITERIA
Given a set of training data Xtrain = {xi : i = 1, . . . , Itrain}
where xi denotes an object from the N -dimensional feature
space, our concept builds on sampling K unique i.i.d. (inde-
pendent and identically distributed) subsets X (k)

train ⊂ Xtrain
of size I (k)train. As shown in Fig. 1, a regularized GLM Mk is
trained on X (k)

train for each k = 1, . . .K .
The evaluation of each model Mk is performed on the

validation set X (k)
val = Xtrain\X

(k)
train (here, \ denotes the set dif-

ference operator). To further improve robustness, we include
the option to introduce more variation across the K models,
by randomly varying the number of objects drawn from X (k)

train
between the models within user-specified limits. For each
feature n in Xtrain, n = 1, . . .N , we observe the trained
weights βk,n throughout models Mk , k = 1, . . . ,K . For the
purpose of feature selection, we acquire relevant information
about the importance of feature n across all models from
βn =

(
β1,n, . . . , βK ,n

)
. All such vectors βn, n = 1, . . . ,N ,

are aggregated in a matrix B of dimension (K × N ). Since
all models comprise L1 regularization terms, the vectors of

feature weights βn are typically sparse. However, entries are
not constant due to 1) variations in the training subsets and 2)
numerical deviations in the parameter optimization. Hence,
a straightforward measure of feature relevance is the relative
frequency c(βn), counting how often a feature was selected on
average across the K models or, in other words, calculating
the relative frequency as an estimate of the probability for the
parameter of the n-th feature to be non-zero:

c(βn) =
1
K

K∑
k=1

1[βk,n 6=0]. (2)

Furthermore, we observe two other empirical summary
statistics of the feature parameter estimate distributions in
the rows of B: the feature-specific mean µ(βn) and variance
σ 2(βn) of the feature weights

µ(βn) =
1
K

K∑
k=1

βk,n, (3)

σ 2(βn) =
1

K − 1

K∑
k=1

(βk,n − µ(βn))
2. (4)

In general, we consider the n-th feature to be a candidate
for selection in RENT if

1) c(βn) is large, i.e. the feature is selected in many of the
K elastic net models;

2) the estimates in βn resulting from the K models do
not alternate much between positive and negative signs
(stability);

3) the mean of distribution resulting from theK parameter
estimates in βn is significantly non-zero.

These three simple and transparent requirements may be for-
mulated in corresponding mathematical expressions, to form
three quality metrics for assessing a feature n:

τ1(βn) = c(βn); (5)

τ2(βn) =
1
K

∣∣∣∣ K∑
k=1

sign(βk,n)

∣∣∣∣; (6)
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τ3(βn) = tK−1

 |µ(βn)|√
σ 2(βn)
K

 , (7)

where tK−1(.) denotes the cumulative distribution function of
Student’s t-distribution with K − 1 degrees of freedom.
Considering the second quality metric τ2(βn), the ideal

case for feature n would be that all weights have the same
sign—either all positive or all negative. In case of constant
signs among all weights, τ2(βn) equals τ1(βn). Though, for
a considerably large K , we should expect that at least slight
sign variations for some features may occur. τ2(βn) simply
allows the user to define a required minimum proportion of
the parameter estimates to have the same sign. The third
quality metric τ3(βn)—identifying consistently high model
parameter estimates—is chosen such that it corresponds to
the well-known statistical Student’s t-test with rejection of
the null hypothesis

H0 : µ(βn) = 0.

In case that the null hypothesis holds, the test statistic

T =
µ(βn)√
σ 2(βn)
K

will follow a Student’s t-distribution with K − 1 degrees of
freedom. The deployed term evaluates the probability of the
test statistic under the H0-distribution and thus, provides a
thresholding at the chosen level of significance.
In order to define feature selection criteria from quality

metrics τ1(βn), τ2(βn) and τ3(βn), we introduce correspond-
ing cutoff values t1, t2, t3 ∈ [0, 1]. Specifically, a feature
n ∈ F is added to the selected feature set F?, if it satisfies
all three criteria: τi ≥ ti,∀i ∈ {1, 2, 3}. Further criteria can
be included by the user if necessary. In the provided setup,
these quality metrics may be considered as hyper-parameters
of the RENTmethod, allowing the user to regulate the feature
selector, by tuning the thresholds t1, t2 and t3. The cardinality
of the selected features F? will increase, if any of these
thresholds are decreased and vice versa. All three metrics, τ1,
τ2 and τ3, are bounded by the interval [0, 1], which facilitates
the specification of appropriate thresholds. Since τ3 can be
associated with a Student’s t-test, the threshold t3 for a 5%
or 1% significance level, corresponds to the thresholds t3 =
0.95 and t3 = 0.99, respectively.

B. HYPERPARAMETER SELECTION
RENT involves hyperparameters at different stages of the
method: before training the elementary models, regulariza-
tion parameters γ and α control the restrictiveness of the
feature selection in the ensemble, followed by the parameters
t1, t2, t3 determining the final feature set. Thereby, the latter
cutoff parameters are (a) dependent on the choice of the reg-
ularization parameters, and (b) have mutual dependencies.
Hyperparameter selection is commonly performed using

an additional validation dataset or cross-validation—both
options are not optimal for RENT, since a validation subset

would reduce the number of objects in a high-dimensional
dataset even further, and cross-validation would add a
substantial computational burden to the procedure. Thus,
we deploy an alternative approach from statistical model
selection: the Bayesian information criterion (BIC) delivers a
trade-off between the information content (quantified as the
likelihood) of the model and the model complexity in terms
of the number of estimated parameters [30]. BIC is defined
as

BIC = −2 log L̂+ Itrain log ρ, (8)

where L̂ denotes the estimated likelihood of the predic-
tive model, and ρ denotes the number of estimated model
parameters. In contrast to similar information measures like
the Akaike information criterion (AIC), BIC is known for
stronger penalization of model complexity leading to a lower
number of selected features, which is favorable in the case
of RENT. By minimizing BIC, models with high information
content and low complexity are favored. In ordinary linear
regression models and other standard GLMs, the number of
estimated model parameters equals the number of variables,
i.e., features, plus one parameter for the offset β0; thus, we set
ρ = |F | + 1. The likelihood L̂ can be determined from
the distribution assumptions of the GLM model, such as the
normal distribution of errors in the ordinary least squares
regressionmodel, resulting in the sum of squared errors (SSE)
as negative log-likelihood function.
RENT uses a two-step hyperparameter estimation proce-

dure: a grid search for regularization parameters α and λ
with BIC as target function is performed on the full training
dataset first (step 1). Then, the RENT ensemble is trained
given the best regularization parameter combination. Finally,
in step 2 another grid search for cutoff parameters t1, t2, t3 is
performed using the same concept as in step 1.

C. TRAINING RUNTIME COMPLEXITY OF RENT
Since RENT is an ensemble method built on GLMs as
elementary models, the runtime complexity of RENT is
expressed as a multiple of the runtime complexity of GLMs,
denoted by OGLM . In essence, OGLM depends on the applied
type of GLM, the parameter optimization algorithm, and
the implementation. For instance, a runtime complexity of
OGLM = O(N 3

+ Itrain · N 2) is reported for Lasso by
reducing the computation to solving a least squares regression
problem [31]. Variants using iterative algorithms are rather
judged by the overall experimental runtime and the runtime
complexity per update cycle, while the number of iterations
is hard to determine a priori—such information is provided
for GLMs with elastic net regularization in [32].
Given the first variant, RENT runs an ensemble compris-

ing K independent GLMs, each trained on a number of N
features, which delivers a complexity of

O
(
KN 2
· (N + I (K )

train)
)
,

152336 VOLUME 9, 2021



A. Jenul et al.: RENT—Repeated Elastic Net Technique for Feature Selection

TABLE 1. Classification (class.) and regression (reg.) datasets used for evaluation of the feature selection methods.

where I (K )
train < Itrain denotes the sample size of each subset

during RENT training. In addition, hyper-parameter tuning
requires training c GLMs, where c is a constant given by the
number of level combinations for regularization and cutoff
parameters, resulting in

O
(
cN 2
· (N + Itrain)

)
.

In total, an upper bound to the full runtime complexity of
RENT is given by

O
(
(K + c) · N 2

· (N + Itrain)
)
. (9)

III. EXPERIMENTS
We demonstrate the potential of RENT as a feature selec-
tion method through experiments on multiple datasets. First,
we verify the overall concept in a validation study in
Section III-D. Second, we evaluate the performance of RENT
in comparison with seven feature selection methods and a
baseline elastic net regularized model, in Section III-E. Based
on one dataset, we illustrate how the stability of RENT
behaves compared to the stability of established ensem-
ble methods based on the number of unique elementary
models K ∈ N.

A. EXPERIMENTAL SETUP AND DATASETS
Experiments are conducted on multivariate datasets from
various domains, including real-world data and synthetic data
for both binary classification (class.) and regression tasks
(reg.); datasets are listed in Table 1. The size of each dataset
is denoted via the number of features (#feat) and the number
of objects (#obj) divided into train and test sets (train/test).
Train-test-splits are performed by stratified random sampling.
Further, the class balance indicates the percentage of class
representation for each classification dataset (train/test).
The broad selection of use cases, including

high-dimensional datasets, demonstrates the flexibility
and applicability of RENT. Simulated datasets (c0) and
(r0) were produced using scikit-learn [33] functions
make_classification and make_regression, respectively. For
the MNIST dataset, two binary classification problems are
defined by restricting the classes: MNISTcl1,cl2 indicates that

only instances from classes cl1 and cl2, where cl1, cl2 ∈
{0, . . . , 9}, were used, ignoring objects from other classes.
A feature selector is trained on Xtrain, then the training

data Xtrain is projected into the subspace spanned by the
selected features. This column-reduced training dataset is
denoted by X?train. In our experiments we train an unregular-
ized linear/logistic regression modelM? on X?train. Evaluation
is based on the predictive performance obtained from M? on
the previously unseen test data Xtest . It is important to note,
however, that it may be necessary to use regularization for the
modelM? to avoid overfitting, especially if the reduced X?train
has more features than objects.

B. EVALUATION METRICS
We use two different measures for quantitative evalua-
tion of the prediction performance in classification set-
tings: F1 score (F1) and Matthews correlation coefficient
(MCC) [39]. The F1 score represents the harmonic mean of
precision (PR) and recall (RC). Denoting the entries of the
confusion matrix by TP (true positive), FP (false positive),
FN (false negative), and TN (true negative), the performance
measures are defined as follows:

PR =
TP

TP+ FP
; (10)

RC =
TP

TP+ FN
; (11)

F1 = 2 ·
PR · RC
PR+ RC

; (12)

MCC =
TP · TN−FP · FN

√
P · (TP+ FN ) · (TN + FP) · N

, (13)

where P = TP + FP and N = TN + FN are the sums of
the predicted positives and negatives, respectively. Note that
F1 scores can be calculated for both class labels, depend-
ing on which class is considered as ‘‘positive’’. F1 is more
appropriate than accuracy for imbalanced class distributions
because the larger class dominates the latter. A disadvantage
of F1 is that it does not take into account TN. Therefore,
MCC provides more representative results if both classes are
equally relevant in the prediction problem and the number of
TN objects is high. F1 score, precision, and recall are bounded
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between [0, 1], where 0 represents a complete disagreement
between predicted and actual class, and 1 denotes a perfect
match. MCC is bounded between [−1, 1], where −1 denotes
that all objects are classified incorrectly, 0 indicates complete
randomness, and 1 denotes correct classification of each
object, respectively.
For regression problems, we evaluate the root mean

squared error of prediction (RMSEP) on the test dataset Xtest
with cardinality Itest , defined as

RMSEP =

√√√√ 1
Itest

Itest∑
i=1

(yi − ŷi)2, (14)

and the coefficient of determination (R2) [40]

R2 = 1−

Itest∑
i=1

(yi − ŷi)2

Itest∑
i=1

(yi − ȳ)2
, (15)

where yi represents the true output of object xi, ŷi represents
the prediction of yi and ȳ represents themean of the outputs yi,
i ∈ {1, . . . , Itest }. While RMSEP is always non-negative we
seek its minimization. R2 on the other hand may take negative
values but has an upper bound of 1 (associated with perfect
predictions) and we therefore seek its maximization.
Besides predictive performance, selection stability is

assessed using a measure suggested in [24] evaluating the
different outcomes of multiple feature selection runs in a
combinatorial way. Specifically, the suggested measure com-
putes a ratio between the sample variance of observed feature
frequencies and the theoretical variance, given that the feature
selector is stable (null hypothesis). The authors clarify that
their measure fulfills five consistency criteria and is asymp-
totically bounded by the interval [0, 1], where 1 denotes
optimal stability. Their concept of measuring feature selec-
tion stability by aggregating multiple independently trained
models underlines the relevance of our ensemble approach
and supports the idea to achieve stability by combining K
independent feature selection model runs.

C. RENT HYPERPARAMETER SELECTION
In Section II-B we introduce hyperparameter selection for
both the elastic net modeling and the three cutoff parameters
based on the BIC. More precisely, we evaluate the elastic
net hyperparameter combinations of γ ∈ {1e−2, 1e−1, 1}
and α ∈ {0, 0.1, 0.25, 0.5, 0.75, 0.9, 1}. To find the best
combination concerning BIC, we train a single logistic/linear
regressionmodel with each pairwise combination of hyperpa-
rameters γ and α on the training dataset. After determining
optimal elastic net parameters γ and α for a given dataset
in Table 1, all ensemble models M1, . . . ,MK in RENT are
trained with these parameters. Once all K models are fitted
on their respective training subsets X (k)

train, we select the cutoff
hyperparameters t1, t2 and t3 with BIC, in the same way as
for the elastic net hyperparameter search. For this purpose

FIGURE 2. Comparison of RENT with different hyperparameter setups
(elastic net regularization and cutoff) for dataset c0 to varying numbers of
ensemble models K . Each setup is evaluated in 30 independent runs. The
plot shows mean values (bold line) and empirical 2.5% (lower line) and
97.5% (upper line) quantiles.

we perform a grid search on t1 ∈ [0.2, 1] with stepsize 0.05,
t2 within the same range and t3 ∈ {0.9, 0.95, 0.975, 0.99},
representing different significance levels in the t-test. A com-
parison of three different hyperparameter settings based on
the lowest, median, and highest BIC values is shown for
dataset c0 in Fig. 2 for a varying number of elementary mod-
els K ∈ {5, 10, 50, 100, 300, 500}. For each hyperparameter
setting (t1, t2, t3) leading to the lowest, median and highest
BIC, respectively, 30 independent runs of RENT are carried
out. Each run is conducted on the same training dataset but
with a distinct (random) model weight initialization. Per-
formance is measured via the MCC; runtimes are given in
seconds and refer to one single run for each method. Across
all 30 independent runs, the mean is calculated together with
the empirical 2.5% and 97.5% quantiles (corresponding to a
two-sided 5% confidence interval) for stability, performance,
and runtime, respectively.
We can observe that, as expected, the setup of RENT with

optimal hyperparameters (lowest BIC) outperforms those set-
tings with median and highest BIC and achieves the highest
stability. Especially RENT based on hyperparameter settings
(t1, t2, t3) with the highest BIC is unstable, even though the
performance remains in an acceptable range. Regarding run-
time, it takes about 600 seconds for RENT with median BIC
to run a single model forK = 500, which is much longer than
for the other two settings. A reason for this might be a harder
optimization task for specific hyperparameter combinations
where it takes more steps for the logistic regression model to
converge.
In summary, we observe the following behavior of RENT

with lowest BIC at an increasing number of models K :
• on average, good MCC and stability are achieved simul-
taneously, even with low K ;

• as expected, stability increases significantly from
0.75 for K = 5, saturating at a value close to 1;

• average MCC shows little change from K = 100
to K = 500;
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TABLE 2. Prediction results per dataset of the validation study (MCC for
c0-c5, R2 for r0 and r1) showing the total number of features, the number
of features selected with RENT (1), and the performance metrics. The
column RENT gives the MCC/R2 of a predictive model trained after
feature selection. a≥0.99.

• runtime increases linearly with the number of trained
models.

Hence, our results support the analysis in [4] that repeated
use of regularized elastic net models is useful to achieve
stable and reproducible results, while keeping the predictive
performance at a high level. Our observations further indi-
cate, that no major benefit can be achieved by increasing
the number of models to more than approximately 100 with
respect to the observed metrics on the given dataset. There-
fore, K = 100 seems to be a valid default regarding the trade-
off between stability and time for the datasets used in this
study. If computation time is critical, the user may set K to
a lower number but needs to consider that the distribution of
the weights may be insufficiently covered and that this may
have an impact on the stability of feature selection.
Alternatively, instead of using BIC, the user may set hyper-

parameters γ and αmanually or use cross-validation to obtain
a customized trade-off between predictive performance, sta-
bility, and the number of selected features. Note that this
approach may be more subjective and that the computa-
tional cost can be higher than using BIC, especially if cross-
validation is used.

D. VALIDATION STUDY OF FEATURES SELECTED WITH
RENT
To demonstrate the validity of features selected with RENT,
we apply two validation study setups (VS1) and (VS2).
In (VS1) we draw random features, while in (VS2) we
randomly permute labels of the test dataset. In both cases,
we build logistic regression models, predict on an unseen test
dataset and compareMCC scores to predictions based on fea-
tures selected by RENT. The comparisons are performed via
one-sided Student’s t-tests where the null hypotheses claim
that theMCC of RENT is lower or equal to the averageMCCs
obtained from (VS1) or (VS2), respectively. For regression
datasets, the analog procedure is applied using R2 as a qual-
ity metric. Both tests are conducted at a significance level
of 0.05.
(VS1) Compare a number of ` ∈ N randomly selected fea-

ture sets, representing inefficient feature selections,

FIGURE 3. Empirical distributions of MCC scores in studies (VS1) and
(VS2) on dataset c3 represent the validation study’s results. The red line
indicates the MCC based on RENT features.

to the features selected by RENT. The steps of the
procedure are:
a) sample ` independent, random feature subsets

from Xtrain, containing 1 features each, where 1
corresponds to the number of features selected by
the RENT approach

b) train a new model for each of the ` feature sets by
restricting Xtrain to those features

c) predict the labels of Xtest with each of the ` mod-
els and compute MCCs

d) perform a Student’s t-test, assuming as null
hypothesis that the MCC value obtained from
RENT is drawn from the same distribution

(VS2) Compare the predictive performance of a model
based on features selected with RENT on the real
Xtest labels, to the predictive performance of ` ran-
domly permuted labels of Xtest . The steps of the
procedure are:
a) train a model on Xtrain with the features selected

with RENT
b) randomly permute ytest `−times and compute the

average MCC over the ` permutations
c) perform a Student’s t-test, assuming as null

hypothesis that the MCC value obtained from
RENT is drawn from the same distribution

Performance results from (VS1) and (VS2) provide a reli-
able indicator of whether models based on features selected
by RENT perform better than models based on randomness.
Table 2 shows the average MCC of (VS1) and (VS2) in the
columnsMCC/R2. All corresponding p-values from the Stu-
dent’s t-tests are significantly lower than 0.05, mostly below
1e−15, where ` equals 100. Since the standard deviation of
the mean decreases with the sample size, a higher explanatory
power of the Student’s t-tests can be achieved by setting ` to
a larger value. However, the runtime increases linearly in `.
The estimated densities of (VS1) and (VS2) for the Breast
cancer Wisconsin dataset (c3) are plotted in Fig. 3.
In general, these two validation studies are not limited to

RENT and may be applied to other feature selection methods
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FIGURE 4. Visualization of features selected by RENT for the MNIST
datasets c1 (class 0 versus class 1) and c2 (class 4 versus class 9) from the
28 × 28 images of the numbers. Selected features are colored in white.

andmetrics, as well. Overall, the null hypotheses in both VS1
and VS2 were rejected for all datasets, indicating that RENT
performs significantly better than models based on random-
ness as described in the validation approaches. The experi-
mental results in Table 2 show that (VS2) is close to zero
across all datasets, as onewould expect from the experimental
setup. (VS1) performance is similar to the performance of
RENT models for datasets c1. This fact may be explained by
the individual information content of each feature: especially
two-class subsets extracted fromMNIST contain manymutu-
ally or highly correlated features. Therefore, many different
feature combinations lead to good predictions.
RENT results for MNIST (datasets c1 and c2) are visu-

alized in Fig. 4. We observe that 1) different features are
relevant for distinguishing the class pairs 0-1 and 4-9 and 2).
features relevant for 0-1 are typically located in the center of
the image, whereas those relevant for 4-9 are more distributed
across the image. Overall, distinguishing between 4 and 9
is more complex. Therefore, the number of selected fea-
tures is much higher in this case than when classifying the
numbers 0 and 1.

E. COMPARISON OF RENT WITH ESTABLISHED FEATURE
SELECTORS
The validation study in Section III-D showed that RENT is a
valid feature selection approach for all datasets used in this
study. Hence, we compare RENT to the methods listed in
Table 3 as follows: 1) seven established feature selectors
applied to classification datasets; 2) five feature selectors
applied to regression datasets; 3) a baseline logistic/linear
regression modelM◦ with elastic net regularization [17]. For
each feature selector, software implementations are publicly
available. To compare RENT to traditional filter methods,
we consider the Laplacian score (L-score) [8], Fisher score
(F-score) [7], mRMR [10], and a representative of the relief
family, reliefF [41]. Specifically, we select the top fea-
tures according to the scores provided by each filter method.
Further, we study the behavior of recursive feature elimi-
nation (RFE) [15] representing a wrapper based approach.
Finally, our comparison also involves two prototypes of

TABLE 3. Established feature selection techniques representing
benchmarks for the experimental evaluation of RENT.

state-of-the-art ensemble feature selectors: stability selection
(StabSel) [28] and the random forest [42], which can be used
for both classification (RFC) and regression (RFR) problems.
In contrast to other methods, RENT and M◦ share the

advantage that the user does not have to specify the size
of the selected feature set as input. Instead, the number of
selected features is indirectly controlled via the elastic net
regularization parameters γ and α. Similarly, for StabSel the
exact number may be specified optionally. Otherwise, it is
determined indirectly by a cutoff and an upper bound per-
family error rate (PFER) [43]. For fair performance compar-
ison of the remaining investigated methods, the size of the
selected feature set is set to the number of features returned
by RENT, denoted as 1.
For StabSel, we perform a 5-fold cross-validated grid

search to estimate adequate parameter settings. The elemen-
tary feature selection method is the logistic regression model
with L1 regularization; the number of models equals K .
Furthermore, we perform a grid search for stability selection
on the interval [0.6, 0.9] for the cutoff value and [0.05, 0.95]
for the PFER value, with a 0.05 step size each. In our study,
the random forest serves as a filter, delivering a ranking of
the features. The features with the highest ranks are selected
and used as input for M? where the number of the selected
features corresponds to the number of features1 selected by
RENT. To fit the random forest model, we set the number of
unique trees to K . Other parameters are set to the defaults.
Computations are performed on standardized train datasets.
All model parameters used for the established methods, such
as the neighborhood graph construction in L-score or the step
size in RFE, are set to the default values, except for c4 and
c5, where the step size is increased to 100 in order to obtain
results in a moderate runtime. The regularization parameters
γ and α for M◦ are set to those used for RENT. The results
for all datasets and methods are provided in Table 4 for binary
classification datasets and in Table 5 for regression datasets.1

For classification problems, the results achieved with
RENT feature selection are competitive with the best results
of the other methods, yielding better or equally high F1 scores
for predicting class 0 in five out of six datasets. For c0,
the performance is only 0.01% below the top value of 0.75.

1The GitHub repository https://github.com/annajenul/RENT_
article_results stores example code to reproduce the results.
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TABLE 4. F1 scores and MCC results for classification datasets. a ≥ 0.99, b returned error.

TABLE 5. RMSEP and R2 results for regression datasets.

Also, for class 1, RENT achieves the highest performance
for four out of six datasets. For dataset c5 the performance
is close to the best F1 score. MCC, which is more robust
than the F1 score for unbalanced class settings, is highest for
five out of six datasets with RENT feature selection. For c5,
M◦ has a higher MCC, but with a much higher number of
features (593 features) than RENT (16 features). With the
regression datasets, RENT achieves a performance superior
to StabSel, RFR, L-score, mRMR, and RFE and competitive
performance toM◦ for both measures, RMSEP and R2.
In many cases,M◦ is not able to restrict the number of fea-

tures as efficiently as RENT. Using the same regularization
parameters as for RENT,M◦ selects the following number of
features: 290 (c1) vs. 37 for RENT and 593 (c5) vs. 16 for
RENT, respectively (see Table 2).
Overall, StabSel achieves good results for all datasets

underlining themerits of ensemble feature selection concepts.
Note that no results could be obtained for dataset c3 since
no feature reached a sufficient selection frequency across all
models. The random forest yields competitive results for most
datasets in classification (RFC) setups but performs notice-
ably worse in regression (RFR) setups. L-score and mRMR
appear to provide weak performance scores compared to their
competing feature selectors. For L-score, the low scores can
be explained by its unsupervised setup, which makes it harder

to relate the model to any target variable. With mRMR, espe-
cially the performances for c1, c2, and c4 are weak. For c1
and c4 this weakness can partly be attributed to the available
implementation, which produced an error for these datasets
(denoted with superscript b in Table 4). On the other hand,
F-score performs well, especially for predicting class 0. The
reliefF method achieves good results for c5 but is among the
poorest feature selectors for c0, c1, c2 and c3. Neither F-score
nor reliefF are applicable to regression problems using the
available implementations. Dataset c4 is of particular interest
since opposite behavior can be observed among the feature
selectors. RENT, StabSel, RFC, and F-score perform well
when predicting class 0, whereas the other methods achieve
higher scores for class 1. Hence, we assume that the features
selected from c4 introduce a bias towards class 0 or class 1,
respectively. In terms of MCC, which accounts for both
classes in parallel, the best results are achieved by RENT,
StabSel, RFC, and F-score.
Fig. 5 depicts the experimental results for comparing the

ensemble feature selectors with varying K , given the same
setup as Fig. 2. While RFC achieves a similar performance as
RENT, it is the most unstable ensemble approach for lower
number of trees K . Even for high K , RFC never achieves
the same stability as RENT and StabSel. Furthermore, RFC
has the highest variance in MCC. On the other hand, StabSel
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FIGURE 5. Comparison of stability, performance, and runtime of three
ensemble based feature selectors, where K is the number of elementary
models in RENT.

reaches higher stability but lower MCC scores than its com-
petitors between K = 50 and K = 100. The provided
stability analysis underlines the strong properties of RENT,
compared to random forests, which are known to be unstable
in multiple scenarios [47].
Regarding the computational costs2 of the ensemble fea-

ture selectors in our study, Fig. 5 demonstrates that the run-
time increases linearly in K for all methods. RENT takes
longer to compute which might be caused by the fact that
the implementation does not yet exploit the full potential for
runtime optimization and different implementations and pro-
gramming languages were used for elementary operations.

IV. EXPLORATORY POST-HOC ANALYSIS
As an ensemble model approach, RENT offers additional
information that can be integrated into exploratory post-hoc
analyses. The two post-hoc analyses presented in this section
give the user tools to 1) further investigate objects in the
dataset and identify which of those are difficult to predict
and which not; 2) exploit this information in a principal
component analysis model trained on the selected features to
understand why some objects are difficult to predict.

A. ANALYSIS OF TRAINING OBJECTS
Based on the ensemble of elementary models in RENT,
it is possible to compute summary statistics on a single-
object level. Such information may contribute to improved
interpretability of the model in general and single objects
in the data in particular. For this purpose, we analyze the
predictions of individual objects across all models Mk , k =
1, . . . ,K . For binary classification problems, we observe the
distribution of correct and incorrect classifications of single
objects in X kval , and thereby gain insights into the consistency
of assigning an object to its true class. From a statistical
perspective, this means that we can identify objects with
deviating properties belonging to the same class based on
the information whether the label of an object is difficult to
predict or not. For regression problems, we similarly use the

2All results were acquired by running R 4.1.1 and Python 3.8.10 on a
Windows 10machine with a 4-core Intel i5 CPU 1.8 GHz and 512 GBRAM.

TABLE 6. In-depth analysis of predictions for four patients from the
Breast cancer Wisconsin dataset (dataset c3), see Fig. 6. # val set denotes
how often the object was part of a validation set (between 1 and
K = 100), true class is the true class, # incorrect describes how often the
object was incorrectly predicted and % incorrect is the corresponding
percentage.

mean absolute errors. Below, we will exemplify the proposed
post-hoc analysis for dataset c3.
Given an object xi ∈ X kval , the logistic regression model

Mk outputs a class probability ŷi of xi being assigned class 1
(ProbC1). Among theK models built within RENT,we obtain
a ProbC1 value each time an object xi appears in X kval , k =
1, . . . ,K . Aggregating this information by object, we can
derive statistics and describe the distribution of the ProbC1s
for each object xi ∈ X kval by a histogram, as shown in Fig. 6.
These results are generated from dataset c3 (Breast cancer
Wisconsin), where we denote a single object in the dataset as
a cancer patient. Incorrect predictions provide evidence for
patients that are hard to classify or show different character-
istics compared to patients from the same class that are easy to
classify. We observe that patient 3 belongs to class 0 and that
the predicted probabilities of patient 3 are consistently below
0.5, which is the standard decision boundary for logistic
regression models. In other words, patient 3 is predicted cor-
rectly every time she is part of X kval . Patient 6 belongs to class
0; however, the predicted probabilities are consistently above
0.5, meaning that her class label is always mispredicted. For
patients 78 and 102 we observe probabilities both above and
below 0.5, indicating that the class predictions of these two
patients are rather uncertain, however, to a different degree.
Fig. 6 reflects the detailed information provided in Table 6.
With a % incorrect of 54.2%, the class predictions for

patient 102 are extremely unstable among the 24 models,
where this patient was part of the validation set. This type
of information on prediction stability may provide a good
starting point for detailed studies on how a hard-to-classify
object differs from objects that are consistently assigned to
the correct class. Thus, it could be of high relevance, inter
alia for medical experts, who may identify patients with
deviating data characteristics. These difficulties may arise
from dominating phenomena in the measured features or
measurement errors.
In this way, ensemble based approaches such as RENT

allow in-depth analysis of the distribution of class probabili-
ties rather than restricting to single class predictions.

B. PRINCIPAL COMPONENT ANALYSIS (PCA) ON
SELECTED FEATURES
By a PCA [48] of X?train, we can obtain a better understanding
of the properties of objects and their relation to the features
selected by RENT. Note, that unlike in machine learning,
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FIGURE 6. Distribution of the class probability ŷi of xi being assigned class 1 (ProbC1s) for objects (patients) 3, 6, 78, and 102 estimated
by K different models of RENT. The first axis shows the ProbC1s, the second axis shows the absolute frequencies.

FIGURE 7. PCA scores and correlation loadings of the Breast cancer Wisconsin dataset after RENT feature selection. The scores in Fig. 7a
and 7b provide an overview of how the objects are distributed in the subspace spanned by components 1 and 2. The correlation loadings
in Fig. 7c indicate how the selected features contribute to the variance explained by components 1 and 2.

where PCA is often only used for feature extraction, visu-
alization (plotting) of PCA scores, PCA loadings, and PCA
correlation loadings [49] may be efficient for the purpose of
model interpretation. Fig. 7a and Fig. 7b show the scores3

3The calculations rely on the PCA implementation provided in the Python
package ‘‘hoggorm’’ package [50].

of the first two principal components (comp 1 and comp 2)
applied to the Breast cancer Wisconsin dataset, but with hues
based on different information acquired from the ensemble.
Every data point in the scores plot represents one object
in the data or specifically to this dataset, one patient. The
first two principal components explain 92.1% of the total
variance in the data that are contained in the selected features.
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The remaining 7.9% are explained by the remaining principal
components. In particular, Fig. 7a shows how the objects are
distributed in the sub-space spanned by components 1 and 2.
The two classes are well separated, with the objects of class 1
(circles) on the left side of the plot and class 0 (triangles) on
the right side. Using results from RENT, the information in
this plot may be further enhanced by coloring each object by
its true class (class 0 - green triangles; class 1 - red circles)
graded according to % incorrect in Table 6. Higher color
saturation refers to a higher percentage of incorrect label
predictions—suggesting that the object shows an anomalous
behavior, which the model cannot sufficiently cover. In this
example, objects with ambiguous classes accumulate in the
middle area, most of them are close to the intuitive decision
boundary. Fig. 7b shows the same scores as seen in Fig. 7a.
However, the objects are colored by their average ProbC1 (the
average probability of an object belonging to class 1). Again,
objects with either a very high or a low value cluster on the
right and the left-hand side, respectively. Objects—which we
know are difficult to classify—with scores for comp 1 ranging
between −0.5 and 1 are located in the center of the image.
PCA can also be performed on each class separately, to inves-
tigate within-class variations, as shown in extensive Jupyter
notebook examples in the RENT GitHub repository.
In addition to the PCA scores, the correlation loadings

plot is shown in Fig. 7c, where every point represents one
feature in the plane spanned by comp 1 and comp 2. The
correlation loadings plot encodes 1) the level of contribution
of the selected features to each of the components 1 and 2, and
2) how much of the variance in each feature is explained by
the two components. The further away a correlation loading
is located from the origin, the higher the amount of explained
variance for the feature it represents. The inner and outer cir-
cles represent 50% and 100% of explained variances, respec-
tively. Among the four selected features, feature 8, 21 and
28 contribute most to the first component that separates the
two classes. It is also evident that these three features are
highly correlated, as they are located so close to each other in
Fig. 7c. Moreover, they are close to the outer ring, meaning
that comp 1 explains nearly 100% of the variance in those
features. Feature 22 contributes to both components 1 and 2,
but is the feature that contributes most to component 2.
By superimposing the scores onto the correlation loadings
plots, we can gather information on how the scores and
features are interrelated. Features 8, 21 and 28 and objects of
class 0 are in the same regions (right side)—indicating that
objects of class 0 have high values for these features, while
objects of class 1 on the opposite side (left side) have low
values for those features
The above examples of post-hoc analysis illustrate how

combining ensemble information with exploratory analysis
by PCA, can provide deeper insight into the data.

V. DISCUSSION
In summary, RENT performs well on all experimental
datasets presented in this study when compared to the other

feature selection methods. In particular, a good trade-off
between predictive performance and selection stability is
achieved. We observe that 1) RENT is consistently among
the best performing methods, 2) if outperformed by oth-
ers, the difference in performance is mostly negligible, and
3) the often lower number of features selected by RENT
is a clear benefit. RENT does not fail for any of the pre-
sented datasets, whereas other methods show weaknesses
on at least one dataset, with regard to either a very large
number of selected features or poor predictive quality. In par-
ticular, RENT consistently performs well, whether the data
are long-thin—many objects compared to the number of
features—or short-wide—relatively few objects compared to
the number of features. The initial intention of RENT was to
target short-wide datasets, which are particularly challenging
when it comes to feature selection. In the presented evalua-
tions, datasets c4 (Dexter text classification), c5 (OVA Lung),
and r1 (Milk proteins) clearly fall into this category.
In addition to competitive performance, the number of fea-

tures selected by RENT for the studied datasets is comparably
low, which is a strength of RENT in terms of interpretabil-
ity of results. Furthermore, the object-wise visualization
demonstrated in Section IV-A can provide previously unseen
insights into the properties of the dataset, which may be
particularly relevant for medical applications, but also for
many other applications in general.
Robustness with regard to noisy data is another strength of

RENT, which can be achieved by the extensive use of drawing
subsamples from the training set. Particularly the baseline
model M◦, which is used as a benchmark in the experiments
and achieves high performance on multiple datasets, is sus-
ceptible to poor initializations and hence, potentially less reli-
able for the selection of features. Although computationally
more intensive than the comparing methods, RENT is less
susceptible to poor initializations or convergence issues of
optimization routines compared to other approaches.
In total, RENT has five model parameters to adjust by

the user: two account for regularization intensity (γ and α)
and three cutoffs control the strictness of feature selection
(t1, t2 and t3). Both sets of hyperparameters are related,
since a softer regularization allows a larger number of fea-
tures, requiring higher cutoffs (and vice versa). Based on the
presented parameter selection procedure using BIC, feature
selectors which deliver a low number of features are favored
in both stages.
In the current formulation, RENT is applicable for binary

classification and regression problems. As introduced in [51],
multiclass feature selection is not trivial and will be part of
further research. However, a multiclass classification prob-
lem can be split into several binary problems, using schemes
such as one-vs-one (OVO), one-vs-all (OVA), or error-
correcting output coding (ECOC), as described in [52].

VI. CONCLUSION
In this work, we presented a feature selection technique for
binary classification and regression problems. The algorithm
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builds on the idea of training multiple elastic net regular-
ized models on unique training data subsets. In particular,
we define feature importance criteria based on the empiri-
cal distribution of feature-wise model weights. Features are
selected if their associated weights are regularly assigned
high non-zero values with stable signs across the individual
models of the ensemble.
We provided experiments on datasets from different dis-

ciplines, demonstrating that RENT is effective with respect
to quantitative performance measures and interpretability and
robustness. For the presented setups, the stability is very high
even with a moderate number of ensemble models and in
five out of six binary classification datasets, RENT achieves
the highest MCC scores compared to the established fea-
ture selectors used in this study. For the regression datasets,
RENT performed better or almost equal to the competing
approaches. Further, we showed how to utilize information
from the ensemble of models in a post-hoc analysis, advanc-
ing single-object interpretability.
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Summary

Due to modern data acquisition techniques, the number of generated features in measurement
data keeps increasing. This increase can make the analysis with standard machine learning
methods difficult because of underdetermined systems where the dimensionality of the fea-
ture space (number of features) exceeds the dimensionality of the object space (number of
observations). A concrete example of such a situation is data acquisition in the healthcare
domain, where the number of patients (observations) suffering from a specific condition may
be relatively low, but a lot of measurements (number of features) are generated for each
patient to acquire a good understanding of the patient’s health. A very common challenge
is that not all features in a high dimensional space are equally important for predictive tasks
— many might even be redundant. Feature selection deals with finding the most relevant
features of a dataset. With help of appropriate methodology, feature selection can reduce (a)
the complexity of and (b) noise in the dataset. More importantly, data interpretation of the
model becomes easier with fewer features, which is of great importance within domains such
as healthcare. Even though feature selection is a well-established research topic, relatively few
approaches are focusing on the stability of the selection. The important question at hand is:
can we trust that the selected features are really valid or is their selection very dependent on
which observations are included in the data? Providing information on the stability of feature
selection is vital, especially in wide data sets where the number of features can be many times
higher than the number of observations. Here, the inclusion or exclusion of a few observations
can have a high impact on which features may be selected.

Statement of Need

To get an understanding of which features are important and how stable the selection of
each feature in the dataset is, a user-friendly software package is needed for this purpose.
The RENT package, implementing the feature selection method of the same name (Jenul et
al., 2021), provides this information through an easy-to-use interface. The package includes
functionalities for binary classification and regression problems. RENT is based on an ensemble
of elastic net regularized models, which are trained on randomly, iid subsets of the rows
of the full training data. Along with selecting informative features, the method provides
information on model performance, selection stability, as well as interpretability. Compared
to established feature selection packages available in R and Python, such as Rdimtools
(You, 2020) implementing Laplacian and Fisher scores or the scikit-learn feature selection
module (Pedregosa et al., 2011) implementing recursive feature elimination and sequential
feature selection, RENT creates a deeper understanding of the data by utilizing information
acquired through the ensemble. This aspect is realized through tools for post hoc data
analysis, visualization, and feature selection validation provided with the package, along with
an efficient and user-friendly implementation of the main methodology.

Jenul et al., (2021). RENT: A Python Package for Repeated Elastic Net Feature Selection. Journal of Open Source Software, 6(63), 3323.
https://doi.org/10.21105/joss.03323
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Concept and Structure of RENT

At its core, RENT trains K independent elastic net regularized models on distinct subsets of
the training dataset. Each subset is generated using the scikit-learn function train_test_s
plit() which delivers an iid sample from the full training dataset. The sampling processes
of different subsets are mutually independent, with the condition that a single data point can
appear at most once in each subset. A data point, however, can appear in multiple subsets.
The framework is demonstrated in Figure 1.

Figure 1: Summary of RENT method (Jenul et al., 2021).

Based on three statistical cutoff criteria τ1, τ2 and τ3, relevant features are selected. While τ1

counts how often each feature was selected over K models, τ2 quantifies the stability of the
feature weights — a feature where the K weight signs alternate between positive and negative
is less stable than a feature where all weights are of a constant sign. The third criterion τ3

deploys a Student’s t-test to judge whether feature weights are significantly different from zero.
The presented implementation builds on an abstract class RENT_Base with a general skeleton
for feature selection and post hoc analysis. Two inherited classes, RENT_Classification and
RENT_Regression, offer target-specific methods. The constructor of RENT_Base initializes
the different user-specific parameters such as the dataset, elastic net regularization parameters,
or the number of models K. After training, feature selection is conducted by use of the cutoff
criteria. Deeper insights are provided by a matrix containing the cutoff criteria values of each
feature, as well as a matrix comprising raw model weights of each feature throughout the K
elementary model. For initial analysis of the results, the package delivers multiple plotting
functions, such as a barplot of τ1. Additionally, two validation studies are implemented:
first, a model based on random feature selection is trained, while second, a model based on
randomly permuted labels of the test dataset is obtained. Results of both validation models
are compared to a model built with RENT features using Student’s t-tests as well as empirical
densities.
In addition to feature selection, RENT offers a detailed summary of prediction accuracies for
the training objects. For each training object, this information can be visualized as histograms
of class probabilities for classification problems or histograms of mean absolute errors for
regression problems, respectively. For extended analysis, principal component analysis reveals
properties of training objects and their relation to features selected by RENT. For computation
and visualization of principal components, RENT uses functionality from the hoggorm and
hoggormplot packages (Tomic et al., 2019).

Ongoing Research and Dissemination

The manuscript RENT - Repeated Elastic Net Technique for Feature Selection is currently
under review. Further, the method and the package are used in different master thesis projects
at the Norwegian University of Life Sciences, mainly in the field of healthcare data analysis.

Jenul et al., (2021). RENT: A Python Package for Repeated Elastic Net Feature Selection. Journal of Open Source Software, 6(63), 3323.
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Abstract
Feature selection reduces the complexity of high-dimensional datasets and helps to gain 
insights into systematic variation in the data. These aspects are essential in domains that 
rely on model interpretability, such as life sciences. We propose a (U)ser-Guided (Bay)
esian Framework for (F)eature (S)election, UBayFS, an ensemble feature selection tech-
nique embedded in a Bayesian statistical framework. Our generic approach considers two 
sources of information: data and domain knowledge. From data, we build an ensemble of 
feature selectors, described by a multinomial likelihood model. Using domain knowledge, 
the user guides UBayFS by weighting features and penalizing feature blocks or combina-
tions, implemented via a Dirichlet-type prior distribution. Hence, the framework combines 
three main aspects: ensemble feature selection, expert knowledge, and side constraints. Our 
experiments demonstrate that UBayFS (a) allows for a balanced trade-off between user 
knowledge and data observations and (b) achieves accurate and robust results.
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1 Introduction

Feature selection pursues two major goals: to improve the performance of predictive 
algorithms like classification, regression, or clustering models as well as to improve data 
understanding and interpretability. Both aspects are of significant interest in the field of life 
science, such as healthcare, where major decisions may be based on data analysis. Here, 
two sources of information are often available: large-scale collections of data from mul-
tiple sources and profound knowledge from domain experts. Previous works tend to han-
dle these sources as opposites, see Cheng et al. (2006), or neglect expert knowledge com-
pletely, see Pozzoli (2020). However, a combination of both can be valuable to compensate 
for underdetermined problem setups from high-dimensional datasets, which are prevalent 
in healthcare data analysis. Moreover, meta-information on the feature set may leverage 
interpretability. Works such as Liu and Zhang (2015) consider constraints between sam-
ples but neglect constraints between features. The extension of L1 regularization to the 
so-called Group Lasso (Yuan & Lin , 2006) and its variants (Ida et al. , 2019) account for 
block structure but cannot handle more complex constraint types. Elementary approaches 
to integrating user knowledge and feature selection include Guan Guan et al. (2009), who 
suggest manually adding user-defined features to the feature selection output of algorithms. 
A more advanced model by Brahim and Limam (2014) embeds prior knowledge into three 
particular feature selection algorithms. Though, their work neither allows a direct generali-
zation to other feature selectors nor the integration of more general types of prior knowl-
edge, such as side constraints. Hence, there is a lack of general and sophisticated frame-
works for feature selection that combine data-driven methods with user knowledge and 
deliver transparent results.

Apart from measuring predictive model performance, properties like stability and 
reproducibility of the feature selector are essential for transparency. A model-independent 
approach for improving feature selection stability is to deploy ensembles of elementary 
feature selectors. Recent research by Bose (2021), and Jenul (2021) pursued this idea by 
utilizing sub-sampling strategies to generate model ensembles as such provide feature sta-
bility measures aside from good predictive performance. Seijo-Pardo et al. (2017) conclude 
that meta-models composed of elementary feature selectors improve the performance and 
robustness of the selected feature set in many cases. However, to the best of our knowledge, 
probabilistic approaches that exploit both — a sound statistical framework and individual 
model benefits of using an ensemble elementary feature selectors — are not yet available.

A prominent framework with the capability to combine data and expert knowledge 
is Bayesian statistics, which has been applied for feature selection in linear models, see 
O’Hara and Sillanpää (2009). Intentions behind the usage of Bayesian methodology vary 
significantly between authors and do not necessarily involve expert knowledge. Examples 
include Dalton (2013), who investigates sparsity priors, and Goldstein et al. (2020), who 
suggest a Bayesian framework to quantify the level of uncertainty in the underlying feature 
selection model. Other Bayesian approaches for feature selection include Saon and Pad-
manabhan (2001), and Lyle et al. (2020), but these works do not investigate the usage of 
expert knowledge as prior. Although the availability of expert knowledge plays a role in life 
sciences, none of these approaches strongly emphasizes domain knowledge about features, 
nor do they involve specific prior constraints defined by the user.

In this work, we propose a novel Bayesian approach to feature selection that incorpo-
rates expert knowledge and maintains considerable model generality. We aim to fill the 
gap between data-driven feature selection on one side and purely expert-focused feature 
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selection on the other side. Our presented probabilistic approach, UBayFS, combines a 
generic ensemble feature selection framework with the exploitation of domain knowledge. 
Hence, it supports interpretability and improves the stability of the results. For this pur-
pose, feature importance votes from independent elementary feature selectors are merged 
with constraints and feature weights specified by the expert. Constraints may be of a gen-
eral type, such as selecting a maximum number of features or blocks of features. Both 
inputs, likelihood and prior, are aggregated in a sound statistical framework, producing a 
posterior probability distribution over all possible feature sets. We use a Genetic Algorithm 
for discrete optimization to efficiently optimize the posterior feature set in high-dimen-
sional datasets. In an extensive experimental evaluation, we analyze UBayFS in a variety 
of model setups involving prior knowledge and constraints. Results on open-source data-
sets are benchmarked against state-of-the-art feature selectors in terms of predictive perfor-
mance and stability, underlining the potential of UBayFS.

Notations  We will denote vectors by bold, uncapitalized, and matrices by bold, capital-
ized letters. Non-bold, uncapitalized letters indicate scalars or functions, and non-bold, 
capitalized letters indicate sets or constants. ‖.‖1 denotes the L1-norm. [N] is an abbrevia-
tion of the set of indices 1,… ,N . The N-dimensional vector of ones will be written as 1N . 
Furthermore, we refer to sets of features by their feature indices, such as S ⊆ [N] , or by a 

binary membership vector �S ∈ {0, 1}N with components (�S)n =
{

1 if n ∈ S,

0 otherwise.

2  User‑guided ensemble feature selector

Given a finite set of N features, the goal of UBayFS is to find an optimal subset of fea-
ture indices S⋆ ⊂ [N] , or, equivalently, �⋆ = �S⋆ ∈ {0, 1}N . We assume that information is 
available from 

1. Training data to collect evidence by conventional data-driven feature selectors—we 
denote this as information from data y,

2. The user’s domain knowledge encoded as subjective beliefs � ∈ ℝN about the impor-
tance of features, where 𝛼n > 0 for all n ∈ [N] , and

3. Side constraints, given as inequality system A� ≤ b , to ensure that the obtained feature 
set conforms with practical requirements and restrictions.

UBayFS assumes a feature importance vector � ∈ [0, 1]N , ‖�‖1 = 1 , which is probabilis-
tic and not directly observable, such that evidence about � is collected from data y and 
prior weights � . Our model aims to maximize the accumulated importances �T� of the 
selected features subject to side constraints A� ≤ b . More specifically, we maximize the 
utility function

where �(�) is a non-negative scalar function which penalizes the degree of violation of the 
constraints. The precise form of �(.) will be given later. Clearly, we require that �(�) = 0 , if 
A� ≤ b is satisfied. In Eq. 1, 𝜆 > 0 plays the role of a Lagrange parameter, ��(�) increases 
the amount of penalization imposed on a feature set violating the constraints. In terms of 
statistical decision theory, a Bayes decision should maximize the posterior expected utility

(1)U(�,�) = �T� − 𝜆𝜅(�), 𝜆 > 0,
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We denote the optimal feature set according to Eq. 2 by �⋆ . The importance parameter � is 
inferred from data from elementary feature selectors trained on subsets of the dataset, sum-
marized as y , as well as prior feature importance scores � . Thus, the posterior probability 
distribution of � given observations y , p(�|y) , is decomposed using Bayes’ theorem into

where p(y|�) describes the model likelihood (evidence from elementary feature selector 
model) and p(�) describes the density of a prior distribution (user domain knowledge).

The remainder of this Section focuses on determining the missing model components to 
define the problem stated in Eq. (2), comprising (a) the feature importances � , discussed in 
Sect. 2.1 and 2.2, and (b) the function � , discussed in Sect. 2.3. Finally, Sect. 2.4 suggests 
the discrete optimization procedure to solve Eq. (2).

2.1  Ensemble feature selection as likelihood

To collect information about feature importances from the given dataset, we train an ensem-
ble of M elementary feature selectors of the same model type on distinct training subsets. 
The selection of a feature index set �(m) comprising a constant number of l = ‖�(m)‖1 fea-
tures in each elementary model m out of a total of M models can be interpreted as a result 
of drawing l balls from an urn, where each ball has a distinct color representing one feature 
n ∈ [N] . Over all elementary models, y collects the counts of each feature being selected, 
resulting in a count vector in

Each elementary feature selector delivers a proposal for an optimal feature set. Thus, we 
let the frequency of drawing a feature throughout �(1),… , �(M) represent its importance 
by defining the latent importance parameter vector � ∈ [0, 1]N , ‖�‖1 = 1 , as the success 
probabilities of sampling each feature in an individual urn draw. In a statistical sense, we 
interpret the result from each elementary feature selector as realization from a multinomial 
distribution with parameters � and l.1 This multinomial setup delivers the likelihood p(y|�) 
as joint probability density

where fmult(�
(m);�, l) denotes the density of a multinomial distribution with success prob-

abilities � and a number of l urn draws. Relevant notations are summarized in Table 1.

(2)��|y[U(�,�(y))] = �T��|y[�(y)] − ��(�) ⟶ max
�∈{0,1}N

.

(3)p(�|y) ∝ p(y|�) ⋅ p(�),

(4)y =

M∑
m=1

�(m) ∈ {0,… ,M}N .

(5)p(y|�) =
M∏

m=1

fmult(�
(m);�, l),

1 The exact way to describe this procedure is a multivariate hypergeometric distribution, since each feature 
occurs at most once in a set, but an approximation using the multinomial distribution facilitates computa-
tion.
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2.2  Expert knowledge as prior weights

To constitute the prior distribution, UBayFS uses expert knowledge as a-priori weights of 
features. Since the domain of the distribution of feature importances � is defined to be a 
simplex � ∈ Θ ⊂ [0, 1]N , ‖�‖1 = 1 , the Dirichlet distribution is a natural choice as prior 
distribution, which is widely used in data science problems, such as Nakajima et al. (2014). 
Thus, we initially assume that a-priori

where fDir(�;�) denotes the density of the Dirichlet distribution with positive 
� = (�1,… , �N) . Since the Dirichlet distribution is a conjugate prior of the multinomial 
distribution, the posterior distribution results in a Dirichlet type, again, see DeGroot 
(2005). Thus, it holds for the posterior density that

where the parameter update is obtained in closed form by

In case of integer-valued prior weights � , they may be interpreted as pseudo-counts in the 
context of modelling success probabilities in an urn model—comparable to the informa-
tion gained if the corresponding counts were observed in a multinomial data sample. In 
UBayFS, we obtain � as feature weights provided by the user. If no user knowledge is 
available, the least informative choice is to specify uniform counts with a small positive 
value, such as �unif = 0.01 ⋅ 1N.

2.2.1  Generalized Dirichlet model

Even though the presented Dirichlet-multinomial model is a popular choice due to its 
favorable statistical properties, it implicitly assumes that classes (in our case, features) are 
mutually independent. However, high-dimensional datasets frequently involve complex 
correlation structures between the features. To account for this aspect, we generalize the 
setup by replacing the Dirichlet prior distribution with some generalized Dirichlet distribu-
tion. The highest level of generalization is achieved by Hankin (2010), who introduced the 
hyperdirichlet distribution, which may take arbitrary covariance structures into account. 
The hyperdirichlet distribution maintains the conjugate prior property with respect to the 
multinomial likelihood, and thus, inference is tractable; however, the analytical expres-
sion of the expected value involves the intractable normalization constant and, as a result, 

(6)p(�) = fDir(�;�),

(7)p(�|y) ∝ fDir(�;�
◦),

(8)�◦ = � + y.

Table 1  Notations for likelihood 
parameters

Input and elementary models

n ∈ [N] Feature indices
m ∈ [M] Elementary models
� ∈ {0, 1}N Feature index set
� ∈ Θ ⊂ [0, 1]N Feature importances
y ∈ {0,… ,M}N Feature counts
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requires numerical means such as Monte-Carlo Markov Chain (MCMC) methods, which 
may face computational challenges due to the high dimensionality of the problem.

A compromise between the complexity of the problem and the flexibility of the covari-
ance structure is given by an earlier version of the generalized Dirichlet distribution by 
Wong (1998), which is a special case of the hyperdirichlet setup, but more general than the 
standard Dirichlet distribution. In addition to the properties of the hyperdirichlet distribu-
tion, the expected value of the generalized Dirichlet distribution can be directly evaluated 
from the distribution parameters. Section 3 provides an experimental evaluation of the pro-
posed variants to account for covariance structures in the UBayFS model.2

2.3  Side constraints as regularization

Practical setups may require that a selected feature set fulfills certain consistency require-
ments. These may involve a maximum number of selected features, a low mutual correla-
tion between features, or a block-wise selection of features. UBayFS enables the feature 
selection model to account for such requirements via a function � , which incorporates a 
system of K inequalities restricting the feature set � , A� − b ≤ 0 , where A ∈ ℝK×N and 
b ∈ ℝK . Each single constraint k ∈ [K] can be evaluated via an inadmissibility function 
�k(.) , such that

 where a(k) is the k-th row vector of A and b(k) the k-th element of b . UBayFS generalizes 
the setup by relaxing the constraints: in case that a feature set � violates a constraint, it 
shall be assigned a higher penalty rather than being excluded completely. This effect is 
achieved by replacing �k(.) with a relaxed inadmissibility function �k,�(.) based on a logistic 
function with relaxation parameter � ∈ ℝ+ ∪ {∞}:

 with �k,� = exp
(
−�

((
a(k)

)T
� − b(k)

))
 . Fig. 1 illustrates that a large parameter � ⟶ ∞ 

lets the inadmissibility converge pointwise towards the associated hard constraint. A low � 
changes the shape of the penalization to an almost constant function in a local neighbor-
hood around the decision boundary, such that only a minor difference is made between fea-
ture sets that fulfill and those that violate a constraint.3

Finally, the joint inadmissibility function �(.) aggregates information from all constraints

(9)�k(�) =

{
0 if

(
a(k)

)T
� − b(k) ≤ 0

1 otherwise,

(10)𝜅k,𝜌(�) =

⎧
⎪⎨⎪⎩

0 if
�
a(k)

�T
� ≤ b(k)

1 if
�
a(k)

�T
� > b(k) ∧ 𝜌 = ∞

1−𝜉k,𝜌

1+𝜉k,𝜌
otherwise,

(11)�(�) = 1 −

K∏
k=1

(
1 − �k,�(�)

)
,

2 Details on the generalized prior distributions are provided in Appendix A.
3 for a proof see Appendix A
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which originates from the idea that � = 1 (maximum penalization) if at least one �k,� = 1 , 
while � = 0 (no penalization) if all �k,� = 0.

Note that different relaxation parameters may be used to prioritize the constraints among 
each other, hence � involves a parameter vector � = (�1,… , �K) . Notations related to prior 
parameters and constraints are summarized in Table 2.

2.3.1  Feature decorrelation constraints

Commonly, feature sets with low mutual correlations are preferred since they tend to 
contain less redundant information. A special case of prior constraints can be defined to 
enforce that such feature sets are selected. We will refer to such constraints as decorrelation 
constraints. Decorrelation constraints are pairwise cannot-link constraints between highly 
correlated features, i.e., features i and j with a correlation coefficient �i,j exceeding a prede-
fined absolute threshold |𝜏i,j| > 𝜏 . For each such pair i, j ∈ [N], i ≠ j , a constraint is added 
to the constraint system as follows: the vector a with elements

and an element b = 1 are appended to A and b , respectively. We set the shape parameter � 
to the odds ratio of the absolute correlation coefficient �i,j , given as

(12)an =

{
1 if n ∈ {i, j}

0 else,

Fig. 1  The effect of � on �
k,� for 

soft constraints

Table 2  Notations used for prior 
parameters

Prior parameters

�,�◦ ∈ ℝN Prior/posterior weights
k ∈ [K] Constraint index
A ∈ ℝK×N , b ∈ ℝK Inequality system
� ∈ ℝK Relaxation parameters
�(.) ∶ {0, 1}N → [0, 1] Joint inadmissibility
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Hence, features with higher absolute correlations are assigned higher penalties and vice 
versa. As a result, the selected feature set contains features with lower mutual correlations.4

2.3.2  Feature block priors

User knowledge may as well be available for feature blocks rather than for single features. 
Feature blocks are contextual groups of features, such as those extracted from the same 
source in a multi-source dataset. It can be desirable to select features from a few distinct 
blocks so that the model does not depend on all sources at once. While prior weights can 
be trivially assigned on block level, we transfer the concept of side constraints to feature 
blocks.

Feature blocks are specified via a block matrix B ∈ {0, 1}W×N , where 1 indicates that 
the feature n ∈ [N] is part of block w ∈ [W] and 0, else. Even though a full partition of 
the feature set is common, feature blocks are neither required to be mutually exclusive, 
nor exhaustive. Along with the block matrix B , an inequality system between blocks con-
sists of a matrix Ablock ∈ ℝK×W and a vector bblock ∈ ℝK . To evaluate whether a block is 
selected by a feature set � , we define the block selection vector �block ∈ {0, 1}W , given by

where ≥ refers to an element-wise comparison of vectors, delivering 1 for a component, if 
the condition is fulfilled, and 0, otherwise. In other words, a feature block is selected, if at 
least one feature of the corresponding block is selected. Although block constraints intro-
duce non-linearity into the system of side constraints, they can be used in the same way as 
linear constraints between features and integrated into the joint inadmissibility function �.

2.4  Optimization

Exploiting the conjugate prior property, the posterior density of � can be expressed as a 
Dirichlet, generalized Dirichlet or hyperdirichlet distribution, respectively. The expected 
value ��[�] can be computed either in a closed-form expression (Dirichlet or generalized 
Dirichlet)  Wong (1998), or simulated via a sampling procedure (hyperdirichlet)  Hankin 
(2010). It remains to solve the discrete optimization problem in Eq. (2) as a final step.

(13)� =
|�i,j|

1 − |�i,j| .

(14)�block =
(
B� ≥ 1W

)
,

4 We suggest to use Spearman’s rho as correlation coefficient, since it is robust (in contrast to Pearson’s 
correlation coefficient) and faster to compute than Kendall’s tau.
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Since an analytical minimization of the resulting knapsack problem is not feasible, we 
determine a numerical optimum �⋆ by using discrete optimization: we deploy the Genetic 
Algorithm (GA) described by Givens and Hoeting (2012). To guarantee a fast convergence 
towards an acceptable solution, it is beneficial to provide initial samples, which are good 
candidates for the final solution. For this purpose we propose a probabilistic sampling 
algorithm, Alg. 1: In essence, the algorithm creates a random permutation of all features, 
� ∶ [N] → [N] , by weighted and ordered sampling without replacement. The weights rep-
resent the posterior parameter vector �◦ . Then, the algorithm iteratively accepts or rejects 
feature �(n) with a success probability

denoting the admissibility ratios of feature sets with and without feature �(n) . The gener-
ated sample accounts for high feature weights by low ranks, resulting in a higher probabil-
ity to be accepted in the acceptance/rejection step.

The Genetic Algorithm (GA) for discrete optimization is initialized using Algorithm 1. 
Starting with an initial set of feature membership vectors 

{
�0 ∈ {0, 1}N

}
 , GA creates new 

vectors �t ∈ {0, 1}N as pairwise combinations of two preceding vectors �t−1 and �̃t−1 in 
each iteration t ∈ [T] . A combination refers to sampling component �t

n
 from either �t−1

n
 or 

�̃
t−1

n
 in a uniform way and adding minor random mutations to single components. The pos-

terior density serves as fitness when deciding which vectors �t−1 and �̃t−1 from iteration 
t − 1 should be combined to �t — the fitter, the more likely to be part of a combination.

The runtime of GA depends linearly on the population size, and the number of itera-
tions. A good trade-off between runtime and convergence properties is important—a 
small population size, for example, might lead to faster convergence but might get trapped 

(15)r�†,� =

{
1−𝜅(�†)

1−𝜅(�)
if 𝜅(�) < 1

0 else,
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towards a local minimum. Further, the runtime is dependent on the complexity to compute 
the fitness function, which in turn depends on the dimensionality of the problem.

3  Experiments and results

Our numerical experiments evaluate the performance, flexibility, and applicability of 
UBayFS in two parts: first, a study conducted on synthetic datasets demonstrates the prop-
erties of the various model parameters, including 

a. The number of elementary models M (1a),
b. The prior weights � in a block-wise setup (1b),
c. The constraint types and their shapes � in a block-wise setup (1c), as well as
d. The type of prior distribution to account for feature dependencies (1d).

The second part of our experiment is conducted on real-world classification datasets from 
the life science domain. In a comparison with state-of-the-art ensemble feature selectors, 
we demonstrate that UBayFS delivers similar model performances. Our setups include 
ordinary and block feature selection without prior knowledge to ensure a fair comparison. 
Finally, we conduct a case study with expert knowledge available from biological investi-
gations, and demonstrate how informative priors increase model performance in practice.

3.1  Default parameters

Six types of feature selectors are evaluated as elementary models for UBayFS:

• Minimum Redundancy Maximum Relevance (mRMR) Ding and Peng (2005),
• Fisher score Bishop (1995),
• Decision tree for classification Breiman et al. (1984),
• Recursive feature elimination (RFE) Guyon et al. (2002),
• Hilbert-Schmidt Independence Criterion Lasso (HSIC) Yamada et al. (2014),
• Lasso Tibshirani (1996).

However, the main focus of the present work is to evaluate the generic concept of UBayFS 
rather than to provide an in-depth analysis of these elementary feature selectors.

Our implementation of UBayFS in R (R Core Team , 2020)5 uses the Genetic Algo-
rithm package authored by Scrucca (2013) with T = 100 and Q = 100 ; in most cases, con-
vergence is achieved after around ten iterations. By default, each UBayFS setup comprises 
an uninformative prior with �n = 0.01 for all n ∈ [N] , and a max-size constraint instructing 
to select bMS features, which is determined individually for each dataset. Thus, by default, 
the constraint system is given as:

A = (1 1 … 1), b = bMS,� = 1.

5 For implementation and experimental setups, see https:// github. com/ annaj enul/ UBayFS and https:// 
github. com/ annaj enul/ UBayFS_ exper iments; for details, see Appendix B.
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No further user knowledge or side constraints are introduced unless stated explicitly in the 
particular setups. Each setup is executed in I = 10 independent runs i ∈ [I] , representing 
distinct random splits of the dataset D into train data T (i)

train
 and test data T (i)

test
= D ⧵ T (i)

train
 

(stratified 75%/25% split).

3.2  Evaluation metrics

For the synthetic datasets, performance is measured by the F1 score of correctly / incor-
rectly selected features since the ground truth about the relevance of features is known 
from the simulation procedure. For real-world data, F1 scores refer to the predictive results 
obtained by training a classification model after feature selection, and judge the feature 
selection quality indirectly. Furthermore, all experiments evaluate the stability measure by 
Nogueira et al. (2018) across I independent feature selection runs. Stability ranges asymp-
totically in [0, 1], where 1 indicates that the same features are selected in every run (per-
fectly stable). Runtime6 refers to the time the model requires to perform feature selection, 
including elementary model training and optimization, but excluding any predictive model 
trained on top of the feature selection results. Since prior parameters have a minor influ-
ence on the runtime, times will not be provided for experiments investigating these aspects.

3.3  Experiment 1: simulation study

To investigate major properties of UBayFS, we simulate four different datasets: 

 i. An additive model (experiment 1a) similar to Data1 in Yamada et al. (2014), com-
posed of a (x1,… , x1000) ∼ 1000 × 1000 data matrix simulated from a Gaussian dis-
tribution N(01000, I1000) , and a binary target variable 

 where x1,… , x4 denote the features 1 to 4 and � ∼ N(0, 1) . The function g trans-
forms z into a class variable by 

 ii. A non-additive model (experiment 1a) similar to Data2 in Yamada et al. (2014), 
equivalent to the setup of i., except for a multiplicative target variable 

 iii. A simulated dataset (experiment 1b, 1c) with group structure among the features, 
produced via make_classification (Pedregosa , 2011), delivering a 512 × 256 dataset 
with 8 feature blocks à 32 features—4 of these blocks contain relevant features (4 
important features per block), 2 blocks contain redundant features representing arbi-
trary linear combinations of the relevant features (3 redundant features per block);

f (x, �) = g(−2 sin(2x1) + x2
2
+ x3 + exp(−x4) + �),

g(z) =

{
1 if z ≥ 0,

0 otherwise;

f (x, �) = g(x1 ⋅ exp(2x2) + x2
3
+ �);

6 CentOS Linux 7.9.2009, Intel Xeon(R) CPU E5-2650 @ 2.60GHz, 3 GB RAM, R v3.6.0.
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 iv. Another dataset simulated via make_classification, comprising 32 features in total 
(16 important, 16 redundant) without block structure. This smaller dataset ( 64 × 32 ) 
has a complicated correlation structure due to the high number of redundant features 
and is used to evaluate UBayFS variants that take feature dependence into account 
(experiment 1d).

The maximum number of selected features bMS is set to the ground truth number of rel-
evant features, i.e. bMS = 4 (dataset i.), bMS = 3 (dataset ii.), and bMS = 16 (datasets iii. and 
iv.), respectively. The default constraint shape parameters for MS is set to �MS = 1 . Unless 
otherwise stated, the prior weights are set to a constant, uninformative value of � = 0.01 for 
all features.

In addition to the constraint shape � associated with a single constraint, � balances the 
overall impact of side constraints with the Dirichlet-multinomial model. A small parameter 
𝜆 < 1 is not recommended since a lack of influential constraints (including the MS con-
straint) results in selecting all features due to an unregularized utility function U. On the 
other hand, a high � has a similar effect as setting all shape parameters uniformly to � = ∞ ; 
thus, all constraints are required to be fulfilled. In this study, � has only a minor impact on 
the resulting model metrics and, therefore, is set to � = 1.

3.3.1  Experiment 1a—likelihood parameters

Figure 2 demonstrates the effect of an increasing number of elementary models M to build 
the feature selector. M represents the parameter to steer the likelihood. Due to their exces-
sive runtimes, HSIC and RFE are computed only for M ≤ 10 , while all other elementary 
feature selectors are evaluated for up to M = 200.

As expected, a higher M contributes largely to the runtime of the model, which increases 
linearly. In contrast, both F1 scores and stability values begin to saturate at around M = 50 
to M = 100 models. Even though large ensembles are intractable with HSIC and RFE, 
small ensembles with M = 5 allow HSIC to retrieve almost all features, whereas simpler 
elementary feature selectors struggle to achieve high performances and stabilities even at 
higher levels of M. We conclude that large M does not necessarily improve the results but 
significantly impacts the runtime. Thus M ≈ 100 appears to be a reasonable choice in the 
subsequent settings, except for HSIC and RFE, where M = 5 will be set as a default.

3.3.2  Experiment 1b—“correct” and “incorrect” prior weights

To investigate the effect of prior weights � , we alter the prior weights in dataset iii. by fea-
ture block. A constant prior weight �R is assigned to all features from relevant blocks, i.e., 
blocks 1-4 containing informative and non-informative features. In contrast, features from 
blocks 5-8 (containing only non-informative features) are assigned a constant prior weight 
�−R—thereby, we simulate that the expert has approximate, yet not exact beliefs about fea-
ture relevance. By assigning higher prior weights 𝛼R > 𝛼−R , the experiment simulates an 
agreement between the expert belief and the ground truth (“correct prior”), while a lower 
𝛼R < 𝛼−R represents “wrong” prior information (“incorrect prior”). To simulate correct and 
incorrect prior knowledge at different levels, we increase �R while setting �−R to the default 
value 0.01, and vice versa.

Figure 3 illustrates that, as expected, feature selection performance in terms of F1 scores 
(evaluated with respect to the ground truth features) increases for higher �R and decreases 
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for higher �−R . Thus, across all elementary feature selectors, an improvement of the unin-
formative case �R = �−R = 0.01 can be achieved by an informative prior, if the prior rep-
resents a reasonable overlap with reality—this holds even though the relevant blocks also 
contain uninformative features, which are incremented by �R as well. On the other hand, 
erroneous prior knowledge can impact the feature selection results negatively. In contrast 
to the feature-wise F1 scores, stability remains mostly unaffected from strong prior knowl-
edge on relevant or irrelevant blocks—incorrect prior knowledge merely tends to decrease 
stability to a minor degree.

Fig. 2  Different numbers of 
elementary models M 
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3.3.3  Experiment 1c—side constraints

We investigate the following opposite constraint types:

• Block-max-size (BMS): features are selected from at most bBMS distinct blocks, and
• Max-per-block (MPB): at most bMPB features are selected from each block.

BMS is designed to enforce a clustering behavior, where all selected features originate 
from a maximum number of bBMS = 4 blocks. On the other hand, MPB aims to disperse the 
selection, indicating that a maximum number of bMPB = 2 features per block is favorable. 
The strength of these constraints is steered via the corresponding shape parameters �BMS 
and �MPB , respectively, while � = 0 indicates that a constraint is omitted. From a default 
case of �BMS = �MPB = 0 (no block constraints), we investigate the behavior of UBayFS 
under one of the two constraints at a time at an increasing level of �BMS or �MPB.

Fig. 4 illustrates how the opposite side constraints BMS and MPB affect the model at 
different levels of relaxation parameters. Both constraint types have a slightly negative 
impact on the outcome in terms of F1 and stability. This is caused by the fact that the 
“best” feature set has to be determined under a side constraint, which is not compatible 
with the ground truth—the ground truth defines 16 features out of four distinct blocks to be 
relevant, which cannot be covered by any of the constraints. Therefore, we can observe that 
UBayFS can handle such scenarios and still deliver appropriate and near-optimal solutions.

3.3.4  Experiment 1d—between‑feature correlations

In Sect. 2, multiple variants were discussed to account for datasets with a given correla-
tion structure. On the one hand, the UBayFS framework permits to account for between-
feature correlations via a generalization of the prior distribution; on the other hand, we may 
enforce that the highly correlated features should not be selected jointly via a decorrelation 
constraint. Both variants are different insofar as generalized priors aim to deliver a more 

Fig. 3  Different prior weights assigned to relevant blocks, �
R
 , and to non-relevant blocks, �−R
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appropriate estimation of the expected feature importances by correcting for dependencies 
in the observed feature sets, while decorrelation constraints directly affect the optimization 
procedure for �.

In this experiment, we investigate both possibilities to account for between-fea-
ture correlations, along with combinations of both: we set a decorrelation constraint 
between all features with a mutual Spearman correlation 𝜏 > 0.4 as described in 
Sect. 2.3, such that joint selection of highly correlated features is penalized. Further, 
we apply the following prior setups:

• Dirichlet prior distribution (default),
• Generalized Dirichlet distribution Wong (1998),
• Hyperdirichlet distribution Hankin (2010).

Our experiment involves all combinations of prior setups with and without decorre-
lation constraint, executed on dataset iv. To measure the effect of decorrelation, we 
further evaluate the redundancy rate (RED) Zhao et al. (2010), defined as the average 
absolute Pearson correlation among selected features. A small RED is commonly pre-
ferred in practical setups.

The results in Fig. 5 show that neither feature-wise F1 scores nor stabilities change 
significantly between the prior models. Thus, the default Dirichlet model seems suf-
ficient in practice. However, introducing decorrelation constraints has a slightly nega-
tive impact on stability, while yielding a small improvement in F1 scores and RED. 
Nonetheless, the most significant change between the variants can be observed with 
respect to runtime, which reflects the high computational burden associated with the 
hyperdirichlet prior model—even on a small dataset, the runtimes show a significant 
increase on a logarithmic scale. Thus, higher-dimensional datasets can only be tackled 
at an enormous computational cost with the hyperdirichlet setup.

Fig. 4  Different prior constraints assigned to blocks: MPB (maximum one feature per block) and BMS 
(block max-size) constraint types at distinct levels of � . The special case � = 0 indicates that the corre-
sponding constraint is omitted
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Fig. 5  Different setups to account 
for dependence structures 
between features

Table 3  Real-world binary classification datasets from the life science domain used for experimental evalu-
ation. For p53, a stratified subset out of > 16000 rows was used from the original dataset for this experiment

Dataset / source # Features # Rows b
MS

# Blocks b
BMS

Breast cancer wisconsin (BCW)
Wolberg and mangasarian (1990)

30 569 5 3 1

Heart disease (HD)
Detrano (1989)

46 101 5 – –

Mice protein expression (MPE)
Higuera et al. (2015)

77 552 5 – –

Colon gene expression (COL)
Yang and Zou (2015)

100 62 5 20 2

LSVT voice rehabilitation
Tsanas (2013)

310 126 10 14 2

p53
Danziger (2006)

5409 351 20 2 1

Prostate (PRO)
Singh (2002)

6033 102 20 – –

Leukaemia (LEU)
Golub (1999)

7129 72 20 – –

Lung cancer (LUNG)
Gordon (2002)

12533 181 100 – –



3913Machine Learning (2022) 111:3897–3923 

1 3

3.4  Experiment 2: real‑world datasets

Numerical studies are conducted on eight open-source datasets presenting binary clas-
sification problems from the life science domain, see Table 3. For simplicity and due to 
extensive runtimes, we restrict the choice of the elementary feature selector for UBayFS 
to mRMR, Fisher, and decision tree with an uninformative prior, an MS constraint, and 
M = 100 . The number of selected features is specified according to the size of the dataset 
( bMS = 5 / 10 / 20 / 100 for datasets with fewer than 100 / between 100 and 1000 / between 
1000 and 10000 / more than 10000 features, respectively).

In addition to conventional feature selection (scenario 1) with max-size constraint 
bMS , specified in Table 3, we evaluate a block feature selection (scenario 2) for datasets 
with block-wise feature structure. For block feature selection, up to bMS features should 
be selected from at most bBMS distinct blocks.7 Random forests (RF) Breiman (2001), and 
RENT Jenul (2021) (representing ensemble feature selectors that extend the concepts of 
decision trees and elastic net regularized models, respectively) are used as state-of-the-art 
benchmarks for standard feature selection, while Sparse Group Lasso (GL) Ida et al. (2019) 
is used as the benchmark for block feature selection. To conform with UBayFS, RENT 
and RF are adjusted to M = 100 elementary models, and all models are tuned to select 
approximately the same number of features, bMS . Since RENT and GL cannot be instructed 
to select bMS features directly, regularization parameters are determined via bisection, such 
that the number of selected features is approximately equal to bMS.

The selected features cannot be evaluated directly in real-world datasets due to unknown 
ground truth on the feature relevance. Therefore, we train predictive models on T (i)

train
 after 

feature selection and evaluate the selected features indirectly via the predictive perfor-
mance on the test instances. To reduce the influence of the predictive model type, we train 
two distinct classifiers on T (i)

train
 after feature selection, and report F1 scores for predictions 

on T (i)

test
 for both. The choice of baseline classifiers to obtain the prediction comprises:

• generalized linear model: logistic regression (GLM),
• support vector machine (SVM).

3.4.1  Results

Tables 4 and 5 present the results of the experiments on real-world data. Thereby, UBayFS 
achieves good predictive F1 scores throughout the different datasets, even though no expert 
knowledge is introduced to ensure a fair comparison. In the block feature selection set-
ups, UBayFS benefits from block constraints and shows more flexibility than Sparse Group 
Lasso. Altogether, UBayFS can keep up with its competitors in terms of predictive perfor-
mance in a diverse range of scenarios (low-dimensional and high-dimensional data, as well 
as unconstrained and constrained setups) while providing higher flexibility to introduce 
additional information or constraints. Overall, the results reflect that a particular strength of 
UBayFS lies in delivering a good trade-off between stabilities and predictive performance, 
compared to competitors such as RF, which deliver high F1 scores, but very low stabilities.

7 Details on the block structure of the datasets are provided in Appendix B.
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Figures 6 and 7 give additional insights into the performances of the UBayFS variants in 
the standard feature selection and block feature selection scenario, respectively. Differences 
between the F1 scores obtained by the different elementary feature selectors underline that 
UBayFS inherits benefits and drawbacks from its underlying elementary model type—in 
particular, the decision tree and HSIC achieved top results. Nevertheless, the building of 
ensembles allows to compensate in parts for mediocre stabilities.

3.4.2  Case study with prior knowledge

Our evaluations underlined the applicability of UBayFS in real-world scenarios. However, 
due to the absence of prior knowledge, these scenarios covered only parts of the capabilities of 

Table 4  UBayFS with three distinct elementary feature selectors (M: mRMR, F: Fisher, T: decision tree) 
is compared to ensemble feature selectors RF and RENT in a standard feature selection scenario. UBayFS 
with additional (BMS) constraint is compared to Sparse Group Lasso (GL) for block-feature selection on 
datasets with block structure. Average F1 scores are given for different predictive models (GLM, SVM). 
The best scores for each dataset and evaluation metric are marked in bold—standard feature selection and 
block feature selection are assessed separately

Dataset Standard feature selection Block feature selection

RF RENT UBayFS GL UBayFS

M F T M F T

(a) Average F1 score per run (predictor: GLM).
BCW 0.95 0.97 0.96 0.97 0.95 0.96 0.96 0.96 0.96

HD 0.92 0.88 0.91 0.90 0.93 – – – –
MPE 0.86 0.95 0.87 0.83 0.83 – – – –
COL 0.85 0.83 0.83 0.78 0.88 0.82 0.74 0.77 0.89

LSVT 0.70 0.75 0.80 0.84 0.68 0.77 0.67 0.79 0.59
p53 0.71 0.66 0.80 0.78 0.80 0.63 0.76 0.79 0.79

PRO 0.88 0.89 0.78 0.85 0.84 – – – –
LEU 0.88 0.93 0.88 0.91 0.95 – – – –
LUNG 0.93 0.97 0.91 0.90 0.92 – – – –

Dataset Standard feature selection Block feature selection

RF RENT UBayFS GL UBayFS

M F T M F T

(b) Average F1 score per run (predictor: SVM).
BCW 0.95 0.97 0.96 0.96 0.94 0.97 0.96 0.96 0.95
HD 0.92 0.88 0.91 0.91 0.95 – – – –
MPE 0.87 0.95 0.89 0.84 0.84 – – – –
COL 0.86 0.85 0.87 0.83 0.88 0.81 0.82 0.79 0.89

LSVT 0.75 0.75 0.80 0.84 0.71 0.80 0.79 0.79 0.57
p53 0.81 0.82 0.81 0.80 0.82 0.84 0.77 0.82 0.80
PRO 0.91 0.90 0.87 0.88 0.85 – – – –
LEU 0.96 0.94 0.88 0.95 0.96 – – – –
LUNG 0.98 0.97 0.98 0.96 0.94 – – – –
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the method. To exploit prior knowledge in practice, we revisit the lung cancer genome dataset 
(LUNG): in the dataset, eight gene expression features were identified as relevant in biological 
studies by Guan Guan et al. (2009). Thus, we assign higher prior weights �R to a-priori relevant 
features, while all other features get assigned the default prior weight �−R = 0.01 . Our setups 
include one with “weak” prior ( �R = 20 ), and one with “strong” prior ( �R = 100 ), in addition to 
the setup without prior, shown in Table 4. The max-size constraint is set to bMS = 100.

As summarized in Table 6, incorporating prior knowledge leads to an improvement of UBayFS 
results in most cases. Thus, the absolute performance lies in a similar top range as those reported 
in previous work by Brahim and Limam (2014), who evaluated averaged accuracies in a compa-
rable setup on the same dataset ( > 0.99 avg. accuracy). However, the comparability of accuracies 
is limited due to the unbalanced nature of the dataset. Between the UBayFS setups, results with 
weak prior are similar to those from no-prior results in the case of stable elementary feature selec-
tors (mRMR and Fisher). In contrast, weak prior results resemble the strong prior in the case of a 

Table 5  Mean stabilities of 
UBayFS with three distinct 
elementary feature selectors (M: 
mRMR, F: Fisher, T: decision 
tree), compared to ensemble 
feature selectors RF and RENT 
in standard feature selection, as 
well as to GL in block feature 
selection scenarios. The best 
scores in each row are marked in 
bold for each scenario

Dataset Standard feature selection Block feature selection

RF RENT UBayFS GL UBayFS

M F T M F T

BCW 0.73 0.87 0.87 1.00 0.61 0.90 0.80 0.80 0.80
HD 0.45 0.87 0.88 0.65 0.59 – – – –
MPE 0.72 0.87 0.92 0.85 0.77 – – – –
COL 0.39 0.67 0.80 0.72 0.81 0.56 0.84 0.72 0.82
LSVT 0.31 0.59 0.72 0.79 0.55 0.73 0.66 0.88 0.31
p53 0.11 0.56 0.34 0.34 0.36 0.68 0.19 0.25 0.31
PRO 0.17 0.53 0.56 0.61 0.42 – – – –
LEU 0.07 0.64 0.46 0.76 0.53 – – – –
LUNG 0.18 0.78 0.80 0.79 0.40 – – – –

Fig. 6  Performance results of UBayFS feature selection on real-world datasets (MS constraint). F1 scores 
are determined after training and predicting a classifier (GLM or SVM) after feature selection. Results show 
mean values over I = 10 runs along with standard deviations
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non-stable elementary feature selector (decision tree). Thus, a weak prior has a higher impact on 
the final results if the elementary models are more diverse.

3.4.3  Runtime

Runtimes of all methods and datasets are provided in Table 7. Given a fixed set of model param-
eters, it becomes obvious that the major factor influencing the runtime of UBayFS is the number 
of features (columns) rather than the number of samples (rows). UBayFS runtimes refer to the MS 
setup—however, experiments showed only minor differences to the runtimes in the block feature 
selection setup. While RF and GL are more tractable in high-dimensional datasets, RENT seems 
to suffer from data dimensionality to a more considerable extent.

Across larger datasets, the main influencing factor on the runtime is the number and 
type of elementary models. For example, on the LUNG dataset ( > 12000 features), the 
training procedure of 100 mRMR models as elementary models comprised 40 minutes 

Fig. 7  Performance results of UBayFS block feature selection on real-world datasets (MS and BMS con-
straints). F1 scores are determined after training and predicting a classifier (GLM or SVM) after feature 
selection. Results show mean values over I = 10 runs along with standard deviations

Table 6  Average performance scores delivered by UBayFS on the LUNG dataset with and without prior 
knowledge

Setup GLM SVM Stability

M F T M F T M F T

Without prior 0.91 0.90 0.92 0.98 0.96 0.94 0.80 0.79 0.40
With prior ( �imp = 20) 0.91 0.90 0.91 0.98 0.96 0.96 0.80 0.79 0.45
With prior ( �imp = 100) 0.91 0.94 0.91 0.98 0.96 0.96 0.82 0.81 0.45
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(88% of UBayFS runtime), while optimization using the Genetic Algorithm comprised 5 
minutes (11% of UBayFS runtime).8

4  Discussion and conclusion

The presented Bayesian feature selector UBayFS has its strength in combining informa-
tion from a data-driven ensemble model with expert prior knowledge targeted at life sci-
ence applications. The generic framework is flexible in the choice of the elementary feature 
selector type, allowing a broad scope of applications scenarios by deploying adequate ele-
mentary feature selectors, such as those suggested by Sechidis and Brown (2018) for semi-
supervised or Elghazel and Aussem (2015) for unsupervised problems. An extension of the 
presented experiments to multiple classes or multi-label classification problems (one object 
is not uniquely assigned to one class) is straightforward as well if the elementary feature 
selector is capable of tackling such datasets, such as Petković et al. (2020).

In general, the choice of the elementary feature selector is a central step when deploy-
ing the concept in practice—in particular, the size and structure of a dataset need to be 
taken into account. This work presented a broad range of elementary models to provide 
user guidance in practical setups. The option to build ensembles combining different model 
types, as discussed by Seijo-Pardo et al. (2017), turned out to deteriorate the stability of 
ensemble feature selectors and hence, is not considered in this study.

UBayFS presents two ways to account for feature dependencies: a generalized prior model as 
well as a decorrelation constraint. The latter effectively restricts the results, such that a simultane-
ous selection of highly correlated features is penalized. The generalizations of the prior model cor-
rect the estimated feature importances by the dependencies—in a low-dimensional scenario, the 
hyperdirichlet variant is the most accurate choice. However, this variant becomes intractable, if the 
dimensionality exceeds a few hundred features and requires simulation to determine the expected 
value in almost any case, preventing from analytically exact solutions. Since our experiments 
depicted that feature importances obtained from each of the three prior setup types are numeri-
cally similar, a conventional Dirichlet setup seems to deliver a sufficiently accurate approximation 

Table 7  Average runtime per 
run [s]

Dataset RF RENT GL UBayFS

M F T

BCW 6.7 3.4 10.9 6.2 2.2 4.3
HD 6.3 3.2 – 1.8 1.6 2.1
MPE 9.4 24.3 – 12.3 5.3 9.6
COL 6.1 3.8 4.6 3.7 2.9 3.6
LSVT 10.0 77.9 9.0 6.4 6.7 9.6
p53 80.2 2712.3 112.7 366.8 125.6 440.3
PRO 29.8 1217.2 – 370.9 232.6 708.0
LEU 41.5 980.9 – 263.0 160.8 549.5
LUNG 116.8 2834.1 – 1930.3 535.1 1885.0

8 Runtime information refers to the current version of the implementation and is subject to further code 
optimization.
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for high-dimensional datasets. This observation is also supported by the fact that many elemen-
tary feature selectors, such as mRMR or HSIC, can account for between-feature correlations, thus 
reducing the need to consider correlations in the meta-model.

Prior information from experts is introduced via prior feature weights and linking con-
straints describing between-feature dependencies, represented in a system of side constraints. 
Via a relaxation parameter, the inadmissibility is transferred into a soft constraint, favoring 
solutions that fulfill the constraints and penalizing violations. Introducing user knowledge 
directly into the feature selection process opens new opportunities for data analysis in life sci-
ence applications. Still, such methodology bears the potential of intentional or unintentional 
misuse: as demonstrated in the experiment, the integration of unreliable or incorrect user 
knowledge may distort predictive results. Users have to be aware that UBayFS may contain 
subjective inputs and thus, take precautions to ensure that prior information is sufficiently ver-
ified, e.g., by published research in the field.

Based on the results from extensive experimental evaluations on multiple open-source datasets, 
a clear benefit of the proposed feature selector lies in the balance between predictive performance 
and stability. Particularly in life sciences, where few instances are available in high-dimensional 
datasets, user-guided feature selection is an opportunity to guide models to achieve otherwise 
intractable results. UBayFS delivers more flexibility to integrate domain knowledge than estab-
lished state-of-the-art approaches. A practical limitation of UBayFS is that the runtime is argu-
ably slower than simpler feature selectors, which becomes an obstacle in very high-dimensional 
datasets. The use of highly optimized algorithms like the Genetic Algorithm, along with an ini-
tialization using the suggested Alg. 1 mitigates this issue. However, it cannot compensate for the 
computational burden of training multiple elementary models.

Appendix A theory

A.1 Convergence of inadmissibility function

The point-wise convergence �k,� ⟶
�→∞

�k holds for arbitrary A ∈ ℝK×N and b ∈ ℝK on the 
domain D = {0, 1}N.

Proof From the definition of �k,�(�) , the claim is trivially fulfilled for

In the opposite case, we define �k as 𝜆k =
(
a(k)

)T
� − b(k) > 0 . It holds that

Since 𝜆k > 0 , we obtain −��k ⟶
�→∞

−∞ , and thus �k,� = exp
(
−��k

)
⟶
�→∞

0 . It follows that 
�k,�(�) ⟶

�→∞
1 . Hence, we have shown a point-wise convergence of

� ∈

{
�� ∈ {0, 1}N ∶

(
a(k)

)T
�� − b(k) ≤ 0

}
.

�k,�(�) =
1 − �k,�

1 + �k,�

=
1 − exp

(
−��k

)

1 + exp
(
−��k

) .
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which equals to �k on the domain D.

A.2 Generalizations of the Dirichlet distribution

In Sect. 2.2, we discuss the possibility to replace the Dirichlet distribution with one out 
of two generalized variants:

• the generalized Dirichlet distribution, and
• the hyperdirichlet distribution.

Both variants preserve the conjugate prior property with respect to the multinomial like-
lihood, as explained by the corresponding authors who had introduced these generali-
zations. In this part, we provide a short overview on the probability density functions, 
parameters and (posterior) expected values of these distributions, as these quantities are 
relevant for the UBayFS setup.

The standard Dirichlet distribution, see e.g. DeGroot (2005), is commonly defined by 
the probability density function

where B(�) =

N∏
n=1

Γ(�n)

Γ

�
N∑
n=1

�n

� denotes the multivariate beta function. Due to the simple parameter 

update in the inference step, we obtain the posterior expected value

where �◦ = � + y.
In essence, the generalized Dirichlet distribution by Wong (1998) adds an additional 

parameter vector � ∈ ℝN−1 to the parameter vector � from the Dirichlet distribution and 
is defined via the probability density

where B(�n, �n) =
Γ(�n)Γ(�n)

Γ(�n+�n)
 , �n = �n − �n+1 − �n+1 for n ∈ [N − 2] , and �N−1 = �N−1 − 1 . In 

contrast to the standard Dirichlet setting, the distribution is defined on the N − 1-dimen-
sional space, relaxing the side constraint ‖�‖1 = 1 to ‖�′‖1 ≤ 1 , �′ ∈ ℝN−1 — both are 

𝜅k,𝜌(�) ⟶
𝜌→∞

{
1 if 𝜆k ≤ 0

0 if 𝜆k > 0,

(16)fDir(�;�) =
1

B(�)

N∏
n=1

��n−1
n

,

���y[�] =
1

‖�◦‖1�
◦,

(17)fgDir(�
�) =

N−1∏
n=1

1

B(�n, �n)

(
��
n

)�n−1
(
1 −

n∑
i=1

��
i

)�n

,



3920 Machine Learning (2022) 111:3897–3923

1 3

equivalent, if �n = ��
n
 for n ∈ [N − 1] , and �N = 1 −

N−1∑
n=1

��
n
 . The posterior expected value 

for the generalized Dirichlet distribution is given in closed-form by

where �n =
N∑
i=n

yi , see Wong (1998).

An even more general version is the hyperdirichlet distribution by Hankin (2010), who 
characterizes the distribution by the probability density function

where P(.) denotes the power set and F(G) denotes the parameter for each possible subset 
of [N]. Since the closed-form expression of the expected value involves the normalization 
constant, which is intractable in practical high-dimensional setups, we deploy the Metrop-
olis-Hastings (MH) algorithm implemented in Hankin (2017) to sample from the hyperdi-
richlet distribution and determine the expected value empirically from the sample mean.

�
��[�]

�
n
=

⎧
⎪⎪⎨⎪⎪⎩

�n+yn

�n+�n+�n
n = 1

�n+yn

�n+�n+�n

n−1∏
i=1

�i+ni+1

�i+�i+ni
n = 2,… ,N − 1

N−1∏
i=1

�i+ni+1

�i+�i+�i
n = N,

(18)fhDir(�) ∝

(
N∏
n=1

�n

)−1 ∏
G∈P([N])

(∑
i∈G

�i

)F(G)

,

Table 8  Dataset sources

Name Link

HD https:// archi ve. ics. uci. edu/ ml/ datas ets/ heart+ disea se
BCW https:// archi ve. ics. uci. edu/ ml/ datas ets/ breast+ cancer+ wisco nsin+ (diagn ostic)
MPE https:// archi ve. ics. uci. edu/ ml/ datas ets/ Mice+ Prote in+ Expre ssion
COL https:// github. com/ cran/ gglas so
LVST https:// archi ve. ics. uci. edu/ ml/ datas ets/ LSVT+ Voice+ Rehab ilita tion
p53 https:// archi ve. ics. uci. edu/ ml/ datas ets/ p53+ Mutan ts
LEU see R package spls Chung et al. (2019)
PRO see R package propOverlap Mahmoud (2014)
LUNG https:// leo. ugr. es/ elvira/ DBCRe posit ory/ LungC ancer/ LungC ancer- Harva rd2. html
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Appendix B Experimental datasets

All real-world datasets are publicly available (status: 12/2021), see Table 8. For datasets 
with block structure (BCW, COL, LSVT and p53), block indices are given in Table 9.
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Statement of Need
Feature selection, also known as variable selection in statistics, is the process of selecting
important variables (features) from a list of variables in a dataset. When training predictive
models, the intention behind removing the least informative features from a dataset beforehand
is (a) to reduce the computational burden and mathematical limitations associated with the
curse of dimensionality, and (b) to increase interpretability of the model by allowing the user to
obtain insights into the relevant input variables. In particular, feature selection speeds up the
training process of machine learning models, especially when the dataset is high-dimensional.

The R (R Core Team, 2022) package UBayFS implements the user-guided framework for
feature selection proposed in Jenul et al. (2022), which incorporates information from the data
and prior knowledge from domain experts. Figure 1 demonstrates the framework. Different
approaches for integrating prior knowledge in feature selection exist, though there is a lack of
general and sophisticated frameworks that deliver stable and reproducible feature selection
along with implementations. With its generic setup and the possibilities to specify prior weights
as well as side constraints, UBayFS shows the flexibility to be applied in a broad range of
application scenarios, which exceed the capabilities of conventional feature selectors while
preserving large model generality. Besides side constraints, such as the option to specify
a maximum number of features, the user can add must-link constraints (features must be
selected together) or cannot-link constraints (features must not be selected together). In
addition, constraints can be defined on feature-block level, as well. Thus, UBayFS is also
capable of solving more general problems such as block feature selection. A parameter 𝜌
regulates the shape of a penalty term accounting for side constraints, where feature sets that
violate constraints lead to a lower target value. State-of-the-art methods do not cover such
scenarios.

The presented R package UBayFS provides an implementation along with an interactive Shiny
dashboard, which makes feature selection available to R-users with different levels of expertise.
The implementation allows the user to define their own feature selectors via a function interface
or to use one out of three state-of-the-art feature selectors for building the generic ensemble
of feature selectors covering the data-driven component of UBayFS. State-of-the-art choices
include:

• Laplacian score
• Fisher score
• mRMR

R offers multiple packages implementing feature selection methodology. To name a few, caret
(Kuhn, 2022) is an essential machine learning repository, containing models with built-in
feature selection such as tree based methods (for instance rpart2), regularized approaches
like lasso, and non-integrated feature selectors such as recursive feature elimination rfe.
Other examples are the Boruta (Kursa & Rudnicki, 2010) package implementing the Boruta
feature selector or the GSelection (Majumdar et al., 2019) package containing hsic lasso
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feature selection. All feature selectors available in R can be used as underlying ensemble
feature selectors in UBayFS. Prior weights can be specified for single features or whole blocks
as weight vectors. Linear side constraints are implemented via a matrix 𝐴 and a right side 𝑏 or
with a customized function for specific constraint types. Hence, the sophisticated statistical
model is summarized in a user-friendly and easy-to-use package.

Figure 1: At first, UBayFS elaborates information directly from data via ensemble feature selection.
This information is merged with prior expert knowledge (a-priori feature weights) in a Bayesian model
framework. Additionally, the user can include further side constraints such as a maximum number of
features or cannot-link constraints between features. The final step comprises the optimization with
respect to the model’s utility function, including the side constraints.

Concept of UBayFS
As described in Jenul et al. (2022), UBayFS is a Bayesian ensemble feature selection framework.
The methodology is based on quantifying a random variable 𝜃, representing feature importances,
given evidence collected from the data, denoted as 𝑦. In particular, 𝑦 counts the number of
elementary models in the generic ensemble of feature selectors, which select a particular feature.
Statistically, we interpret the result from each elementary feature selector as a realization
from a multinomial distribution with parameters 𝜃, where 𝜃 ∈ [0, 1]𝑁 defines the success
probabilities of sampling each feature in an individual feature selection and thus the success
probability in the ensemble. Both sources of information are combined using Bayes’ Theorem:

𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃) ⋅ 𝑝(𝜃).

In the framework of UBayFS, 𝑝(𝑦|𝜃) represents the data-driven component (implemented via a
multinomial likelihood), while 𝑝(𝜃) describes the user knowledge part modeled with a Dirichlet
distribution. Due to the conjugate prior property of the Dirichlet distribution, the posterior
parameter update has a tractable form and can be computed analytically. Side constraints are
represented by a system of linear inequalities 𝐴 ⋅ 𝛿 − 𝑏 ≤ 0, where 𝐴 ∈ ℝ𝐾×𝑁, 𝑏 ∈ ℝ𝐾, and
0 ∈ ℝ𝐾 is the 𝐾-dimensional vector of zeros. 𝐾 is defined as the total number of constraints.
The comparison is performed elementwise.

In UBayFS, a relaxed inadmissibility function 𝜅𝑘,𝜌(𝛿) is used as a penalization for the violation
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of a given side constraint 𝑘 = 1, ...,𝐾. The joint inadmissibility function 𝜅 pursues the idea
that 𝜅 = 1 (maximum penalization) if at least one 𝜅𝑘,𝜌 = 1, while 𝜅 = 0 (no penalization) if
all 𝜅𝑘,𝜌 = 0. A more detailed description is provided in the original paper (Jenul et al., 2022).

To obtain an optimal feature set 𝛿⋆, we use a target function 𝑈(𝛿, 𝜃) which represents a
posterior expected utility of feature sets 𝛿 given the posterior feature importance parameter 𝜃,
regularized by the inadmissibility function 𝜅(.)

𝛿⋆ = max
𝛿∈{0,1}𝑁

(𝔼𝜃|𝑦[𝑈(𝛿, 𝜃(𝑦))]) = max
𝛿∈{0,1}𝑁

(𝛿𝑇𝔼𝜃|𝑦[𝜃(𝑦)] − 𝜆𝜅(𝛿)) .

The optimization is implemented via a genetic algorithm along with a greedy algorithm for
initialization, suggested by Jenul et al. (2022) to find a proper start vector for the optimization.

Package Summary
The function build.UBaymodel() initializes an S3 class object UBaymodel and computes the
ensemble of elementary feature selectors. In the current version, linear feature selectors such
as Fisher score, Laplacian score (You & Shung, 2022), and mRMR (Jay et al., 2013) are
supported as integrated options. Any arbitrary feature selector can be defined manually and
used as input. In addition, the number of elementary models 𝑀 is specified. The user can
directly set prior weights inside the build function. Constraints are either provided as a matrix
𝐴 and a right side 𝑏, or built using the buildConstraints() function, which supports max-size,
must-link, and cannot-link constraints on both feature and block level. UBayFS requires at
least one constraint limiting the total number of features to be selected (“max-size”). The
level of constraint-relaxation is steered with an input parameter 𝜌. In addition, the weights for
single features or feature blocks are set with setWeights().

The function admissibility() allows the user to evaluate the penalty term for a given feature
set under a set of constraints. After initializing the model and computing the ensembles,
the train.UBaymodel() function optimizes the feature set via a genetic algorithm (Scrucca,
2013) with greedy initialization. According to empirical evaluations, the greedy initialization
decreases the runtime and leads to faster convergence towards an optimal feature set. Finally,
the package implements the generic functions print.UBaymodel(), plot.UBaymodel(), and
summary.UBaymodel() as well as an evaluation function evaluteFS() to report and visualize
results. Two vignettes guide the user through the package and demonstrate how the method
can be deployed in common application scenarios, including how user knowledge is specified
and how feature- and block-wise constraints are set.

Interactive Shiny Dashboard
The function runInteractive() opens an interactive Shiny dashboard allowing the user to
load and analyze data interactively. However, due to computational limitations, it is not
recommended to use the HTML interface for larger datasets (> 100 features or > 1000
samples). Instead, functions should be called from the R console in such cases. Figure 2 shows
the dashboard with the different tabs:

• data: Load the dataset and specify whether row names, column names, or a block
structure is present. A demo dataset is ready to be loaded and used for a first touch on
the package.

• likelihood: Select elementary feature selectors for ensemble feature selection, the number
of models 𝑀, the number of features in each model, and the ratio of the train-test split.
Further, the dashboard allows the user to mix different elementary feature selectors,
although this option is not recommended due to limited stability (Seijo-Pardo et al.,
2017).
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• weights: The prior feature weights are set by the user. For block feature selection, it is
possible to set weights for blocks; otherwise, for a single feature.

• constraints / block constraints: In this task, the user sets different constraints (at least
a max-size constraint). The penalty 𝜌 can be varied here as well.

• feature selection: In the dashboard’s last step, an optimization procedure determines the
final feature set. A plot of the final result is produced - also, the model can be saved as
an Rdata file and loaded to the dashboard again.

Figure 2: Illustration of the Shiny HTML dashboard.

Ongoing research
Based on the present UBayFS package, ongoing work focuses on the implementation of even
more types of expert constraints and elementary feature selection models. Moreover, a Python
package with similar functionality is planned for the future.
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Abstract. In artificial neural networks, understanding the contribu-
tions of input features on the prediction fosters model explainability and
delivers relevant information about the dataset. While typical setups
for feature importance ranking assess input features individually, in this
study, we go one step further and rank the importance of groups of fea-
tures, denoted as feature-blocks. A feature-block can contain features of
a specific type or features derived from a particular source, which are
presented to the neural network in separate input branches (multiblock
ANNs). This work presents three methods pursuing distinct strategies
to rank feature-blocks in multiblock ANNs by their importance: (1) a
composite strategy building on individual feature importance rankings,
(2) a knock-in, and (3) a knock-out strategy. While the composite strat-
egy builds on state-of-the-art feature importance rankings, knock-in and
knock-out strategies evaluate the block as a whole via a mutual informa-
tion criterion. Our experiments consist of a simulation study validating
all three approaches, followed by a case study on two distinct real-world
datasets to compare the strategies. We conclude that each strategy has
its merits for specific application scenarios.

Keywords: Feature-block importance · Importance ranking ·
Multiblock neural network · Explainability · Mutual information

1 Introduction

In machine learning, datasets with an intrinsic block-wise input structure are
common; blocks may represent distinct data sources or features of different types
and are frequently present in datasets from industry [7], biology [3], or healthcare
[5]. For example, in healthcare, heterogeneous data blocks like patient histology,
genetics, clinical data, and image data are combined in outcome prediction mod-
els. However, good prediction models do not necessarily depend equally on each
block. Instead, some blocks may be redundant or non-informative. Identifying
the key data sources in multi-source treatment outcome models promises to
deliver new insights into the behavior of black-box models like ANNs. In partic-
ular, potential benefits include improving model explainability, reducing costly

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
E. Pimenidis et al. (Eds.): ICANN 2022, LNCS 13532, pp. 163–175, 2022.
https://doi.org/10.1007/978-3-031-15937-4_14
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data acquisitions that do not contribute to the model prediction, and allowing
domain experts to explore latent relations in the data. Thus, there is a need to
measure the importances of feature-blocks, denoted as feature-block importance
ranking (BIR).

Fig. 1. M-ANN architecture.

In order to exploit the internal
structure of the block-wise data in
neural networks, a multiblock ANN
(M-ANN) architecture is used. As
depicted in Fig. 1, the M-ANN con-
sists of a separate input branch for
each block, a concatenation layer to
merge information from all branches,
and a blender network to map the
information to the model output. The
architecture allows for any type of
network layer, depth, activation, or
other network parameters, including
the special case where the concatena-
tion layer equals the input layer (block
branches of depth 0).

Ranking individual features by
their importances (feature importance ranking, FIR) has been studied for differ-
ent types of ANNs [8,14,15]. An extensive evaluation [9] showed that versions of
the variational gradient method (VarGrad) [1,2] outperformed competitors such
as guided backprop and integrated gradients. For BIR, however, a combination
of features in one block may accumulate a larger amount of information than
each feature separately due to informative non-linear relations between features.
Hence, using FIR might oversimplify the problem of measuring block importance
since interactions between features of the same block are disregarded. Neverthe-
less, the strategy of reducing BIR to a simple summary metric (sum, mean, max)
over FIR scores is considered in our evaluation.

A related problem to FIR is feature selection, where the input dimensionality
is reduced to the most influential features as part of the preprocessing. Feature
selection is widely studied in ANNs. Furthermore, specialized feature selectors
can account for block structures like UBayFS [11] or groupLasso [16]. Concep-
tually, these feature selectors aim to improve model performance and classify
an entire block as important/unimportant in a binary way before model train-
ing. In contrast, our BIR problem is considered a post-processing procedure,
focusing on analyzing the model after training without influence on the model
performance.1

This study presents and discusses three distinct approaches to quantify the
importance of feature-blocks in M-ANNs. While exploiting the flexibility of
ANNs and their capacities to learn complex underlying patterns in the data, the

1 BIR may be used for block feature selection if deployed as filter method—however,
this aspect is beyond the scope of the present work.
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discussed methods aim to deliver insights into the trained network’s dependence
structure on the distinct input blocks and thereby foster model explainability.
We propose three paradigms for BIR: a block is considered as important if

1. it consists of features with high FIR scores (composition strategy), or
2. it explains a large part of the network output (knock-in strategy), or
3. its removal significantly changes the network output (knock-out strategy).

We evaluate and discuss the proposed paradigms in a simulation study and
present two case studies on real-world datasets, where the behaviors of the pro-
posed ranking strategies become apparent.

In the following, bold letters denote vectors and matrices; non-bold let-
ters denote scalars, functions or sets. Square brackets denote index sets [n] =
{1, . . . , n}.

2 Block Importance Ranking Methods

We assume data input x from some feature space D ⊂ RN , N ∈ N, following
a probability distribution X ∼ PX , and a univariate target variable y ∈ T ⊂
R following a probability distribution Y ∼ PY . Given training data (x, y) ∈
Dtrain × Ttrain ⊂ D × T , model parameters w ∈ W ⊂ RM , M ∈ N, are trained
with respect to some loss term e : D × T → R+,

w� = min
w∈W

e (fw (x), y) ,

where the ANN is a function fw : D → T given weights w.
In an M-ANN architecture, see Fig. 1, the block structure of the model input

is represented by a direct sum of subspaces D =
B⊕

b=1

Db, each corresponding to

one block b ∈ [B] with dimension Nb = dim(Db), N =
B∑

b=1

Nb. Each block enters

a distinct branch of the network that processes the block input. Afterwards,
the outputs of all branches are merged in a concatenation layer, which consists
of nb nodes associated with each block b, respectively. A so-called blender net-
work fblender

w connects the concatenation layer to the network output. Network
training is performed using backpropagation, where all block branches and the
blender network are trained simultaneously in an end-to-end manner.

2.1 Composite Strategy

Our first paradigm composes block importance measures from FIR in a direct
way. As a prototype of state-of-the-art FIR methods, we use VarGrad [2]. Var-
Grad builds on the idea that variations of an important feature provoke mea-
surable variations in the output. Under the assumption that features are on
a common scale, we estimate the gradient of the function fw with respect to
each feature by adding small random perturbations in the input layer. A large
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variance in the gradient indicates that the network output depends strongly on
a feature, i.e., the feature is important. We denote the importance of feature
n ∈ [N ] as quantified by VarGrad, by αn ∈ R+.

To translate the feature-wise importance measure to feature-blocks in M-
ANNs, we deploy a summary metric ϕ over all single-feature importances in a

block b ∈ [B]. Thus, block importances γ
(b)
ϕ are defined as

γ(b)
ϕ = ϕ(α

(b)
1 , . . . , α

(b)
Nb

), (1)

where α
(b)
n denotes the nth feature associated with the bth block. Intuitive choices

for ϕ are either the sum, mean, or maximum operator, denoted as ϕsum, ϕmean,
or ϕmax, respectively. Rankings based on mean and sum are equal, if all blocks
contain the same number of features. Operators ϕsum and ϕmean accumulate the
individual feature importances: a block with multiple features of high average
importances is preferred over blocks with few top features and numerous unim-
portant features. In contrast, ϕmax compares the top-performing features out
of each block, while neglecting all other’s contributions. Statistical properties
of block importance quantifiers implementing the composite strategy are trans-
mitted from (i) the feature importance ranking method and (ii) the summary
metric. Since this approach cannot capture between-feature relations, potentially
impacting the importance of a block, we suggest two other paradigms.

2.2 Knock-In Strategy

The knock-in strategy is inspired by work on the information bottleneck [4],
demonstrating that node activations can be exploited for model interpretation in
ANNs. In the concatenation layer of the M-ANN (Fig. 1), where information from
the blocks enters the blender network, activations are of particular importance
since they represent an encoding of the block information. When passing model
input x through the network, we denote the activation of the nth node associated
with block b ∈ [B] in the concatenation layer by cb,n(x), n ∈ [nb]. The average
activation of the nth node in block b ∈ [B] across all training data x ∈ Dtrain is
denoted by c̄b,n.

For BIR, we compute a pseudo-output by passing data of only one block b
through the network. For this purpose, we introduce a pseudo-input v(b)(x) as

v
(b)
b′,n(x) =

{
cb′,n(x) if b′ = b
c̄b′,n otherwise,

(2)

where b′ ∈ [B], and n ∈ [nb]. By propagating pseudo-input v(b)(x) through
the blender network, we obtain the pseudo-output fblender

w (v(b)(x)). The main
assumption behind the knock-in strategy is that high agreement between output
fw (x) and pseudo-output fblender

w (v(b)(x)) indicates a high importance of block
b, since information from b is sufficient to recover most of the model output. In
contrast, a large discrepancy between the two quantities indicates low explana-
tory power of the block b, and thus, a lower block importance. The concept to
generate knock-in pseudo-outputs is illustrated in Fig. 2.



Ranking Feature-Block Importance in ANNs 167

Fig. 2. Knock-in strat-
egy: Pseudo-outputs for
feature-block b = 1 are
generated by activating
block b, while imputing
averaged activations for
all other blocks.

We implement the knock-in concept via the mutual
information (MI) [6], an information-theoretic mea-
sure to quantify the level of joint information between
two discrete random variables Z and Z ′, defined as

MI(Z,Z ′) =
∑

z

∑

z′

pZ,Z′(z, z′) log2

(
pZ,Z′(z, z′)

pZ(z)pZ′(z′)

)
.

If Z and Z ′ are independent, MI(Z,Z ′) is 0. Other-
wise, MI(Z,Z ′) is positive, where a high value indi-
cates a large overlap in information. To quantify the
joint and marginal distributions of continuous vari-
ables Z and Z ′, two-dimensional and one-dimensional
histograms can be used as non-parametric estimators
for pZ,Z′ , pZ , and pZ′ , respectively. We denote the
number of equidistant histogram bins along each axis
by � ∈ N. It follows from the properties of entropy [6]
that an upper bound to MI(Z,Z ′) is given by log2(�).

As shown in Fig. 2, the random variable of (full)
model output, Y F = fw (X), and the random vari-
able of the pseudo-output with respect to block b,
Y (b) = fblender

w (v(b)(X)), where X follows the input
distribution PX , are used to measure knock-in (KI)
block importance as

γ
(b)
KI =

MI(Y F, Y (b))

log2(�)
. (3)

2.3 Knock-Out Strategy

The knock-out paradigm is an ablation procedure where one block at a time is
removed from the model in order to measure the impact of the remaining blocks.
We pursue a similar approach as in the knock-in paradigm and specify knock-out
pseudo-inputs v(−b)(x) as

v
(−b)
b′,n (x) =

{
c̄b′,n if b′ = b
cb′,n(x) otherwise,

(4)

for an arbitrary block b ∈ [B]. Thus, the definition in Eq. 4 represents an opposite
behavior of Eq. 2 in the knock-in case. In analogy to the knock-in notation, we
denote the random variable of pseudo-outputs with respect to v(−b) as Y (−b) =
fblender

w (v(−b)(X)). The knock-out concept is illustrated in Fig. 3. In contrast
to knock-in, we assume that leaving out block b having a relevant impact on
the final output delivers a more dissimilar pseudo-output to the full output
since relevant information is lost. Removing an unimportant block preserves the
relevant information and delivers a pseudo-output similar to the full output.
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Fig. 3. Knock-out strat-
egy: Pseudo-outputs are
generated by activating
all but one blocks.

Finally, we define the importance of block b ∈ [B]
with respect to the knock-out strategy (KO) as

γ
(b)
KO =

log2(�) − MI(Y F, Y (−b))

log2(�)
. (5)

For both, KI and KO, importance scores γ
(b)
KI and γ

(b)
KO

are bounded between 0 (unimportant block) and 1
(important block).

3 Experiments

As a proof of concept, we conduct two experiments
to assess BIR in M-ANNs. The first experiment
involves six simulated, non-linear regression problems,
where our simulation setup delivers information on
the ground truth block importances. This experiment
verifies that our suggested measures can identify the
ground truth block rankings, defined by their corre-
sponding paradigms. Real-world datasets are evalu-
ated in two case studies in experiment 2, where no
exact ground truth block ranking is available. Instead,
we compare BIR strategies to each other.

3.1 Simulation Experiment

We simulate a synthetic datasets along with six distinct target functions, denoted
as setups S1a–S1c and S2a–S2c. The dataset consists of N = 256 features,
divided randomly into B = 8 blocks (B1–B8) à Nb = 32 features. The sam-
ple size is set to |Dtrain| = 10 000 and |Dtest| = 10 000. All features are simulated
from a multivariate normal distribution with mean vector μ = 0 and a random-
ized covariance matrix Σ; hence a non-trivial correlation structure is imposed.2

Setups S1a–S1c and S2a–S2c differ in the parameters used to compute the
non-linear target variable y, which is simulated via a noisy linear combination
of the squared features with coefficient matrix β(b) ∈ RNb×Nb , given as

y =

8∑

b=1

xT β(b)x

︸ ︷︷ ︸
g(x)

+εnoise, where

εnoise ∼
i.i.d.

N
(
0, σ2

noise

)
, and

β(b) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βimp 0 ...
0 0 ...

0
βint βimp 0 0 0

· · · . . .

βint βint βimp 0 0
0 0 0 0 0

· · · . . .

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(6)

2 Code and details on simulation and network architecture are available at https://
github.com/annajenul/Block Importance Quantification.
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Table 1. Specifications for matrix β(b): block importance is steered via count Nimp,
coefficient βimp, and interaction βint of the important features.

Setup Block

B1 B2 . . . B7 B8

Nimp βimp βint Nimp βimp βint . . . Nimp βimp βint Nimp βimp βint

S1a 2 7 0 2 6 0 . . . 2 1 0 0 0 0

S1b 7 2 0 6 2 0 . . . 1 2 0 0 0 0

S1c 1 7 0 2 6 0 . . . 7 1 0 0 0 0

S2a 2 7 1 2 6 1 . . . 2 1 1 0 0 1

S2b 7 2 1 6 2 1 . . . 1 2 1 0 0 1

S2c 1 7 1 2 6 1 . . . 7 1 1 0 0 1

The matrix β(b) ∈ RNb×Nb contains an Nimp × Nimp quadratic sub-matrix
consisting of coefficients βimp of important features, i.e. features with relevant
contribution to the target, and interactions βint. The noise parameter σnoise is
set to 10% of the standard deviation of the linear combination g(x) across the
generated samples x. As shown in Table 1, block importances are varied between
the setups and as follows

– S1a: varying coefficients of important features, but constant counts;
– S1b: varying counts of important features, but constant coefficients;
– S1c: varying counts and coefficients of important features;
– S2a–S2c: same as S1a–S1c, but with interaction terms between features.

Due to the randomized correlation matrix of the feature generation, unimportant
features may be correlated with important features, as well as with the target y.

For each setup, we trained the described M-ANN model in 30 independent
runs with distinct weight initializations after data standardization. Since BIR
methods are deployed post-hoc and assume a model with appropriate perfor-
mance, runs with poor performances (R2 < 0.8) were excluded from the analysis
after outlier removal. Hence, the number of model runs in the analysis was 20
(S1a, S1b, S2a, S2b), 18 (S1c), and 19 (S2c), respectively. The remaining models
achieved an average performance of ≥0.9 (R2 score) and ≤0.2 (RMSEIQR: root
mean squared error scaled by inter-quartile range) on the test set.

For evaluation, importance scores across all model runs were tested for signif-
icant differences using a pairwise Wilcoxon-test with Bonferroni correction. If the
p-value in a comparison between two blocks was above a significance level of 0.01,
both were counted as tie. Figure 4 illustrates the distributions of BIR scores after
min-max-normalization by setup and method, along with rankings (colors) based
on significant group differences. All methods discovered the intrinsic ranking in
dataset S1a. In dataset S1b, knock-in, knock-out, and VarGrad-mean identified
the ranking by underlying important feature counts Nimp, while VarGrad-max
failed to deliver a significant distinction between blocks with higher counts of
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Fig. 4. Distributions of the normalized BIR scores across model runs. Rankings are
indicated by colors and refer to significant group differences based on a pairwise
Wilcoxon-test (significance level 0.01).
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Table 2. Averaged Spearman’s rank correlation coefficients comparing each ranking
to the ground truth BIR for each paradigm across model runs. Standard deviations
were ≤0.03 for S1a, S1b, S2a and S2b, and ≤0.06 for S1c and S2c.

Paradigm Dataset

S1a S1b S1c S2a S2b S2c

Composite (VarGrad-max) 0.97 0.58 0.93 0.98 0.58 0.91

Composite (VarGrad-mean) 0.98 0.95 0.96 0.97 0.95 −0.40

Knock-in 0.99 0.98 0.85 0.97 0.99 0.89

Knock-out 0.99 0.98 0.81 0.99 0.99 0.89

important features. For dataset S1c, VarGrad-max mostly ranked by underlying
βimp and ignored Nimp, while knock-in, knock-out and VarGrad-mean delivered
trade-offs between counts Nimp and coefficients βimp of important features. In
setups S2a, S2b, and S2c with between-feature interactions, the same rankings as
in S1a, S1b, and S1c could be obtained by all methods with negligible deviations.
Hence, we conclude that all metrics remain stable in more complex scenarios.

We further validated the paradigms by comparing the results to their cor-
responding ground truth block importances, determined by the real coefficients
in the simulation setup. For the composite max and mean paradigms, the cor-
responding maxima and means over β(b), were used as references. Ground truth
importances for knock-in (KI), and knock-out (KO) were based on the explained
variances of the single block b in the underlying linear combination, given as

KIb = E
(

y −
(
x(b)

)T

β(b)x(b)

)
, and KOb = E

⎛
⎜⎜⎝y −

8∑

b′=1
b′ �=b

(
x(b′)

)T

β(b′)x(b′)

⎞
⎟⎟⎠ ,

where x(b) denotes projection of input x on the subspace of block b, Db. The
comparison between the rankings based on (average) predicted importance scores
and ground truth rankings was made using Spearman’s correlation coefficient,
see Table 2. With two exceptions, all correlation values were at a high level,
indicating that our methods accurately predicted the ground truth. Spearman’s
correlation coefficient is not representative in S1b, and S2b with respect to the
maximum metric since the ground truth ranking is equal for blocks B1–B7. In
S2c VarGrad-mean is distracted by decreasing βimp and an increasing number
of interaction terms, although underlying block importances are in increasing
order with respect to the mean metric.

3.2 Real-World Experiment

Since verification on simulated data showed that the presented approaches match
the ground truth according to their paradigms, we deployed the methods on two
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real-world datasets, where underlying block importance is unknown. Prior to
analysis, both datasets were standardized on the trained data. Again, we trained
30 independent model runs.

(a) Breast Cancer Wisconsin dataset.

(b) Servo dataset.

Fig. 5. Distributions of normalized BIR scores in experiment 2 across model runs.

The Breast Cancer Wisconsin dataset (BCW) [13] describes a binary classi-
fication problem (malignant or benign tumor) and consists of 569 samples (398
train, 171 test) and three blocks with ten features each, representing groups of
distinct feature characteristics (mean values, standard deviations, and extreme
values of measured parameters). The average performance was 0.95 (accuracy)
and 0.96 (F1 score) without outliers. The average scores and rankings delivered
by BIR methods are shown in Fig. 5a. All four paradigms discovered that block
3 is dominant, which agrees with previous research on the dataset [10]. However,
knock-in was the only method that distinguished between the importances of B1
and B2. According to [10], block B1 contains overlapping information with B3,
while B2 is rather non-informative. Thus, the experiment underlines a difference
between knock-in and knock-out rankings in the presence of redundancies.

Servo [12] is a dataset containing 167 samples (120 train, 47 test), a uni-
variate, numeric target variable, and four features, two of which are categorical
variables with four levels each, and two are numerical variables. Each feature
was assigned its own block. One-hot encoding was performed for the two blocks
containing categorical features, leading to two blocks (B1 and B2) of four binary
features, each. Blocks corresponding to numerical features (B3 and B4) contain
one feature each. In the 30 M-ANN model runs, an average performance of 0.21
(RMSEIQR) and 0.87 (R2) was obtained without outliers. Figure 5b shows that
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for all four paradigms, block B3 was most important. While VarGrad methods
delivered a binary ranking, knock-in and knock-out suggested a ranking with
3 and 4 distinct importance levels, respectively—thus, the level of detail was
higher in the MI-based rankings compared to VarGrad methods.

4 Discussion

Our experiments demonstrated several differences between the proposed strate-
gies. While the composite strategy evaluates features individually and depends
on two user-selected parameters (the feature-wise ranking scheme and the sum-
mary metric), the knock-in and knock-out strategies consider each block a closed
unit. They require no selection of a summary statistic. MI-based rankings deliver
a score in [0, 1], while VarGrad has no upper bound. However, the discretization
associated with the mutual information calculation may influence the impor-
tance scores and, thus, the rankings by knock-in and knock-out. All strategies are
applicable for multivariate target variables, as well. However, an MI-based com-
parison between outputs and pseudo-outputs is prone to suffer from the curse of
dimensionality since higher-dimensional probability distributions are compared
to each other. On the contrary, the vanishing gradient problem can influence
VarGrad in deep ANN architectures. All approaches delivered accurate experi-
mental results, but only knock-in and knock-out provided a consistent ranking of
blocks with minor importance in dominant blocks, such as for the servo dataset.

Even though knock-in and knock-out rely on the same concept of assessing
pseudo-outputs related to each block, their properties and interpretations differ.
The knock-in strategy determines whether a block can deliver a reasonable tar-
get description independently from the remaining blocks. This interpretation of
block importance evaluates the performance achieved if we reduce the model to
solely one block at a time. In contrast, knock-out quantifies whether the contri-
bution of a block can be compensated by any other block. If two blocks contain
redundant information about the target, knock-in delivers high values for both
blocks since each block individually has high explanatory power. In contrast,
knock-out penalizes redundant blocks since each of them can be removed with-
out loss of information. This property became evident in the BCW experiment,
where B3 was dominant but shared overlapping information with B1: knock-in
was the only approach that discovered the higher information content in B1
compared to the uninformative B2.

5 Conclusion

We have demonstrated three strategies to rank the importance of feature-blocks
as post-processing in ANNs with block-wise input structure. The composite
strategy, which is a direct generalization of feature-wise importance rankings,
provided promising results in most cases, but selecting the correct summary
statistic was crucial. Knock-in and knock-out strategies, implemented using
an information-theoretic measure on the model outputs, delivered a trade-off
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between the extremes of maximum and mean feature importance in the compos-
ite case. All methods uncovered the true block importance with high accuracy
and delivered new insights into the ANN’s behavior. Still, computing multiple
proposed metrics is advantageous for making informative block ranking deci-
sions.
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ABSTRACT

Determining the most informative features for predicting the overall survival of patients diagnosed
with high-grade gastroenteropancreatic neuroendocrine neoplasms is crucial to improve individual
treatment plans for patients, as well as the biological understanding of the disease. Recently de-
veloped ensemble feature selectors like the Repeated Elastic Net Technique for Feature Selection
(RENT) and the User-Guided Bayesian Framework for Feature Selection (UBayFS) allow the user
to identify such features in datasets with low sample sizes. While RENT is purely data-driven,
UBayFS is capable of integrating expert knowledge a priori in the feature selection process. In this
work we compare both feature selectors on a dataset comprising of 63 patients and 134 features
from multiple sources, including basic patient characteristics, baseline blood values, tumor histol-
ogy, imaging, and treatment information. Our experiments involve data-driven and expert-driven
setups, as well as combinations of both. We use findings from clinical literature as a source of
expert knowledge. Our results demonstrate that both feature selectors allow accurate predictions,
and that expert knowledge has a stabilizing effect on the feature set, while the impact on predictive
performance is limited. The features WHO Performance Status, Albumin, Platelets, Ki-67, Tumor
Morphology, Total MTV, Total TLG, and SUVmax are the most stable and predictive features in our
study.
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1 Introduction

Gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN) are heterogeneous types of malignancies increas-
ingly common over the last three decades [1, 2]. High-grade GEP NEN encompasses both neuroendocrine tumors
grade 3 (NET G3) and neuroendocrine carcinomas (NEC), where NEC is further subdivided into small cell (SC) and
large cell carcinomas (LC). According to the WHO 2019 Classification of Tumors: Digestive System Tumors, NET
G3 are well differentiated (WD), whilst NEC are poorly differentiated (PD), both with a Ki-67 proliferation index (Ki-
67) > 20% [3]. Although both NET G3 and NEC share features of immunohistochemical staining with chromogranin
A and synaptophysin, they are considered morphologically different [4].

The prognosis for patients with advanced GEP NEC is poor, with a median survival of less than 12 months [5,6], whilst
the prognosis for locoregional GEP NEC is higher; 20.7 months [7]. Numerous recently published studies [5, 8–14]
have shown the prognostic importance of several parameters on overall survival (OS) such as age, performance status
(PS), primary tumor site, tumor differentiation, TNM-stage, serum lactate dehydrogenase (LDH), serum platelet levels,
proliferation marker Ki-67, maximum standardized uptake value (SUVmax), total metabolic tumor volume (tMTV)
and total total lesion glycolysis (tTLG). Establishing more robust prognostic parameters and validating established
parameters is essential to provide optimal care for this patient group.

Forecasting the OS of cancer patients as a major indicator of treatment success by machine learning models is of high
relevance to offering optimal individual treatments for patients. In particular, accurate outcome prediction models
pave the way for decision support in clinical practice. Since GEP NEN are rare, however, the data basis for training
purely data-driven models is limited, leading to problems like overfitting, spurious correlations, and, consequently, to
inaccurate predictions [15–17]. Two major approaches are at hand to overcome these issues: (a) increasing the number
of samples (either by collecting more data or by artificial data augmentation) or (b) reducing the dimensionality of the
feature space. In this work, we elaborate on approach (b), where our method of choice is feature selection. While
general dimensionality reduction methods like Principal Component Analysis [18] transform the data to a new domain
and thereby make identification of influencing factors difficult, feature selection reduces the dimension by subsetting
the dataset by columns. As a result, a subset of the original features is retained, and the interpretability of the data
columns is preserved.

Beyond the obvious benefit that predictive models become tractable, feature selection has the potential to improve
the understanding of biological processes by clinical experts [19]. In particular, feature selectors point to input data
parameters, which are related to explaining the target variable by a data-driven model. This information may either
support or contradict existing hypotheses about the underlying biological processes or disclose previously unknown
relations. The evaluation and interpretation of the findings require close collaboration between clinical experts and
data scientists. However, such an application of feature selectors is still less common in machine learning, where the
focus typically lies exclusively on optimizing performance metrics.

State-of-the-art research in feature selection with applications in healthcare, such as L1 regularization [20], decision
trees [21], Laplace scores [22], or the minimum redundancy-maximum relevance (mRMR) criterion [23], are mainly
data-driven and may suffer from well-known limitations. Among these limitations is the problem that minor changes,
such as the inclusion of new or removal of old samples, may have significant effects on the set of selected features
— the property of feature sets to remain invariant under such changes to the dataset is referred to as feature selection
stability and investigated in [24]. The usage of ensemble feature selectors, which train multiple feature selectors on
subsets of the samples in a dataset, has recently been investigated extensively [25] and achieves a higher feature se-
lection stability compared to a single feature selection run, while retaining a similar predictive performance, as used
e.g., in random forest methods [26]. More recently, this fact has been exploited to introduce more stable feature se-
lection methods tailored for healthcare applications, which offer a large potential with respect to the aspects discussed
above [19, 27].

This paper aims to improve the understanding and insights into the OS in patients with high-grade GEP NEN by
applying recently developed ensemble feature selection techniques. Specifically, we evaluate the Repeated Elastic Net
Technique for Feature Selection (RENT) [27], as well as the User-Guided Bayesian Framework for Feature Selection
(UBayFS) [19] on a dataset containing 63 patients diagnosed with high-grade GEP NEN. Our experiments compare
both ensemble feature selectors in setups with and without the use of expert information. Our main goals are: (I)
to determine the most informative set of features with respect to the outcome prediction task; (II) to interpret those
selected features clinically — to evaluate the first goal, we measure the quality of the selected feature set in terms of
predictive performance and selection stability. Another aspect of interest is: (III) to determine the effect of integrating
prior expert knowledge into the feature selection process, compared to a purely data-driven pipeline. To this end, we
discuss the feature selection results with respect to their clinical relevance and potential to improve our understanding
of what influences OS of GEP NEN patients.

2
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Notations In the following, we denote the input data matrix by X ∈ Rm×n, where m denotes the number of
patients, and n denotes the number of features. Further, the target variable is denoted by y ∈ Rm. A feature set S is
characterized by the indices, S ⊆ {1, . . . , n}. Vectors and matrices are indicated by bold letters.

2 Materials and Methods

2.1 GEP NEN dataset

Statements of Ethics This study was done in concordance with the Declaration of Helsinki. Approval from the
regional committee for medical and health research ethics (2012/490, 2012/940, 2018/1940) and the local data protec-
tion officer was obtained. Informed consent was obtained from all patients at the time of inclusion but was waived for
the patients in terminal phase and deceased.

Patient cohort Patients were identified from a single institutional cohort at Oslo University Hospital, also included
in two multi-institutional Nordic NEC registries organized by the Nordic Neuroendocrine Tumor Group, previously
described by [8]. In short, this cohort consisted of 192 patients included between January 2000 and July 2018,
with GEP NEC classified according to the WHO 2010-classification [28]. In addition, all patients who had per-
formed a fluorine-18 labeled 2-deoxy-2-fluoroglucose ([18F]FDG) positron emission tomography/computed tomogra-
phy (PET/CT) within 90 days of their histological evaluation were eligible for inclusion. A hundred and seven patients
did not have PET/CT performed, and two patients had no metabolic active lesions available for evaluation. Seventeen
patients had more than 90 days between their biopsy and PET/CT, leaving 66 patients available for inclusion in this
study.

Histological re-evaluation As described previously in [8], the histological re-evaluation was performed on both core
biopsies and surgical specimens from GEP NEC primary tumors and metastases. These were re-classified according
to the most recent WHO 2019-classification [3] with regards to synaptophysin, chromogranin A, and the proliferation
marker Ki-67. In this study, only the re-evaluated histology features were used, while the original histology block was
discarded.

PET/CT acquisition All PET/CT scans were done according to the European Association of Nuclear Medicine
(EANM) guidelines [4, 5] as part of the clinical routine. The three PET scanners used were a 40-slice Siemens
Biograph mCT hybrid PET/CT system (Siemens Healthineers, Erlangen, Germany), a Siemens Biograph 64, and a
64-slice General Electric (GE) Discovery 690 (GE Healthcare, Waukesha, WI, USA). Both Biograph PET/CTs were
both EANM Research Ltd. (EARL)-accredited, whilst the Discovery 690 followed similar routine quality controls
harmonizing with the two Biographs for cross-calibration. All acquisitions were from the vertex or skull base to
mid-thighs. Before the PET acquisition, a low dose CT was acquired for anatomical information and attenuation
correction. Parameters from PET were extracted using the ROI Visualisation, Evaluation, and Image Registration
(ROVER) software v3.0.5 (ABX GmbH).3

Treatment All patients received treatment in the form of surgery, chemotherapy, or a combination of both. In total,
54 patients received the standard treatment of platinum-based chemotherapy. Patients could have surgery prior to or
after [18F]FDG PET/CT. Evaluation of response to chemotherapy treatment was done with CT using the Response
Evaluation Criteria in Solid Tumors (RECIST) [29].

Outcome variable Our outcome variable, or outcome target, was overall survival (OS) in months. This can be
defined as the time a patient remains alive from the time of diagnosis to death of any cause; hence, it is not disease-
specific. It is a reliable and easily available survival measure [30]. We can analyze such survival data, i.e., the time
from diagnosis to the time of death, using the Kaplan-Meier estimator. For those patients who did not experience
the event during the time of the study (or during follow-up) (i.e., death), they are said to be ’censored’ [31]. Being
’censored’ means that we do not know when this event will occur, only that it has not happened at the end of the study
(or during follow-up). Across the full dataset, the empirical distribution of the outcome variable is illustrated as a
histogram in Fig. 1.

3The detailed imaging- and extraction protocol is described in [8].

3
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Figure 1: Distribution of the overall survival in months.

Figure 2: Correlations between input features (features with absolute correlations ≤ 0.5 were removed).

4
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Figure 3: Preprocessing pipeline for the dataset.

Data blocks The data were grouped into five different blocks

(p) patient characteristics
(b) baseline blood values
(h) re-evaluated histology
(i) PET/CT imaging
(t) treatment

The data contained mainly categorical and ordinal features with very few continuous variables. An overview of the
pairwise correlations between the n = 134 features is provided in Fig. 2.

2.2 Data preprocessing

The data preprocessing consists of several chronological steps prior to applying the ensemble feature selectors, see
Fig. 3.

Data cleaning The first step in data preprocessing is to discard features known to be unimportant, such as features
with only one unique value for all patients or duplicated features. Furthermore, we remove all data columns containing
more than 25% missing values across all patients. By this criterion, we remove 16 features from block (p), one feature
from block (b), six features from block (h), 14 features from block (i), and eight features from block (t).

Further, three patients are excluded from the experiments due to a high number of missing values in at least one block.
All subsequent preprocessing steps are conducted on the remaining 63 patients and are applied by block to retain the
homogeneous block structure.

Missing values Some values were missing because the clinicians did not fill out the case registration forms (CRF)
properly or completely. Amongst other reasons, this may be because the information was missing in the patient journal,
a blood sample was not done, a parameter was forgotten registered in the patient journal, or because the patients are

5
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Table 1: One-hot versus ordinal encoding of a 4-level variable (levels A, B, C, D). Ordinal encoding assumes an order
of the levels (here: A<B<C<D).

level one-hot encoding ordinal encoding

A (0,0,0) (0,0,0)
B (0,0,1) (0,0,1)
C (0,1,0) (0,1,1)
D (1,0,0) (1,1,1)

referred from other hospitals. Such features, which are unavailable for a large percentage of patients, cannot be
assessed properly in a data-driven manner and were therefore excluded — an imputation of those features would be
unreliable due to the small sample size and may introduce incorrect or misleading information into the model.

As a second step, we impute the features with less than 25% missing values via an adaptation of the k-nearest neighbors
(kNN) imputation algorithm [32]. The number of features and the number of patients that have at least one missing
value for each block are: (p) (7:25), (b) (5:16), (h) (7:6), (i) (2:2), and (t) (3:3) where the first number represents the
number of features and the second number represents the number of patients.

In particular, we restrict the feature space to non-missing columns and compute a matrix of pair-wise distances between
all patients. We denote the set comprising the k-nearest neighbors of patient i by Nk(i) ⊆ {1, . . . ,m}. Assuming that
feature j is missing for patient i, we impute xi,j by ximp

i,j , representing the median (instead of the mean, as suggested
by [32]) of feature j across the patient’s k nearest neighbors where the feature value is known, i.e.

ximp
i,j ← median {xl,j : l ∈ Nk(i)} . (1)

Ordered categorical features are transformed to an integer scale before interpolation. The usage of an odd value of k
(by default, we use k = 5) guarantees that the median returns an integer, which is a clear benefit over the mean when
using the technique for ordered features.

Categorical feature encoding Categorical features require encoding in order to be processed alongside numeric
variables in predictive models. In particular, we distinguish between ordinal and nominal categorical variables: Nom-
inal variables (i.e., variables without an internal order of the feature levels), such as clinical institution, are one-hot
encoded [33]. Given a feature j with cj feature levels, the one-hot encoding produces a set of cj − 1 binary features
{e2, . . . , ecj}, given as follows:

(el)i =

{
1 if xi,j = l,
0 otherwise, (2)

for l ∈ {2, . . . , cj} indicating the feature level. The number of one-hot/ordinal categorical features is: 21/5 for block
(p), 0/3 for block (b), 10/2 for block (h), 1/0 for block (i), and 5/0 for block (t). To avoid linear dependencies between
features, the first feature level is not represented by a binary vector in the encoded space, but rather contributes to the
model intercept, see Tab. 1.

Features with an internal order among their levels (ordinal variables), such as the WHO performance status with levels
0, 1, 2, 3, and 4, require an ordinal encoding to retain the relevant information about the order. Under the assumption
that the influence of a feature increases from lower to higher levels (i.e., higher levels comprise the lower levels and
an additive effect), the following encoding is used:

(el)i =

{
1 if xi,j ≤ l,
0 otherwise. (3)

for feature level l ∈ {2, . . . , cj}. Again, the first feature level, which would be assigned a value of 1 across all samples
in the encoded space, is not assigned a binary vector in the encoded space. A comparison between one-hot and ordinal
encoding is provided in Tab. 1. In contrast to transforming to an integer scale, this binary ordinal encoding preserves
the order among the categories but does not pretend equal distances between the categories on a numerical scale.

Feature transformation and normalization During our experiments, we split the dataset into train and test sets. To
normalize the distribution of each numeric feature, we use the Yeo-Johnson power transformation along with standard-
ization [34]. The Yeo-Johnson power transformation is an extension of the well-established Box-Cox transformation
with the benefit that it enables the transformation of negative and zero values. The intention is to bring the data
closer to a normal distribution by simultaneously stabilizing data variance. For a given feature j, Yeo-Johnson’s power
transform is defined as

6
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Table 2: Encoding of the target variable ”overall survival” (OS) [months].
level encoding

OS ≤ 12 1
12 < OS ≤ 24 2
24 < OS ≤ 36 3
36 < OS ≤ 48 4
48 < OS ≤ 60 5
60 < OS 6

xYJ
i,j ←





((xi,j + 1)λj − 1)

λj
if λj 6= 0, xi,j ≥ 0

log(xi,j + 1) if λj = 0, xi,j ≥ 0

− ((−xi,j + 1)2−λj − 1)

2− λj
if λj 6= 2, xi,j < 0

− log(−xi,j + 1) if λj = 2, xi,j < 0.

(4)

Commonly, the transformation parameter λj is estimated from the data using a maximum likelihood approach. After
the Yeo-Johnson transformation, we scale the data to zero mean and variance of 1. To prevent biased train and test
data, the transformation parameter λj and the mean and variance for the standardization are estimated on the training
data in each split separately.

Encoding of the target variable Even though machine learning models for censored data are evolving, most present
predictive models cannot handle censored data [35]. To avoid the problem presented by censored data, we encode the
OS in months into an integer value (1-6). Using 60 months median follow-up time as a reference, there are no
censored patients with OS below 60 months. Considering survival on a yearly basis we use the representation of the
target variable in our experiments as in Tab. 2. Since each level in the encoded space equals one year, predictive errors
used in the remainder of this paper refer to a yearly scale.

2.3 Feature Selection Methods

In this work, we investigate two ensemble feature selection methods, which have been tailored to fit the requirements
of datasets in the life science domain: the Repeated Elastic Net Technique for Feature Selection (RENT) [27] and the
User-Guided Bayesian Framework for Feature Selection (UBayFS) [19]. Both methods build on the principle of (a)
randomly subsampling the input dataset and (b) training an elementary feature selection model on each sample. The
final feature set is determined by applying a meta-model on the feature sets selected by the elementary models, see Fig.
4. In the case of RENT, the elementary feature selector type is restricted to elastic net regularization [36] using logistic
regression models for binary classification problems or ordinary least squares linear regression models for regression
problems, while UBayFS operates on an arbitrary elementary model type.

RENT The rules to obtain a final feature set further demonstrate the distinct scopes of the methods: RENT defines
three criteria τ1, τ2 and τ3 for the selection of features based on the distribution of their weights across the elementary
models; (I) the number of times the feature weights are non-zero (τ1) is above a level specified by the user; (II) the
alternation of the sign of the feature weights does not surpass a user-defined level (τ2); (III) the size of the feature
weights deviate significantly from 0 (τ3). The hyperparameters for RENT comprise of a number M of elementary
models, an internal data split ratio, two parameters associated with the elastic net regularization in the elementary
models (C and `1), as well as one cut-off parameter for each of the three criteria τ1, τ2, τ3.

UBayFS In contrast, UBayFS combines the selection frequency of each feature across the elementary models with
prior information from domain experts, along with side constraints. In particular, the prior weighting of features
is possible, along with the definition of linear side constraints between features (and feature blocks). In practice,
weights can represent knowledge about the importance of features, which is verified from previous publications. Side
constraints enable the user to restrict the feature set’s maximum size maxs and account for the intrinsic block structure
during feature selection (e.g., in multi-source datasets). Hence, RENT implements a purely data-driven approach based
on Elastic Net, while UBayFS is a general meta-model with capabilities to integrate contextual information about the
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data generation process. In its most basic setup, UBayFS requires as hyperparameters a number of elementary models
M and an internal data split ratio, a maximum number of features maxs, and a model type to use as the elementary
feature selector.

X
input

dataset
sub-

sampling

X1 X2
. . . Xm

data
subsets

elementary
feature

selectors

δ1 δ2 . . . δm
elementary
feature sets

information from data

meta-model
RENT

selection criteria

τ1 τ2 τ3

UBayFS

posterior distribution
over δ

prior
knowledge

side
constraints

information from expert

δ?
final

feature set

Figure 4: Overall structure of both ensemble feature selection methods, RENT and UBayFS. After training elementary
feature selectors, information is combined in a meta-model. While RENT uses information from data only, UBayFS
additionally includes expert information.

2.4 Outcome prediction

Linear regression Given a set of selected features S, we make use of linear regression models [37] to model the
target variable y. In its simplest form, the linear regression model (with intercept) is given as

y = X̃β + ε, (5)

where β ∈ Rn+1 is the model parameter vector, X̃ denotes the matrix containing one column of ones, followed by
the sub-matrix of X restricted to the columns contained in S. Further, ε ∼

iid
N(0, σ2) denotes the model error with

constant error variance σ > 0. By default, parameters of linear regression models are obtained via ordinary least
squares (OLS), i.e. by minimizing the least squares error

min
β
‖y − X̃β‖22. (6)

Once the parameter vector β is estimated by optimizing Eq. 6 analytically, predictions are obtained by evaluating
ŷ = X̃β.

k-nearest neighbor (kNN) regression As an alternative to the linear regression model, a k-nearest neighbor (kNN)
regression model [37] is used to compute predictive results. In contrast to the linear regression model, the kNN model
does not assume a linear relationship between the predictors and the target variable. Similar to the kNN method used
for missing value imputation in Section 2.2, a neighborhood Nk(i) of sample i containing the k nearest training data
points with respect to a Euclidean metric on the feature space is computed for any data point xi. The prediction for
the target value yi corresponding to sample i is given by the mean of the neighbor’s target values

ŷi =
1

k

∑

l∈Nk(i)

yl. (7)

8
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Note that, the neighborhood Nk(i) is a subset of the training samples only, while ŷi may represent both, training or
test samples.

Both predictive models, linear regression as well as the kNN regression model, are known to suffer from the curse
of dimensionality — hence, we can assume that selecting a high number of features deteriorates each model. The
opposite extreme for both methods, i.e., selecting no features at all, leads to predicting the output with the mean over
the training data regardless of the input. Thus, we expect a well-performing feature selector to deliver a proper subset
S of the feature set {1, . . . , n}, which allows both predictive models to perform better than the baselines given by (a)
the overall mean of the target variable, and (b) a model including all features.

2.5 Implementation

Parts of our analyses are conducted in the programming languages R [38]; other parts are conducted in Python [39].
We use the open-source implementations for RENT [40] and UBayFS [41]. For data preparation and preprocessing,
we deploy the R package caret [42], and the Python package scikit-learn [43]. Fold indices are shared between R and
Python. Predictive models are trained and evaluated in R using the caret package for all model setups. All plots are
created using package ggplot2 [44].

All results are produced on an Intel Core i7 CPU @1.8 GHz, 32GB RAM under a Windows 11 Pro operating system.

3 Experiments

Our experimental results are structured into a pre-study, where we determine optimal hyperparameters for the feature
selection algorithms, followed by two main experiments. Experiment 1 focuses on the comparison of the two models,
RENT and UBayFS, on the dataset without accounting for additional expert knowledge. Experiment 2 is operated on
UBayFS only, as prior information and additional side constraints are included in the feature selection.

Our main focus in the experiments lies on the selected feature sets, along with the impact of the feature selection on
predictive performance. We provide feature counts from both of the investigated feature selectors, RENT and UBayFS,
across five different train-test splits of the dataset. Unless specified otherwise, all experiments are conducted using the
hyperparameters determined during the pre-study.

3.1 Experimental setup

Model parameters Both algorithms, RENT and UBayFS, are trained on M = 100 ensemble models and internal
0.75/0.25-splits for sub-sampling the dataset. The underlying elementary feature selector for RENT is, by definition,
an elastic net regularized linear regression model. Thus, RENT requires five hyperparameters to be determined during
the pre-study (2 elastic net regularization parameters, `1 and C, as well as three thresholds τ1, τ2, and τ3 for the
selection criteria). In order to make results comparable with UBayFS, we further deploy a side condition to restrict
the search space to settings, which deliver a maximum number of features maxs during validation. Thus, the number
of features selected by RENT is approximately equal to the pre-defined parameter maxs.

UBayFS uses minimum redundancy max relevance (mRMR) [23] as an elementary feature selector. The internal
number of features in each elementary model is set to maxs, i.e., each elementary model selects exactly maxs features.
For the meta-model, the same parameter maxs is used to restrict the maximum number of selected features via a max-
size side constraint (hard constraint) — while different levels of maxs are evaluated in experiment 1, the parameter is
set to the default maxs = 20 in experiment 2. Further, unless otherwise stated, prior feature weights in UBayFS are
set uniformly to 0.1 across all features, which results in a non-informative prior.

Train-test splits As the ratio between the number of patients and features is unbalanced, with 63 patients and 134
encoded features, the reliability of the feature ranking results must be validated to reduce the risk of spurious correla-
tions and overfitting. Hence, we perform a 5-fold split of the dataset. For all possible permutations, we use four folds
for training UBayFS or RENT, as well as the predictive models and the remaining fold for testing. Hyperparameters
are determined on each split separately by internally subsetting the 4-fold training set (nested split). The 5-fold splits
and hyperparameters determined in the pre-study remain the same across all experiments.

For each feature selection method, we provide the selection frequencies of each feature across the 5 folds, i.e., a feature
obtains an importance score between 0 and 5 according to the number of folds it was selected for. For predictive
performance scores, a linear regression model and a kNN regression model are trained on the same training folds,
using the features from the preceding feature selection, and evaluate the prediction error on the test set (averaged
across all folds).
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Table 3: Selected hyperparameters for each train/test split.

parameter fold
1 2 3 4 5

RENT

`1 0.3 0 0.3 0.3 0.3
C 1 1 1 1 1
τ1 0.3 0.5 0.3 0.35 0.35
τ2 0.3 0.5 0.4 0.35 0.35
τ3 0.975 0.975 0.975 0.975 0.975

UBayFS maxs 20 20 20 20 20

Performance metrics To assess whether a feature set contains relevant information for training predictive models,
we analyze the predictive performance in a regression setup following the feature selection step. The performance is
quantified using the root mean squared error (RMSE), which has a lower bound of 0 and shall be minimized.

Using the stability criterion introduced by [24], we further evaluate the feature selection stability across the five folds
for RENT and UBayFS. The computed score is bounded in the interval [0, 1]; a value of 1 indicates perfect stability,
i.e., the same feature set is selected in each model, while 0 indicates that selected feature sets show no overlap.

Furthermore, the redundancy rate (RED) returns an intrinsic feature set quality measure by computing the average
absolute Pearson correlation among the selected features. Small correlations are desirable as highly correlated features
represent redundant information. Equally to the absolute Pearson correlation coefficient, RED is bounded in [0, 1].

In experiment 2, we additionally assign prior weights to a subset of features — therefore, we also evaluate the per-
centage of prior-elevated features (PERC) in the selected feature sets as well. If PERC is high, features extracted
via data-driven feature selectors match the domain experts’ knowledge. However, a low PERC does not necessarily
contradict expert knowledge since the features may be highly correlated, and therefore, similar information may be
encoded in multiple distinct sets of features.

3.2 Pre-Study

The pre-study aims to determine the optimal hyperparameters for RENT. Given a 0.75/0.25 outer train-test split as
specified above, only train data are used for hyperparameter selection. For this purpose, 4-fold cross-validation is
performed on each train dataset (using the same 4 folds as in the outer train-test split). Across the resulting 4 models,
hyperparameters are selected by maximizing predictive performance in a grid search over the parameter space C ∈
{1, 10, 100, 1000}, `1 ∈ {0, 0.1, 0.2, . . . , 1}, τ1, τ2 ∈ {0, 0.05, 0.1, . . . , 1}, and τ3 = 0.975 (fixed).

The runtime for the full computation associated with the pre-study (parameter selection and final feature selection)
for RENT comprised approx. 350 sec (16 cores, 24 threads in parallel). Since UBayFS does not require parameter
selection, the runtime to evaluate the feature selection model for different levels of maxs (see Experiment 1) is shorter
(approx. 65 sec without parallelization).

Tab. 3 shows the hyperparameters identified for RENT and UBayFS in each train-test split (given by the numbers of
the test folds 1-5). Due to the restriction of the maximum number of features, the stated parameters may not represent
global maxima for the performance of RENT; however, comparability between the methods is preserved. Furthermore,
since the number of features is restricted, the selected hyperparameters are in a similar range between the folds.

3.3 Experiment 1: feature selection without prior knowledge

Having determined hyperparameters for each fold in the pre-study, RENT, and UBayFS are applied in each data split
to the training dataset to select an optimized feature set for a given maxs on a purely data-driven basis.

Selected features For each feature, selection frequencies across the five test folds are further provided in Tab. 4
(columns RENT and UBayFS, w = 0.1). In addition to the selection frequency, the table indicates whether a feature
shows a positive or negative impact on the target variable according to the coefficients in the linear model, if selected.
Thereby, ++ and −− indicate that a feature always shows the same sign across all predictive models. In contrast, +
and − indicate a majority of positive or negative coefficients across the predictive models, respectively.
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(a) kNN regression on RENT features (b) kNN regression on UBayFS features

(c) linear regression on RENT features (d) linear regression on UBayFS features

Figure 5: Predictive performances (on test set) of models trained after feature selection for different numbers of
features.

Predictive performance Further, Fig. 5 illustrates the predictive performances of kNN and linear regression models
trained after UBayFS and RENT feature selection. The plot shows the RMSE for each fold given a predefined number
of selected features maxs.

Notably, RENT performs better using the linear regression model as the predictor, while UBayFS shows a better
performance in combination with kNN. The stronger performance of RENT with linear regression may be a result of
the fact that the underlying feature selection in RENT is based on a regularized linear regression model. UBayFS,
however, is based on mRMR, which does not build upon a linear predictive model.

While linear regression results deteriorate at a higher number of features (maxs > 30), the kNN model retains a
similar performance level, which suggests that the curse of dimensionality does not yet have a strong effect on the
Euclidean distance for the given feature space dimensionalities. For the linear model, overfitting is triggered by a large
ratio between the number of features and the number of patients.

Among all compared methods, differences between the folds are obvious: for instance, fold 4 is predicted with the
least RMSE across all combinations of feature selector, predictive model, and maxs. On the other hand, fold 2 is
associated with a large RMSE in the models based on UBayFS, while fold 3 shows similar behavior for the kNN
model based on RENT features. Potentially, differences between folds may be caused by two factors (or combinations
of both):

• the cohort of patients in the training set does not represent the global distribution of the data well — e.g., the
training data do not contain a sufficient number of samples with particularly high or low target values (bad
prediction due to a bad model);

• the cohort of patients in the test set is particularly hard to estimate, e.g., due to outliers (bad prediction in
spite of an appropriate model);

Due to the low number of only 12-13 patients in each fold, even a low number of hard-to-predict outliers may deteri-
orate RMSE results significantly.
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Figure 6: Histograms of errors on the test set (predicted value by kNN - ground truth) of the folds performing best
(fold 4) and worst (fold 2) at maxs = 20 features.

Residuals In order to shed light on the dynamics leading to the differences in performance between the data folds,
histogram plots of the residuals for fold 2 (worst fold in UBayFS) and fold 4 (best fold across most setups) at maxs =
20 are provided in Fig. 6. Residuals are defined as the difference between the true value and the prediction; thus a
positive or negative residual value indicates an underestimation or overestimation of the lifetime, respectively.

In contrast to fold 4, the residuals from fold 2 are more dispersed. All histograms are symmetric and centered around
0, which indicates that all methods are able to estimate the intercept correctly. In both folds, the prediction model
was able to predict the correct lifetime category for almost half of the patients in the test set. However, the histogram
indicates that predictive models based on both feature selectors overestimate the lifetime in test fold 4 (positive errors),
while lifetimes in test fold 2 are rather slightly overestimated (negative errors). The main difference in performance
between fold 2 and fold 4 is driven by dispersion, i.e. by a minority of patients, which show a high error — due to the
small sample size, even a small number of such outliers can impact the total RMSE significantly.

When considering patients with absolute residual values > 2.5 as outliers, RENT, and UBayFS show 3 outliers in fold
2, each (RENT: 2 positive, 1 negative; UBayFS: 1 positive, 2 negative). Both methods commonly misclassify one
patient with true target value 6 and predictions 2.6 (UBayFS) and 2 (RENT), which substantiates the highest positive
outlier in both histograms. The remaining two outliers of each method refer to different patients.

Stability In addition to the performance evaluation, we further investigate qualitative aspects of the selected feature
sets, as shown in Fig. 7. The demonstrated stabilities and redundancy rates (RED) of the feature sets selected by
RENT and UBayFS across the five folds tend to increase with maxs. While RENT has a slightly lower and more
fluctuating stability (around 0.5), UBayFS shows a clear convergence at around 0.6. The RED is below 0.25 for all
possible numbers of features, indicating that both RENT and UBayFS select features with small correlations.

3.4 Experiment 2: feature selection with prior knowledge

Previous research on GEP NEN shows that some features impact the survival of patients; those are Age at diagnosis,
WHO performance status, Primary tumor location, Tumor morphology, Tumor differentiation, Lactate dehydrogenase
(LDH), Platelets, Albumin, Ki-67, SUVmax, and TNM-staging [5, 8–14]. Tumor differentiation is highly correlated
to tumor morphology, so we do not include the feature in this work. Furthermore, findings by [8] indicate a high
relevance of the features Total MTV [cm3] and Total TLG [g], which shall be investigated.

In this experiment, we focus on these features (a total number of 22 features in the encoded space) within our feature
selection and prediction pipeline. In particular, during experiment 1, the aforementioned features comprise 30% of the
final feature sets (on average across the five folds and given maxs = 20 features, each). We refer to this score as PERC
(percentage of selected features supported by literature). In the following, we deploy prior weights on these features
to investigate how UBayFS as a hybrid feature selector combining information from experts and data, performs in
comparison to the pure data-driven methods presented in experiment 1. Since RENT cannot incorporate prior feature
importances, this evaluation is restricted to UBayFS.
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(a) RENT features (b) UBayFS features

Figure 7: Stabilities and redundancy rates (RED) of feature sets selected by RENT and UBayFS (maxs = 20 features,
each).

Specifically, we increase the prior weight of the 22 features supported by literature (referred to as prior-elevated fea-
tures) to the following levels: w ∈ {0.1, 10, 20, . . . , 100, 110}— after evaluating all levels with respect to predictive
performance, we restrict to special cases w = 0.1 (non-informative prior weighting), w = 50 (mediocre prior weight-
ing), and w = 110 (strong prior weighting). After applying UBayFS with the given levels of prior information, we
examine how the feature set and the predictive performance develop. The case of 0.1 is equivalent to the uniform
case without prior knowledge (default setup for UBayFS in experiment 1). In contrast, prior weight 110 indicates that
each prior-elevated feature already is assigned a higher score than the maximum score that can be achieved throughout
the elementary models (M = 100) — as a result, the selected features are exclusively restricted to those with prior
information and elementary feature selectors in UBayFS are only used to select a feature set of maxs = 20 features
among the 22 prior-elevated features.

Predictive performance Fig. 8 shows the average performances along with the standard deviations across the 5
test folds. In general, lower levels of prior weights do not significantly impact the performance, although a minor
improvement can be observed in folds 4 (kNN) and fold 3 (linear model) up to w = 40. By increasing the prior weight
to a higher level, performance levels lead to stronger variability and an increase of RMSE in the better-performing
folds, such as fold 4. Finally, if the prior weight is set to the maximum level of 110, all folds converge to a similar
level since the data-driven feature selection hardly contributes to these setups. Thus, a potential conclusion is that
moderate levels of prior knowledge can slightly increase models’ capabilities. In contrast, strong prior knowledge
leads to a convergence towards the global mean performance across all folds — such prior setup acts as a strong
restriction of the search space exploited by the feature selector.

Stability In contrast to the minor effects of prior knowledge on predictive performance, stability increases signifi-
cantly, as shown in Fig. 8. Finally, at a maximum level of w = 110, stability converges towards an almost perfectly
stable solution. This is due to the restriction of the search space to the prior-elevated features, which results in a
selection of 20 out of only 22 features in total. As expected, the percentage of selected features supported by literature
(PERC) also increases linearly with the level of prior weights provided. The redundancy rate between the selected
features shows a slight decrease, indicating that the prior-elevated features contain only small correlations.

4 Discussion

Experiment 1 In our first experiment, we left out prior expert knowledge and let the feature selection be purely
data-driven. We know that certain features were prognostic for survival in earlier studies, as mentioned in experiment
2 below. We wanted to study whether the same prognostic features would still be selected and if there were any
currently unknown prognostic features that could be further researched. Comparing the two first columns in Tab. 4
we can see which features are selected repeatedly in different folds with RENT and UBayFS. We must keep in mind
that we cannot directly compare the importance of the features in terms of a coefficient (e.g similar to Cox regression),
just that they are repeatedly selected in each fold. Further, the correlation between features must also be considered
when comparing the importance of features which we can find in Fig. 2. Two or more features with a moderate/high
correlation contain the same information with respect to the model, and one fold may choose one over the other, whilst
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(a) Predictive performance using kNN regression (b) Predictive performance using linear regression

(c) Qualitative evaluation

Figure 8: Experiment 2: predictive performances on fold 1-5, and qualitative metrics of features sets produced by
UBayFS at different levels of prior knowledge on features with evidence from literature (maxs = 20).

another fold may choose a highly correlated one instead. This results in a lower number for both features, not reflecting
the importance of both when comparing them with a feature with a high number.

In block (p) (baseline patient characteristics) we have a few features that one would expect to be prognostic for OS.
One obvious one would be TNM-stage IV disease which does not seem to be chosen at all by RENT and UBayFS. But
looking at the correlation heatmap in Fig. 2 we see that this feature is highly correlated to several other features, among
those Metastatic Disease at Time of Diagnosis and Treatment Intention Palliative. We see that this last one gets chosen
four out of five times with RENT and five out of five times with UBayFS which probably explains why TNM-stage IV
does not seem to be important. Having a palliative treatment intention usually means you have stage IV disease. This
is also a well-known prognostic indicator from the literature [6]. Bone metastasis is usually a poor prognostic indicator
in several types of cancers [45] and it is not surprising that this is chosen all the time. We also know that WHO PS is a
prognostic indicator in these patients. This is also reflected in the number of folds it is chosen by RENT and UBayFS,
but it is only WHO level 2 that seems to be important. That said, Fig. 2 shows that WHO levels 3 and 4 are highly
correlated to some of the SUV-parameters which might contribute to those never being selected. Radical Surgery is
quite often chosen by both RENT and UBayFS and is also a predictable prognostic indicator. Having radical surgery
means that all viable tumors are removed, and that is only possible if you have a low tumor burden. This underlines
the importance of surgery in the curative intended treatment of this type of cancer.

Next, in block (b) (baseline blood values), we see that both CRP and ALP > Normal <= 3UNL get selected equally
many times by both RENT and UBayFS, and both have a high number indicating importance over the other features in
this block. A high CRP at baseline has previously been shown to be a poor prognostic feature in some studies [5,46,47],
whilst others have not replicated this [48]. This is probably not surprising as this has been shown to be a poor
prognostic indicator in advanced cancer patients in a palliative setting, and especially in GEP NEN [49–52]. ALP has
also been shown in studies to be prognostic for a shorter OS [5,53,54]. For Albumin and Platelets, RENT chose these
only half as many times as UBayFS. Both have been shown to be prognostic indicators of OS [5, 6]. Interestingly,
Haemoglobin, WBC, LDH, and Chromogranin A are barely chosen or are not chosen neither by RENT nor UBayFS.
All these features have previously been shown to be prognostic for OS [5].
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Moving on to block (h) (re-evaluated histology) we have quite a few features that are well-known prognostic indicators.
The strongest one from the literature is probably Ki-67 which is used in the classification system of NEN. The second
strongest is probably Tumor Morphology which has been shown in several studies to be prognostic for OS [5, 6].
We see that Ki-67 is chosen every time from all five folds both for RENT and UBayFS supporting this feature as a
strong prognostic indicator for OS. Further, Tumor Morphology gets chosen four out of five times with RENT and
three out of five times with UBayFS. This is also to be expected since we know that patients with NET G3 have a
better OS than those patients with NEC [55]. What is surprising is that most tumor sites, especially those patients with
unknown primary and esophagus NEN, are not chosen by RENT or UBayFS. Primary Tumor Site has been shown to
be prognostic in several studies [5, 6]. Several of the features like Stroma, Architecture, Vessel Pattern, Co-existing
neoplasm, and Geographic Necrosis are considered typical for either NET G3 or NEC [56], and one might assume
these are highly correlated with Tumor Morphology. Although this is not reflected in Fig. 2. Almost none of these
features are chosen with RENT or UBayFS except for Stroma. NET G3 typically have hyalinized stroma and NEC
have desmoplastic stroma [56].

Further, in block (i) (PET/CT imaging) the interesting features are Total MTV, Total TLG, and the SUV-parameters.
From Fig. 2 and previous literature [8] we know that these features are often (if not always) highly correlated. Hence,
the selection of SUVmax (total) instead of the other features is probably related to this. Moreover, we know from
previous studies [8, 11–13] that global measures such as Total MTV and Total TLG are poor prognostic indicators for
OS in these tumors, but we lack stronger evidence in form of larger studies. Here we see that SUVmax (total) is chosen
in all five folds both for RENT and UBayFS supporting the previous findings that PET-parameters are good prognostic
features of OS.

Finally, in block (t) (treatment) we can see a few features are selected often. Chemotherapy treatment with cis-
platin/etoposide is not surprisingly a predictor for OS, and most of the patients did indeed receive this combination. No
chemotherapy is obviously detrimental. We also see that the Chemotherapy treatment with temozolomide/everolimus
gets chosen often both by RENT and UBayFS. This is probably because this chemotherapy regimen is more often
chosen for those patients with a low Ki-67 and these are more likely to be NET G3 which already have a better OS.
Further, both Number of Courses and Progression are two features that are selected often by RENT and UBayFS. Pro-
gression and No Progression are obviously poor prognostic indicators, and one could assume that the higher Number
of Courses a patient receives the longer before they have progression and hence they live longer. This is of course only
an assumption and interpretation of the data at hand. It is a bit surprising that the response evaluation results did not
get chosen. One would assume that patients with the best response - stable disease would fare better than those with
progressive disease. Looking at Fig. 2 the features from this block have low correlation coefficients.

Experiment 2 Here we added prior expert knowledge and assigned two different weights. A weight w = 50 means
approximately 50% expert-driven and 50% data-driven. A weight w = 110 means almost purely an expert-driven ap-
proach where we effectively force the selection of features only from the subset of those from prior expert knowledge.
We concentrated on features that are well documented in several previous studies, although there exist more features
in the literature suggesting prognostic values than these. The features selected from prior expert knowledge are listed
in the first paragraph in Section 3.4 and marked by an asterisk in Tab. 4.

If we concentrate on the second, third, and fourth columns, which shows the difference between roughly 0%, 50%
and 100% expert-driven, we see that none of the marked features drops in importance as we increase the value of
expert knowledge. Some features that were never chosen with a pure data-driven model are still not chosen. One
could argue that these are probably not strong features to begin with, or that other features contain the same and/or
stronger information. A few features only get chosen when almost completely removing the data-driven part and make
a huge leap from not being chosen to being chosen five times. We argue that one should be careful to put too much
importance on these features as we expect these are more or less forced to be chosen.

A few features stand out by being stable across all values of w; WHO Performance Status, Albumin, Platelets, Ki-67,
Tumor Morphology, Total MTV, Total TLG, and SUVmax. It would be bold to assume that these features are the most
important and stable predictors of OS from the subset of expert knowledge markers, but that would probably be too
premature. Further, it is also interesting to notice that even though several parameters from PET are highly correlated,
several are still chosen very often by the model. This is in line with the results of our previous study ( [8]. Moreover,
it is a bit surprising that Primary Tumor Site, especially Unknown Primary and Esophagus, is not chosen more often
as these are well-known negative predictors of OS [5, 6].

We also notice that some of the other non-marked features drop in importance as we increase w, and this is probably
related to the fact that the features overlap in the information they add to the model. A few of these features are also
moderately or highly correlated. E.g. CRP is correlated with quite a few of the other blood markers, and this could
explain why it falls in importance when increasing w. Mets Bone (bone metastases) is not listed in the correlation
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heatmap and thus has no moderate or high correlations with other features, but still completely falls out. Bone metas-
tases usually occur late in several cancers and is a poor prognostic feature. Hence, one should assume that this feature
and similar ones like CRP, ALP, which performs well with low values of w falls of in the pure knowledge-driven
model because the model is ”forced” to select only marked features. We must remember that the w = 110 is an ex-
treme expert-driven model which is probably not clinically relevant but was added to explore and evaluate what the
model did in this extreme situation. This is a small, novel study with few patients and really the first of its kind for
exploring and evaluating RENT and UBayFS on clinical data. Using these ensemble feature selectors may be used
for validating already established features, or to find new features not previously known. Evaluation into which w is
optimal should be explored further in future studies.

5 Conclusion

In conclusion, although we cannot ascertain how important different features are compared to each other and if they
contribute to poorer or better survival, we do find similar results as several previous studies. The most stable and
predictive features in our study are WHO Performance Status, Albumin, Platelets, Ki-67, Tumor Morphology, Total
MTV, Total TLG, and SUVmax.

From a data science perspective, we demonstrated the capabilities of the ensemble feature selection techniques RENT
and UBayFS for healthcare problems — in particular, the inclusion and comparison of expert- and data-driven setups,
as well as combinations of both, allow the user to gain relevant information for clinical use.
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