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Abstract

It is known that the presence of delays hinders the performance achievable by a feedback control system, and it can
even lead to closed-loop instability if not considered during the design. For this reason, predictors are often included
in the loop, although they typically require the knowledge of the exact value of the delay, which in some applications
is hard to obtain in practice. This paper presents a method to design an observer that simultaneously estimates the
unknown state and the time-varying input delay of a plant based on an available model and the measurements coming
from the sensors. In particular, the main contribution of this paper is to show that by accounting for a known lower bound
of the input delay, it is possible to improve the observer’s performance when compared to state-of-the-art approaches
encountered in the literature. Simulations are used to illustrate the efficiency of the proposed design method.
Keywords: input delay, delay estimation, state observer

1 Introduction
An input delay system is a particular case of time-delay
system in which the delay affects only the input signal.
There are many possible causes for input delays, of both
computational and physical nature. In many situations,
these delays must be explicitly considered during the de-
sign, because failing to do so can lead to a non-acceptable
degradation of the performance or to the loss of stability.

The most widely used approach to account for delays
is the Smith predictor (Smith, 1959) which was extended
to work with time-varying delays in (Normey-Rico et al.,
2012) and (Franklin and Santos, 2020). An alternative ap-
proach that has drawn attention lately relies on the lin-
ear parameter varying (LPV) framework (Rotondo et al.,
2019) and achieves the desired performance/stabilization
using a delay-scheduled controller (Briat et al., 2009b,a).
However, even when the time delay is explicitly taken into
account, the presence of uncertainty on the delay value can
produce fragility in the control system. A possible way to
address this issue and decrease the amount of uncertainty
in the delay value is to estimate it online. For this reason,
many works in the literature have focused on the problem
of time delay estimation.

The approaches used for time delay estimation can
be classified into signal processing and control-oriented
(Léchappé et al., 2018). In the former class of meth-
ods, the value of the delay that minimizes some criterion
(cost function) based on available data collected from the
process is sought (Knapp and Carter, 1976; Jacovitti and
Scarano, 1993). However, this comes at the cost of a high
computation time and they require the knowledge of the
delayed signal, which is not always realistic. For this rea-
son, control-oriented approaches consider the delay as a

parameter to be estimated online. (Agarwal and Canudas,
1987) approximated the delay term using the Padé form,
then used least-squares to minimize an objective function.
(Tuch et al., 1994) proposed a recursive least-squares al-
gorithm in the frequency domain, which had the drawback
of requiring perfectly known initial conditions.

Among the control-oriented approaches, observer-
based methods have been under consideration lately. For
instance, (Cacace et al., 2015) proposed an augmented ob-
server able to estimate a constant state delay. A Kalman
filter-based solution was proposed in (Léchappé et al.,
2015) and (Léchappé et al., 2018). On the other hand,
adaptive and sliding mode observers were applied to time
delay estimation in (Wu et al., 2013) and (Drakunov et al.,
2006).

In this paper, we consider the observer-based solu-
tion proposed by (Léchappé et al., 2015), and we im-
prove it under the assumption that a known lower bound
is available for the time-varying delay. We discuss how
this knowledge can be used when applying the Taylor’s
theorem, so that a generally smaller remainder is ob-
tained. Consequently, a better performing observer is im-
plemented, as demonstrated by simulations under different
realizations of the delay and input signals.

The paper is organized as follows. Section 2 presents
the problem formulation and summarizes the state and de-
lay observer proposed by (Léchappé et al., 2015). Section
3 shows that by considering a lower bound for the delay, it
is possible to perform a different sequence of calculations
that lead to an improved state and delay observer structure.
The discussion about the observer stability is provided in
Section 4. The performance of the proposed improved ob-
server is demonstrated using simulation examples in Sec-



tion 5. Finally, the main conclusions are drawn in Section
6.

2 Problem and background
Consider the following SISO LTI system:{

ẋ(t) = Ax(t)+bu(t−d(t))
y(t) = cT x(t) (1)

where x ∈ Rn is the state, u ∈ R is the known input, y ∈ R
is the measured output, and d ∈ R is the unknown input
delay, which should be estimated. The matrix A and the
vectors b,c are assumed to be known and such that the
pair (A,cT ) is observable. On the other hand, it is assumed
that the time-varying delay d(t) is continuous and differ-
entiable, with |ḋ(t)| ≤ H. Finally, it is assumed that the
signal u(t) is smooth, which means u ∈ C 2 and there ex-
ists a bound M > 0 such that |ü(t)| ≤M for all t ≥−d.

The problem under consideration is the design of an ob-
server that can estimate the state x(t) and the input delay
d(t) from the knowledge of y(t), u(t) and u̇(t).

The work by (Léchappé et al., 2015) assumed that the
time-varying delay d(t) satisfies d(t)∈ [0,d], where d > 0
denotes the upper bound of d(t). Then, they proceed to
apply the Taylor’s theorem to expand u(t−d(t)) about t,
obtaining:

u(t−d(t)) = u(t)−d(t)u̇(t)+ γ (t−d(t)) (2)

where γ(·) is the so-called remainder, for which a uniform
bound can be obtained given that |ü(t)| ≤M, as follows:

|γ (t−d(t)) | ≤M
d(t)2

2
(3)

This allowed (Léchappé et al., 2015) to rewrite (1) as:{
ẋ(t) = Ax(t)+bu(t)−bu̇(t)d(t)+bγ (t−d(t))
y(t) = cT x(t) (4)

and, by augmenting the state vector as z(t) =[
x(t)T d(t)T

]T : ż(t) =
[

A −bu̇(t)
0 0

]
z(t)+

[
b
0

]
u(t)+

[
bγ (t−d(t))

ḋ(t)

]
y(t) =

[
cT 0

]
z(t)

(5)
which can be brought to the compact form:{

ż(t) = Ā(u̇(t))z(t)+ B̄u(t)+Γ(t, t−d(t))
y(t) = C̄z(t) (6)

where the definition of Ā, B̄, C̄ and Γ(·) is straightforward.
Then, the following observer was proposed to recon-

struct and estimate ẑ(t) of z(t) (and, in turn, to obtain esti-
mates x̂(t) and d̂(t) of x(t) and d(t)):

˙̂z(t) = Ā(u̇(t)) ẑ(t)+ B̄u(t)−L(t)
(
C̄ẑ(t)− y(t)

)
(7)

where the discussion about how to choose the observer
gain L will be omitted, since it is not relevant for fur-
ther developments (the interested reader is referred to
(Léchappé et al., 2015)).

3 Improved state and delay observer
As already mentioned, the approach proposed by
(Léchappé et al., 2015) and summarized in the previous
section works under the assumption that d(t) ∈ [0, d̄]. In
many practical situations, it is realistic to assume that not
only an upper bound d is available, but a lower bound d as
well, which means that d(t) ∈ [d,d]. In this case, expand-
ing u(t−d(t)) about t−d would lead to a reduced magni-
tude of the remainder term, which acts as an unknown ex-
ogenous disturbance in the model (5), thus being responsi-
ble for degrading the state/delay estimate obtained via the
observer (7).

Then, the following is obtained:

u(t−d(t)) =u(t−d)−d(t)u̇(t−d) (8)
+du̇(t−d)+ γ̃ (t−d(t))

where γ̃(·) is a new remainder term, for which a uniform
bound is calculated as follows:

|γ̃ (t−d(t)) | ≤M
(d(t)−d)2

2
(9)

By comparing (3) and (9), it is clear that given the same
value of the delay d(t), it can be generally expected that:

|γ̃ (t−d(t)) | ≤ |γ (t−d(t)) | (10)

will likely hold.
Based on (8), Eq. (1) can be rewritten as: ẋ(t) = Ax(t)+bu(t−d)−bu̇(t−d)d(t)

+bdu̇(t−d)+bγ (t−d(t))
y(t) = cT x(t)

(11)

and, using the augmented state vector z(t):
ż(t) =

[
A −bu̇(t−d)
0 0

]
z(t)

+

[
b bd
0 0

][
u(t−d)
u̇(t−d)

]
+

[
bγ̃ (t−d(t))

ḋ(t)

]
y(t) =

[
cT 0

]
z(t)

(12)

which can be brought to a form similar to (6): ż(t) = Ā(u̇(t−d))z(t)+ B̄
[

u(t−d)
u̇(t−d)

]
+ Γ̃(t, t−d(t))

y(t) = C̄z(t)
(13)

with an appropriate definition of the matrices Ā, B̄, C̄ and
Γ̃(·).

For the system (13), let us use the following observer:

˙̂z(t)= Ā(u̇(t−d)) ẑ(t)+B̄
[

u(t−d)
u̇(t−d)

]
−L(t)

(
C̄ẑ(t)− y(t)

)
(14)

where, following (Léchappé et al., 2015), the gain L(t) is
chosen according to a Kalman filter-like structure, i.e.:

L(t) = S(t)−1C̄T R (15)



where R is a positive diagonal matrix that acts as a filter,
chosen as R = I in the noise-free scenario, and the sym-
metric matrix S is obtained as the solution of the following
matrix differential equation:

Ṡ(t) =−ρS(t)− Ā(u̇(t−d))T S(t) (16)

−S(t)Ā(u̇(t−d))+C̄T RC̄

with a positive constant ρ > 0 that affects the convergence
speed of S and an initial condition S(0)� 0.

4 Observer stability
This section provides the observer stability proof, which
follows the theoretical steps discussed in (Léchappé et al.,
2015). For the sake of proving the stability, let us recall
the following lemma (Khalil, 2002).

Lemma 1. Let x = 0 be an exponentially stable equilib-
rium point of the nominal system:

ẋ(t) = f (t,x(t)) (17)

and let V (t,x(t)) be a Lyapunov function for (17) that sat-
isfies for all t ≥ 0 and ∀x ∈D = {x ∈ Rn : ‖x‖2 < r}:

c1 ‖x‖2 ≤V (t,x(t))≤ c2 ‖x‖2 (18)

∂V
∂ t

+
∂V
∂x

f (t,x(t))≤−c3 ‖x‖2 (19)∥∥∥∥∂V
∂x

∥∥∥∥≤ c4 ‖x‖ (20)

for some positive constants c1,c2,c3,c4. Also, assume that
a perturbation term g(t,x) satisfies:

‖g(t,x)‖ ≤ γ(t)‖x‖+δ (t) ∀t ≥ 0,∀x ∈D (21)

where γ : R→R is a nonnegative and continuous function
such that: ∫ t

t0
γ(τ)dτ ≤ ε(t− t0)+η (22)

for some nonnegative constants ε and η where:

ε <
c1c3

c2c4
(23)

and δ : R→ R is nonnegative, continuous, and bounded
for all t ≥ 0. Provided that:

‖x(t0)‖<
r
ρ

√
c1

c2
(24)

sup
t≥t0

δ (t)<
2c1θr
c4ρ

(25)

with:

θ =
1
2

[
c3

c2
− ε

c4

c1

]
> 0 (26)

ρ = exp
(

c4η

2c1

)
≥ 1 (27)

then, the solution of the perturbed system:

ẋ(t) = f (t,x(t))+g(t,x(t)) (28)

satisfies:

‖x(t)‖<
√

c2

c1
ρ ‖x(t0)‖e−θ(t−t0)+

c4ρ

2c1

∫ t

t0
e−θ(t−τ)

δ (τ)dτ

(29)

In addition, let us recall the following lemma given by
(Besançon et al., 1996), which characterizes the matrix
S(t) obtained as a solution of (16).

Lemma 2. Assume that u̇ is regularly persistent, and
consider the differential equation (16). Then ∃ρ0 > 0
such that for any symmetric positive definite matrix S(0),
∀ρ ≥ ρ0, there exist ᾱ, β̄ , t0 > 0 such that ∀t ≥ t0:

ᾱI � S(t)� β̄ I (30)

Let us define the Lyapunov candidate function:

V (e(t)) = e(t)T S(t)e(t) (31)

where S(t) is the solution of (16) and e(t) = ẑ(t)− z(t).
Given the assumption of regularly persistent u̇(t), in virtue
of Lemma 2, there exists a positive scalar ρ0 so that ∀ρ ≥
ρ0 there exist ᾱ, β̄ , t0 > 0 such that ∀t ≥ t0:

ᾱ ‖e(t)‖2 ≤V (e(t))≤ β̄ ‖e(t)‖2 (32)

so that (18) holds with c1 = ᾱ and c2 = β̄ . The dynamics
of the estimation error is described by:

ė(t) = ˙̂z(t)− ż(t) (33)

which, using (13)-(15), follows:

ė(t) = Ā(u̇(t−d)) ẑ(t)+ B̄
[

u(t−d)
u̇(t−d)

]
−L(t)

(
C̄ẑ(t)− y(t)

)
− Ā(u̇(t−d))z(t)− B̄

[
u(t−d)
u̇(t−d)

]
− Γ̃(t, t−d(t))

=
(
Ā(u̇(t−d))−L(t)C̄

)
e(t)− Γ̃(t, t−d(t))

=
(
Ā(u̇(t−d))−S(t)−1C̄T RC̄

)
e(t)− Γ̃(t, t−d(t))

(34)

Let us neglect the perturbation term Γ̃(t, t−d(t)) so that:

V̇ (e(t)) = ė(t)T S(t)e(t)+ e(t)T Ṡ(t)e(t)+ e(t)T S(t)ė(t)
(35)

becomes, after taking into account (16) and (34):

V̇ (e(t)) = e(t)T [Ā(u(t−d))−S(t)−1C̄T RC̄
]T

S(t)e(t)

−ρe(t)T S(t)e(t)− e(t)T Ā(u̇(t−d))T S(t)e(t)

− e(t)T S(t)Ā(u̇(t−d))e(t)+ e(t)TC̄T RC̄e(t)

+ e(t)T S(t)
[
Ā(u(t−d))−S(t)−1C̄T RC̄

]
e(t)

=−ρe(t)T S(t)e(t)− e(t)TC̄T RC̄e(t) (36)



Due to the positive definiteness of the matrix C̄T RC̄, (32)
and (36) lead to:

V̇ (e(t))≤−ρᾱ ‖e(t)‖2 (37)

so that (19) holds with c3 = ρᾱ . Finally, from (32) it fol-
lows that: ∥∥∥∥∂V (e(t))

∂e

∥∥∥∥≤ 2β̄ ‖e(t)‖ (38)

which means that (20) holds with c4 = 2β̄ .
Let us consider now the perturbation term Γ̃(t, t−d(t)).

Notably, in this case the domain D corresponds to the en-
tire state-space (r = ∞), which means that by choosing
γ(t) = 0 and δ (t) = sup

∥∥Γ̃(·)
∥∥ in (21), then (24)-(25) al-

ways hold and we can choose ε =η = 0 in (22)-(23). Con-
sequently, (26)-(27) lead to ρ = 1 and θ = ᾱ/2β̄ . Then,
according to Lemma 1, e(t) will satisfy the following in-
equality:

‖e(t)‖<

√
β̄

ᾱ
‖e(t0)‖e

− ᾱ

2β̄
(t−t0)

+
β̄

ᾱ

∫ t

t0
e
− ᾱ

2β̄
(t−τ)

sup
∥∥Γ̃(·)

∥∥dτ

=

√
β̄

ᾱ
‖e(t0)‖e

− ᾱ

2β̄
(t−t0)

+
β̄

ᾱ

∫ t−t0

0
e
− ᾱ

2β̄
s
sup
∥∥Γ̃(·)

∥∥ds

=

√
β̄

ᾱ
‖e(t0)‖e

− ᾱ

2β̄
(t−t0)

+
2β̄ 2

ᾱ2

(
1− e

− ᾱ

2β̄
(t−t0)

)
sup
∥∥Γ̃(·)

∥∥ (39)

which shows the ultimate boundedness of the estimation
error e(t).

It is worth remarking that the regular persistency of u̇(t)
is a key point for the above discussion to hold true, which
is the reason why in practice the estimation error spikes at
times where this assumption does not hold true, as shown
in the results in the next section.

5 Simulation results
Let us consider the second-order example proposed by
(Léchappé et al., 2015):

ẋ(t) =
[

0 1
−2 −3

]
x(t)+

[
0
1

]
u(t−d(t)) (40)

y(t) =
[
1 0

]
x(t) (41)

for which we assume that x(0) =
[
1.5,1

]T . Then, the ex-
tended system is described by matrices:

Ā(u̇) =

 0 1 0
−2 −3 −u̇
0 0 0

 B̄ =

0 0
1 d
0 0

 (42)
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Figure 1. Simulation results (Scenario 1).

where d̄ is the known lower bound for d(t). We will as-
sume that the observer (14)-(16) is obtained with ρ = 5,
S(0) = I3, x̂(0) = [0,0]T , d̂(0) = 0.4, and we will com-
pare the performance of the observer proposed in this pa-
per with the results in (Léchappé et al., 2015).

5.1 Scenario 1
Let us first consider the delay sequence:

d(t) =

 0.15 for 0≤ t ≤ 15
0.6 for 15 < t ≤ 30
0.3 otherwise

(43)

with a ramp input signal u(t) = 0.2t for which u̇(t) = 0.2,
and let us consider a known lower bound for the delay
d = 0.1. Under these conditions, we obtain the simulation
results shown in Figure 1. In this scenario, the relationship
(2) holds with a zero remainder term, so that (6) reduces
to:

ż(t) = Ā(u̇(t))z(t)+ B̄u(t) (44)

and the estimation errors for both the state variables and
the delay tend asymptotically to zero. Notably, no differ-
ence between the case with d = 0 and d 6= 0 is perceivable
in this case.

5.2 Scenario 2
Let us now consider the delay d(t) = 0.4+ 0.2sin(0.4t)
while keeping the ramp input signal u(t) = 0.2t, with the
known lower bound for the delay d = 0.2. In this case,
ḋ(t) 6= 0 acts as an exogenous disturbance that prevents
the observer from estimating the delay correctly, as shown
in Figure 2, where d(t)− d̂(t) exhibits a clear steady-state
error. Notably, also in this case the knowledge of a precise
lower bound d for d(t) does not play any role.

5.3 Scenario 3
Let us now consider the following modification to Sce-
nario 1: u(t) = sin(0.1t), so that the terms γ (t−d(t))
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Figure 2. Simulation results (Scenario 2).
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Figure 3. Simulation results (Scenario 3).

and γ̃ (t−d(t)) appear in (2) and (8), respectively. Given
that (10) is likely to happen, we would now expect to
see a difference between the performance of the observer
with d = 0 and that of the observer with d 6= 0. This is
confirmed by the simulation response shown in Figure 3,
where a slight improvement brought by the proposed ob-
server in the estimation of d(t) can be perceived.

5.4 Scenario 4
Let us now consider the delay from Scenario 2 d(t) =
0.4+ 0.2sin(0.4t) with known lower bound for the delay
d(t) = 0.2, and the input signal from Scenario 3 u(t) =
sin(0.1t). The corresponding results are showed in Figure
4. It can be seen that the estimate obtained with d = 0
suffers much more from the loss of observability of the
system (5) when u̇(t) = 0, which is the reason for the sud-
den changes in d̂(t) at approx. 16.5s and 47.5s.

5.5 Scenario 5
We will now analyze the behavior of the proposed ob-
server under relatively big delay and known lower bound.
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Figure 4. Simulation results (Scenario 4).
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Figure 5. Simulation results (Scenario 5).

Under such situation, the difference between the right-
hand terms in the inequalities (3) and (9) becomes more
significant, which should lead to a bigger difference be-
tween the performance of the observer without known
lower bound (d = 0) and that of the proposed observer.
More specifically, let us consider d(t) as follows:

d(t) =

 1.15 for 0≤ t ≤ 15
1.6 for 15 < t ≤ 30
1.3 otherwise

(45)

with u(t) = sin(0.1t), with a bound d = 1. The cor-
responding results are shown in Figure 5, where it can
be seen that the proposed observer estimates d(t) with a
much reduced error and mitigates the impact of the loss of
observability when ḋ(t) = 0.

5.6 Scenario 6
Finally, Figure 6 shows the results obtained under the
same conditions as Scenario 5, except for the delay being
d(t) = 1.4+0.2sin(0.4t). Also in this case, the benefit of
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Figure 6. Simulation results (Scenario 6).

considering a lower bound for d is evident by looking at
the delay estimation error.

6 Conclusions
This paper has proposed an improved observer design for
joint state and delay estimation. In particular, the improve-
ment with respect to a similar design previously proposed
in the literature comes from the knowledge of a lower
bound for the time-varying delay, which can be taken into
account during the application of Taylor’s theorem, so that
a generally smaller remainder is obtained. The simulation
results have shown that the proposed design does not im-
prove the state estimation. On the other hand, the delay
estimation is improved sensibly in cases where approxi-
mation errors become non-negligible or when the slowly
changing nature of the input signal (u̇ ≈ 0) causes loss of
observability issues. In particular, it was observed that for
large delays, the performance improvement is outstand-
ing. As a side note, it has been observed so far that
this type of method is fragile when the system is affected
by parametric uncertainties or nonlinearities, so that fu-
ture research should be devoted to increase the robustness
properties of the observer.
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