
TRANSQL: A Transformer-based Model for Classifying SQL Queries

Shirin Tahmasebi†, Amir H. Payberah†, Ahmet Soylu¶, Dumitru Roman§, Mihhail Matskin †
†KTH Royal Institute of Technology, Sweden ¶Oslo Metropolitan University, Norway §SINTEF AS, Norway

†{shirint, payberah, misha}@kth.se ¶ahmet.soylu@oslomet.no §dumitru.roman@sintef.no

Abstract—Domain-Specific Languages (DSL) are becoming
popular in various fields as they enable domain experts to
focus on domain-specific concepts rather than software-specific
ones. Many domain experts usually reuse their previously-written
scripts for writing new ones; however, to make this process
straightforward, there is a need for techniques that can enable
domain experts to find existing relevant scripts easily. One funda-
mental component of such a technique is a model for identifying
similar DSL scripts. Nevertheless, the inherent nature of DSLs
and lack of data makes building such a model challenging. Hence,
in this work, we propose TRANSQL, a transformer-based model
for classifying DSL scripts based on their similarities, considering
their few-shot context. We build TRANSQL using BERT and
GPT-3, two performant language models. Our experiments focus
on SQL as one of the most commonly-used DSLs. The experiment
results reveal that the BERT-based TRANSQL cannot perform
well for DSLs since they need extensive data for the fine-tuning
phase. However, the GPT-based TRANSQL gives markedly better
and more promising results.

Index Terms—SQL Classification, BERT, GPT

I. INTRODUCTION

There are two broad categories of computer languages:
General-Purpose Languages (GPL) and Domain-Specific Lan-
guages (DSL). GPLs are applicable across various domains;
for example, XML and Python are samples of markup and pro-
gramming GPLs, respectively. In contrast to GPLs, DSLs are
specially designed for specific problem domains. Despite the
low applicability outside their domain, DSLs enable domain-
expert users (who have little knowledge outside their domain)
to express their solutions in a more abstract and easier-to-learn
language [1].

Usually, domain experts who use DSLs write DSL scripts
similar to their previously-written ones [2]. Thus, it is im-
mensely beneficial to have a tool to help expert users to search
among their existing DSL scripts and reuse them for writing
new ones rather than writing them from scratch. This increases
the reuse opportunity and makes writing new DSLs much
easier and faster. Accordingly, the first step in designing such
tools is to propose a model for identifying similar DSL scripts,
which is the main focus of this paper.

One way to identify similar scripts is to compare the
embeddings of DSL scripts. To this end, we take advantage
of transformer-based approaches, which have shown promising
results [3], [4], [5]. One prevalent transformer-based technique
for making embeddings is BERT [6], a pre-trained model
which can be fine-tuned using downstream tasks. Although
BERT-based models show remarkable performance in different
domains, they all rely on a critical point: having enough data
for fine-tuning the model, which is not always the case. For
example, while working with DSLs, the lack of data is always

a challenge. One approach to address the lack of data problem
is to use large language models such as GPT-3 [7], [8], [9].
The main idea behind these models is that if a huge model
is trained on massive and quality datasets, it is possible to
mitigate the need to fine-tune the model for domain-specific
tasks.

In this paper, we propose TRANSQL, a model for classify-
ing DSL scripts (particularly SQL queries) when there is a lack
of data (i.e., in a few-shot context). We focus on SQL queries
as an example of DSLs for two reasons [10]: (1) SQL is one
of the most popular DSLs, and (2) Unlike most of the other
DSLs, there exist available public datasets for SQL. To the best
of our knowledge, this is the first work considering the few-
shot context of SQLs for classifying them. To this end, we first
embed the SQL scripts and then classify them accordingly. We
leverage two language models for embedding DSLs: BERT
and GPT-3 models. In the BERT-based TRANSQL, we use
two different downstream tasks for detecting similar SQLs.
We consider these approaches as baselines for our work.

Our experiments show that by using GPT-3 to embed SQL
queries and having a proper policy for selecting GPT-3 in-
context examples, it is possible to achieve noticeable accuracy
in the classification task without doing any fine-tuning. In
addition, the GPT-based approach significantly outperforms
the BERT-based baselines.

Contributions. The main contributions of our work include:
• Introducing TRANSQL, a transformer-based model for

classifying SQL queries;
• Using BERT and GPT-3 for embeddings and classifying

SQL queries;
• Tackling the lack of data in building the model by

leveraging the few-shot learning capability of GPT-3; and
• Evaluating the influence of employing different strategies

for in-context examples selection on the few-shot learning
capability of the GPT-based TRANSQL.

II. PROBLEM DEFINITION

This work aims to build a classification model for iden-
tifying similar SQL queries. An immediate question here
is: What is meant by similarity between SQL queries? In
other words, based on which metrics can two SQL queries
be considered similar? In this regard, there exist several
approaches for measuring similarities between SQL queries,
such as Fragment-based, Tuple-based, and Access-area-based.
Details of these approaches, along with their drawbacks, are
described in Section III-B. Due to the critical drawbacks of
these approaches, in TRANSQL, we present a new approach

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of

this work in other works.

This is the author accepted version of an article published in 
2022 21st IEEE International Conference on Machine Learning and Applications (ICMLA)

https://doi.org/10.1109/ICMLA55696.2022.00131



by taking the full-text of SQL queries into account. This
way, the queries’ fragments and structures are involved in
measuring the similarity. To this end, we first use an embed-
ding model to obtain numerical representations of the full-text
SQL queries; then, we leverage the cosine-similarity score
of their numerical representations to measure the similarity
between the queries. Several well-known and commonly-used
embedding models exist for making numerical representations
from the text. We briefly review them in Section III-A.

Our approach to identify similar SQL queries has two steps:
1) Making query embedding: Here, we define a per-

formant embedding model to calculate the numerical
representation of SQL queries. Let us assume there are
three queries, q1, q2, and q3, where q1 and q2 are similar
in terms of their structure and functionality, but q2 and
q3 are different. Thus, we expect the embedding model
to generate embeddings for q1 and q2 closer to each
other compared to the generated embeddings for q2 and
q3. Moreover, we use their cosine-similarity score to
measure how close the embeddings are to each other.

2) Making a quality classifier: In this step, we aim to
make a classifier that receives query embeddings as input
and predicts the class label. However, due to the inherent
nature of DSLs, their usage is very domain-specific,
and there may not be enough available data for training
the models. Therefore, the classifier must not rely on
massive data for learning. In other words, the classifier
needs to perform well in few-shot contexts.

III. BACKGROUND

In this section, we first give a brief overview of embedding
models. Then, we present different approaches for measuring
query similarity underlining the drawbacks of each one.

A. Embedding Models

Words and sentences are input to the Natural Language
Processing (NLP) models. We should embed the words to
numerical fixed-size vectors, known as embeddings to give
them to NLP models. Similarly, for sentences, which are se-
quences of words, a sequence of word embeddings can be used
as their representation [11]. There are two broad categories
of embedding models [11], [12]: context-free embeddings
and contextual embeddings. Context-free embeddings, such as
GloVe [13] and Word2Vec [14], map words to fix embeddings
regardless of the context the words are used. In contrast
to context-free embeddings, the main idea behind contextual
embeddings is that the meaning of words depends on their
surrounding words and context. Hence, contextual models,
such as ELMo [12] and BERT [6], consider the context for
calculating the word embeddings.

Most recent contextual embedding models are based
on transformer architecture, which is an attention-based
encoder-decoder architecture [15]. These novel contextual
models are divided into two main groups by their structure:
encoder-based models and decoder-based models.

Encoder-based Models: The base architecture of the
encoder-based models consists of a multi-layer encoder-only
transformer. One of the ground-breaking models in this
group is BERT [6]. The basic idea followed by BERT is to
pre-train a general transformer-based model on significantly
large datasets and then fine-tune the pre-trained model using
downstream tasks on relatively smaller datasets. The pre-
trained BERT can be used in various downstream tasks, such
as question-answering [16] and sentence classification [17].
It is worth mentioning that the critical assumption in the
downstream phase is that there exists enough data for
fine-tuning the model.

Decoder-based Models: The base architecture of the models
in this group is a multi-layer decoder-only transformer. GPT as
a decoder-based model is a game-changer that revolutionized
the area of few-shot learning models [7], [8], [9]. GPT has
different variants, among which GPT-3 is the largest, most
capable, and performant. The main idea behind GPT-3 is that
if a model is large enough, by training it on comprehensive
and quality datasets, it can perform well in other tasks even
without further fine-tuning [9]. Moreover, GPT-3 has shown
good performance on one-shot and few-shot learning, thanks
to its in-context learning capability.

In-context learning is the ability of a language model
to do a task by inferring from a set of examples as its
input. In order to illustrate this, let us say that model
M is a model with in-context learning capability [18],
[19]. Then, given "thanks → tack, hello → hej,
mint → mynta, otter →" as input and without any
down-stream task fine-tuning, we expect M to learn that the
task is English-Swedish translation and generate "utter" as
output.

Formally, if context C consists of k examples, then it can be
formulated as C = {x1, y1, x2, y2, · · · , xk, yk}, where, given
input x, model M produces output y with the following
probability [19]:

PM(y|C, x) =
T∏

t=1

p(yt|C, x, y<t) (1)

B. Query Similarity

One valid question for measuring the query similarity is the
metrics for comparing them. There exist several approaches
for measuring query similarity, among which the most frequent
ones are as follows [20], [21], [22]:
1. Fragment-based, in which query fragments, such as at-
tribute names, table names, join types, and where predicate,
are used to distinguish queries. The main drawback of this
approach is that it does not consider in which clause of the
query the fragments are used.
2. Tuple-based (or, witness-based), in which each query is
characterized by the rows (tuples) of the database accessed
by it. This approach has several critical drawbacks. First, for
databases with a high changing rate, it is necessary to re-
execute the query to extract the returned tuples, which is com-



putationally expensive and inefficient. Second, semantically
different queries may return the same tuples at some time.
Third, semantically similar queries may return different tuples
because of having different filter conditions.
3. Access-area-based, in which each query is represented by
the range of the attributes to which it has access. Therefore,
the similarity between each pair of queries is measured based
on the overlapping between their access ranges. The main
drawback of this approach is that it is likely to have two
semantically-similar queries with two completely different
filter conditions.

IV. SOLUTION

We propose our model, TRANSQL, in which we use two
different language models, i.e., BERT and GPT-3, for embed-
ding and classifying SQL queries. In this section we explain
the BERT-based TRANSQL, and the GPT-based TRANSQL.

A. BERT-based TRANSQL

Different variants of BERT have shown satisfactory results
in classification and clustering tasks. For example, CoClu-
BERT [5] is a BERT-based model for clustering Python source
code based on their functionality. It uses CuBERT [23] for
embedding source code and Siamese and Triplet networks for
fine-tuning. Inspired by CoCluBERT, we propose the BERT-
based TRANSQL that consists of two steps: (i) an embedding
step and (ii) a classification step.
The embedding step: Here, we leverage BERT for making
query embeddings. To do so, we split the query q into
multiple tokens, add the [CLS] token at the beginning of
the tokens and give them as input to the BERT model.
For example, we tokenize the query select * from T as
[CLS][select][*][from][T].

Two ways of using BERT for sentence embedding are to
extract the embedding of [CLS] token or to use a pooling
layer (e.g., mean or max pooling) to aggregate the embedding
of all the tokens. Sentence-BERT (SBERT) [3] is a BERT
variant that uses pooling approaches for detecting similarities
between input sentences. We leverage SBERT in our model
to embed the queries. SBERT fine-tunes a pre-trained BERT
model on two downstream tasks:

• Pair-wise Sentence Similarity: In this network, depicted
in Figure 1(a), the model gets two sentences as input and
predicts if they are from the same class.

• Triple-wise Sentence Similarity: In this downstream task,
BERT is fine-tuned using the Triplet network, as illus-
trated in Figure 1(b). Here, the model is fed with three
input sentences: (1) an anchor sentence, (2) a positive one
chosen from the same class as the anchor, and (3) a neg-
ative one chosen from any class other than the anchor’s
class. The objective is to maximize the similarity between
the anchor and positive embeddings and minimize the
similarity between the anchor and negative embeddings.

In the BERT-based TRANSQL, we take advantage of two
pre-trained variants of BERT in SBERT: CuBERT [23], a pre-
trained model on source code, and CodeBERT [24], a bimodal

(a) Siamese (b) Triplet

Fig. 1. Two network architectures used for fine-tuning BERT model for
sentence similarity; Siamese and Triplet, depicted in (a) and (b), respectively.

TABLE I
GPT-BASED EMBEDDINGS SUMMARY

Ada Babbage Curie Davinci
Text Similarity text-similarity-ada text-similarity-babbage text-similarity-curie text-similarity-davinci
Text Search text-search-ada text-search-babbage text-search-curie text-search-davinci
Code Search code-search-ada code-search-babbage

pre-trained model for programming and natural languages. We
fine-tune both variants using the tasks mentioned above.
The classification step: After fine-tuning SBERT (based on
CuBERT or CodeBERT), we leverage it for the classification
phase. To this end, we give a query as input to the fine-
tuned CuBERT or CodeBERT and then use the embedding
of [CLS] token for classifying the query. We make a simple
feed-forward network with a softmax function as a classifier.

B. GPT-based TRANSQL

Since we may not have enough data to fine-tune the BERT
model, we use GPT-3, which has the few-shot learning ca-
pability, as the second approach in the TRANSQL. Unlike
the BERT-based TRANSQL, which has two separate steps
for embedding and classifying the queries, the GPT-based
TRANSQL unifies these two steps: the model gets a query q,
together with a set of in-context examples as input, and returns
the label of q. However, to predict q’s label, the model should
make the embedding of q and all the in-context examples.

OpenAI offers three families of embedding models for GPT,
each designed for specific functionality, including text-search,
text-similarity, and code-search. The difference between these
three families comes from the dataset and the tasks used for
pre-training them. Moreover, each family consists of, at most,
four separate embeddings of different sizes and capabilities:
Ada (1024 dimensions), Babbage (2048 dimensions), Curie
(4096 dimensions), and Davinci (12288 dimensions).

Among these models, Davinci is the largest and the most
capable one; however, it is the most expensive and the slowest
model. In contrast to Davinci, Ada is the smallest and the
least capable one, but it is the least expensive and fastest.
It is worth mentioning that not all three task families (i.e.,
text-search, text-similarity, and code-search) consist of all
four embeddings. To make it clear, we demonstrate all the
available embedding models in Table I. In the GPT-based
TRANSQL, we take advantage of three embeddings, which
are all highlighted in Table I.



The first step in using the GPT-based TRANSQL is to
choose the in-context examples for each input query q for
passing to the model. As mentioned in Section III-A, in-
context examples refer to examples given as input to language
models (e.g., GPT-3) to help the model understand the task it
is supposed to do without any task-specific fine-tuning steps.
To let the model do the inference for all labels equally, it
is important to balance the label distribution of in-context
examples, which means that we need to take the same number
of examples from each class. Let us represent the number of
examples selected from each class as k, which is a hyper-
parameter. Then, to balance the label distribution, k cannot
be greater than the number of instances in the smallest class.
Therefore, if nsmallest represents the number of instances in
the smallest class, then k ≤ nsmallest.

After deciding about k, the number of in-context examples
for each label, a critical question is how to select these
examples. In other words, do we need a specific metric for
choosing the in-context examples, or can we choose them
randomly? To answer these questions, we hypothesize that the
performance of GPT-3 is sensitive to the quality of the given
in-context examples. This means that a reasonable strategy to
choose the in-context examples can improve the performance
compared to a case when we select them randomly. There-
fore, to evaluate our hypothesis, we consider the following
two ways for choosing the in-context examples in the GPT-
based TRANSQL, named top-k similar and centroid-based as
explained below:

• Top-k Similar: In this approach, for each query q, we
iterate through all the labels and calculate the cosine-
similarity of q’s embedding and the embedding of all
instances for each label. Then, we select the k queries
with the highest cosine-similarity score for each label.
Therefore, at the end of the algorithm, the in-context
examples contain the top k most similar queries from
each label.

• Centroid-based: Here, first, for each label, the average
of its members embeddings is calculated and considered
as its centroid. Then, given an input query q, we first
calculate the similarity score of q’s embedding and the
embedding of all centroids. Then, the label corresponding
to the centroid with the most similarity score to q is se-
lected as most_similar_label. Now, from the instances
with the label of most_similar_label, we select the top
k most similar ones to q. We also select the top k least
similar ones to q from all the other labels different other
most_similar_label.

After choosing the in-context examples, we give them to
the model for classification. For the classification, we take
advantage of another API offered by OpenAI [25]. Since this
classification API receives its input (a query) and the in-
context examples set in the textual format, it uses any of
the embedding methods mentioned earlier (i.e., Ada, Babbage,
Curie, and Davinci) to obtain their numerical representations.
To distinguish the embedding method used by the classifi-

(a) CuBERT Trained on
Siamese and Triplet Networks

(b) CodeBERT Trained on
Siamese and Triplet Networks

Fig. 2. The dots represent the 2D query embedding vectors–using CuBERT
and CodeBERT. The color of the dots represents the class to which they
belong.

cation API and the embedding method used for selecting
in-context examples (in the top-k similar and centroid-based
approaches), we call the former one classifier embedding and
the latter one selection embedding. Our solution uses the same
embedding model in both the classifier and selection embed-
dings. For example, if the selection embedding is Ada, we
also use Ada for the classifier embedding. Table II summarizes
the classifier and selection embedding methods we use in the
GPT-based TRANSQL.

TABLE II
GPT-BASED STRATEGIES

No. Classifier Embedding In-context Set Selection Embedding
1 Ada Random -
2 Ada Top-k Similar code-search-ada
3 Ada Centroid-based code-search-ada
4 Babbage Random -
5 Babbage Top-k Similar code-search-babbage
6 Babbage Centroid-based code-search-babbage
7 Davinci Random -
8 Davinci Top-k Similar text-similarity-davinci
9 Davinci Centroid-based text-similarity-davinci

V. EXPERIMENTS

In this section, we first briefly explain our experiment
configurations and the dataset. Then, we analyze the results
and describe the main takeaways from our experiments.

A. Configurations and Dataset

We implemented TRANSQL in Python, which is publicly
available on Github1. As a dataset, we use Bombay [26]
that consists of student answers to the mid-term exams of
a database course for two years. The exams consist of 14
separate query-writing tasks (14 classes). From all the answers,
the distinct, logically-, and syntactically-correct ones are fil-
tered and added to the dataset. In this dataset, the number of
instances for the smallest class is four, meaning there are very
few samples for some classes; thus, it is a proper dataset for
our experiments on few-shot contexts.

1https://github.com/ShirinTahmasebi/Query-Embedding



B. Results and Analysis

Here, we present and analyze the results of the BERT-based
TRANSQL and the GPT-based TRANSQL.

BERT-based TRANSQL: The embedding results of the
BERT-based solution is depicted in Figure 2. Each dot
in the plots represents the 2D-reduced query embeddings,
and its color shows the label of the class to which it
belongs. As we see, due to a lack of data, the BERT-based
embeddings mentioned in Section IV-A (CuBERT and
CodeBERT) are unable to learn query embeddings properly
and identify different classes. Since the fine-tuned BERT
cannot distinguish different classes, it is not feasible to use
the BERT-based solution for classifying the queries.

GPT-based TRANSQL: As mentioned in Section IV-B, we
leverage three embeddings in the GPT-based TRANSQL,
highlighted in Table I. To examine how well these embeddings
perform on our dataset, first, we embed the SQL queries
using these three embedding methods. The results, illustrated
in Figure 3, demonstrate that all three GPT-based embedding
models reach an acceptable embedding, meaning that classes
are almost distinguishable.

Our GPT-based strategies for the classification task are
described in Section IV-B, and also summarized in Table II.
In Figure 4, we compare these strategies in terms of precision,
recall, and F1 score. As Figure 4 shows, the top-k similar and
centroid-based approaches for selecting in-context examples
outperform the random selection approach. Specifically, in
terms of precision, as we see in Figure 4(a), leveraging
top-k similar approach, instead of randomly selection, leads
to an improvement2 of about 8.45%, 13.8%, and 2.1% for
Ada (comparing strategies #1 and #2), Babbage (comparing
strategies #4 and #5), and Davinci (comparing strategies #7
and #8) models, respectively.

Similarly, the precision improvement percentage for the
centroid-based approach is about 22.5%, 33.8%, and 3.2% for
Ada (comparing strategies #1 and #3), Babbage (comparing
strategies #4 and #6), and Davinci (comparing strategies
#7 and #9) models. This provides evidence that, while
working with GPT-3, the way of in-context example selection
matters, and leveraging different approaches for in-context
example selection significantly impacts the classification
task. Moreover, the improvement percentage for Ada is
more than that for Babbage, which is also more than that
for Davinci. For example, by using the centroid-based
approach instead of random selection, the improvement
percentages in Ada and Davinci are 22.5% and 3.2%,
respectively. This brings us to a conclusion that, by using a
less expensive and much faster model such as Ada (compared
to Davinci), it is still possible to reach promising results,
provided that a proper in-context selection approach is chosen.

2Improvement percentage from value a to b is calculated using: b−a
a

×100

Key Takeaways: Based on the results depicted in Figure 2,
Figure 3, and Figure 4, the following takeaways can be
extracted from all of the conducted experiments:

• GPT-based embedding models outperform BERT-based
embedding models in a few-shot context.

• The way of choosing in-context examples is effective in
the final performance of the GPT-3 classifier.

• In our experiments, the smallest class of our dataset has
only four instances. This number is the limiting factor
for deciding how many instances from each class we
can put in the in-context examples set (as mentioned in
Section IV-B, k ≤ nsmallest). However, this also reveals
an interesting point. Since the performance of TRANSQL
is acceptable by having only four instances from each
class, we can conclude that this approach applies to most
few-shot contexts.

• If a proper approach is leveraged for in-context selection,
it is possible to take advantage of faster and cheaper
embedding models.

VI. RELATED WORK

This section briefly overviews some of the recent applica-
tions of BERT-based and GPT-based language models.

A. BERT-based Clustering and Classification Tasks
In [27], the authors show that BERT-based models can be

good few-shot learners by leveraging a proper prompt. Hence,
they have used DistilBERT [28] and RoBERTa [29] with a
properly designed prompt template, which converts the text
classification task to a Question-Answer (QA) task. In [5], the
authors proposed CoCluBERT for clustering Python source
code based on their functionality. There are several works that
focus on classification and clustering text and source codes;
however, to the best of our knowledge, no previous research
has investigated the classification or clustering of DSLs (SQL
in particular), taking their lack of data into account.

B. GPT-based Few-shot Learning Tasks
In [30], the authors hypothesize that GPT-3 performance

for classification tasks highly depends on its given in-context
examples. Hence, they propose an approach for data aug-
mentation, with the help of which they can create high-
quality in-context examples. Another interesting application
of GPT-3 is proposed in [31], in which the authors propose a
system for generating email responses. Although a few works
are leveraging the few-shot learning capability of GPT-3 for
different applications and domains, no study has investigated
using GPT-3 for the classification of DSLs and SQL queries.

VII. CONCLUSION AND FUTURE WORK

This work explored several solutions for classifying
Domain-Specific Language (DSL), particularly SQL queries.
To this end, we presented TRANSQL and used two language
models, i.e., BERT and GPT-3, to embed SQL queries and
classify them. Our findings confirmed that BERT-based TRAN-
SQL requires large data for their fine-tuning step, so they
cannot perform well in few-shot contexts. However, since



(a) code-search-ada-code-001 (b) code-search-babbage-code-001 (c) text-similarity-davincci-code-001

Fig. 3. The dots represent the 2D query embedding vectors. The color of the dots represents the class to which they belong.

Ada Babbage Davinci

0

50

100

St
ra

te
gy

#1

St
ra

te
gy

#4

St
ra

te
gy

#7

St
ra

te
gy

#2

St
ra

te
gy

#5

St
ra

te
gy

#8

St
ra

te
gy

#3

St
ra

te
gy

#6

St
ra

te
gy

#9

7
1

6
5

9
4

7
7

7
4

9
5

8
7

8
7

9
7

Random

Top-k Similar

Centroid-based

(a) Precision

Ada Babbage Davinci

0

50

100

St
ra

te
gy

#1

St
ra

te
gy

#4

St
ra

te
gy

#7

St
ra

te
gy

#2

St
ra

te
gy

#5

St
ra

te
gy

#8

St
ra

te
gy

#3

St
ra

te
gy

#6

St
ra

te
gy

#9

7
1

6
2

9
5

8
0

7
4

9
6

8
9

8
2

9
8

Random

Top-k Similar

Centroid-based

(b) Recall

Ada Babbage Davinci

0

50

100

St
ra

te
gy

#1

St
ra

te
gy

#4

St
ra

te
gy

#7

St
ra

te
gy

#2

St
ra

te
gy

#5

St
ra

te
gy

#8

St
ra

te
gy

#3

St
ra

te
gy

#6

St
ra

te
gy

#9

6
7

5
8

9
3

7
6

7
0

9
5

8
7

7
9

9
7

Random

Top-k Similar

Centroid-based

(c) F1-score

Fig. 4. Precision, recall, and F1-score of all GPT-based strategies are depicted in (a), (b), and (c), respectively.

GPT-3 is a quality few-shot learner, the GPT-based TRAN-
SQL outperforms the BERT-based TRANSQL. Moreover, our
experiments revealed that, in the GPT-based TRANSQL, the
strategy for in-context example selection plays a crucial role
in the performance of the classification task, bringing about up
to 33% improvement in the task performance. We believe that
this work is a stepping stone for studying the few-shot context
of DSLs. In addition, going beyond SQL queries and changing
the focus from SQL to other DSLs is another direction for
future work.

ACKNOWLEDGMENT

This work received partial funding from the EC through the
projects DataCloud (101016835) and enRichMyData (101070284).

REFERENCES

[1] M. Fowler, Domain-specific languages. Pearson Education, 2010.
[2] T. Degueule et al., “Melange: A meta-language for modular and reusable

development of dsls,” in ACM SIGPLAN SLE, 2015, pp. 25–36.
[3] N. Reimers et al., “Sentence-bert: Sentence embeddings using siamese

bert-networks,” arXiv preprint arXiv:1908.10084, 2019.
[4] N. Peinelt et al., “tbert: Topic models and bert joining forces for semantic

similarity detection,” in Annual Meeting of the ACL, 2020, pp. 7047–
7055.

[5] M. Hägglund et al., “Coclubert: Clustering machine learning source
code,” in ICMLA. IEEE, 2021, pp. 151–158.

[6] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[7] A. Radford et al., “Improving language understanding by generative pre-
training,” OpenAI blog, 2018.

[8] ——, “Language models are unsupervised multitask learners,” OpenAI
blog, vol. 1, no. 8, p. 9, 2019.

[9] T. Brown et al., “Language models are few-shot learners,” NeurIPS,
vol. 33, pp. 1877–1901, 2020.

[10] A. Alexandrov et al., “Representations and optimizations for embedded
parallel dataflow languages,” ACM Transactions on Database Systems
(TODS), vol. 44, no. 1, pp. 1–44, 2019.

[11] N. Smith, “Contextual word representations: A contextual introduction,”
arXiv preprint arXiv:1902.06006, 2019.

[12] M. Peters et al., “Deep contextualized word representations,” in Confer-
ence of the North American. ACL, Jun. 2018, pp. 2227–2237.

[13] J. Pennington et al., “Glove: Global vectors for word representation,” in
EMNLP, 2014, pp. 1532–1543.

[14] T. Mikolov et al., “Efficient estimation of word representations in vector
space,” arXiv preprint arXiv:1301.3781, 2013.

[15] A. Vaswani et al., “Attention is all you need,” NeurIPS, vol. 30, 2017.
[16] W. Yang et al., “End-to-end open-domain question answering with

bertserini,” arXiv preprint arXiv:1902.01718, 2019.
[17] A. Cohan et al., “Pretrained language models for sequential sentence

classification,” arXiv preprint arXiv:1909.04054, 2019.
[18] S. Xie et al., “An explanation of in-context learning as implicit bayesian

inference,” arXiv preprint arXiv:2111.02080, 2021.
[19] J. Liu et al., “What makes good in-context examples for gpt-3?” arXiv

preprint arXiv:2101.06804, 2021.
[20] J. Akbarnejad et al., “Sql querie recommendations,” VLDB Endowment,

vol. 3, no. 1-2, pp. 1597–1600, 2010.
[21] N. Khoussainova et al., “Snipsuggest: Context-aware autocompletion for

sql,” VLDB Endowment, vol. 4, no. 1, pp. 22–33, 2010.
[22] N. Arzamasova and K. Böhm, “Scalable and data-aware sql query

recommendations,” Information Systems, vol. 96, p. 101646, 2021.
[23] A. Kanade et al., “Learning and evaluating contextual embedding of

source code,” in ICML. PMLR, 2020, pp. 5110–5121.
[24] Z. Feng et al., “Codebert: A pre-trained model for programming and

natural languages,” arXiv preprint arXiv:2002.08155, 2020.
[25] “OpenAPI - Classificaiton Endpoint,” https://beta.openai.com/docs/

guides/classifications.
[26] G. Kul et al., “Similarity metrics for sql query clustering,” IEEE

Transactions on Knowledge and Data Engineering, vol. 30, no. 12, pp.
2408–2420, 2018.

[27] Z. Chen et al., “Better few-shot text classification with pre-trained
language model,” in ICANN. Springer, 2021, pp. 537–548.

[28] V. Sanh et al., “Distilbert, a distilled version of bert: smaller, faster,
cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[29] Y. Liu et al., “Roberta: A robustly optimized bert pretraining approach,”
arXiv preprint arXiv:1907.11692, 2019.

[30] S. Balkus et al., “Improving short text classification with augmented
data using gpt-3,” arXiv preprint arXiv:2205.10981, 2022.

[31] J. Thiergart et al., “Understanding emails and drafting responses–an
approach using gpt-3,” arXiv preprint arXiv:2102.03062, 2021.


