

Master’s Thesis 2022 30 ECTS
Faculty of Science and Technology

Exploration of usability of PLSR for
implementation in the RENT feature
selection method

Rameesha Asghar Khan
MSc Data Science

Faculty of Science and Technology

Exploration of usability of PLSR for
implementation in the RENT feature

selection method

Master’s Thesis in Data Science
by

Rameesha Asghar Khan

Internal Supervisors

Oliver Tomic

December 15, 2022

"Man’s mind once stretched by a new idea, never regains its original dimension."

Oliver Wendell Holmes

Abstract

In machine learning, when the objective is classification or object detection, feature
selection provides a significant advantage to obtaining optimal results. Most feature
selection heuristics (methods derived from past work done on related problems) available
in literature focus mainly on the predictive performance of the algorithms. Stability
of the selection of feature selection is an important aspect which is not always on the
forefront of feature selection process.

RENT (Repeated Elastic Net Technique) is a fairly new method developed for feature
selection which works only for binary classification and regression problems. It uses
logistic and linear regression and focuses on stability along with predictive performance.
This thesis explores PLSR (Partial Least Squares Regression) algorithm to extend RENT
to handle multi-class classification and regression problems.

PLSR-RENT uses cumulative validated explained variance of individual features for
feature selection. The selected feature subset is used with different classifiers and the
results obtained are compared first with baseline classifiers with original features set and
then with feature subsets obtained using other feature selection methods.

The results obtained show that while the performance scores of PLSR-RENT does not
exceed other feature selection methods, the difference is but marginal. PLSR-RENT
does provide slight improvement in comparison to baseline model for some classification
algorithms.

We make the argument that if with slight drop in performance score, the computational
cost can drop significantly, a user can make the trade-off between performance scores
and number of features (and thus computation cost) while using PLSR-RENT feature
selection method.

Acknowledgements

First, I would like to thank my supervisor Oliver Tomic from NMBU for his valuable
guidance, feedback and imparted knowledge throughout the whole thesis process. His
support and understanding for my circumstances as a mother of young children was
essential and highly appreciated.

I would also like to thank my co-supervisor Cecilia Futsæther for her support.

Finally, huge amounts of thanks goes to my family for their patience and understanding,
and being the best, free of charge baby sitters while I was working on this thesis.

vii

Contents

Abstract v

Acknowledgements vii

Abbreviations xiii

1 Introduction 1
1.1 Motivation . 3
1.2 Problem Definition . 4
1.3 Thesis Outline . 4

2 Materials and Methods 5
2.1 Feature Selection . 6

2.1.1 Filter Methods . 6
2.1.2 Wrapper Methods . 7
2.1.3 Embedded Methods . 8

2.2 Repeated Elastic Net Technique . 9
2.3 Partial Least Squares Regression . 12

2.3.1 PLSR model equations . 12
2.3.2 Explained Variance . 13
2.3.3 Cumulative Explained Variance . 15
2.3.4 Number of components . 16
2.3.5 PLS1/PLS2 . 17
2.3.6 PLSR for classification . 17

2.4 PLSR RENT . 18
2.4.1 PLSR-RENT Methodology . 18
2.4.2 Comparison methods . 20

2.5 Model Validation . 21
2.5.1 K-fold . 22
2.5.2 Stratified K-Fold . 22
2.5.3 Repeated Stratified K-Fold . 23

2.6 Multi-Class Classifiers . 24
2.6.1 Multinomial Logistic Regression 24
2.6.2 Support Vector Machines . 26
2.6.3 Random Forest . 28

ix

x CONTENTS

2.6.4 K-Nearest Neighbors . 29
2.7 Performance Metrics . 31

2.7.1 Accuracy . 32
2.7.2 Balanced Accuracy . 32
2.7.3 Precision . 33
2.7.4 Recall . 33
2.7.5 F1 score . 34
2.7.6 Cohen’s Kappa Score . 34
2.7.7 Mathews Correlation Coefficient (MCC) 35

3 Experimental Setup 37
3.1 Software . 37
3.2 Workflow . 38
3.3 Data . 38
3.4 Data Preprocessing . 39

3.4.1 Handling Missing and Duplicate Data 39
3.4.2 One Hot Encoding . 40
3.4.3 Low variance threshold . 40

3.5 Feature Selection . 40
3.5.1 PLSR-RENT . 41
3.5.2 SelectKBest . 41
3.5.3 ExtraTrees Feature Importance . 42

3.6 Classification . 42
3.6.1 Baseline model pipeline . 43
3.6.2 PLSR-RENT model pipeline . 43
3.6.3 FS1 model pipeline . 43
3.6.4 FS2 model pipeline . 43

3.7 Hyperparameter Tuning . 44
3.8 Results . 45

4 Results and Discussion 47
4.1 Data Preprocessing . 47
4.2 PLSR-RENT . 48
4.3 Feature Selection . 54
4.4 Hyperparameter Tuning . 54
4.5 Classification . 55

4.5.1 Comparison with Baseline . 55
4.5.2 Comparison with other Feature Selectors 57

5 Conclusion and Future Directions 61
5.1 Conclusion . 61
5.2 Future Work . 62

List of Figures 63

List of Tables 67

CONTENTS xi

A Complete Results of the Experimental Setup 73

B Results for Dataset MNIST 79
B.1 Data . 79
B.2 Results . 79

Bibliography 81

Abbreviations

FS Feature Selection

RENT Repeated Elastic Net Technique

PLSR Partial Least Squares Regression

PLSR-RENT PLSR RENT

PC Principal Component

xiii

Chapter 1

Introduction

Technology. . . the knack of so arranging the world

that we don’t have to experience it.

— Max Frisch

High-dimensional data is when the number of features or variables p is greater than the

number of instances or observations n; i.e. p > n. The proliferation of big data would have

us believe that more data is better; which, while true, comes with its own set of statistical

challenges of computations and visualization. "Visual discovery" acquired by plots and

diagrams becomes unfeasible to carry out because of the large number of variables [1].

Covariance matrix, which is pertinent in applications in many areas such as financial

market, genetic network and climatology, becomes challenging to accurately estimate for

high dimensional data [2]. [2] also refers to the problem of selecting statistically significant

features based on very small sample size, by giving examples of tumor classification based

on hundreds and thousands of gene expressions.

The term curse of dimensionality was first introduced by [3]. It refers to a set of problems

that are faced when working with high-dimensional data. High-dimensionality gives

rise to overfitting. Given a fixed number of samples, if we add more features, the data

becomes sparse and the performance of a classifier is going to start to deteriorate after

reaching an optimal number of features, as shown in figure 1.1.

1

Chapter 1 Introduction

Figure 1.1: Trend of classifiers performance with rising dimensionality. The performance
of the classifier increases with increase in dimensionality until it reaches the optimal
number of features. After that increasing the dimensionality (without adding samples)

only results in decrease in performance of the classifier [4].

These challenges and issues give rise to the need for dimensionality reduction techniques

which help us acquire a subset of important features out of the full set of features

available.

The knowledge of important features is crucial in optimizing any algorithm that deals

with classification or regression issues. The question of why feature selection is an

important preprocessing step can be answered precisely by the following three main

points:

1. Computation cost: The main and most obvious benefit of using feature selection

is it decreases the computation time while training the model. The fewer features

are present in the data, the quicker the model is trained.

2. Improves performance: By getting rid of unnecessary and misleading features

the performance of the model may improve. It is ideal to gain improved performance

with reduced number of features, but sometimes trading off a bit of performance

for significant number of features is also a feasible option.

3. Decreases over-fitting: Redundancy may lead to over-fitting. Feature selection

handles this problem by getting rid of or reducing the number of redundant features

and amount of noise which might lead to over-fitting.

3

In this thesis we will be exploring a new method for the purpose of feature selection

by the use of PLSR algorithm: PLSR-RENT. We will be comparing the performances

of our method with the performances of multiple other algorithms capable of handling

multi-class problems on full set of features and multiple sets of reduced features.

1.1 Motivation

In the real life applications in the field of bio-metrics, genome study or other scientific

studies, the data collected is normally high-dimensional with a higher number of variables

than observations.

Feature selection methods are created to help with narrowing down the features to a

subset that is relevant for solving a given problem of classification or regression. In the

literature there are many heuristics and feature selection methods discussed which are

data or application specific, for example [5]; [6]. Conversely, robustness and stability of

these feature selection methods is always being questioned. A stable process is where a

small change in the input does not lead to large change in the output. In the area of

feature selection, that means that changes in the input or training data (by adding or

removing samples) does not lead to vastly different set of features selected.

Kalousis et al. states the following in his 2005 study: "We define the stability of a feature

selection algorithm as the sensitivity of the feature preferences it produces to differences

in training sets drawn from the same generating distribution [..]. Stability quantifies how

different training sets affect the feature preferences."

There are a variety of works that discuss the stability of the feature selection methods.

[8] review different feature selection techniques, their instability, and their proposed

solution to it. [7] evaluates the stability of feature selection methods with use of ranks,

weights, scores, etc. Whereas [9] analyses the insatiability problems feature selection

algorithms face in high dimensional data.

Recently, Jenul et al. have developed a new method for feature selection called RENT. It

is a feature selection technique which provides information on feature selection stability

by showing how often a feature is selected when models are trained on subsets of the

Chapter 1 Introduction

training data. This method uses elastic net regularization and an ensemble of linear

models for binary classification and regression [10] problems.

1.2 Problem Definition

RENT is a technique which is built to select important features. Although, the method

is still relatively new, it is proving to be a competent technique which is also stable. The

limitation which it faces is that it only works for binary classification and regression.

Many real world problems are actually multi-class problems; which presents the need to

extend RENT so it can handle multi-class problems as well as binary problems. This

thesis delves into the next phase of RENT: multi-class classification.

Often times in multivariate analysis we have to work with high-dimensional multi-colinear

data which has high covariance between features. PLSR algorithm deals with these issues

efficiently and gives us optimal results. This is the reason we will investigate the use of

PLSR algorithm to extend RENT to include multi-class classification and regression.

1.3 Thesis Outline

This thesis follows the following structure:

Chapter 1 defines the need for feature selection and the challenges and problems of

stability while selecting features; especially in multi-class case.

Chapter 2 outlines the related materials and methods used in the thesis. We delve briefly

into the RENT methodology and following it how we develop PLSR-RENT method to

extend it.

Chapter 3 will focus on the experimental setup for PLSR-RENT and methodology and

workflow of the validation techniques.

Chapter 4 is where the results of our experimental work is presented with figures and

tables. The results are also briefly discussed.

Chapter 5 presents the conclusion and points out the areas for future work and

development.

Chapter 2

Materials and Methods

If it keeps up, man will atrophy all his limbs

but the push-button finger.

— Frank Lloyd Wright

Dimension reduction techniques are loosely divided into feature extraction or feature

selection. There are many different feature extraction and feature selection methods

available. Some of the most common techniques are shown in figure 2.1.

Figure 2.1: Common dimensionality reduction techniques.

5

Chapter 2 Materials and Methods

Feature extraction methods extract information from the given features and then trans-

forms them into new features with lower dimensions (feature engineering). These new

features pack the information of all the features. Whereas, feature selection is simply

selection of a subset of informative features from the original set of features.

In this chapter we will outline different feature selection methods, discuss the theory of

RENT feature selection method, our approach using PLSR and other related work.

2.1 Feature Selection

Feature selection is an essential step of data pre-processing in machine learning algorithms.

An efficient feature selection algorithm can massively improve the performance and

computational cost of a machine learning algorithm. Exhaustive research has been done

to study the different methodology and techniques for feature selection. A good feature

selection method is the one which facilitates decreased complexity, improved performance,

and stability of the features selected.

As mentioned in the figure 2.1, there are numerous feature selection techniques. Different

authors and papers have divided these techniques based on different criteria. Feature

selection techniques are, most commonly, split into three types: (i) filter methods, (ii)

wrapper methods, and (iii) embedded methods, as previously shown in figure 2.1.

2.1.1 Filter Methods

Filter methods are supervised feature selection methods which use the simple innate

statistical attributes of the data in relation to the target to select features. These methods

are also called univariate and as can be inferred from the name each feature is assessed

and ranked independent of its relation to other features - just to the target. This can

be a disadvantage as some features when assessed independently might be weak but in

combination with some other feature(s), might prove to be valuable.

Figure 2.2: Working of filter methods

7

Statistical measures such as correlation, chi squared, distance, mutual information are

used in the process of decision making of filter methods. Filter methods are easy to

implement and interpret, and faster to compute.

Missing Value Ratio

When a feature is missing a lot of data points, it does not provide any useful information.

In missing value ratio method we set a threshold of the ratio of missing values allowed;

then we can remove features accordingly.

Low Variance Filter

Features whose values are either constant or do not change much are said to have low

variance and thus do not provide useful information about the attribute which might

differentiate it from others. Variance (how much the values change) of each feature is

calculated and then based on a given threshold some features are removed in the low

variance filter method.

High Correlation Filter

When two independent variables are very similar to each other, they are said to be highly

correlated. In this method correlation coefficient is calculated and based on a given

threshold, variables with values higher are dropped.

2.1.2 Wrapper Methods

Wrapper methods are also called greedy algorithms, as they search through almost every

possible combination of features to find the subset of features which will give the best

performance score. It is a time-consuming but can give better results.

Figure 2.3: Working of wrapper methods

Chapter 2 Materials and Methods

Wrapper methods are based off of a particular classification or regression algorithm as it

evaluates the performance and selects features that are best suited to that algorithm.

The same features might perform poorly when another algorithm is used.

Forward Feature Selection

In forward feature selection, we start off by selecting one feature and then adding

other features one at a time. First, one feature is tested in combination with all other

features and the pair with best performance is chosen. Afterwords, we test that pair in

combination with the rest of the features and the best is selected. Similarly, the process

goes on until the specified number of features is selected.

Backwards Feature Selection

This method starts off by full set of the features and, recursively subtracts all features

once in separate subsets. The subset with best performance is selected. From that subset,

once again, every remaining feature is subtracted in different subsets and the performance

is evaluated. And thus the process repeats until we reach a user specified number of best

features.

Recursive Feature Elimination

Recursive Feature Elimination(RFE) is similar to backwards selection. Both start off with

full set of features and then eventually subtracts one feature per iteration. The difference

is how the next feature that is to be eliminated is selected. In backwards elimination we

base our decision on the performance of the model(the best performing subset is selected,

discarding the rest). Whereas, in RFE the next feature to be eliminated is based off of

feature importance calculated by the model used in the process.

2.1.3 Embedded Methods

Embedded methods find a middle ground between the computationally costly wrapper

methods and very basic but computationally cost effective filter methods. These methods

incorporate the low computational cost along with the features relations with each

other. These methods iteratively search for best features, and select best feature in

each iteration. Some of the most common embedded feature selection methods are:

regularization methods, and decision trees feature importance method.

9

Regularization methods

High-dimensional data has more chances of noise in it. Having noise in the data makes

the model susceptible to overfitting as we try to accommodate the increased number of

features and thus complexity. One solution to it might be simplifying the model; which

might lead to underfitting. The ideal situation is to find a balance between overfitting or

underfitting a model. Regularization techniques accomplish this balance by introducing

penalty. Penalizing different coefficient terms hinders the inclination of some terms to fit

to the noise. The higher the penalty, the less chances are for overfitting. Penalty shrinks

the coefficients of some terms, sometimes to zero. The terms with zero coefficient values

can then be discarded. Regularization methods are lasso(L1 regularization) or elastic

nets(L1 plus L2 regularization).

Decision trees feature importance method

Some algorithms, such as Decision Tree, can rank the features based on how much it

affects the model prediction while making a decision in the process of training the model.

Using these feature importance ranking we can remove the features with low rankings.

Random forests and extra trees are ensembles of decision trees and are popular for feature

selection also.

2.2 Repeated Elastic Net Technique

Repeated Elastic Net Technique (RENT) is a feature selection method which focuses on

the stability of the features selected, along with the performance of the algorithm. It

works by training multiple linear models on different subsets of training data. Figure 2.4

shows the RENT pipeline as explained in [10]. RENT works for binary classification and

regularization problems only.

Chapter 2 Materials and Methods

Figure 2.4: RENT pipeline as explained in [10]

RENT is an adaptation of the idea of ensembles of models in [11]. In RENT, we have

an ensemble of linear models and the training data is sampled into multiple subsets; one

model is trained on each subset of the training data.

RENT uses elastic net regularization. Elastic net is an embedded method for feature

selection where features are selected during the model training process. It sets the weight

of the features that seem important to non-zero, and the unimportant ones to zero. The

results are then saved to a table with the rows representing the weights vectors and the

columns representing features. Figure 2.5 visualises the calculation of the results table

containing the weights of the features across different data splits.

Using the results from the weight table we take three criteria into consideration (τ1, τ2, τ3)

when selecting the final features.

1. τ1 is the frequency of selection of the features. This corresponds to the feature

having a non-zero weight. It is calculated by the following equation:

τ1(βn) = c(βn) = 1
K

K∑
k=1

1[βk,n ̸= 0] (2.1)

The information about the feature relevance is stored in βn = (β1,n, ..., βK,n). τ1

must be relatively high for the feature to get selected.

2. τ2 calculates the proportion of the feature weights taking the same sign, either

positive or negative. It is calculated using equation 2.2. The maximum value τ2

can take is the value of τ1.

11

Figure 2.5: Calculation of weight matrix in RENT with the use of elastic net technique.

When τ2 == τ1 it means that all non-zero weights have the same sign, either

all positive or all negative. If τ2 is smaller than τ1 it indicates that some of the

non-zero weights for this feature have different signs.

τ2(βn) = 1
K

|
K∑

k=1
signβk,n| (2.2)

3. τ3 finds the deviation of the feature weights from zero.

τ3(βn) = tK−1

 |µ(βn)|√
σ2(βn)

K

 (2.3)

tK−1 is Student’s cumulative distribution function with K − 1 degrees of freedom.

µ and σ are mean and variance, respectively.

All three criteria τ1, τ2, and τ3 must all be above some user defined threshold of t1, t2,

and t3 to be selected by the RENT algorithm.

Chapter 2 Materials and Methods

2.3 Partial Least Squares Regression

Partial Least Squares Regression (PLSR) is an algorithm for regression problems for high

dimensional data that may contain highly correlated features. PLSR can also be used

for classification after the target (response) is one-hot encoded.

PLSR algorithm makes use of the covariance of the features to reduce dimension by

building smaller set of uncorrelated components.

2.3.1 PLSR model equations

PLSR is very closely related to PCA (Principal Component Analysis). Both algorithms

are capable of reducing the dimensionality of the data but with some pivotal differences.

Where PCA uses variance between the independent features, PLSR uses covariance.

PCA only gives weight to the relation between the independent variables X with no

regard to relevancy to Y . Performing PCA on X decomposes it into scores matrix T

and loadings matrix P , which are both orthogonal to each other. Equation 2.4 shows the

decomposition of X; where E is the residuals.

X = TP ′ + E (2.4)

PLSR, on the other hand, also weighs in the relation of the independent variables X to

the target variable Y . Performing PLSR decomposes both X and Y into equations 2.4

and 2.5. U and Q are orthogonal matrices of scores and loadings of Y , accordingly. F is

residuals.

Y = UQ′ + F (2.5)

According to [12] equations 2.4 and 2.5 are called outer relations which help to find the

inner relation as shown in equation 2.6. PLSR finds an optimal solution where T has

maximum covariance with U . Figure 2.6 summarizes the conceptual working of PLSR.

U = β ∗ T (2.6)

13

β is the regression vector calculated using the equation 2.7, which can be used to calculate

the prediction value y as in equation 2.8.

Figure 2.6: The underlying general working of PLSR. The breakdown of X and Y
matrices to scores and loadings make up the outer relations which are used to calculate

inner relation that is used to predict Y

β = (T T T)−1T T y (2.7)

T ∗ β = y (2.8)

Equation 2.8 shows that in PLSR to predict y we use only the scores instead of the whole

X. This makes the model more robust and impervious to small changes in the data X

2.3.2 Explained Variance

PLSR creates principal components(eigenvectors) and each component has a different

degree to which they attribute to the variance in the data. Explained variance explains

how much of the total variation is caused by each principal component [13]. Explained

variance allows us to rate the components in accordance to their importance. The more

important the component is, the higher the explained variance.

Explained variance is calculated as the ratio between a particular eigenvalue and sum

of all eigenvalues across all eigenvectors. Given a number of N eigenvectors (principal

Chapter 2 Materials and Methods

components), the explained variance can be represented as in equation 2.9, where λi is

the eigenvalue.

ExpV ar = λi

λ1 + λ2 + ... + λn
(2.9)

Consider a dataset with n features Xj , j = 1, 2, ..., n in ℜm. This data set can be

represented as a m × n matrix of X = [X1, . . . , Xn], where each Xj is a n-vector.

Explained variance in X for component j for all features is calculated by the equation

2.10

ExpV ar_Xj = SS(X̂j)
SS(X) =

tr(X̂T
j X̂j)

tr(XT X) (2.10)

where SS is the sum of squares, tr is trace of matrix, and X̂j is the vector of averages of

Xj

Similarly, explained variance in Y for all features for component j is calculated by

following equation:

ExpV ar_Yj = SS(Ŷj)
SS(Y) =

tr(Ŷ T
j Ŷj)

tr(Y T Y) (2.11)

Explained variance for each individual feature in X and Y is calculated by the equations:

ExpV arX_indV ar =
diag(X̂T

j X̂j)
diag(XT X) (2.12)

ExpV arY _indV ar =
diag(Ŷ T

j Ŷj)
diag(Y T Y) (2.13)

Consider an example with 10 principal components in figure 2.7. The figure shows the list

of explained variance ratio of all principal components. Explained variance or individual

explained variance is the variation of each individual component.

15

Figure 2.7: Explained variance ratio of 10 principal components

2.3.3 Cumulative Explained Variance

Cumulative explained variance is the cumulative sum of the explained variance ratio. In

the figure 2.8 the first principal component (PC1) explains 32% of the variation, PC1

and PC2 combined explains 55%, 5 PCs together explain 88% of the data variance. We

can see that out of the 10 PCs calculated, using only 7-8 PCs can explain the most of

data variance; making the last few PCs almost redundant.

Figure 2.8: Cumulative explained variance ratio of 10 principal components

Cumulative explained variance of individual components is the cumulative sum of the

individual explained variance across components. In the example in 2.9 the row 1 is

individual explained variance of PC1, the row 2 contains the cumulative explained

variance of PC1 and PC2, and so on.

Figure 2.9: Individual cumulative explained variance ratio of 9 principal components

Chapter 2 Materials and Methods

For dimension reduction PCA/PLSR uses explained variance to measure the importance

of components. Explained variance can also get rid of redundant features. As in 2.8 we

can see that only 9 features can explain 100% of the variance in the original data, leaving

one feature redundant.

2.3.4 Number of components

PLSR algorithm outputs new components but the number of components to chose is a

choice we have to make. Covariance of the components with Y is the highest for the first

component calculated, then the second and so on. We can use validation to decide on

the number of components to be selected.

(a) Number of components according to maximum R2 (b) Number of components according to minimum MSE

(c) Number of Components according to maximum cu-

mulative explained variance

(d) Number of components according to maximum ac-

curacy

Figure 2.10: Choosing number of components according to different criteria

17

[14] suggested the selection of PCs which will maximise the value of R2. [15] concluded

that mean squared error (MSE) would be potentially be a great criteria for component

selection. [16] means that the small values of eigenvalues can improve score predictions.

In addition to these we can also choose the number of components based on the maximum

number of performance score, which is what we have used in our experimental setup.

Figure 2.10 visualizes the different ways of choosing the number of components based on

the above mentioned criteria.

2.3.5 PLS1/PLS2

PLSR can be categorized into PLS1 and PLS2. PLS1 is used when handling only one

dependent variable. PLS2 is used when we are dealing with more than one dependent

variables. In our thesis we are using PLS2 with one-hot encoded target as we are working

on multi-class classification case.

2.3.6 PLSR for classification

PLSR is a regression algorithm, as the name suggests. But it can be used for classification

also with some alterations. We encode the categorical target values using one-hot encoding

and then pass it through the model. In one-hot encoding the Y column is encoded so

that we get as many columns as there are classes in Y , with the selected class having

the value 1 and the rest having the value 0. This method is called PLS-DA (Principal

Least Squares Discriminant Analysis) [17]. The results obtained from the model are not

categorical but the numbers are an approximation on which we can apply a threshold to

make predictions.

PLSR algorithm has the advantage over other algorithms when dealing with high

dimensional data which suffers from multi-colinearity and high correlation resulting

in overfitting. This was the reason that in our thesis we have explored PLSR as an option

to enhance RENT algorithm to include multi-class classification and regression.

Chapter 2 Materials and Methods

2.4 PLSR RENT

PLSR-RENT is a feature selection method developed as an attempt to extend the scope

of RENT to multi-class classification and regression. Given X with a set of features

F ⊂ {1, ..., N}, the goal of the PLSR-RENT is to find a subset of features F ′ ⊂ {1, ..., M}

such that M ≤ N . The expected requirement of our technique is to balance performance

and stability.

2.4.1 PLSR-RENT Methodology

The performance aspect is measured by some performance metric. In our approach we

calculate number of metrics, but must chose one for decision making, such as balanced

accuracy. The stability aspect is ensured by using ensemble of PLSR models with various

subsets of the data and repeating the process a number of times. Our method uses the

cumulative explained variance for each individual feature variable in X as the criterion to

select features. The cumulative explained variance of each feature must pass a threshold

value for the feature to be selected. The result of PLSR-RENT is a new X ′ with reduced

selected features.

Figure 2.11: Workflow of the PLSR-RENT

Figure 2.11 visualizes the workflow of the PLSR-RENT methodology. The steps of the

process are numbered and are used for reference in explanation below.

19

1. We preprocess the data with N number of features in step 1.

2. The data is split using Repeated Stratified K-Fold (RSKF) (explained in section

2.5.3) in step 2. RSKF is a cross validation technique which returns multiple train

and test data splits.

3. Each split of data is used as input for a PLSR model - creating an ensemble of k

PLSR models (step 3).

4. For each model we calculate:

(a) X_cumValExplVar_indVar : Cumulative calibrated explained variance for

each variable in X, i.e. a N length list (step 4).

(b) Then, in step 5, we iteratively predict X_test using number of components

from 0 to N for all the model and save the results as in figure 2.12(a).

(c) In step 6, we then compute the performance metrics and save them as shown

in figure 2.12(b).

(a) Example table of X_cumValExplVar_indVar for
each variable in X

(b) Example table of mean of metrics for each com-
ponent

Figure 2.12: Tables of mean of X_cumValExplVar_indVar and performance metrics
across k models

5. After all k models we have k dictionaries with performance metrics and k lists with

X_cumValExplVar_indVar. We find mean of X_cumValExplVar_indVar in step 7

and mean of performance metrics dictionaries (element wise mean), in step 8, as

explained in figure 2.13

6. Based off on a given performance metric, we choose the component with the

maximum performance score from the list performance scores.

Chapter 2 Materials and Methods

Figure 2.13: Element-wise mean across a dictionary/matrix

7. In step 10, we select the row of optimal number of components from the table of

X_cumValExplVar_indVar.

8. In step 11, we recursively compare each feature to a cutoff threshold based on

validated explained variance. Example if the cumulative explained variance of a

feature is greater than a given threshold we keep it, otherwise discard that feature.

We are left with a set of features which we process through a model and get results.

9. In the end we will choose the set of features gained from a threshold with maximum

score in step 12. We can also manually choose where to cutoff by compromising

slightly on the performance score but gaining improved computational efficiency.

2.4.2 Comparison methods

We use hyper-tuned versions of PLSR and multiple other multi-class classifiers (discussed

in section 2.6) with X as baseline. We then use the new X ′ with the same classifiers and

hyper-tune them. The results obtained are compared with the baseline results to observe

the differences. Figure 2.14 summarizes the process.

21

Figure 2.14: Process of comparison of PLSR-RENT with other classifiers

PLSR-RENT is also compared with other established feature selection methods from

scikit-learn (discussed in 2.1). We obtain X ′(P LSR−RENT), X ′(F S1) and X ′(F S)2 from

PLSR-RENT, FS1 and FS2, respectively. Where FS1 and FS2 are two different feature

selection methods.

We then run the different hypertuned models with X ′P LSR−RENT , X ′F S1 and X ′F S2 and

compare their results as shown in figure 2.15.

Figure 2.15: Process of comparison of PLSR-RENT with other feature selectors

2.5 Model Validation

In machine learning, splitting the data into simple train and test split using basic random

sampling presents problems with stability of the results. The performance of the model

is prone to change depending on how the data is split randomly into samples, or if the

samples are very different from each other, or both. Which samples the model was

Chapter 2 Materials and Methods

trained on and which samples it was tested on may have an influence on the performance

of the model.

2.5.1 K-fold

cross validation solves the problem of having different results with different samples by

dividing the data into K folds. K models are trained on K − 1 folds and performance is

computed from the last left out fold. The performance across the folds provides a more

robust estimate of the overall performance. This technique, while better than just taking

a single random sample, still suffers from randomness of the data.

Another method of sampling is stratified sampling. In stratified sampling the percentage

of strata (subgroups or classes) are maintained in the sample taken as in the original

data. For example, in original data 80% of the data is class A, and the 20% is class B.

In stratified sampling, the sample of the data will maintain the same percentage of the

classes.

2.5.2 Stratified K-Fold

is a cross validation technique used to get k-folds(k-samples) of the data with stratified

sampling. It splits the original data into K number of folds, maintaining the proportion

of the classes in each fold as in the original data. This ensures that each of the K models

are trained on subsets of the data that have the same class distributions. This is a useful

technique when dealing with class imbalance. In case of great imbalance between classes

stratified K-fold ensures that a fold does not contain only the dominant class which

might lead to poor predictions for the left-out minority classes.

23

Figure 2.16: Visualization of Stratified K-fold

Figure 2.16 shows the working of stratified K-fold, how it maintains the class distribution

in all the splits of the data. Each row represents a single split of the data where it takes

one fold of the data for testing (highlighted in yellow box), and the rest for training (in

white boxes).

While stratified K-fold might be better than simple K-fold at estimation of classification

tasks, there is still some chance of noisy estimates of the performance of the model.

2.5.3 Repeated Stratified K-Fold

Repeated Stratified K-Fold (RSKF) takes stratified K-fold to the next level by repeating

the stratified K-fold n number of times. It is expected to have more accurate and stable

results of the performance of the model. But this accuracy and stability might come at

the cost of it being more computationally expensive than stratified k-fold. For a 10-fold

cross validation using RSKF repeated 5 times, it gives us 50 iterations of data samples;

i.e. n_splits ∗ n_repeats. Meaning it is 5 times more computationally expensive. In

Chapter 2 Materials and Methods

each iteration, one fold is reserved for testing, while others are used for training. Also,

the rows of data are shuffled at the start of each iteration.

In our experimentation we have used RSKF from the scikit-learn library to ensure model

stability and accurate estimation of performance.

RepeatedStratifiedKFold(n_splits=10, n_repeats=5,

random_state=123, n_jobs=-1)

2.6 Multi-Class Classifiers

Multi-class classifiers are algorithms that are capable of classifying more than two classes;

i.e y ∈ {1, 2, , 3, ..., k}. As opposed it, binary classifiers are capable of classifying only

two classes; i.e y ∈ {0, 1}.

In binary classification the target classes are often the inverse of each other; for example,

classifying whether a patient is sick or healthy, or the fruity is apple or not. Whereas

in multi-class classification the target classes are not necessarily inverse. Example of

multi-class classification is classifying the fruit as apple, orange or peach. In real life

cases most of the classification tasks are multi-class. The applications of multi-class

classification range from image classification, medical diagnosis, product classification,

facial recognition, content analysis of social media, etc.

There are a number of classifiers built to handle multi-classification tasks. Below we will

discuss a few that are used in our thesis.

2.6.1 Multinomial Logistic Regression

Logistic regression algorithm is made for binary classification problems. Multinomial

logistic regression model is an extension and generalization of its binary counterpart. It

is made to classify more than two classes.

Multinomial logistic regression is also called softmax regression, multiclass logistic regres-

sion, maximum entropy classifier, or polytomous logistic regression.

25

The multinomial logistic regression makes the assumption that the preference of one

class over the other does not depend on other choices. For example, if the algorithm

gives preference (higher probability) to class A over class B from alternatives class A,

class B; the addition of class C to the alternatives should not affect the preference of

class A over class B.

The softmax function outputs a vector of probabilities for each alternative and then

argmax is applied to give a one hot vector where 1 is the predicted choice and the rest

are 0.

Activation function of binary logistic regression is sigmoid function, which is generalized

to softmax function for multinomial logistic regression.

An input vector z = [z1, z2, ..., zk] is received by the softmax function, and returns a

vector of probability distribution for all the k classes. It can be defined as:

σ(z⃗)i = ezi∑K
j−1 ezj

(2.14)

where σ is the softmax function, ezi is the exponential function for input vector, and ezj

is the exponential function for output vector.

The probabilities of the softmax function lies between [0, 1] and always sums up to 1.

Softmax function for logistic regression can be adapted as in equation 2.15.

p(yk = 1 | x) = e(wkx) + bk∑K
j=1 e(wjx) + bj

(2.15)

Where x is the input vector, w is the weight vector, and b is bias. The input for softmax

is the dot product of the weight vector and input vector.

input = [w1, w2, ..., wk].[x1, x2, ..., xk] + b (2.16)

The goal of the classifier is to find ideal weights, minimize the cost function and improve

the correct predictive probability. Gradient descent algorithm finds the optimal weights.

The predictive output can be given as:

Chapter 2 Materials and Methods

ŷ = σ(wx + b) (2.17)

2.6.2 Support Vector Machines

Support vector machines (SVM) is a natively binary classification algorithm built on a

linear model. It can be used for multi-class classification with some modification. SVM

works by finding a boundary between the given classes. This differentiating decision

boundary is called hyperplane. The goal of SVM is to find the optimal hyperplane

in n-dimension that can clearly differentiate between given classes by maximizing the

distance between data points.

Kernels are responsible for the computation of separation of data points. SVM uses

different kernels for its computations: linear, Radial Basis Function(RBF), polynomial,

gaussian and sigmoid. Kernels determine the shape of hyperplanes and how they operate

at differentiating classes, shown in figure 2.17. Hypertuning with their parameters result

in more efficient class differentiation and thus prediction.

The SVM can be extended to multi-class classification by using either One-vs-One or

One-vs-Rest approach.

1. One-vs-One works by treating the multi-class problem as multiple binary classifi-

cation problems. It divides the classes into pairs and classifies them. Number of

SVM models needed for One-vs-One method are expressed as below:

n
(n − 1)

2 (2.18)

2. One-vs-Rest works by building a classifier to separate data points as belonging to

a particular class or to the rest of the classes. The number of SVM models needed

for One-vs-Rest method is n

In the example taken from [18], we have to classify between three classes: blue, green,

and red. In One-vs-One approach, as shown in figure 2.18(a), each hyperplane is for the

separation of two classes. The blue-green line separates between blue and green classes.

The green-red classifies the points as green or red, and so on. In One-vs-Rest approach,

27

Figure 2.17: Visualization of how different kernel functions create different hyperplanes
to differentiate classes

as shown in figure 2.18(b), the green line is classifying the data points as green or not

green, the red is classifying as red or not red, and so on.

(a) One-vs-One approach of SVM (b) One-vs-Rest approach of SVM

Figure 2.18: Different approaches of SVM for multi-class classification[18]

Chapter 2 Materials and Methods

2.6.3 Random Forest

Random Forest is a type of supervised machine learning algorithm which can be used

both for classification and regression tasks. Random forest is, at its core, an ensemble of

decision trees. Each model tree performs as an individual model and predicts a class for

the given classification task. Majority voting is then used to reach a conclusion. This

concept can be explained by the figure 2.19 where the Random Forest model has to

predict between classes 0 and 1.

Figure 2.19: Visualization of conceptual working of Random Forest

The criteria to select the attribute to branch out the tree from can be one of the following

two methods:

1. Information gain/Entropy uses log function and thus is computationally costly.

It calculates unpredictability of the data.

2. Gini-Index measures impurity i.e. probability of a particular attribute being

wrongly predicted when chosen at random.

While both methods can have similar results, but the difference is in their performance.

Gini is much faster than entropy because, as mentioned, entropy uses log function.

29

The trees in random forest are uncorrelated to each other or the correlation is very low;

and that is the most vital part of Random Forest. This safeguards that the error of one

model do not affect the others. In theory, if there is a recognizable pattern in the given

data then most of the trees will advance in the same direction.

There are two type of methods used by the Random Forest algorithm to build the

individual models with variations:

1. Bagging/Bootstrap: Decision tree models are very sensitive to small change in

training data. Using that to our advantage we can diversify the models created

in Random forest algorithm. Given a training sample of size N , bagging method

creates multiple subset samples with replacement, each of same N size. Majority

voting decides the final predicted result.

2. Feature Randomness: In Random Forest algorithm, for each tree a random

subset of features is selected - as opposed to general decision trees, which use the

entire features set. This randomness of features ensures that each model is different

from the next model.

So, to summarize the random forest ensures that there is low correlation between models

by each mode using different training data (subsets) and different features.

In random forest ensemble, the greater the number of the trees are the more accurate

the result is going to be and less prone to overfitting. We can also optimise the random

forest algorithm by

One more feature of random forest which makes it so favorable is that it calculates the

relative feature importance. This helps us to drop features of low importance during the

process of feature selection.

2.6.4 K-Nearest Neighbors

K-Nearest neighbours(KNN) is a very simple supervised machine learning algorithm

used for both classification ad regression problems. The algorithm is non-parametric;

which means that it do not use any parameters gained from the training data to make

predictions. Rather, non-parametric algorithms use comparison techniques to make

Chapter 2 Materials and Methods

predictions. KNN instead of learning from the training data, saves the whole data for

comparision later when asked for prediction. This is the reason why KNN is also known

as lazy algorithm.

As the name suggests, KNN makes predictions based on the proximity or the distance to

its neighbouring data points’ classes. It assumes that the data points belonging to the

same class must be located near each other in the dimension.

Figure 2.20 visualizes an example where a new data point ? has to be classified as class

plus, circle or triangle. If we choose k = 5 then according to the nearest neighbours the

class triangle would have the majority and the new data point would be classified as

class triangle.

Figure 2.20: KNN classifier example to classify a point as class plus, circle or triangle
with k = 5 [19]

To predict the class of a given data point, KNN utilizes a distance metric to measure

its distance from its neighbours then selects the k closest data points. It makes the

prediction based on the class memberships of its neighbours. The predicted class is then

the class with most frequency.

The most common distance metrics used by KNN algorithm are Euclidian distance,

Manhattan distance, Minkowski distance, among many others.

• Euclidian distance:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (2.19)

31

• Manhattan distance:

d(x, y) =
n∑

i=1
| xi − yi | (2.20)

• Minkowski distance:

d(x, y) =
(

n∑
i=1

| xi − yi |c
) 1

c

(2.21)

2.7 Performance Metrics

Performance metrics let us know how well our model is performing. Choosing the

performance metric for evaluating a machine learning model is dependent on a number

of things, some of which might be the outcome we wish to achieve, the balance of the

classes involved, and type of data. There is no particular metric which can generalize

the performance evaluation of a model. Therefore, it is up to the user to choose the

performance metric which fits best to their model and requirements.

For every binary classification metric there are three multiclass counterparts of the

particular metric:

• micro-averaged,

• macro-averaged, and

• weighted averaged.

For example, precision in binary classification has three versions for multi-class: macro

averaged precision, micro averaged precision and weighted precision. Similarly, there are

three versions of other metrics such as recall and F1 scores. Micro-averaging calculates

the metric from the combined inputs from all classes and averages them. This way it

treats the classes with majority more favorably.

Macro-averaged metrics deals with all classes the same. It calculates the metrics inde-

pendently per class and then averages the results.

Weighted averaged metrics are the same as the macro averaged metrics, except that it

accounts for the weights of each class(samples per class).

Chapter 2 Materials and Methods

Macro metrics are better suited when the classes are balanced in the data. Whereas, for

imbalanced data micro or weighted metrics would be more favorable to use.

Below we discuss some of the performance metrics which can be used with multi-class

classification problems.

2.7.1 Accuracy

The most simple and most used metric is accuracy. Accuracy is the measure of effectiveness

of a classifier. It is the total number of correct prediction divided by the total number of

predictions carried out.

Accuracy = (TP + TN)
(TP + TN + FP + FN) (2.22)

For multi-class case with k classes, the average accuracy can be calculated as follows:

AverageAccuracy =
∑l

i=1
T Pi+T Ni

T Pi+F Ni+F Pi+T Ni

k
(2.23)

2.7.2 Balanced Accuracy

Balanced accuracy is adaptation of accuracy for imbalanced classes. Instead of the ratio

of total number of predictions, balanced accuracy calculates the mean accuracy for each

class. Following equation shows the gist of balanced accuracy for N number of classes:

BalancedAccuracy = 1
N

(
CorrectPredictionsclass1
TotalPredictionsclass1

+ . . . + CorrectPredictionsclassN

TotalPredictionsclassN

)
(2.24)

It is the average of Sensitivity and Specificity. Sensitivity is also called recall (whose

formula is given above in equation 2.30), and specificity is calculated by:

Specificity = TN

(TN + FP) (2.25)

33

Using the above formulas we can then calculate balanced accuracy as:

BalancedAccuracy = Sensitivity + Specificity

2 (2.26)

2.7.3 Precision

Precision is the ratio of correctly classified instances of each class to all the instances

classified as that particular class.

For binary classification the precision can be calculated by the formula in equation 2.27.

PRE = TP

TP + FP
(2.27)

[20] has adapted the binary equation for multi-class classification as equation 2.28 for

micro averaged precision, and equation 2.29 for macro averaged precision. For k classes

Ci is the is the individual class and TPi, FPi are true positive and false positive for class

Ci, respectively.

PREmicro =
∑k

i=1 TPi∑k
i=1(TPi + FPi)

(2.28)

PREmacro =
∑k

i=1
T Pi

T Pi+F Pi

k
(2.29)

2.7.4 Recall

Recall is the measure of the ability of the model to correctly classify all instances of each

class. Recall is also referred to as true positive rate (TPR) or Sensitivity.

Equation 2.30 gives the formula for recall of the binary classification task. This equation

is modified for multi-class classification task as equation 2.31 and equation 2.32 for micro

and macro recall, respectively.

REC = TPR = TP

P
= TP

TP + FN
(2.30)

Chapter 2 Materials and Methods

RECmicro =
∑k

i=1 TPi∑k
i=1(TPi + FNi)

(2.31)

RECmacro =
∑k

i=1
T Pi

T Pi+F Ni

k
(2.32)

2.7.5 F1 score

Harmonic mean of precision and recall is called F1 score. It equally makes the use of

recall and precision. It is better suited in case of imbalanced data, as opposed to only

precision or only recall.

F1 score can range from 0 to 1, where 0 is the worst score and 1 being the perfect score.

F1 score can also be referred to as just Fscore.

Equation 2.33 gives the general formula of F1 score for binary classification.

F1 = 2 PRE.REC

PRE + REC
(2.33)

Using equations calculated previously for micro and macro precision and recall, we can

generalize equation 2.33 and calculate F1 micro and macro scores for multi-class below:

F1micro = 2 PREmicroRECmicro

PREmicro + RECmicro
(2.34)

F1macro = 2 PREmacroRECmacro

PREmacro + RECmacro
(2.35)

2.7.6 Cohen’s Kappa Score

Cohen’s kappa score or Cohen’s kappa coefficient is a statistical measure of an agreement

between two raters, which, in the case of classification performance, are: predicted and

true values.

Cohen’s kappa score takes imbalance of the data into consideration during calculation.

Therefore, this is a good evaluation metric while dealing with imbalanced data.

35

It is can be calculated using the following formula:

κ = (po − pe)
(1 − pe) = 1 − 1 − po

1 − pe
(2.36)

where po is the observed agreement and pe is the expected agreement.

2.7.7 Mathews Correlation Coefficient (MCC)

MCC calculates the correlation coefficients between the observed and predicted values.

It is calculated by the general formula:

MCC = TP.TN − FP.FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.37)

Accuracy and F1 score are more popular measures of model evaluation in machine

learning but MCC is more advantageous in the sense that it does not inflate the results -

which might be the case with accuracy or F1 score. In MCC we gain a good high score

only if all across the confusion matrix categories(TP, TN, FP, FN) scores are good.

Chapter 3

Experimental Setup

For a list of all the ways technology has failed to improve

the quality of life, please press three.

— Alice Kahn

PLSR-RENT is our attempt to extend RENT to the scope of multi-class classification. In

this chapter we will describe our methodology and workflow to the PLSR-RENT approach.

Section 3.2 outlines the workflow of our experimental setup, section 3.4 details the data

preprocessing, the feature selection methods, including PLSR-RENT, is discussed in

section 3.5. In section 3.6 we explain the different classification pipelines used. Finally,

in section 3.7 and 3.8 hypertuning parameters for classifiers and results are discussed,

respectively.

3.1 Software

Programming Language and Tools

• Python 3.9.13

• Anaconda Jupyter Notebook (conda version 22.9.0)

• JetBrains PyCharm IDE

37

Chapter 3 Experimental Setup

Libraries used for Data handling and machine learning

• Scikit-learn [21]

• Pandas [22]

• Numpy [23]

• Hoggorm [24]

• Hoggormplot [25]

• Matplotlib [26]

• Seaborn [27]

3.2 Workflow

Figure 3.1 briefly outlines the steps in the workflow of our PLSR-RENT methodology

for better understanding. We will refer to this figure later while explaining the processes

in more detail in later sections.

Figure 3.1: Workflow of the experimental setup

3.3 Data

The dataset that we are using is Multiple Features Data Set [28], accessed from [29].

It is a dataset of features of hand-written digits (0-9). This dataset is a collection of

six sets of data. We are using one of these datasets from the collection. It is a set of

39

76 fourier coefficients of handwritten digits. It consists of 200 samples for each class of

which there are 10 (2000 samples in total).

It has total of 77 columns, with 76 features and 1 target class column.

3.4 Data Preprocessing

When building a good machine learning algorithm preprocessing of the data that goes

into the model is equally important than the actual model itself, if not more so. If we

put in data with redundancy and noise, our results from the model will reflect that.

Data preprocesing is our first step of the workflow, as described in 3.1.

In our thesis we have used a few different data sets and each required tailored data

preprocessing. The common steps in data preprocessing are: (1) checking for duplicates,

(2) checking and handling missing values, (3) one-hot-encoding the categorical target

values, and (4) removing columns with no variance.

3.4.1 Handling Missing and Duplicate Data

First step in data preprocessing is to check for duplicate and missing data and dealing

with them accordingly. For handling duplicates, we simply drop all the duplicates as they

present redundant information using the built-in function drop_duplicates of Pandas.

Missing data is represented by NaN, null or None in the data. To deal with it, there are

few different techniques available:

• If the missing data in a column is greater than a given threshold then we simply

drop the whole column.

• Similarly, for the rows, if more than a certain number of values are missing, then

we drop the row.

• If the missing data is under the threshold limit, then we handle it by imputation

of the missing value by KNN-based imputation. There are other interpolation

techniques available, but we have using mean to handle the missing data.

Chapter 3 Experimental Setup

Figure 3.2: Visualization of how one-hot encoding decomposes a single categorical
column into multiple columns

3.4.2 One Hot Encoding

The PLSR method does not take categorical values for its response Y input as it is

basically a regression algorithm and not a classification one, and thus only accepts

numerical values. To go around that issue we use one-hot encoding to encode the

categorical values.

For N number of classes, one-hot encoding converts a single Y column to N columns

with every column representing a class/category. For a single sample, only one of the

columns with corresponding class would have the value 1 and the rest would be zeros.

Example shown in figure 3.2 can visualize the explanation better.

3.4.3 Low variance threshold

If column does not change its values or the change is very minimal, i.e. the values are

(almost) constant, then it does not contribute any useful distinguishing information when a

model is learning. We remove such columns with constant values (V arianceThreshold =

0) in the preprocessing step.

3.5 Feature Selection

After data-preprocessing, we have used three methods for feature selection in our experi-

mentation in steps 4, 9 and 13 in figure 3.1. One method is our PLSR-RENT and then

41

we use two other established methods provided in scikit library to compare our method

with.

3.5.1 PLSR-RENT

We have explained the workflow of PLSR-RENT in section 2.4 and a detailed visualization

is shown in figure 2.11. We feed the input data into the PLSR-RENT model and we get

an output of selected features XP LSR−RENT .

We can choose which performance metric to base off our decision of optimal number

of components as done in step 9 of figure 2.11. The cutoff-threshold is automatically

selected based on which one results in the highest score of the selected metric. We can

manually select the cutoff-threshold for a trade-off between more reduced number of

features or slightly more accurate prediction performance.

3.5.2 SelectKBest

SelectKBest univariate feature selection model is used in our experimentation as the first

feature selector to compare our method with. It is a filter method for feature selection (as

described in section 2.1.1). It selects K best features based on the scores of the features.

The two most common scoring functions are: chi-squared or ANOVA F-value.

ANOVA is analysis of variance. It calculates the variance between the samples using the

F-statistic.

Chi-squared test builds a contingency table for every feature and class pair to measure

their dependency relationship. The features with most dependency are rated higher and

features with little to no dependency are rated less. For feature selection n least scored

features can be discarded.

As the Chi-square test can only be used when all of the values in the feature are

non-negative, we have used ANOVA F-value.

We have used a grid search to decide the number of features K. We choose the hyperpa-

rameters with the best score for balanced acccuracy.

Chapter 3 Experimental Setup

3.5.3 ExtraTrees Feature Importance

Tree-based feature selection uses the feature importance calculated in the training of the

model to rank the features. Extra Trees classifier is an ensemble of multiple decision

trees. It is similar to Random Forest mostly but differs in the construction of the trees.

While building the tree, at each node a mathematical critera is used to decide which is

the best feature to split the data (usually the Gini impurity). This mathematical criteria

value is called the feature importance. To perform feature selection we use these feature

importance to select the features with the most importance.

3.6 Classification

In figure 3.1 in steps 3, 7, 12, and 16 the hypertuned classification models referred to are

the hypertuned versions of the following five classification models:

1. PLSR

2. Logistic Regression

3. SVC

4. Random Forrest

5. K-Nearest Neighbors

All the classifiers listed above are explained in section 2.6. We use these algorithms with

four different model pipelines:

1. Baseline model pipeline

2. PLSR-RENT model pipeline

3. FS1 model pipeline

4. FS2 model pipeline

43

3.6.1 Baseline model pipeline

Baseline model consist of steps 1, 2, and 3 in figure 3.1. No feature selection is used in

this pipeline; i.e. all the features are used. This model simply take the preprocessed

data and uses them as inputs for the hypertuned classification algorithms. The results

produced are used as a baseline for comparison with our PLSR-RENT model results.

3.6.2 PLSR-RENT model pipeline

In PLSR-RENT model the preprocessed data is passed through the PLSR-RENT al-

gorithm to get a XP LSR−RENT . This is a feature reduced version of the original data

X. This is used in place of X in train-test-split and then the classification models are

hypertuned according to it. The PLSR-RENT model takes the path of steps 1, 4, 5, 6,

and 7.

3.6.3 FS1 model pipeline

FS1 model takes the steps 1, 13, 14, 15, and 16. For FS1 model we are using SelectKBest

univariate feature selection model in step 9 of the workflow figure in 3.1. The number of

features are selected using the grid search, and the set of features with the best balanced

accuracy score is selected as the new X called XF S1.

3.6.4 FS2 model pipeline

We are using embedded feature selection method using ExtraTreesClassifier in Select-

FromModel method of scikit-learn. 2.1.3 explains the method briefly. It uses the feature

importance to rank the best n features. It auto selects the optimal number of features

when we do not provide the number of features. The new X with optimal feature subset

is given by XF S2 The FS2 model takes the following steps: 1, 13, 14, 15, and 16.

All the above mentioned models are cross validated using the same Repeated Stratified

K-Fold during the hypertuning of the classification models.

Chapter 3 Experimental Setup

3.7 Hyperparameter Tuning

Hyperparameters can be viewed as the settings of an algorithm which can be fine tuned

to gain the best result from it. Hyperparameters msut be provided by the user before

training the model. If not explicitly provided by the user then the default values are

used.

We have four datasets, one containing all features and three with subsets of the full

feature set, (X, XP LSR−RENT , XF S1, XF S2) and five classifiers in our setup. Hypertuning

a classifier parameters are dependent on the X and Y values given, so we hyptertune

each classifier three times for each X.

GridSearchCV is a function found in scikit-learn library which helps to search for the

parameters that give the best score for a given model. It takes estimator, parameter grid,

scoring options and cv (cross-validation) as input from the user, among few others.

GridSearchCV performs an exhaustive cross-validated search of the parameter grid

provided by the user to get the best validation score of the model (given in estimator).

We have selected RSKF as the cross-validation technique. RSKF is described in section

2.5.3.

Table 3.1 details the algorithms and their hyperparameters with descriptions and default

values as given in [21].

Table 3.1: Hyperparameters used for tuning the classification algorithms used in our
experimental setup with descriptions and default values

Algorithm Hyperparameters Description Default value

Logistic Regression
solver
penalty
C

Algorithm to choose in optimisation problem
Penalty to use. Options: l1, l2, none, elasticnet
Inverse of regularization strength

lbfgs
l2
1.0

SVC
kernel
gamma
C

Specifies the kernel type to be used in the algorithm.
Kernel
Regularization parameter

rbf
scale
1.0

RandomForestClassifier n_estimators
max_features

The number of trees in the random forest ensemble
The number of features to consider when looking
for the best split

100
sqrt

KNeighborsClassifier
n_neighbors
weights
metric

Number of neighbors to use by default
Weight function used in prediction
Metric to use for distance computation

5
uniform
minkowski

PLSR n_components Number of components 2

45

3.8 Results

The final step is computing and comparing results. We compute the following performance

metrics for each classifier for each feature selection pipeline.

• Accuracy

• Train accuracy

• Balanced accuracy

• Precision (micro and macro)

• Recall (micro and macro)

• F1 score (micro and macro)

• Matthews Correlation Coefficient (MCC)

• Cohen Kappa Score

After computing the metrics, we first compare our PLSR-RENT results with baseline

results in step 8 of figure 3.1, then we compare the results of PLSR-RENT with two

other feature selection methods in step 17 of figure 3.1.

Chapter 4

Results and Discussion

The production of too many useful things results in too many useless people.

— Karl Marx

In this chapter we will present the results acquired from the work done in our experimental

setup. The discussion of what these results represent will follow along. The results

presented in this chapter are from a a single dataset. More experimentation was carried

out on multiple other datasets whose results will be presented in the Appendix later.

4.1 Data Preprocessing

There are total of 77 attributes (76 features, 1 target) and 2000 samples in the dataset:

200 samples per class (10 total). After importing the data we checked for and did not

find any missing values. There were a total of 6 duplicate rows which were removed. The

low variance threshold was applied to check for constant single values in a column. All

the feature columns are of the type float64 while the target feature is the type object.

We have total of 10 classes which are almost evenly balanced (completely balanced before

dropping duplicates).

The classes are encoded in the form below:

array([b’1’, b’2’, b’3’, b’4’, b’5’, b’6’, b’7’, b’8’, b’9’, b’10’],

47

Chapter 4 Results and Discussion

dtype=object)

We first use LabelEncoder to encode the classes as shown in table below:

Table 4.1: Label encoding of the class values

Original Value Encoded Value

b’1’ 0

b’10’ 1

b’2’ 2

b’3’ 3

b’4’ 4

b’5’ 5

b’6’ 6

b’7’ 7

b’8’ 8

b’9’ 9

After label encoding we use OneHotEncoder to encode the class attribute.

4.2 PLSR-RENT

The preprocessed data is split with RSKF with n_splits = 10 and n_repeats = 5, giving

us 50 data splits and models. The output we get from the ensemble of models is the mean

of validated explained variance of each feature and the mean of performance metrics

for the ensemble of models in step 7 and 8, respectively, from the figure 2.11. Mean

of different performance metrics across number of components is visualized in figure

4.1. We can see in the figure that the performance is sharply increasing starting from 1

component to approximately 10 components. The performance appears to be stabilising

around 20 components.

We can also see the spike in precision macro at 0 to 1 components. This is caused by

divide-by-zero error encountered when true positives, false positives and false negatives

are all 0. This usually occurs in case of no results. For these special cases scikit-learn

handles it by replacing it with 1. These "edge cases" results should be avoided.

49

Figure 4.1: Mean of performance metrics across based on 50 models.

Figure 4.2 shows the cumulative validated explained variance of each feature across the

1st component. We can see that features do not have very high validated explained

variances - some scoring negative and highest being less than 40.

The cumulative validated explained variance increases as we add more components till

a certain number of components before stabilising. We need to find the number of

components where we have best results. This is done by choosing the optimal number of

components. We have chosen the number of components as 28 (in step 9 of 3.1) based

on highest balanced accuracy score (gained from performance metric scores acquired in

step 8 of 3.1).

We select the values of cumulative validated explained variance of individual features for

28th component (optimal component). This is visualized in figure 4.3. We can see that

all the features have higher scores than those calculated for just 1 component - ranging

to almost 100. By sorting the features by their cumulative explained variance we can

rank them and discard them for feature selection accordingly, starting from the feature

with lowest cumulative explained variance.

Chapter 4 Results and Discussion

Figure 4.2: Mean of cumulative validated explained variance of individual variables for
1st component. 1st component does not have very high explained variance for all the

features. Some features have negative values of cumulative explained variance.

Figure 4.3: Mean of cumulative validated explained variance of individual variables for
28 components. 28 components are the optimal number of components with regards to

the performance metrics.

51

With our chosen cumulative validated explained variance of individual features we can

now start discarding features for feature selection based on a threshold. Threshold is

set as values ranging from 0 to maximum value of validated explained variance across

all features (as the range of explained variance ranges from 0 to 100). We cut off the

features that have a validated explained variance lower than the selected threshold, and

use the rest as new X to PLSR model and calculate the performance metrics.

Figure 4.4 shows performance metric curves (along left y-axis) and number of features

(along right y-axis in black) against cutoff threshold. The figure shows a stable result

up until cutoff threshold reaches 33 before it starts to decline. This is because we do

not drop any features before reaching threshold of 33 as all the values of cumulative

validated explained variance of individual features are above that number. We can see

how the drop in number of features is related to the drop in performance scores. Also

observed in the figure is the spike in precision macro curve after about 80 cutoff value.

This is probably due to divide-by-zero case mentioned above as edge case. Studying the

figure we can also conclude the amount of features to select. We can either automatically

choose the number of features (cutoff threshold) which gives the maximum score for

given performance metric. Or, we can analyze the graph and choose a trade-off: slight

drop in performance with dropping off significant amount of features, and thus reduce

the computation cost.

Chapter 4 Results and Discussion

Figure 4.4: Performance metrics curves vs cutoff threshold. The performance metrics
have the vertical axis to the left, while the number of features (black line) is defined by

the vertical axis to the right

Choosing the cutoff threshold by the maximum balanced accuracy score of 0.775, we

get cutoff at 43 with 11 features dropped with 65 selected out of 76 (14.47% feature

reduction).

If we manually choose cutoff threshold at 52, we can drop 26 features with 34.21%

reduction and the trade-off of score is only 0.01 less. Similarly, by choosing cutoff at 59,

we can drop off 48 features (63.15% reduction rate) and the balanced accuracy score is

only dropped by 0.035, with score 0.740.

Therefore, choosing the cutoff manually can be a useful tool when we can bend a little

on the score for favor of lower computational cost. Table 4.2 shows some sample of the

data with cutoff values and the related number of features and scores. This overview can

make it easier to see the exact drop in scores and choose the cutoff manually.

53

Table 4.2: Sample data of cutoff thresholds and associated number of features, scores
and feature reduction rates

Cutoff

Threshold

Numbers of

Features

Balanced

Accuracy

Reduction Rate

(in %)

42 66 0.770 13.16

43 65 0.775 14.47

46 64 0.765 15.79

47 63 0.770 17.11

48 61 0.765 19.74

49 59 0.765 22.37

50 55 0.765 27.63

51 51 0.760 32.89

52 50 0.765 34.21

53 47 0.750 38.16

54 46 0.750 39.47

55 44 0.755 42.11

56 40 0.740 47.37

57 33 0.735 56.58

58 31 0.735 59.21

59 28 0.740 63.16

60 23 0.705 69.74

61 21 0.710 72.37

62 16 0.715 78.95

63 14 0.710 81.58

65 11 0.690 85.53

We have selected cutoff at 59 manually, as the cutoff selected based on maximum score

points to 0 cutoff. Using this cutoff value we gain reduced features subset XP LSR−RENT

which we will process through different classifiers and calculate the performance metrics.

Chapter 4 Results and Discussion

4.3 Feature Selection

In addition to PLSR-RENT method to gain new reduced set of features, we have also

used two other feature selection methods for comparison. Table 4.3 shows the reduction

rates for different methods of feature selections.

The reduction rate of PLSR-RENT is not the highest among the feature selectors, but

that is not an indication of its prediction performance.

Additionally, further tests need to be conducted to check and compare the stability of

the feature selectors.

Table 4.3: Reduction rates of the different feature selectors

Feature Selector Reduction Rate

PLSR-RENT 63.16

SelectKBest 55.26

ExtraTrees Feature Importance 69.73

4.4 Hyperparameter Tuning

After gaining new sets of inputs from three different feature selection methods, we use

them as input to hypertuned classifiers. All the classifiers are hypertuned to output

the best results using GridSearchCV as mention in section 3.7. The table 4.4 gives the

hyperparameters obtained for different inputs of X.

55

Table 4.4: Hyperparameters values gained from GridSearchCV

Algorithm Hyperparameters Baseline PLSR-RENT SelectKBest ExtraTrees

LogisticRegression
solver

penalty

C

lbfgs

l2

0.1

lbfgs

l2

1.0

lbfgs

l2

1.0

lbfgs

l2

1.0

SVC
kernel

gamma

C

rbf

scale

50

rbf

scale

10

rbf

scale

10

rbf

scale

10

RandomForestClassifier
n_estimators

max_features

1000

log2

1000

log2

1000

log2

1000

log2

KNeighborsClassifier
n_neighbors

weights

metric

7

distance

euclidean

9

distance

manhattan

7

distance

euclidean

5

distance

euclidean

PLSR n_components 16 28 16 18

The hyperparameters for LogisticRegression and RandomForestClassifier do not change

across the different subsets of X. The value of C for SVC, the nneighbors for KNeigh-

borsClassifiers and the ncomponents for PLSR are varied for different features subsets.

4.5 Classification

We have four sets of X: the original full features set and three reduced subsets. Processing

them through the different pipelines for different classifiers is carried out and the results

are compared and studied.

Comparison of PLSR-RENT results with baseline classifier results is done in section 4.5.1

and then with other feature selectors is done in section 4.5.2, respectively.

4.5.1 Comparison with Baseline

The results gained from the PLSR-RENT pipeline and the baseline pipeline are compared

and presented in figure 4.5 below. The figure provides the comparison between the

feature subsets for five different classifiers.

Chapter 4 Results and Discussion

(a) Baseline vs. PLSR-RENT for PLSR (b) Baseline vs. PLSR-RENT for Random Forest

(c) Baseline vs. PLSR-RENT for KNeighbors (d) Baseline vs. PLSR-RENT for SVC

(e) Baseline vs. PLSR-RENT for LogisticRegression

Figure 4.5: Comparison results of four different performance metrics for simple prepro-
cessed X and newXP LSR−RENT obtained from PLSR-RENT

For PLSR classification model in figure 4.5(a) we observe that the performance of PLSR-

RENT is actually not exceeding that of the baseline. This might be due to the manual

57

selection of the cutoff where we trade-off slight performance for the sake of computation

cost. At a reduction rate of 63.16%, the computation cost should be reduced.

Random Forest Classifier comparison in 4.5(b) shows that PLSR-RENT and baseline

are almost neck to neck in performance metrics score with only very minuscule difference

being in favor of baseline.

In KNeighborsClassifier in 4.5(c), the results are also almost similar with slight favor

being observed for PLSR-RENT.

Figure 4.5(d) shows the result comparisons for SVC classifier, and we see that PLSR-

RENT is also performing slightly better than baseline.

Logistic Regression comparison in figure 4.5(e) also shows almost identical results.

As observed from the results above, we can conclude that when considering just baseline

or PLSR-RENT, PLSR-RENT should be considered because while the results might be

almost similar, but we have significantly cut down on the number of features.

4.5.2 Comparison with other Feature Selectors

The results obtained from the different subset of features are compared in the figure 4.6.

The comparison is carried out for five different classifiers.

Chapter 4 Results and Discussion

(a) Feature selectors comparison for PLSR (b) Feature selectors comparison for Random Forest

(c) Feature selectors comparison for KNeighbors (d) Feature selectors comparison for SVC

(e) Feature selectors comparison for LogisticRegression

Figure 4.6: Comparison results of four different performance metrics for feature selectors:
PLSR-RENT, FS1(SelectKBest), FS2(ExtraTrees feature importance)

Figure 4.6(a) shows the comparison for PLSR model. The other feature selectors perform

better than PLSR-RENT but the difference is just fractional.

59

Figure 4.6(b) shows the comparison of feature selectors for the model Random Forest

Classifier. All the feature selectors perform almost the same.

Comparisons for KNNeighbors Classifier and SVC are visualized in figures 4.6(c) and

4.6(d), respectively. The results show that for both models ExtraTrees feature selector

perform the best, while PLSR-RENT and SelectKBest are almost equal and follow

ExtraTrees closely.

In figure 4.6(e) the comparison of the results of Logistic Regression is shown. SelectKBest

feature selector comes out on top with PLSR-RENT and Extra Trees following closely

behind.

The results obtained from comparisons of classifiers and feature selectors show that while

PLSR-RENT might not be out-performing the other feature selectors, it does come close

to them in prediction performance. The difference in the results is not significant.

Chapter 5

Conclusion and Future Directions

Lo! Men have become the tools of their tools.

— Henry David Thoreau

5.1 Conclusion

RENT is a feature selection technique which currently only supports binary classification

and regression tasks. The purpose of the thesis was to explore new methodology to

extend RENT to be able to handle multi-class classification and regression problems. To

this regard we explored the usage of PLSR algorithm as a candidate to extend RENT, as

it is capable of handling multi-class classification and regression. PLSR algorithm is also

very efficient at handling data which is high-dimensional, multi-colinear and/or having

high covariance.

Using cumulative validated explained variance for individual features of PLSR, we created

a feature selection method which give us a reduced set of features. We call this method

PLSR-RENT.

We can conclude from the results presented in the 4.5.1 that PLSR-RENT does equal

or even slightly better than most baseline simple hypertuned classifier models with

61

Chapter 5 Conclusion and Future Directions

significant amount of features reduced. This makes PLSR-RENT seem like a good option

regarding low computational cost.

When comparing PLSR-RENT with other feature selectors in section 4.6 we see that

though PLSR-RENT does not outperform other feature selectors, the difference is not

very significant. This can place PLSR-RENT in the same league as the other feature

selectors.

Overall, PLSR-RENT does not outperforms the other feature selection methods already

available to us. But tests still need to be conducted to check if PLSR-RENT performs

better in cases where PLSR is said to be more efficient, i.e. high-dimensional data. We

can also test the candidacy of other algorithms to extend RENT to handle multi-class

cases. The direction of the further work and exploration is discussed in the next section.

5.2 Future Work

The current work done in the PLSR-RENT can be extended and/or improved in many

different ways. Some of the options for future direction of work is given below:

Data

The results presented in our work are from one dataset which is balanced. There are few

other datasets also used for the experimentation whose results are given in Appendix.

It would be insightful to test PLSR-RENT with a dataset which is very high dimensional

with multi-colinearity, because that is where the PLSR supposedly performs superior to

other models.

Binary and Regression Problems

Conducting tests on binary and regression problems should provide information if PLSR-

RENT can give equal or comparable results to multi-class data.

Computation Cost

One of the purpose of feature selection is that it reduces the computation time. Compu-

tation cost can be calculated and be a factor in decision making in the future works.

Feature Selection by Number of Features

63

In most established feature selection methods, user can specify the number of features it

needs. We can also implement such functionality in the step 10 of PLSR-RENT workflow

shown in figure 2.11.

Optimal Number of Components for PLSR

In the workflow of PLSR-RENT, in step 9 of figure 2.11 we choose the optimal number

of components based on the given performance scores. We can choose the number of

components based off on the other criteria mentioned in section 2.3.4 to study the effect

on the results.

Other Classifiers

The goal of PLSR-RENT was to explore its candidacy for extending RENT to multi-class

classification, and eventually regression. We should test other classifiers to conclude if

they work better for extending RENT to multi-class cases.

Test of Stability

Although the process carried out in the experimentation with the help of RSKF should,

theoretically, result in stable feature selection. But tests need to be conducted to ensure

that and then comparison with stability of other feature selectors should be studied.

List of Figures

1.1 Trend of classifiers performance with rising dimensionality. The perfor-
mance of the classifier increases with increase in dimensionality until it
reaches the optimal number of features. After that increasing the dimen-
sionality (without adding samples) only results in decrease in performance
of the classifier [4]. 2

2.1 Common dimensionality reduction techniques. 5
2.2 Working of filter methods . 6
2.3 Working of wrapper methods . 7
2.4 RENT pipeline as explained in [10] . 10
2.5 Calculation of weight matrix in RENT with the use of elastic net technique. 11
2.6 The underlying general working of PLSR. The breakdown of X and Y

matrices to scores and loadings make up the outer relations which are
used to calculate inner relation that is used to predict Y 13

2.7 Explained variance ratio of 10 principal components 15
2.8 Cumulative explained variance ratio of 10 principal components 15
2.9 Individual cumulative explained variance ratio of 9 principal components . 15
2.10 Choosing number of components according to different criteria 16
2.11 Workflow of the PLSR-RENT . 18
2.12 Tables of mean of X_cumValExplVar_indVar and performance metrics

across k models . 19
2.13 Element-wise mean across a dictionary/matrix 20
2.14 Process of comparison of PLSR-RENT with other classifiers 21
2.15 Process of comparison of PLSR-RENT with other feature selectors 21
2.16 Visualization of Stratified K-fold . 23
2.17 Visualization of how different kernel functions create different hyperplanes

to differentiate classes . 27
2.18 Different approaches of SVM for multi-class classification[18] 27
2.19 Visualization of conceptual working of Random Forest 28
2.20 KNN classifier example to classify a point as class plus, circle or triangle

with k = 5 [19] . 30

3.1 Workflow of the experimental setup . 38
3.2 Visualization of how one-hot encoding decomposes a single categorical

column into multiple columns . 40

4.1 Mean of performance metrics across based on 50 models. 49

65

LIST OF FIGURES

4.2 Mean of cumulative validated explained variance of individual variables for
1st component. 1st component does not have very high explained variance
for all the features. Some features have negative values of cumulative
explained variance. 50

4.3 Mean of cumulative validated explained variance of individual variables
for 28 components. 28 components are the optimal number of components
with regards to the performance metrics. 50

4.4 Performance metrics curves vs cutoff threshold. The performance metrics
have the vertical axis to the left, while the number of features (black line)
is defined by the vertical axis to the right 52

4.5 Comparison results of four different performance metrics for simple pre-
processed X and newXP LSR−RENT obtained from PLSR-RENT 56

4.6 Comparison results of four different performance metrics for feature selec-
tors: PLSR-RENT, FS1(SelectKBest), FS2(ExtraTrees feature importance) 58

A.1 Results for hypertuned classifiers using no feature selection 74
A.2 Results for hypertuned classifiers using PLSR-RENT 75
A.3 Results for hypertuned classifiers using FS1 76
A.4 Results for hypertuned classifiers using FS2 77

B.1 Performance and number of attributes against cutoff threshold 80

List of Tables

3.1 Hyperparameters used for tuning the classification algorithms used in our
experimental setup with descriptions and default values 44

4.1 Label encoding of the class values . 48
4.2 Sample data of cutoff thresholds and associated number of features, scores

and feature reduction rates . 53
4.3 Reduction rates of the different feature selectors 54
4.4 Hyperparameters values gained from GridSearchCV 55

B.1 Results of different feature selectors and classifiers 80

67

Bibliography

[1] Iain M Johnstone and D Michael Titterington. Statistical challenges of high-

dimensional data, 2009.

[2] Jianqing Fan and Runze Li. Statistical challenges with high dimensionality: Fea-

ture selection in knowledge discovery, 2006. URL https://arxiv.org/abs/math/

0602133.

[3] Richard Bellman. Adaptive Control Processes: A guided tour. Princeton University

Press, 1972.

[4] Weikuan Jia, Meili Sun, Jian Lian, and Sujuan Hou. Feature dimensionality

reduction: a review. Complex & Intelligent Systems, pages 1–31, 2022.

[5] A. Jović, K. Brkić, and N. Bogunović. A review of feature selection methods

with applications. In 2015 38th International Convention on Information and

Communication Technology, Electronics and Microelectronics (MIPRO), pages 1200–

1205, 2015. doi: 10.1109/MIPRO.2015.7160458.

[6] Gavin Brown, Adam Pocock, Ming-Jie Zhao, and Mikel Luján. Conditional likelihood

maximisation: A unifying framework for information theoretic feature selection. The

Journal of Machine Learning Research, 13:27–66, 02 2012.

[7] Alexandros Kalousis, Julien Prados, and Melanie Hilario. Stability of feature selection

algorithms. In Fifth IEEE International Conference on Data Mining (ICDM’05),

pages 8–pp. IEEE, 2005.

[8] Utkarsh Mahadeo Khaire and R Dhanalakshmi. Stability of feature selection

algorithm: A review. Journal of King Saud University-Computer and Information

Sciences, 2019.

69

https://arxiv.org/abs/math/0602133
https://arxiv.org/abs/math/0602133

BIBLIOGRAPHY

[9] David Dernoncourt, Blaise Hanczar, and Jean-Daniel Zucker. Analysis of feature

selection stability on high dimension and small sample data. Computational Statistics

and Data Analysis, 71:681–693, 2014. ISSN 0167-9473. doi: https://doi.org/10.1016/j.

csda.2013.07.012. URL https://www.sciencedirect.com/science/article/pii/

S0167947313002570.

[10] Anna Jenul, Stefan Schrunner, Kristian Hovde Liland, Ulf Geir Indahl, Cecilia Marie

Futsæther, and Oliver Tomic. Rent—repeated elastic net technique for feature

selection. IEEE Access, 9:152333–152346, 2021. doi: 10.1109/ACCESS.2021.3126429.

[11] Nicolai Meinshausen and Peter Bühlmann. Stability selection. Journal of the Royal

Statistical Society Series B, 72:417–473, 09 2010. doi: 10.2307/40802220.

[12] H. Lohninger. Pls - partial least squares regression. URL http://www.statistics4u.

com/fundstat_eng/dd_pls.html.

[13] Ajitesh Kumar. Pca explained variance concepts with

python example, Aug 2022. URL https://vitalflux.com/

pca-explained-variance-concept-python-example/.

[14] William F. Lott. The optimal set of principal component restrictions on a least-

squares regression. Communications in Statistics, 2(5):449–464, 1973. doi: 10.1080/

03610927308827089. URL https://doi.org/10.1080/03610927308827089.

[15] Richard F. Gunst and Robert L. Mason. Biased estimation in regression: An

evaluation using mean squared error. Journal of the American Statistical Association,

72(359):616–628, 1977. doi: 10.1080/01621459.1977.10480625. URL https://www.

tandfonline.com/doi/abs/10.1080/01621459.1977.10480625.

[16] Harold Hotelling. The relation of the newer multivariate statistical methods to

factor analysis. British Journal of Statistical Psychology, 10:69–79, 01 2011. doi:

10.1111/j.2044-8317.1957.tb00179.x.

[17] Loong Chuen Lee, Choong-Yeun Liong, and Abdul Aziz Jemain. Partial least

squares-discriminant analysis (pls-da) for classification of high-dimensional (hd)

data: a review of contemporary practice strategies and knowledge gaps. Analyst,

143:3526–3539, 2018. doi: 10.1039/C8AN00599K. URL http://dx.doi.org/10.

1039/C8AN00599K.

https://www.sciencedirect.com/science/article/pii/S0167947313002570
https://www.sciencedirect.com/science/article/pii/S0167947313002570
http://www.statistics4u.com/fundstat_eng/dd_pls.html
http://www.statistics4u.com/fundstat_eng/dd_pls.html
https://vitalflux.com/pca-explained-variance-concept-python-example/
https://vitalflux.com/pca-explained-variance-concept-python-example/
https://doi.org/10.1080/03610927308827089
https://www.tandfonline.com/doi/abs/10.1080/01621459.1977.10480625
https://www.tandfonline.com/doi/abs/10.1080/01621459.1977.10480625
http://dx.doi.org/10.1039/C8AN00599K
http://dx.doi.org/10.1039/C8AN00599K

71

[18] Baeldung. Multiclass classification using support vector machines, Nov 2022. URL

https://www.baeldung.com/cs/svm-multiclass-classification.

[19] Sebastian Raschka. Python machine learning. Packt publishing ltd, 2015.

[20] Marina Sokolova and Guy Lapalme. A systematic analysis of performance measures

for classification tasks. Information Processing & Management, 45:427–437, 07 2009.

doi: 10.1016/j.ipm.2009.03.002.

[21] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.

[22] Wes McKinney et al. Data structures for statistical computing in python. In

Proceedings of the 9th Python in Science Conference, volume 445, pages 51–56.

Austin, TX, 2010.

[23] Charles R. Harris, K. Jarrod Millman, Stéfan J van der Walt, Ralf Gommers,

Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,

Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-

wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu

Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,

Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming

with NumPy. Nature, 585:357–362, 2020. doi: 10.1038/s41586-020-2649-2.

[24] Oliver Tomic, Thomas Graff, Kristian Hovde Liland, and Tormod Næs. hoggorm: a

python library for explorative multivariate statistics. The Journal of Open Source

Software, 4(39), 2019. doi: 10.21105/joss.00980. URL http://joss.theoj.org/

papers/10.21105/joss.00980.

[25] Oliver Tomic. Olivertomic/hoggormplot: Plotting functions for visualisation of

data analysis results from the hoggorm package. URL https://github.com/

olivertomic/hoggormPlot.

[26] John D Hunter. Matplotlib: A 2d graphics environment. Computing in science &

engineering, 9(3):90–95, 2007.

https://www.baeldung.com/cs/svm-multiclass-classification
http://joss.theoj.org/papers/10.21105/joss.00980
http://joss.theoj.org/papers/10.21105/joss.00980
https://github.com/olivertomic/hoggormPlot
https://github.com/olivertomic/hoggormPlot

BIBLIOGRAPHY

[27] Michael Waskom, Olga Botvinnik, Drew O’Kane, Paul Hobson, Saulius Lukauskas,

David C Gemperline, Tom Augspurger, Yaroslav Halchenko, John B. Cole, Jordi

Warmenhoven, Julian de Ruiter, Cameron Pye, Stephan Hoyer, Jake Vanderplas,

Santi Villalba, Gero Kunter, Eric Quintero, Pete Bachant, Marcel Martin, Kyle

Meyer, Alistair Miles, Yoav Ram, Tal Yarkoni, Mike Lee Williams, Constantine

Evans, Clark Fitzgerald, Brian, Chris Fonnesbeck, Antony Lee, and Adel Qalieh.

mwaskom/seaborn: v0.8.1 (september 2017), September 2017. URL https://doi.

org/10.5281/zenodo.883859.

[28] Robert P.W. Duin. Multiple features data set, 1998. URL https://archive.ics.

uci.edu/ml/datasets/Multiple+Features.

[29] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL

http://archive.ics.uci.edu/ml.

https://doi.org/10.5281/zenodo.883859
https://doi.org/10.5281/zenodo.883859
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml

Appendix A

Complete Results of the

Experimental Setup

In this appendix we will share the complete set of results of our experimental setup.

There are a few extra classifiers and performance metrics used.

73

Appendix A Complete Results of the Experimental Setup

Fi
gu

re
A

.1
:

R
es

ul
ts

fo
r

hy
pe

rt
un

ed
cl

as
sifi

er
s

us
in

g
no

fe
at

ur
e

se
le

ct
io

n

75

Fi
gu

re
A

.2
:

R
es

ul
ts

fo
r

hy
pe

rt
un

ed
cl

as
sifi

er
s

us
in

g
PL

SR
-R

EN
T

Appendix A Complete Results of the Experimental Setup

Fi
gu

re
A

.3
:

R
es

ul
ts

fo
r

hy
pe

rt
un

ed
cl

as
sifi

er
s

us
in

g
FS

1

77

Fi
gu

re
A

.4
:

R
es

ul
ts

fo
r

hy
pe

rt
un

ed
cl

as
sifi

er
s

us
in

g
FS

2

Appendix B

Results for Dataset MNIST

B.1 Data

The dataset used in this example is MNIST dataset available from the scikit-learn

library. It is a dataset of handwritten digits. It has 64 features and 1 target column.

There are 10 different classes available (0-9). It is an almost balanced dataset. After

preprocessing 3 columns were dropped due to low variance threshold, leaving us with 61

feature columns.

B.2 Results

The figure B.1 shows the PLSR-RENT performance metrics and number of attributes

against cutoff threshold. We choose cutoff value manually at 90, resulting in 15 features

being subtracted, and thus we are left with 46 features out of 61.

Table B.1 presents the results of the experimental setup run with MNIST dataset.

79

Appendix B Results for Dataset MNIST

Figure B.1: Performance and number of attributes against cutoff threshold

Table B.1: Results of different feature selectors and classifiers

Feature Selection Classifier Reduction Rate Balanced Accuracy F1 Score Cohen’s Kappa Score MCC
Baseline PLSR 0 0.944286 0.944343 0.938272 0.938328

Logistic Regression 0.973810 0.973364 0.970032 0.970065
SVC 0.980109 0.979574 0.977524 0.977555
RandomForest 0.975167 0.974978 0.971903 0.971933
KNeighbors 0.973646 0.972566 0.970037 0.970089

PLSR-RENT PLSR 24.6 0.933123 0.932974 0.925925 0.926006
Logistic Regression 0.970622 0.970389 0.966284 0.966324
SVC 0.988389 0.988316 0.986887 0.986903
RandomForest 0.972016 0.971673 0.968158 0.968216
KNeighbors 0.986873 0.986868 0.985014 0.985036

SelectKBest PLSR 3.27 0.942064 0.942052 0.935802 0.935849
Logistic Regression 0.973842 0.973398 0.970032 0.970084
SVC 0.982032 0.981499 0.979397 0.979418
RandomForest 0.975167 0.975187 0.971901 0.971938
KNeighbors 0.975569 0.974490 0.971910 0.971959

ExtraTrees PLSR 47.54 0.926458 0.926134 0.918517 0.918724
Logistic Regression 0.954230 0.953825 0.949429 0.949465
SVC 0.988632 0.988436 0.986888 0.986907
RandomForest 0.973572 0.973259 0.970031 0.970062
KNeighbors 0.989140 0.988609 0.986889 0.986911

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem Definition
	1.3 Thesis Outline

	2 Materials and Methods
	2.1 Feature Selection
	2.1.1 Filter Methods
	2.1.2 Wrapper Methods
	2.1.3 Embedded Methods

	2.2 Repeated Elastic Net Technique
	2.3 Partial Least Squares Regression
	2.3.1 PLSR model equations
	2.3.2 Explained Variance
	2.3.3 Cumulative Explained Variance
	2.3.4 Number of components
	2.3.5 PLS1/PLS2
	2.3.6 PLSR for classification

	2.4 PLSR RENT
	2.4.1 PLSR-RENT Methodology
	2.4.2 Comparison methods

	2.5 Model Validation
	2.5.1 K-fold
	2.5.2 Stratified K-Fold
	2.5.3 Repeated Stratified K-Fold

	2.6 Multi-Class Classifiers
	2.6.1 Multinomial Logistic Regression
	2.6.2 Support Vector Machines
	2.6.3 Random Forest
	2.6.4 K-Nearest Neighbors

	2.7 Performance Metrics
	2.7.1 Accuracy
	2.7.2 Balanced Accuracy
	2.7.3 Precision
	2.7.4 Recall
	2.7.5 F1 score
	2.7.6 Cohen’s Kappa Score
	2.7.7 Mathews Correlation Coefficient (MCC)

	3 Experimental Setup
	3.1 Software
	3.2 Workflow
	3.3 Data
	3.4 Data Preprocessing
	3.4.1 Handling Missing and Duplicate Data
	3.4.2 One Hot Encoding
	3.4.3 Low variance threshold

	3.5 Feature Selection
	3.5.1 PLSR-RENT
	3.5.2 SelectKBest
	3.5.3 ExtraTrees Feature Importance

	3.6 Classification
	3.6.1 Baseline model pipeline
	3.6.2 PLSR-RENT model pipeline
	3.6.3 FS1 model pipeline
	3.6.4 FS2 model pipeline

	3.7 Hyperparameter Tuning
	3.8 Results

	4 Results and Discussion
	4.1 Data Preprocessing
	4.2 PLSR-RENT
	4.3 Feature Selection
	4.4 Hyperparameter Tuning
	4.5 Classification
	4.5.1 Comparison with Baseline
	4.5.2 Comparison with other Feature Selectors

	5 Conclusion and Future Directions
	5.1 Conclusion
	5.2 Future Work

	List of Figures
	List of Tables
	A Complete Results of the Experimental Setup
	B Results for Dataset MNIST
	B.1 Data
	B.2 Results

	Bibliography

