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Abstract: The use of heat pumps for heating and cooling of buildings is increasing, offering an
efficient and eco-friendly thermal energy supply. However, their complexity and system integration
require attention to detail, and minor design or operational errors can significantly impact a project’s
success. Therefore, it is essential to have a thorough understanding of the system’s intricacies and
demands, specifically detailed system knowledge and precise models. In this article, we propose
a method using artificial neural networks to develop heat pump models from measured data. The
investigation focuses on an operational heat pump plant for heating and cooling a cluster of municipal
buildings in Stavanger, Norway. The work showcases that the network configurations can provide
process insights and knowledge when detailed system information is unavailable. Model A predicts
the heat pump response to temperature setpoint and inlet conditions. Except for some challenges
during low-demand cooling mode, the model predicts outlet temperatures with Mean Absolute
Percentage Error (MAPE) between 2 and 5% and energy production and consumption with MAPE
below 10%. Summarizing the five-minute interval predictions, the model predicts the hourly energy
production and consumption with MAPE at 3% or less. Model B predicts energy consumption and
coefficient of performance (COP) from measured inlet and outlet conditions with MAPE below 5%.
The model may serve as a tool to develop system-specific compressor maps for part-load conditions
and for real-time performance monitoring.

Keywords: sewage heat pump; artificial neural network (ANN); coefficient of performance (COP);
monitoring and fault detection; operational data

1. Introduction

Energy efficiency is crucial for lowering energy consumption and reducing greenhouse
gas emissions [1]. Switching to heat pumps that utilize renewable sources such as geother-
mal and ambient heat for heating and cooling can lessen reliance on fossil fuels and help
save on potential carbon prices [2]. Furthermore, heat pumps have the added possibility of
providing cooling to a building, making them a versatile and more sustainable solution [3].

Heat pumps are sophisticated machines that require specialized knowledge to design
and operate effectively. Their performance is sensitive to the temperature level of the heat-
ing and cooling system, and particularly the return temperature entering the condenser [4].
Competent designers are essential to achieve success with heat pump systems [5]. Among
the challenges a heat pump system designer faces are refrigerant selection [6], capacity
control, and effective management of interaction with energy reservoirs and peak load
units [7]. Additionally, it is critical to select machines with properties tailored to the pro-
cess energy and temperature demands [8]. There are various examples of unsuccessful
heat pump projects, almost always leading to high energy consumption, either due to a
heat pump with a low coefficient of performance (COP) [9] or high use of peak load or
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backup heating [10]. Understanding how a specific heat pump responds to different system
temperatures is crucial to maximizing its potential within a system [11].

Accurate modeling and simulation of components of an energy plant are essential
for various purposes such as training, strategic planning, maintenance, techno-economic
decisions, and monitoring of the plant operation [12]. Furthermore, as the demand for
environmentally friendly and decentralized energy production grows, improved and user-
friendly simulation and monitoring tools become vital. Model-based predictive control
(MPC) has been proven a promising technology for building control [13]. An MPC opti-
mizes system control actions using a simulation model. One of the most important but also
most time-consuming parts of MPC design is determining a suitable model that captures
the dynamics of the controlled system [14].

In the academic literature, researchers commonly distinguish between physics-based
(white-box) and data-driven (black-box) models, with grey-box models serving as an
intermediate approach [15]. Physics-based models are built based on the underlying
physics of the processes and incorporation of physical relationships that describe these
processes. Zanetti et al. presented an experimental investigation and a numerical analysis of
a heat pump with ambient air and the ground as heat sources [16]. Each of the components
within the heat pump were modelled as independent blocks and then combined to simulate
the operation of the heat pump. The models were based on a physics-based approach
that allowed a direct calculation of heat transfer coefficients and pressure drop in the
heat exchangers. The model provided predictions of the heat pump performance with
deviations below 7% for the tests in winter mode and below 10% during summer mode.
Xu et al. developed thermodynamic models for an air source CO2 heat pump system for
space heating and domestic hot water production [17]. The models predicted COP and heat
production for two experimental datasets with mean absolute percentage errors (MAPE) of
5.5–6.1% and 2.9–3.1%, respectively.

However, physics-based models can become rather complex, leading to higher mod-
eling costs, potential errors, and increased simulation times [18]. The availability of data
capacity to solve the equations may be a challenge, especially in commercial installations. In
addition, if a physics-based model is utilized to monitor a specific process, the uncertainty
of the physical relationships tends to increase over time as the equations representing the
processes may become unsuitable due to the degradation of the energy plant [19].

The grey-box modeling approach combines elements of both white-box and black-box
models. The approach often requires both long calculation times due to the parameter
optimization process and expert knowledge during the model development process [15].
A grey-box model may represent a good trade-off between physics, expert knowledge,
and data-driven modeling. Madani et al. developed a ground source heat pump system
model [20]. The heat pump model used semi-empirical compressor, evaporator, and
condenser sub-models along with a simplified expansion valve model to create a black box
model. Validation against experimental data showed deviations of less than 15% for COP
and heating capacity, and less than 10% for compressor power. Another grey-box model
was presented by Cheung et al. [4]. The model was developed using experimental data
obtained from an 8 kW R410A dual-unit ductless heat pump system. The final estimates
for compressor frequency, refrigerant flow, and outdoor unit power were predicted within
an 8% margin of error.

All the referenced white- and grey-box models depend on system knowledge and
component-level sub-modeling. In industrial and real-life systems, component-level data
and datasheets may be difficult and even impossible to obtain. The data-driven approach
does not take the physics of the process into account, but rather regards it as a black
box [21]. The approach generates a high-dimensional mapping model by learning the
mapping relationship between the input and the output variables, allowing for future
predictions to be obtained based on the next input. Data-driven methods have a natural
advantage in solving highly nonlinear problems that are influenced by many uncontrollable
factors [22], such as building energy systems [23].
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In existing energy plants, a large number of operational data is constantly collected
by the plant’s monitoring system. Typically, the data is solely stored in a database. From
these data, artificial neural network (ANN) models can be developed for simulating plant
operations [19]. ANNs can be trained periodically with the latest data, thereby capturing
plant degradation. Additionally, ANN models account for user-specific influences such
as operational hours, person load, etc., which are challenging to describe accurately in a
physics-based model [18]. By comparing predictions from a previous ANN model with
those of a subsequent model, the degradation of the plant could be evaluated. ANNs are
easy to use, fast in response, and suitable for “off-line” and “on-line” applications [19].
The authors responsible for the CO2 heat pump model referenced earlier used datasets
generated from the physics-based model to train ANNs to increase the speed and precision
when utilizing the model within an optimization framework [17].

Opalic et al. developed ANN models for an industrial cooling system [24]. Their
dataset was based on compressor polynomials for the various compressors in the system,
and they used operating temperature, pressure, and compressors frequency to predict
compressor power and refrigerant mass flow rate. The model made predictions with MAPE
in the range of 5–12% in an operational case-study cooling system. Puttige et al. created
models for ground source heat pump systems using a hybrid analytical-ANN approach [25].
Both the hybrid analytical-ANN borehole heat exchanger model and the ANN heat pump
model made predictions with mean absolute errors (MAE) of less than 5%. These studies
highlight the potential of ANNs as a fast and accurate method to predict the performance
of different cooling and heating systems under various operating conditions.

The drawbacks of using ANN are closely related to their advantages, namely the fact
that they are highly dependent on the data they are trained on [26]. If a model is used
with inputs outside the bounds of the training data, the results may be erroneous. Thus, it
is crucial to keep a close track of which input parameters the models have been defined
for. Another challenge with ANN only based on operational data is that the model has no
capability of determining whether the system operates at maximum efficiency. In other
words, an ANN may be been trained with data from an inefficient system without capturing
its true potential [27]. An advanced physics-based model would allow determining the heat
pump’s COP at a wider range of operational conditions, which could then be compared to
ideal thermodynamic relationships, such as the Carnot [28] or the Lorenz efficiency [4].

J. Clauß and L. Georges presented an overview of simulation-based studies based on
heat pump modeling [29]. They observed that the following simplifications were often
employed in heat pump modeling:

(1) the heat pump is assumed to have perfect modulation between 0% and 100% or is
simply on/off;

(2) minimum duration and pause times in the heat pump cycle are not taken into account;
(3) there are no temperature limits considered for the condenser and evaporator tem-

peratures, although heat pumps have a maximum supply temperature, as well as a
minimum temperature at the evaporator side; and

(4) the heat pump model only takes into account steady-state operation at full load
measured under standard rating conditions according to EN 14511—Air conditioners,
liquid chilling packages and heat pumps for space heating and cooling and process
chillers, with electrically driven compressors [30]. Factors such as cycling losses or
the change in the COP at part load are not considered.

In this study, we present two distinct ANN models for heat pumps, both only utilizing
operational data. The selected heat pump of the study is an advanced machine, without
availability of data from internal sensors and limited information on its individual compo-
nents. The main novelty of this work is presenting models derived from a sophisticated,
real-life heat pump system, offering researchers valuable insights into the challenges and
complexities associated with data from such systems. We aim to investigate the ways in
which Artificial Intelligence (AI) methodologies can be employed to gain insights into the
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functionality of an operational heat pump system, with emphasis on developing tools for
industrial implementation.

Teng et al. advocate for a practical approach to developing AI-based energy-saving
systems, emphasizing that researchers should prioritize realistic industrial implementations
over abstract theoretical problems [31]. In addition, the authors suggested that researchers
should engage in “low-level” research tasks, such as data cleaning and preprocessing, to
ensure that the data used to train AI models is of the highest quality and accuracy [31].

This article highlights the importance of this so-called “low-level” research perspective
and discusses challenges associated with processing and developing large and complex
datasets. Though the academic literature on AI in energy systems is vast, the practical
implementations are still limited [32]. In a real-life system, the precision of any data-driven
model depends on the available measuring equipment and the quality of the measured
data. Sensors may have been specified without consideration for using the measurements
within a data-driven framework. This is the case for the heat pump system analyzed in this
work. Additionally, the internal sensors of the heat pump are not available to the user, and
thus only external sensors are available for modeling purposes.

In this article, we address the intricacies of data capture and processing, data resolution,
and potential errors and pitfalls that engineers looking to explore ANN for energy plants
and heat pump systems may encounter. The drawbacks of the technique become apparent
as the modelling results are presented. In the discussion section, the applicability of the
models and suggestions for improving them are presented.

With this article, we aim to share the knowledge acquired through working with
real-life systems, their datasets, and the challenges they pose, contributing to the re-
search community and enhancing the understanding of heat pump systems and their
practical applications.

2. Materials and Methods
2.1. The Heat Pump Study Case

The selected case study is the Triangulum Central Energy Plant (TriCEP) in Stavanger,
Norway. The design principles, targets and energy results, including examples of subopti-
mal heat pump operations, are thoroughly described in a previous work [33]. Developed
as part of the European Smart Cities and Communities Lighthouse Project Triangulum,
the plant has been in operation since 2017. It consists of sewage heat pumps, solar col-
lectors, a biogas boiler, and greywater recycling. The heat pumps produce 90% of the
thermal energy from the plant, approximately 1.8 GWh/year, with input energy of about
0.5 GWh/year.

The TriCEP was established to supply an existing building cluster with heating, cool-
ing, and domestic hot water (DHW). Figure 1 presents the architecture of the TriCEP,
excluding the distribution loops and the DHW system. The two brine-to-water heat pumps
produce simultaneous heating and cooling and are connected to a sewage thermal en-
ergy reservoir based on stainless steel heat exchangers. The heat exchangers are mounted
directly in a main municipal sewage pipe.

The heat pumps have two operational modes: heating priority and cooling priority.
The mode controls whether the heat pumps prioritize meeting the outlet temperature at
the condenser (heat) or evaporator (cooling). On the evaporator side, the heat pumps are
connected in parallel; on the condenser side, they are connected in series when prioritizing
heat production, and parallel when prioritizing cooling. Thus, in heat mode, the first
heat pump’s outlet temperature equals the second one’s inlet temperature. As a result,
the second machine generally operates at a higher temperature level than the first one.
This heat pump had significantly higher operational hours and was therefore selected
for modeling.
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Figure 1. System sketch of case study energy plant.

Each machine was specified with the following design parameters:

• Heat production capacity of 250 kW produced at the condenser with the following
COP and temperature criteria:

# Condenser outlet/inlet temperature: +46/+40 ◦C.
# Evaporator inlet/outlet temperature: +5/+1 ◦C.
# Heating COP > 4.0.

• Cooling production capacity of 220 kW produced at the evaporator with COP and
temperature criteria:

# Condenser outlet/inlet temperature: +40/+33 ◦C.
# Evaporator inlet/outlet temperature: +15.5/+10.0 ◦C.
# Cooling COP > 4.5.

• The heat pumps are to be able to produce at least +60 ◦C when the outlet temperature
of the evaporator is +1 ◦C. The minimum allowed inlet temperature to the evaporator
is −1.5 ◦C.

• The refrigerant is R-1234ze.
• Both heat pumps have four semi-hermetic, reciprocating compressors, where two

compressors per heat pump have inverter control. The heat pumps can operate
seamlessly between 10% and 100% capacity.

• In heating mode, the setpoint temperature at the condenser outlet is correlated to the
ambient temperature. The correlation curve is set manually from the control system.

• In cooling mode, only a single temperature setpoint at the evaporator is set in the
control system manually. The heat pump system, including free cooling from the
reservoir, is the only cooling source in the plant.

2.2. The Perspective and the Challenges of the Plant Operators

The municipal operators monitor and control the plant using a building automation
system (BAS), Citect SCADA [34], and an energy management system (EMS), Gurosoft [35].
The municipality of Stavanger is responsible for the heating, ventilation, and air condi-
tioning (HVAC) systems of more than 200 municipal buildings, and the BAS is vital in the
day-to-day operation.
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For the TriCEP, the BAS has process flowsheet pictures with live updates of all plant
sensors. In addition, historical measurements of the past 13 months are stored and available.
Figure 2 shows the heat pump and nearby sensors. Each heat pump is equipped with
a thermal energy meter on the condenser side and an electric energy meter, providing
a continuous measurement of the heat pump COP. In addition, temperature sensors are
available on inlets and outlets on both the evaporator and condenser of the machines.
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Figure 2. Available sensors to the operator within the heat pump plant control system.

From the perspective of the plant operator, the heat pumps can be seen as black boxes
with flows entering the evaporator and the condenser with specific temperatures and the
same flows exiting with decreased and increased temperatures, respectively. The machines
were custom built, and no standardized simulation tool providing information about energy
production and consumption at various operational points is available. Before the machines
were set in operation, little to no information about operational conditions outside the
design points was known. Operators and designers would greatly benefit from a tool to
help identify and evaluate the most efficient operational conditions for a given demand.

Figure 3 shows a simplified sketch of the internal piping and instrumentation dia-
gram (P&ID) of the heat pumps and a picture of the control panel. The data from the
internal sensors are not accessible to operators in the BAS. These measurements would
provide valuable insights beyond the limited information offered by the current black box
configuration shown in Figure 2, particularly regarding compressor control strategy and
part-load conditions. However, based on the authors’ experience and investigations into
other heat pump plants in the municipal BAS, the availability of internal heat pump sensors
is generally limited.
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2.3. The Heat Pump Process and Benchmarking Parameters

To aid in defining the model setup and selecting appropriate input and output parame-
ters, it is important to establish clear definitions of key terms related to heat pumps. Domain
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knowledge can play an important role in this process, as Singh et al. have noted [36]. Addi-
tionally, even basic system knowledge can help simplify and specify model development,
as suggested by Mahbub et al. [37].

The Coefficient of Performance (COP) is a crucial metric for an electrically driven
heat pump, as it relates the compressor power

.
W in kW to the useable thermal power

.
Q

generated [28]. COP is defined as

COP =

.
Q

.
W

. (1)

The useable heat generated by a heat pump depends on the specific target of the oper-
ation. For heat production, the useable thermal power

.
Q is represented by the condenser

heat dissipation, while in a refrigeration process,
.

Q represents the evaporator heat extrac-
tion. In a combined heating and cooling process,

.
Q is the sum of heating produced at the

condenser and cooling produced at the evaporator utilized in the system. The evaporator
heat extraction

.
Qe, condenser heat dissipation

.
Qc, and compressor power are correlated by

the following expression [38]:
.

Qc ≈
.

Qe +
.

W. (2)

Within the models presented in this study, heat dissipation is defined as energy
production (EP) and work as energy consumption (EC).

The operational COP is influenced by the temperature levels of the system [28], espe-
cially the temperature lift from evaporation temperature, TE, to condensation temperature,
TC, has a significant impact on the COP. As the temperature difference increases, so does
the pressure difference that must be overcome by the compressor, resulting in a reduction
in heat pump efficiency and a lower COP. The refrigerant and the properties of the thermo-
dynamic cycle can also have a major impact on heat pump performance. These factors can
influence the allowable temperature range of operation, the part load characteristics, and
the overall efficiency of the heat pump [39].

COP is a dynamic relationship that is continuously influenced by factors such as flow
rates, temperature levels, and compressor part-load conditions. In the operational phase,
the operational COP can be compared to the design COP to evaluate the performance of the
system. A negative deviation between the values can indicate issues that require further
investigation. However, this strategy relies on an understanding of the expected COP at
various operational points.

Another important metric for evaluating heat pump performance is the Seasonal
Coefficient of Performance (SCOP), which represents the ratio between the annual heat
energy output and the annual electric energy input. The SCOP is influenced by a variety of
factors, including the COP, local climatic conditions, and the heat pump’s integration with
the building energy systems [40]. The definition of the SCOP incorporates the utilization
time (τ) of the heat pump [38]:

SCOP =

∫ τ
0

.
Qdt∫ τ

0

.
Wdt

=
QHP
WHP

, (3)

where QHP and WHP are the heat pump energy production and consumption over the
utilization time in kWh/τ. The utilization time is most commonly a year, and the SCOP is
used to benchmark systems from year to year.

The net heat transfer
.

Q from a mass flow due to temperature change inside a control
volume is given as [41]

.
Q =

.
m × cp × (Tout − Tin), (4)

where
.

m in kg/s is the momentaneous mass flow rate of the fluid entering and exiting the
control volume, cp, kJ/kg K, is the specific heat capacity of fluid and Tin and Tout, in K, are



Energies 2023, 16, 3875 8 of 33

the inlet and outlet temperatures, respectively. Thus, there is a linear relationship between
the outlet temperature and the heat production for a given inlet temperature and flow.

2.4. Method—Artificial Neural Networks

An artificial neural network (ANN) is a machine learning (ML) technique that emulates
the biological neural networks found in the human brain [42]. Comprised of interconnected
artificial neurons, ANNs can receive inputs, process data, and generate outputs helpful
in predicting the behavior of the modeled system. ANNs consist of interlinked neurons
arranged in layers and offer versatility, power, and scalability, making them well-suited for
large and complex ML tasks [42]. After an ANN has been trained, it is easy to use, and it
consists only of simple equations that can be programmed in any computer language for
automatic operation. Since ANNs do not require an iterative solution to predict outputs,
they are quick to respond and can also be used for on-line applications.

During a supervised training process, an ANN acquires knowledge from a dataset [43].
The synaptic weights between the interconnected neurons are the adaptive parameters of
the ANN that are adjusted during training to store the knowledge contained in the data.
The ANN is a statistical tool used for data modeling, and it can create a nonlinear functional
relationship between a set of input parameters and a set of output parameters during the
training process [43].

The diagram in Figure 4a shows that the inputs to the artificial neuron are sourced
from the neurons in the preceding layer [42]. The standard structure of an ANN is made
up of two layers, the input layer and the output layer. However, the model’s performance
can be enhanced by incorporating additional hidden layers between the input and output
layers. Figure 4b demonstrates a multilayer perceptron with two hidden layers [44]. This
model has four inputs, eight neurons in the first hidden layer, six in the second hidden
layer, and two outputs. The number of neurons required in the input and output layers is
determined by the number of inputs and outputs required to model the system.
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In a fully connected network, every unit in a layer is connected to every unit in the
next layer [42]. When inputs are introduced to the network, they are multiplied by weights
that connect them to the layer of hidden neurons on the right. A bias term is added to the
sum of the inputs [43]. The resulting weighted inputs are then summed and transformed
as they pass through the hidden neurons. The outputs of each hidden layer are used as
inputs for the next layer, and this process is repeated in a forward direction, layer by layer
until the network outputs corresponding to the applied inputs are calculated in the output
neurons. The functional relation represented by the network structure with n inputs, k
hidden neurons, and m outputs shown in Figure 4 can be expressed as follows:
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ym = g
(
∑k

j w2
mj ϕ

(
∑n

i=0 w1
jixi

))
, (5)

where w1
ji is a weight connecting input i to the hidden unit j, and w1

j0 is the bias for the

hidden unit j, corresponding to the fixed input x0 equal to 1. Similarly, w2
mj denotes a

weight connecting hidden unit j to the output unit m, and w2
m0 is the bias for the output

unit m, corresponding to the fixed input equal to 1. ϕ(.) and g(.) represent the transfer
function of the hidden and output neurons, respectively [43].

During the supervised training process, the goal is to minimize an error function by
adjusting the weights, w1

ji and w2
mj, which represent the connections between the input and

hidden layers and between the hidden and output layers, respectively. The error function is
defined as the difference between the predicted outputs, ym, and the target outputs. Errors
are first calculated in the output layer and then propagated backwards through the network.
Based on the calculated errors, the weights are updated, and this process is repeated until
the error is reduced to an acceptable level. This algorithm is referred to as backpropagation.
After training, the weights are fixed, and the network is ready to predict outputs based on
new data that was not used during training [43].

Measurements from building automation and energy management systems, electricity
and thermal energy meters, weather and climate stations, utility bills, national reports, and
surveys are the most common data sources for training data-driven models [45] in building
energy systems. Measurements represent the most reliable data sources, provided that the
quality of measurements is validated.

Hyperparameter Optimization with Bayesian Method

In ML, hyperparameters are parameters that are not learned from the data during
training but are instead set before training the model [42]. Hyperparameters are often
specified by the user and control the behavior of the ML algorithm, the training process,
and the structure of the model. Examples of hyperparameters for an ANN model include
the learning rate, number of hidden layers, number of neurons in each layer, and activation
functions [42].

To achieve the best performance, the user sets the hyperparameters either through
prior knowledge or by searching over a range of values to determine the optimal set of
hyperparameters that result in the best model performance on a validation or test set. The
options of hyperparameters for an ANN with a maximum number of 3 layers are presented
in Table 1. The optimizer is the type of optimization algorithm employed during training
and the learning rate determines the magnitude of change in the weights in each iteration.
The number of options for hyperparameters alone is of the order of 109, even without
considering the various possibilities for the learning rate [42].

Table 1. Hyperparameter domain for ANN model.

Hyperparameter No. of Neurons
1st Layer

No. of Neurons
2nd and 3rd Layer

Activation
Function

Hidden Layers
Optimizer Learning Rate

Bound (2, 100) (0, 100)
ReLU, sigmoid,

tanh, SELU,
ELU, exp

SGD, Adam,
Adamax, Nadam,

RMSProp, Adadelta,
Adagrad, FTRL

(1 × 10−5, 1)

No. of options 99 101 × 101 6 × 6 × 6 8 -

Hyperparameter tuning is an important aspect of the machine learning workflow, and
it can be conducted manually or through automated methods such as grid search, random
search, or Bayesian optimization [42]. However, a naive force approach such as a grid
search, where all possible combinations of hyperparameters are tested, is not practical for
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such a vast domain. A random grid search, where combinations are selected randomly,
is quicker, but it is not always reliable. This work uses a Bayesian optimization algorithm
to perform a more guided search for the optimal hyperparameters [46].

Bayesian optimization is a technique used for globally optimizing noisy black-box
functions by following a sequential design strategy. The process involves building a prob-
abilistic model of the function to be optimized and refining the model as evaluations of
the objective function are gathered through a Bayesian inference-based process. Bayesian
optimization is a highly efficient way of solving complex and costly optimization prob-
lems [47].

During the hyperparameter optimization, the input arguments for the optimization
function are the selection of hyperparameters, and the output is the accuracy of the trained
network. However, evaluating the function requires complete training, making it a compu-
tationally expensive task. To speed up the optimization process, a surrogate model (such as
a Gaussian process model) is employed to represent the objective function. The associated
acquisition function helps determine the next sample point to evaluate the objective func-
tion. This approach is more efficient as finding the maximum of the acquisition function
requires fewer steps and is less time-consuming than the original optimization problem,
reducing the number of evaluations required to determine a set of hyperparameters close
to the global optimum [46].

2.5. Model Configurations

In the study, ANN models for a specific heat pump are developed using measured
data from the plant’s control system available to the operators. The dataset was obtained
manually from the TriCEP BAS. Two distinct model structures are presented, each designed
for a specific purpose, which will be elaborated upon in the following sections.

2.5.1. Model A—Setpoint-Based Model

Model A (Figure 5) takes the flow rate through the condenser (
.

Vc), inlet temperatures
on both side of the heat pump (Tcin and Tein at condenser and evaporator, respectively), and
the temperature setpoint (TSP) for the operation as inputs, and predicts outlet temperatures
(Tcout and Teout at condenser and evaporator, respectively), energy production (EP) and
energy consumption (EC). The model’s primary objective is to provide clear and precise
predictions on the ways in which the heat pump responds to setpoint changes at various
operational conditions. In addition, since the temperature setpoint is the only controllable
parameter that the operator can directly adjust to influence the heat pump’s operation, it is
considered a potential input in a future MPC.
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2.5.2. Model B—Compressor Map Model

In Model B (Figure 6), the temperature setpoint is removed from the inputs, and the
outlet temperatures are moved from output to input. Consequently, the model obtains
more comprehensive information regarding the heat pump’s outputs and loses its capacity
to forecast the heat pump’s response to inlet conditions and a specified setpoint. According
to Equation (4), the energy production can be determined from the inputs. As the machine
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is custom built without an available performance model, the target of this structure is
to develop a mapping of the amount of energy the compressors consume at various
temperature conditions. Thus, Model B can be considered a tool to develop a compressor
map for this specific heat pump, allowing evaluation of the machine at part-load conditions.
As discussed in the Introduction section, the compressor map is limited to the dataset
which the model was trained on. Additionally, Shin and Cho demonstrated that a similar
approach could be used as a real-time performance monitoring tool [48].
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2.5.3. Thermal Energy Meter and Flow Rate

Within the present study, we employ two distinct models to predict thermal energy
production based on measurements from thermal meters that comprise a flow meter, two
temperature sensors, and a calculating device. The calculating device is calibrated to
accurately measure accumulated energy production over a specified time according to
Equation (4). While the heat pump system under investigation is designed to maintain
a nearly constant flow rate across the evaporator and condenser at all operating points,
minor variations may occur depending on whether one or two heat pumps are in operation.
Still, the flow rate is close to redundant as a model input parameter as it does not convey
unique information to the models. However, the flow rate is included as an input parameter
in both model configurations to establish a generalized model structure. This structure
allows for training models with similar structures from data from other heat pump systems,
including those with variable flow rates across the evaporator and condenser. It should be
noted, however, that the models presented in this study are specific for the machine under
investigation and the defined dataset.

2.6. Data Janitoring

In line with Teng et al.’s [31] suggestion that researchers should engage in “low-level”
research or “data janitoring” tasks, observations and challenges from the data handling
process are discussed. The intention with the discussion is to offer recommendations
to researchers and industry professionals on establishing their data-driven models for
energy systems.

2.6.1. Data Capture

Data obtained from the TriCEP plant BAS process view are utilized in this study. In
the view, the user can access figures containing historical data for each sensor or measuring
unit. The time scales and the number of collected measurements are chosen by the user [33].
The data were manually captured by copying and pasting from the BAS to Excel.

The data collected covers a period from 1 January 2022, at 01:00:00 to 31 December 2022,
at 23:55. This time was selected to ensure that one full year of operation of the system was
included in the analysis. It is noteworthy that the BAS only retains recorded data for the
preceding thirteen months, rendering any uncollected data irretrievable.

Data were captured at a sampling resolution of five minutes. This interval was
chosen because it was deemed to accurately describe the process while averaging out
some measurements that lagged, as discussed in Section 2.6.2. Collecting data manually
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is a time-consuming process, and the higher the sampling resolution, the more time is
needed. Balancing the number of data rows with the model’s accuracy is crucial. Moreover,
reducing the amount of data can lead to a reduction in the training process time.

2.6.2. Sampling Resolution

Several sampling resolutions were evaluated while developing the dataset. The
resolution should be high enough to capture all system actions for the model to be used
in an optimization-based control scheme. After considering various sampling resolutions
ranging from 1 sec to 60 min, a 5 min interval was ultimately chosen. This interval was
deemed practical as it balances the need to capture system actions and the time-consuming
nature of manual data collection.

Figures 7 and 8 illustrate the same 30-minute time interval from 30 June 2021, with
1-second- and 5-minute-based sampling resolution, respectively. With a 1-second resolution,
the 30-minute interval results in 1800 values per feature, while with a 5-minute resolution,
only 6 values per feature are collected.

Energies 2023, 16, x FOR PEER REVIEW 13 of 34 
 

 

 
Figure 7. Example of heat pump process with a one-second sampling resolution. 

 
Figure 8. Example of heat pump process with five-minute sampling resolution. 

During the 30-minute interval, the heat pump was in operation for about 12 min and 
shut off for 18 min. To capture the operational pattern, the sampling resolution should be 
less than 12 min to prevent the complete energy production and consumption from being 
averaged out over one observation. The chosen five-minute resolution captures the start-

 -

  5.0

  10.0

  15.0

  20.0

  25.0

  30.0

 -

  20.0

  40.0

  60.0

  80.0

  100.0

  120.0

6:30:00 PM 6:35:00 PM 6:40:00 PM 6:45:00 PM 6:50:00 PM 6:55:00 PM
Te

m
pe

ra
tu

re
 [°

C]

Po
w

er
 [k

W
]

Time on day 2021-06-30 [s]

One second sampling

Energy production [kW] Electricty consumption [kW] Tc in [°C]
Tc out [°C] Te out [°C] Te in [°C]
T-set [°C]

 -

  5.0

  10.0

  15.0

  20.0

  25.0

  30.0

 -

  10.0

  20.0

  30.0

  40.0

  50.0

  60.0

  70.0

6:30:00 PM 6:35:00 PM 6:40:00 PM 6:45:00 PM 6:50:00 PM 6:55:00 PM 7:00:00 PM

Te
m

pe
ra

tu
re

 [°
C]

En
er

gy
 [k

W
h/

5.
m

in
]

Time at day 2021-06-30 [5 min.]

Five minutes sampling resolution

Energy production [kW/min.] Electricty consumption [kW/min.]
Tc in [°C] Tc out [°C]
Te out [°C] Te in [°C]
T-set [°C]

Figure 7. Example of heat pump process with a one-second sampling resolution.

During the 30-minute interval, the heat pump was in operation for about 12 min and
shut off for 18 min. To capture the operational pattern, the sampling resolution should
be less than 12 min to prevent the complete energy production and consumption from
being averaged out over one observation. The chosen five-minute resolution captures the
start-and-stop, averaging the energy production and consumption over four of the six
observations within the interval.

With a one-second resolution, the compressor electricity consumption (grey curve
between purple lines) is registered a few minutes before heat production (green curve).
Similarly, the compressor stops a few minutes before heat production is no longer registered.
This delay may be attributed to thermal inertia, and due to the available energy meters
being primarily designed to capture the accumulated energy production, with less focus
on exact momentaneous measurements.
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Figure 8. Example of heat pump process with five-minute sampling resolution.

Through an investigation of comparable operational patterns, it was determined that
there is no consistent time lag between the compressor’s start and the heat production
registration. Consequently, a shift in heat production cannot be carried out uniformly with
a constant time interval. The temperature sensors at the condenser are calibrated against
the flow meter and follow the energy production curve. On the contrary, the evaporator
temperatures respond instantaneously to the compressor, exhibiting a decline precisely
when the compressor initiates operation, followed by an immediate increase upon cessation
of compressor operation. This observation is illustrated between purple lines in Figure 7.
Further exploration of external sensors on the condenser side, compared to the sensor
linked to the thermal energy meter, may provide valuable insights.

Another observation is that the compressor power registration appears as a smooth
curve in the one-second resolution, while the other measurements exhibit jaggedness to
varying degrees. The potential cause of this difference is variable sampling resolution for
different sensors. A one-second resolution may be too high for some sensors, which could
result in this discrepancy.

By using the five-minute sampling resolution, the delay between energy production
and consumption is smoothed out over the interval while retaining information on the heat
pump’s starting and stopping time within the observation period. However, there is still
one instance of delay between production and consumption in the example data. The final
recorded production of 10 kWh/5 min happens with 0 kWh/5 min energy consumption.
This scenario was considered when processing the dataset.

2.6.3. Data Processing

The complete initial dataset consisted of 105 108 rows with eight features per row. The
data were controlled manually, and the following rows were removed from the dataset.

• All rows with one or more missing features, a total of 4684 rows.
• As described in the previous section, a delay between the registration of energy

consumption and production still occurred with the five-minute sampling resolution.
Therefore, all rows with COP > 6.0 were removed from the training data, a total of
3764. These rows represented less than 1% of the unprocessed dataset’s summarized
energy production and consumption.
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• A delay of 20 to 70 min between registration of an actual switch between heating and
cooling mode occurred randomly. The actual switch occurred as the rule-based control
strategy intended. Rows representing this delay were removed, as the TSP input is
incorrect; there was a total of 3576 rows.

• Days with planned heat pump maintenance and the machines shut off were removed
from the data, totaling 3603 rows.

• Errors at the temperature sensors at the evaporator occurred, totaling 1728 rows.
• Eight days were excluded from the data to be used as a visual test set, see Section 2.8.

All removed data was stored. The final cleaned dataset consisted of 89,304 rows or
310 days of data, accounting for 85% of the year. Figure 9 represents the eight input values
used to develop the heat pump ANNs. Each feature was sorted into 50 equally sized bins.
The vertical axis represents the number of observations per bin.
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The inlet temperature to the condenser ranges from 46 to 54 ◦C, with most observations
clustered around 50 ◦C. Conversely, the inlet temperature of the evaporator displays a
wider range of variation, ranging from 0 to 17 ◦C, with most observations falling between
+5 and +7.5 ◦C. Notably, in heat mode, the evaporator’s inlet temperature is highly de-
pendent on the temperature of the heat reservoir, i.e., the sewage temperature. The flow
across the condenser is close to constant, centered at 11.0 L/s. The temperature setpoint
indicates that the heat pump primarily operated in heat mode throughout most of the year,
set to produce temperatures between 50 ◦C and 58 ◦C at the condenser outlet. Cooling
priority, with setpoints at either 0 or 10 ◦C at the evaporator outlet, was only observed 3.9%
of the time.

Furthermore, outlet temperatures were observed to be shifted compared to their re-
spective inlet temperatures, with increase observed at the condenser and decrease observed
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at the evaporator. Notably, energy production and consumption data displayed consid-
erable variability, ranging from the heat pump being shut off to operating at maximum
capacity. However, some data points were observed more frequently than others.

2.7. Visual Test Data

Three distinct periods of days were selected from the dataset to represent different
operational conditions of the heat pump. The input values for the selected days were
then used to evaluate the performance of the models. These days were not part of the
training data.

The first set of test days (TD1) spans from 27 January 2022 00:00 to 29 January 2022
23:55, representing winter operation conditions. During this period, the heat pump oper-
ated with all four compressors at 100% capacity for some hours, while most hours involved
three compressors running at 100% and the fourth operating between 0% and 100%. During
the final hours of the third day, one of the compressors was out of operation due to a failure.

The second set of test days (TD2), covering 28 June 2022 00:00 to 30 June 2022 23.55,
represented summer operation conditions. Variations in heating and cooling priorities
characterized this period. Notably, the cooling demand was so low in some periods that
the heat pump operated in a continuous “start–stop” cycle.

The third set of test days (TD3) spanned from 16 November 2022 00:00 to 17 November 2022
23:55, representing fall operation conditions. During this period, the heat pump pro-
duced heat continuously but with frequent changes in capacity, a typical operation mode
during fall and spring. The data recorded during this period also captured unexpected
compressor stops.

2.8. Model Development and Training

After the optimal configurations were determined, the ANNs were trained using back-
propagation, which involves adjusting the network weights. The ANN was implemented
using Python 3.8 [49] and the deep learning API Keras [50], which runs on top of the ML
platform TensorFlow [51]. The dataset was normalized to scale the data between 0 and 1.

During the training process, the ANN was fed inputs and corresponding desired out-
puts, and the weights and biases were updated using the difference between the predicted
and expected outputs. The training continued until the model’s output was sufficiently
close to the expected output. To avoid overfitting during the training process, cross-
validation was performed on 80% of the data, while the remaining 20% was used to test
the performance of the model. The training procedure was executed in batch mode, and
Bayesian optimization was used to define other parameters, such as the learning rate and
backpropagation optimizer. The set of optimized hyperparameters for the constructed
models is presented in Table 2.

Table 2. Optimized configuration and training parameters for ANN model constructed.

No. of
Neurons
1st Layer

No. of
Neurons

2nd Layer

No. of
Neurons
3rd Layer

Activation
Function
1st Layer

Activation
Function
2nd Layer

Activation
Function
3rd layer

Optimizer Learning
Rate

Model A 52 60 75 SELU ReLU SELU Adadelta 1.0
Model B 24 71 51 SELU Sigmoid Sigmoid Adamax 0.084

3. Results

In the Results section, a comparative analysis of predicted and actual values is pre-
sented for the selected test days. Figures depicting the output parameter for each test
day and model are presented to demonstrate the models’ performance visually. The
advantages and limitations of the models are discussed based on the presented figures.
A comprehensive collection of figures is included in Appendix A, Figures A1–A18. The
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Absolute Percentage Error (APE) and Mean Absolute Percentage Error (MAPE) are utilized
to compare the predicted and actual values. The errors are defined as follows:

APEi =

∣∣∣∣yi − ymi

yi

∣∣∣∣× 100%, (6)

MAPE =
1
n ∑n

i=1

∣∣∣∣yi − ymi

yi

∣∣∣∣× 100%, (7)

where yi is the real value and ymi is the predicted value at sample i, while n is the number
of data points.

3.1. Model A

In Figures 10–14 and Table 3, we provide a summary of the results obtained using
Model A during the test days. The model captures the overall trend in the data for TD1 and
TD3, as well as parts of TD2, albeit with some error. However, it fails to produce accurate
results for TD2 during cooling mode, which is discussed in Section 4.2.
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Figure 10. Energy production for Model A test days 1.
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Figure 11. Energy consumption for Model A test days 2. The temperature setpoint has been added to
indicate when the machine prioritizes heating and cooling.
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Figure 12. Condenser outlet temperature for Model A test days 2.
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Figure 13. Evaporator outlet temperature for Model A test days 3.
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Figure 14. Energy production for Model A test days 3.
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Table 3. Summary of average and maximum error for the various test days, Model A.

MAPE Maximum APE Real Value at Maximum Error Predicted Value at Max Error

TD1 without
error

EP [kW] 5% 28% 125.7 160.4
Tcout [◦C] 1% 2% 49.9 51.0
EC [kW] 8% 31% 34.0 44.6

Teout [◦C] 5% 17% 3.5 2.9

TD1 error mode

EP [kW] 39% 58% 142.8 226.1
Tcout [◦C] 2% 3% 52.4 54.2
EC [kW] 51% 80% 38.7 69.7

Teout [◦C] 20% 35% 3.3 2.1

TD2

EP [kW] 292% 6050% 1.6 96.7
Tcout [◦C] 1% 12% 47.1 41.5
EC [kW] 192% 3678% 0.7 26.4

Teout [◦C] 71% 3604% −0.0 0.7

TD3 without
error

EP [kW] 10% 41% 92.8 130.8
Tcout [◦C] 1% 3% 49.6 51.10
EC [kW] 10% 52% 34.3 52.0

Teout [◦C] 2% 11% 7.5 8.3

TD3 error mode

EP [kW] 4694% 39,203% 0.5 180.1
Tcout [◦C] 4% 9% 49.2 53.62
EC [kW] 2350% 8291% 0.7 58.7

Teout [◦C] 23% 28% 9.2 6.6

For TD1 and TD3, the predicted outlet temperatures closely follow the actual values
with MAPE ranging from 1 to 2%, assuming no real-life compressor errors. However, energy
production and consumption show higher errors with MAPE ranging from 5 to 10%.

Model A effectively captures the compressor error that occurred during the final
hours of operation on TD1, as evidenced by Figure 10. The operator confirmed that one
of the four compressors was out of order during this period. Similarly, Figure 13 shows
a substantial increase in error when the evaporator outlet temperature experienced an
unexpected increase in temperature compared to the prediction. This increase was due to
an unanticipated heat pump stop, which prevented the cooling of water flowing across
the evaporator. In both cases, the APE increases significantly compared to the rest of the
predictions, indicating that the model possesses fault detection capabilities.

Model A encounters difficulties when dealing with sudden peaks and sharp changes,
and it produces higher errors when tested on data that have infrequent occurrences in the
training set. On January 28th, the machine operated at full compressor capacity, generating
approximately 230 kW. However, there were only a few instances observed above 220 kW
in the training data (as seen in Figure 9), and the model consistently predicted a higher
energy production and consumption than what was observed. This is demonstrated in
Figure 10. Additionally, when the production was closer to 130 kW (as shown in Figure 14),
the error was generally higher than when the production was near 200 kW. The higher
error can be attributed to the fact that there were more observations in the training data
centered around 200 kW.

As actual heat pump errors occurred within the test data, the MAPE for the test days
was calculated separately for instances with and without errors. The error calculation is
documented in Table 3. Except for TD2, which is discussed in Section 4.2, the MAPE is
never above 10%. However, there is a noticeable increase in the MAPE during predictions
at the time of the erroneous activity in operation.

Accumulated Data

Despite filtering out the known operational errors, Model A still has a prediction
error at 50% for some instances of energy production and consumption. In addition to
the instantaneous values, an evaluation of the way in which Model A performs when the
predicted production and consumption are summarized is presented. The results of this
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approach are documented in Table 4 and Figures 15–17, which compare the actual values
to the predicted values.

Table 4. Comparison of actual and predicted values when summarizing energy production and
consumption over test days.

Test Days 1 Test Days 2 Test Days 3

EP [kWh] 14,370 8260 7600
EP pred [kWh] 14,940 8460 7790
EP MAPE [%] 4% 2% 3%

EC [kWh] 4110 2180 2060
EC pred [kWh] 4410 2170 2100
EC MAPE [%] 7% 0% 2%

SCOP [-] 3.50 3.79 3.69
SCOP Pred [-] 3.39 3.90 3.71

SCOP MAPE [%] 3% 3% 1%
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Figure 15. Summarized hourly energy consumption for Model A, TD1.
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Figure 16. Summarized hourly energy production for Model A, TD2.
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Figure 17. Summarized hourly energy consumption for Model A, TD3.

Comparing the summarized predictions of energy production and consumption using
Model A to the actual values, the model predicts the accumulated energy with smaller
errors than the instantaneous observations. Over two or three days, the MAPE of energy
production and consumption is in the range of 2–3%, excluding instances when the error
is higher due to an actual compressor fault. This level of accuracy is considered sufficient
from the perspective of an industrial mechanical engineer and opens the possibility of
utilizing the model in a predictive controller with hourly resolution.

3.2. Model B

The results using Model B are presented in Figures 18–20 and summarized in Table 5.
As the error, in general, is higher for energy consumption, only figures for energy consump-
tion are presented, while figures for energy production are presented in Appendix A.
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Figure 18. Energy consumption for Model B TD1.
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Figure 19. Energy consumption for Model B TD 2.
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Figure 20. Energy consumption for Model B TD 3.

Table 5. Summary of average and maximum error for the various test days, Model B.

MAPE Maximum APE Real Value at Maximum Error Predicted Value at Max Error

TD1
EP [kW] 0% 2% 127.0 124.8
EC [kW] 1% 12% 41.5 46.6

TD2
EP [kW] 7% 221% 100.7 323.6
EC [kW] 14% 524% 18.0 −76.2

TD3
EP [kW] 3% 184% 0.5 1.3
EC [kW] 7% 79% 0.7 1.3

TD 3
without errors

EP [kW] 1% 7% 81.8 87.5
EC [kW] 5% 26% 40.2 50.6

The figures show that Model B closely follows the real values and effectively captures
the operational pattern for all input days. Although there are still some errors related to
cooling mode in TD2, the MAPE has significantly improved compared to Model A. As
seen in Figure 19, the model still has higher error during machine start-up and shutdown,
but the error is considerably lower than for Model A. During TD3, the error increases as
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the heat pump stops, because all values are close to zero, but as Figure 20 documents, the
model predicts outputs close to zero.

4. Discussion
4.1. Model Applicability

Model A performs a more challenging task as it is assigned fewer inputs to predict
more outputs, resulting in higher errors than Model B. However, Model A has two distinct
applications: fault detection and performance prediction. Future work could focus on
determining a proper setup for classifying faults through close collaboration with the plant
operator. The performance prediction mode of Model A is considered accurate enough to
be investigated as part of a predictive controller.

From the perspective of an industrial mechanical engineer, Model B is an excellent
energy production and consumption predictor, making it a valuable tool for real-time
performance monitoring and evaluating the heat pump against supplier data and models.
It can also serve as design help in future plant development with a similar type of heat
pump. However, Model B lacks the potential controller capabilities of Model A.

Despite attempts to use the predicted outlet temperatures from Model A as inputs
to Model B, no improvement was observed compared to the predictions of Model A. For
Model B, a gradual increase in the general error of energy consumption over time may
indicate that heat pump service should be initiated due to issues such as heat exchanger
fouling or refrigerant leakage [52].

Model A overcomes three of the four simplifications presented by Clauß and Georges [29].
The model captures the machine’s modulation and part-load operation while respecting
the temperature limits of the condenser and evaporator given that the input values are
within the trained range. As is apparent by the TD2, the model struggles during minimum
duration operation.

Compared to the white- and grey-box models discussed in the Introduction section,
Model A has some significant error for momentaneous values, and it may be considered
less accurate. Still, the model is able to predict the general trend of the operation, with
MAPE below 10% for TD1 and TD3, and has been developed with considerably less effort.

4.2. Cooling Mode

Both models, particularly Model A, produce higher errors on TD2. These test days
represent a period when the machines switched between heating and cooling modes several
times, as shown in Figures 11 and 12. The temperature setpoint is included in the figure to
identify the mode the machine is in. In periods with low cooling demand, the machine turns
on and off frequently, leading to generally higher APE. This high error may be because the
dataset contains fewer rows with cooling priority at only 3.9%. A significant portion of the
cooling data comprises these “start–stop” periods. A sampling resolution of 5 min may
be too low, resulting in the predictions being averaged over the start–stop periods. If the
model is to be used in a controller designed to avoid these brief starts-and-stops, the model
clearly needs improvement. Evaluation of data and sampling resolution will be performed
to address this issue, and additionally, training separate models for heat mode and cooling
mode. Model B performs better during cooling mode than Model A but still has higher
error than during TD1 and TD3.

4.3. On Available Data and the Commissioning Phase

As the heat pumps investigated in this study are part of a real-life plant, the available
data depend solely on the way in which the process has been operated. Figure 9 shows that
the machine operated within a limited operational range, with setpoints between 0 and
+10 ◦C in cooling mode and +50 and +58 ◦C in heating mode. As a result, neither Model A
nor Model B can be considered for general use with other operational conditions.

Compared to the approach presented by Opalic et al. [24], which uses compressor
polynomials to develop a generalized training dataset for all operational conditions, our
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approach depends on available measurements from the plant. This limitation of the
selected modeling technology [53] must be considered when utilizing the technique and
using the models.

Furthermore, new approaches to gathering and utilizing operational data should be
considered as AI becomes off-the-shelf technology. In a building project, the contractor is
typically responsible for the operation of the energy plant for the first 6, 12, or 24 months of
operation before handing it over to the building owner [54]. During this commissioning
phase, the contractor is responsible for verifying and testing the system’s performance
to ensure that it is functioning correctly and meets the specified design and performance
requirements. As part of the commissioning phase, the development of a system-specific
dataset could be performed, and when the plant is handed over, the owner is presented
with a large dataset containing a wide variety of operational conditions.

To prepare future plants for capturing a greater span of operational data, plant design-
ers may need to plan for a system design that allows simulation of temperature conditions
not necessarily occurring during standard operation. Such dataset could improve the
accuracy and generalizability of the models, allowing for more widespread use in different
operational contexts.

5. Conclusions

In this study, two alternative heat pump model structures based on Artificial Neural
Networks (ANN) are developed and presented. The strengths and limitations of the ANN
are highlighted, and the importance of having accurate and sufficient data for developing
and using the models is emphasized.

Model A predicts energy production and consumption with MAPE below 10% and
outlet temperatures with MAPE between 2 and 5%, except during cooling mode. While
there are some errors in Model A’s momentaneous predictions of energy production and
consumption, a summation of the predictions to hourly values leads to a satisfactorily
prediction of the operation with a MAPE of 3% or less. Model A rapidly identifies com-
pressor failures and unexpected stops and can further be developed as a system-specific
fault detection tool. Model B is an excellent predictor of energy consumption and COP,
providing the industrialist with a tool to continuously improve design evaluations and
building owners to monitor performance. Except during cooling mode, the MAPE is never
above 5%.

The approach presented in this article is straightforward and provides the user with
a fast method to develop system-specific models of heat pump energy consumption and
COP when no knowledge of the internal heat pump configuration is available. This is
information which is often only available from supplier software, often kept in house [55], or,
alternatively, demands advanced physics-based modeling. Though a physics-based model
allows for more general evaluations, the ANN offers a quick and precise method to capture
the dynamics of the available data. The most crucial factor for success is a sufficiently clean
and synchronized dataset representing a selection of relevant operational conditions.

Emphasizing the importance of “data janitoring”, we also demonstrate that delays
between measured energy consumption and production and limitations of energy meters
and temperature sensors can be sources of uncertainty in the modeling. The main take-
away relevant for mechanical engineers responsible for thermal energy plant design is
the necessity to consider the importance of accurate and synchronized data. For further
improvement of the models, we plan to evaluate higher sampling resolutions and perform
an investigation into using external temperature sensors at the condenser.

Implementing appropriate tools can enable operators of thermal energy plants to
identify faults and errors in the system earlier than they do presently, and also enhance the
system’s operation through mathematical optimization [33]. The main target of this article
was to present a method to develop a quick and precise heat pump model using readily
available data. While the TriCEP study case has been deemed successful in meeting design
targets for energy results, several operational conditions with potential for improvement
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have been identified. A smart controller based on the developed heat pump models could
be employed to evaluate the following tasks [33]:

• Setting heating and cooling priority.
• Reduce the number of start–stops of the compressor, especially when the machine is

set to cooling priority, and the demand is limited/non-existent.
• Determining when to prioritize heat pump or solar collectors for heating DHW.
• Continuously evaluate and update the temperature setpoints of the heat pumps

to consider influences beyond the ambient temperature, typically energy cost and
weather forecast.

• Determining degradation in the heat pump or the surrounding system.
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Abbreviations/Nomenclature

cp Specific heat capacity of fluid (kJ/kg K)
QHP Heat pump energy production (kWh/τ)
.

Qc Condenser heat dissipation
.

Qe, Evaporator heat extraction
EC Energy consumption heat pump
EP Energy production heat pump
Tin Inlet temperature to control volume
Tout Outlet temperature from control volume
TC Condensation temperature
Tcin Inlet temperature to condenser, water side
Tcout Outlet temperature from condenser, water side
TE Evaporation temperature
Tein Inlet temperature to evaporator, brine side
Teout Outlet temperature from evaporator, brine side
TSP Temperature setpoint
τ Utilization time (usually defined as a year)
w1

j0 Bias for the hidden unit j
w1

ji Weight connecting input i to the hidden unit j
w2

m0 Bias for the output unit m
w2

mj Weight connecting hidden unit j to the output unit m
WHP Heat pump energy consumption (kWh/τ)
yi Real value at sample i
ymi Predicted value at sample i
g(.) Transfer function of the output neurons
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.
m Momentaneous mass flow rate in kg/s
n Number of data points in error calculation
ϕ(.) Transfer function of the hidden neurons
η. Carnot efficiency term
.

Vc Flow rate through heat pump condenser
.

Q Thermal power
.

W Compressor power
AI Artificial Intelligence
ANN Artificial Neural Network
APE Absolute Percentage Error
BAS Building Automation System
COP Coefficient of Performance
DHW Domestic Hot Water
EMS Energy Management System
HVAC Heating, Ventilation, and Air Conditioning
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MRE Mean Relative Error
ML Machine Learning
MPC Model Predictive Control
P&ID Piping and Instrumentation Diagram
RE Relative Error
SCOP Seasonal Coefficient of Performance
TD1 Test days 1
TD2 Test days 2
TD3 Test days 3
TriCEP Triangulum Central Energy Plant

Appendix A

All figures for all outputs for all test days are presented in this appendix, Figures A1–A18.
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Figure A1. Energy production for Model A TD1.
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Figure A2. Energy consumption for Model A test days 1.
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Figure A4. Evaporator outlet temperature for Model A test days 1.
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Figure A5. Energy production for Model A test days 2.
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Figure A7. Condenser outlet temperature for Model A test days 2.
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Figure A8. Evaporator outlet temperature for Model A test days 2.
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Figure A9. Energy production for Model A test days 3.
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Figure A10. Energy consumption for Model A test days 3.
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Figure A11. Condenser outlet temperature for Model A test days 3.
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Figure A13. Energy production for Model B test days 1.
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Figure A14. Energy consumption for Model B test days 1.
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Figure A15. Energy production for Model B test days 2.
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Figure A16. Energy consumption for Model B test days 2.
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Figure A17. Energy production for Model B test days 3.
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