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Preface 
When we are working with Statistical data we use software programs for data processing, analysis 

and tabulation. Which software to choose is depending on different factors like financial matters, 

management decisions, staff requests and so on. Five of the most commonly used software 

packages are the commercial Sas, Spss and Stata and the non-commercial R and Python. 

This document gives a brief comparison between these software packages on how to do basic data 

processing for statistical surveys. It is meant to help employees who know one of the packages to 

learn some basics of the other ones. This is needed if the company changes from one software to 

another. It will also be useful for staff who co-operates with other companies who use other 

software than he or she usually works with. We can also use it as an introduction to one or more of 

the different softwares. 

The versions used of the different software for this document are: 

•  Sas  9.4 M6 

•  Spss 27.0.1.0 

•  Stata 16.0 

•  R  4.0.0 

•  Python 3.10.5 

As software always develop some of the program examples may be outdated when new versions 

arrive. 

The author would like to thank Christian Thindberg and Anne-Marte Krogsrud for valuable 

comments. 

Statistics Norway, 30 November 2022 

Christian Thindberg 
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1. Introduction 
The 3 commercial software packages Sas, Spss and Stata are all developed and maintained by 

American companies. They all have license models where we pay a yearly fee for the licenses. 

However, Stata also has an option to pay for a version of the package once and then use it forever. If 

we then want a new version of Stata, we must pay for it. The non-commercial package R can be 

downloaded free from the Internet, for instance from this site: https://cran.r-

project.org/bin/windows/base/. It is also useful to download the R user interface RStudio, which can 

be found here: https://rstudio.com/products/rstudio/download/. The Python software is also free. 

When we use Python, we usually have a user interface as well. Both Python and a user interface may 

be downloaded from the Anaconda web site: https://www.anaconda.com/products/distribution. 

They all have a user interface with different windows and pull-down menus. All use programming 

code that can either be written or generated through menus or wizards. Spss and Stata call their 

coding sets of commands, while Sas uses sets of statements. R also uses commands, although the 

commands are actually functions. Written or generated code should be stored with filename 

extensions according to their defaults: 

• Sas .sas 

• Spss .sps 

• Stata .do or .ado 

• R .R 

• Python .py (or .ipynb for Jupyter Notebooks) 

Each package comes with lots of modules or packages as they are called in R. For Sas the primary 

need will be Sas Foundation, also called Base Sas, and Enterprise Guide. In addition, the module 

“Access to PC file formats” can be useful if easy data interchange with Spss and Stata is needed. The 

basics in Spss are in their Statistics Standard Edition. Stata operates with different modules 

depending on the size of the data used and the complexity in the usage. Stata/IC (the smallest one) 

will be suitable for most users. Whenever we need another package in R or Python we can download 

from the Internet and install it. 

To install the software, follow the instructions given when you received it. 

This document is based on version Sas 9.4, Sas Enterprise guide 8.3, Spss 27 and Stata 16, R 4.0.0, 

Python 3.10.5, but most of the functionality described will be available in previous versions. 

For more info these are their web sites: 

https://www.sas.com/ 

https://www.ibm.com/analytics/spss-statistics-software 

https://www.stata.com/ 

https://cran.r-project.org/  

https://www.python.org/ 

https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://rstudio.com/products/rstudio/download/
https://www.anaconda.com/products/distribution
https://www.sas.com/
https://www.ibm.com/analytics/spss-statistics-software
https://www.stata.com/
https://cran.r-project.org/
https://www.python.org/
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2. The user interfaces 
The user interface is an important part of every software. They differ, and it may be confusing to 

understand the user interface when we are used to one software package and will learn another 

one. We will now look at the basics of the user interfaces. 

2.1. Sas 

Base Sas 
There are four important windows in Sas. They are usually opened when Sas is started: 

• Explorer Local Sas explorer, for looking at data 

• Editor Editor for writing our own programs 

• Log  Execution log 

• Output Listings 

 

In base Sas we must write most our programs ourselves. There are a few menus which we can use 

to generate statements, however we mostly have to write the statements.  

Sas Enterprise guide 
Sas has a module called Enterprise Guide which provides menus for generating programs. It also 

gives us a flow chart of our processes. If Enterprise guide is included in your Sas license it will be the 

preferred user interface. 
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The main user interface in Enterprise Guide (EG) is the Process flow diagram. Every task (program) 

we create will be added here as a separate icon. For every task there will be different windows in 

separate tabs. These tabs may include these windows: 

• Program Written syntax 

• Code Generated syntax 

• Log  Program log with notes, warnings, and error messages 

• Output Browsing of output dataset(s) 

• Results Listings 

• Input Data Browsing of input dataset 

There is a menu bar where we can use menus or wizards to generate code and execute programs. 

 

To open an editor window where we write syntax, we use the menu File > New > Program. Each of 

our programs will have an icon in the process flow. If we use the tasks in the Tasks menu to create 

syntax, Sas will add the arrows between the tasks in the process flow. When we write our own 

programs, we must do this linkage ourselves. We can do this by right-clicking on an icon in the 

process-flow and then choose Link. A menu with the possible links will appear and we choose the 

right one: 
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2.2. Spss 

Spss has three important windows, of which the first two of these are usually opened when Spss is 

started: 

• Data Editor  Browsing and editing of dataset in use 

• Viewer  Listings, both output, commands, and log 

• Syntax Editor For writing commands ourselves 

These are opened in separate windows. If the syntax editor is not opened, we can open it with File, 

New, Syntax. 

The Data editor window has two tabs, the Data and the Variable view. Here is the Data view: 

 

The Output window when Spss is opened, all logs and listings will be written to this window: 
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Spss has several menus which can be used to generate syntax. However, to generate syntax is not 

the default for these menus. The default is to just run the program and show the result in the Viewer 

window. To save the syntax we must tell Spss to paste the syntax into the Syntax editor. Then we 

can run the pasted syntax. It is always wise to save the syntax as it makes it possible to re-run 

programs and it will also document the process. 

2.3. Stata 

The user interface is divided into these windows: 

• Review  List of executed commands 

• Variables Variables available for use 

• Properties Attributes for variables available for use  

• Command For writing single line commands (executed when Enter is pressed) 

• Log  Log and listings viewer 

 

 

In addition, these windows are important: 

• Do-file editor For writing commands (opens from the Window menu or Ctrl+9) 

• Data editor For browsing and editing data (opens from the Window menu or Ctrl+8) 
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2.4. R 

The default R interface is quite simple: 

 

It is so simple that it is recommended to use the RStudio interface instead when working in R, so we 

will concentrate on that. 

The RStudio interface is divided into these windows at start-up: 

• Console/Terminal/Jobs 

• Environment/History/Connections 

• Files/Plots/Packages/Help/Viewer 
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In the Console window our executed commands and lists will appear. Error messages will also 

appear here. In the Help window we find help to the different functions (commands). When we 

make Plots they will show up in the Plot window. The environment window will contain all data that 

is in the memory.  

In R we will usually write scripts and to do that we will open an empty program editor with File, New 

File, RScript (CTRL+SHIFT+N). The RStudio Editor will now open with an empty script: 

 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

14 

Another important window is the data viewer, which opens a data frame. With this, we have an easy 

and flexible way to look at our data frames. We use the View command to open a data frame in the 

data viewer. 

2.5. Python 

We can use different interfaces when working with Python. In this document we will use JupyterLab, 

which can be downloaded from the Anaconda web site: 

https://www.anaconda.com/products/distribution. After it is installed, we open the Anaconda 

Navigator and from there we launch JupyterLab. This will open a new page in a web browser that will 

look something like this: 

 

 

We open a new notebook by clicking on the icon below Notebook and an empty notebook will be 

opened: 

   

The notebook open with one code cell. Each cell can be either Python code, a Markdown text or raw 

text. We mostly use the Markdown cells for documentation. The code cells will contain our Python 

code. To choose cell type click on the code text above the cells: 

https://www.anaconda.com/products/distribution
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/  

 

 In Jupyter notebooks we operate in two different modes: 

• Edit To type into a cell like in a normal editor. In this mode we write our code and  

                   comments. 

• Command To operate on whole cells, for instance to run, move or delete them. 

We swap from code to command with ESC. From command to code we swap with Enter 

To run a program, we can click on the Run icon at the top of the window ( ). Or we can use these 

key combinations: 

• Shift+Enter Run the program in the cell and move to next cell 

• Ctrl+Enter Run the program and stay in the same cell 

• Alt+Enter Run the program in the cell and add a new cell below 

The code and markdown cells are input cells. This means we can write code or documentation 

within them. We also have output cells. These cells show output from our Python program code. 
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3. Naming conventions 
The naming conventions for variables are a little bit different between the packages. These variable 

naming conventions could well be used for dataset names and other naming. Here are the most 

important naming rules: 

Rule Sas Spss Stata R Python 

Max length 32 64 32 Only limited by the 

system resources 

available 

Only limited by 

the system 

resources 

available 

Allowed 

letters 

A-Z, a-z Any letter allowed A-Z, a-z Any letter allowed Any letter allowed 

Case 

sensitive? 

No No Yes Yes Yes 

Special 

characters 

_ allowed _ . and non-

punctuation 

characters allowed (. 

is usually not 

recommended) 

_ allowed, but if 

put in the first 

position it 

indicates a macro 

variable name 

_ . are allowed. Must 

start with a letter or 

period. If it starts 

with a period, it 

cannot be followed 

by a digit. 

_ allowed 

Space Not allowed Not allowed Not allowed Allowed, but not 

recommended 

Not allowed 

Numbers Allowed, but not 

in the first 

position 

Allowed, but not in 

the first position 

Allowed, but not 

in the first 

position 

Allowed, but not in 

the first position 

Allowed, but not 

in the first 

position 

$ Allowed in the 

first position to 

refer to a 

character format 

name 

Allowed, but in the 

first position 

reserved for system 

variables 

Not allowed Allowed, but not 

recommended as it 

is used to 

distinguish between 

dataset name and 

variable name 

Not allowed 

# Not allowed Allowed, but in the 

first position 

reserved for scratch 

variables 

Not allowed Allowed, but not 

recommended 

Not allowed 

& Allowed in the 

first position to 

refer to a macro 

variable 

Not allowed Not allowed Allowed, but not 

recommended 

Not allowed 

! Not allowed Allowed in the first 

position to refer to a 

macro variable 

Not allowed Allowed, but not 

recommended 

Not allowed 

@ Not allowed Allowed Not allowed Allowed, but not 

recommended 

Not allowed 

 

As we sometimes interchange datasets between software packages it is smart to name variables, so 

they are valid for all of these packages at the same time. In Sas and Spss it is a convention to use 
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capital letters for command names and otherwise use low case letters. As Stata, R and Python are 

case-sensitive we must use the commands as they are described, mostly lowercase. This goes for 

Stata, R and Python variable names as well; a variable called b2 is not the same variable as B2. In Sas 

and Spss the variable b2 is the same variable as B2. In labels and titles, we are free to use both 

upper and lower case as we like. Sas has a notation that can allow us use any text 32 character or 

less in length as a name ('name'n). However, it is recommended to stick to the name conventions. 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

18 

4. Operators 
We always have to use operators when we are working with programming software. Here are the 

most used ones and how they are written: 

Operator Sas Spss Stata R Python 

Arithmetic:      

  Addition + + + + + 

  Subtraction - - - - - 

  Multiplication * * * * * 

  Division / / / / / 

  Exponentiation ** ** ^ ** (or ^) ** 

  Equal (set to) = (or eq) = (or eq) = = = 

Relational:      

  Equal (check for) = (or eq) = (or eq) == == == 

  Not equal ne (or ~= or ^= or <>) ne (or ~= or <>) ~= (or !=) != != 

  Less than < (or lt) < (or lt) < < < 

  Less than or equal <= (or le) <= (or le) <= <= <= 

  Greater than > (or gt) > (or gt) > > > 

  Greater than or equal >= (or ge) >= (or ge) >= >= >= 

Logical:      

  Reverse the expression not (or ^ or ~) not (or ~) ! (or ~) ! ~ 

  Both relations true and (or &) and (or &) & & and 

  Either relation true or (or |) or (or |) | | or 

 

We can change the order of evaluation by using parentheses. It is always wise to use parentheses to 

make sure that our expressions evaluate in the order we want. 
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4.1. Sas 

The order of evaluation is depending on which group the operators belong to. The priority of 

evaluation is: 

Group Description Associativity 

1 **, + (as prefix), - (as prefix), NOT right to left 

2 *, / left to right 

3 + (addition), - (subtraction) left to right 

4 <, <, =, NE, >, >=. left to right 

5 and left to right 

6 or left to right 

4.2. Spss 

  Order of evaluation  

Not 

Exponentiation 

Multiplication 

Division 

Addition and subtraction 

Ne 

>, <, >=, <= 

== 

And 

Or 
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4.3. Stata 

Order of evaluation 

! 

^ 

- (negation) 

/ 

* 

- (subtraction), + (addition) 

and 

!= (or ~=) 

>, <, <=, >= 

== 

& 

| 

4.4. R 

The operators are evaluated in the order shown below: 

Operator Description Associativity 

^ Exponent Right to Left 

-x, +x Unary minus, Unary plus Left to Right 

%% Modulus Left to Right 

*, / Multiplication, Division Left to Right 

+, – Addition, Subtraction Left to Right 

<, >, <=, >=, ==, != Comparisions Left to Right 

! Logical NOT Left to Right 

&, && Logical AND Left to Right 

|, || Logical OR Left to Right 

->, ->> Rightward assignment Left to Right 

<-, <<- Leftward assignment Right to Left 

= Leftward assignment Right to Left 
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4.5. Python 

The operators are evaluated in a defined order (highest to lowest): 

Operator Name 

(...), [...], {...} Tuple, list, and dictionary creation 

´...´ String conversion 

s[i], s[i:j] Indexing and slicing 

s.attr Attributes 

f(...) Function calls 

+x, -x, ~x Unary operators 

x ** y Power (right associative) 

x * y, x / y, x // y, x % y Multiplication, division, floor division, modulo 

x + y, x - y Addition, subtraction 

x << y, x >> y Bit-shifting 

x & y Bitwise and 

x ^ y Bitwise exclusive or 

x | y Bitwise or 

x < y, x <= y, x > y, x >= y, x == y, x != y, x <> y Comparison tests 

x is y, x is not y Identity tests 

x in s, x not in s Sequence membership tests 

not x Logical negation 

x and y Logical and 

x or y Logical or 

lambda args: expr Anonymous function 
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5. Datasets 
All packages except Python store data in their own proprietary format with a special extension in the 

file names. Python uses open-source formats, for instance those mentioned below: 

• Sas: sas7bdat 

• Spss: sav 

• Stata: dta 

• R: RData or rds 

• Python: pkl or parquet 

Both Spss and Stata operate with active datasets. In Stata we can only have one dataset opened in 

the data editor at a time and this will be the dataset the commands will be executed on. Spss also 

have an active dataset for which commands will be executed. However, we can have several 

datasets open at the same time. This is not recommended because then we have to make sure 

which dataset is the active one and this can be confusing and it easy to execute on the wrong 

dataset. It is best to have only one dataset opened at the time. To ensure this we set an option: Edit 

> options, and in the General tab, tick Open only one dataset at a time. The datasets in Spss and 

Stata are usually referenced to by their whole physical names unless a cd command is used. If so, we 

may use the dataset name without the path given in the cd command. 

Sas does not operate with active datasets. We do not use the physical names in the programs either, 

we use aliases. These aliases consist of a libref which reference to the physical directory, in which the 

data is stored, and the name of the dataset (without the extension). The two parts of the dataset 

name is separated with a dot. The libref for temporary datasets is called Work and is defined when 

Sas starts. For these temporary datasets we can omit the libref. Librefs for permanent datasets are 

defined by using a Libname statement, see page 62.  

R save all data in memory until we close R or actively remove the data from memory. R data are 

stored in vectors with given names, and we use these names to reference the vectors. R has also 

introduced data frames which are vectors organized in a way that makes it possible to treat them as 

regular datasets (called data frames in R). We may use the attach command to be able to reference 

variables within a data frame without using the name. There is also possible to use the with function 

in R to avoid repeating the data frame names. 

Python also save all data in memory until we close the Python kernel or actively remove the data 

from memory. All internal data are stored in objects which can be of different formats, like lists, 

dictionaries, tuples, sets, frozenset and Pandas data frames. We will mostly work with Pandas data 

frames in this document; however we will look a little bit at dictionaries as well. 

All folders must be created before we can write any datasets to these folders. It is wise to have a 

separate folder for the datasets we want to store permanently. This is common for all the compared 

softwares in this document. 
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6. Execution 
The syntaxes all consist of commands (statements). Each command usually starts with a keyword 

and ends with a special character. In Sas the statements end with a semicolon (;), in Spss a period (.) 

is used and Stata uses a line break. We can change the end character in Stata, but it is usually not 

recommended. If a command continues to a new line in Stata, we use /// as a continuation marker. 

In Sas, Spss and R we don’t need a continuation marker. In Spss it is not allowed to have an empty 

line within a command. 

As Spss and Stata always executes on the active dataset, we can run commands separately. For Spss 

some commands are executed immediately, and some commands wait for the Execute command to 

be executed. Stata and R executes commands immediately. Sas needs to put statements together in 

either a Data step or a Proc step. The Data step is for regular programming and the Proc step uses 

ready-made procedures. The Data step always starts with a Data statement and the Proc step with a 

Proc statement. A step in Sas ends usually with a Run statement, but sometimes Quit is used instead.  

When a program or syntax is written or generated, we will execute it. We may execute the whole 

program or just parts of it. In Sas there is a Submit command which executes the program. In base 

Sas it is found under the Run menu. As it is a command which is very often used it should be defined 

to a hot-key. The hot-keys are defined under Tools > options > Keys.  

In Sas Enterprise guide there are many ways to Submit a program. The easiest way is to use the F3 

button. When pressed the program is submitted. If a part of the program is marked only that part is 

submitted. There are always different Run options available as well. 

To execute syntax in Spss we can use the menu Run. Under the Run menu there are different 

choices. The most common are All and Selection. The hot-key Ctrl-R will execute the selected syntax.  

In Stata a command will be executed when Enter is pressed when it is written in the Command 

window. If we write the commands in the Do-file Editor, we can execute them from the Tools menu. 

There is also the hot-key Ctrl+D which executes the marked text. If no text is marked all the 

commands in the Do-file will be executed with Ctrl+D. 

To run a script in R, we mark the lines we want to run and press CTRL+ENTER. To run a separate 

command, we press CTRL+ENTER when the cursor is on a line within the command.  

For Python programs in Jupyter notebooks, we run a program in a cell by using one of the 

combinations CTRL+ENTER, SHIFT+ENTER or ALT+ENTER. 

In Python, we have a basic part which is available when we start a Python session. However, there 

are lots of other packages that may be used. These must be imported before we can use them. It is 

common practise to put these imports in the first code cell in our projects. To run the examples in 

this document, we need to run these imports: 

import pandas as pd 
import numpy as np 
from io import StringIO 
import datetime as dt 
 

Pandas are used to be able to work with data frames, which is very common when we do data 

processing. Numpy is a package for numeric computations which is widely used. StringIO is very 

helpful when we want to read inserted text files. Datetime is a module for extracting and calculating 

on dates. 
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7. Import of files 
As all packages store data in their own proprietary format, the first we usually do is to import data. It 

may be imported from different formats. The most common formats are delimiter separated files, 

fixed positions files and Excel spreadsheets. Sas Enterprise guide has a wizard (task) for importing 

these types of files. Base Sas does also have a wizard, however it does not take fixed positions files 

and to be able to import Excel spreadsheets we have to have a license for the module “Access to PC 

file formats”. Spss has menus for importing delimiter separated files and Excel spreadsheets, but 

not for fixed positions files. Stata has menus for importing all three file types. If we use menus or 

wizards to import data, it is important to save the syntax that is generated. 

We will now look at how we use syntax to import a fixed positions file, the file is shown in the 

appendix on page 224.  

7.1. Sas 

DATA mdgperson ; 

  INFILE 'H:\MDG\Data\mdgperson.txt' TRUNCOVER LRECL=15; 

  INPUT 

    @01 hh     $CHAR6. 

    @07 state  1. 

    @08 urbrur 1. 

    @09 member 1. 

    @10 b3     2. 

    @12 b4     1. 

    @13 b5     2. 

    @15 b6     1. 

    ; 

RUN; 

 

The Data statement starts the Data step and names the output dataset. The Infile statement names 

the file to be imported and the Input statement describes the different columns to be read. It is also 

used to name the variables in Sas and to decide which variables will be character ($char) and which 

will be numeric. The start position is given after the @ sign and the length is given as an informat 

after the variable name. Informats end with a dot (or a decimal number). 
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After we run this program the output data window looks like this: 

 

7.2. Spss 

DATA LIST FILE = 'H:\MDG\Data\mdgperson.txt' / 

    hh         1 -     6 (A) 

    state      7 -     7   

    urbrur     8 -     8   

    member     9 -     9   

    b3        10 -    11   

    b4        12 -    12   

    b5        13 -    14   

    b6        15 -    15   

    . 

EXECUTE. 

SAVE OUTFILE='H:\MDG\Data\mdgperson.sav'. 

 

The import is done with one command, the Data list command. It gives the name of the import file in 

the File subcommand. Then the variable names for Spss and the start and end positions are given. 

We also decide whether a variable shall be character (A) or numeric. The Execute command is 

needed for the actual import to be done. The Save command store the dataset in Spss format 
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When the syntax is executed, the imported data will be shown in the Data editor window: 

 

It is divided into two parts: the Data view and the Variable view. The data is shown in the Data view 

and the metadata is in the Variable view. The metadata consists of variable names, lengths, types, 

variable labels, and value labels. 

When there is invalid data for numeric fields, messages like this will appear in the log and the value 

is set to missing: 

Warning # 1102 

An invalid numeric field has been found.  The result has been set to the 

system-missing value. 

Command line: 50  Current case: 33  Current splitfile group: 1 

Field contents: '.' 

Record number: 33  Starting column: 15  Record length: 8192 
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7.3. Stata 

infix                        /// 
str6   hh      1 - 6         /// 
       state   7 - 7         /// 
       urbrur  8 - 8         /// 
       member  9 - 9         /// 
       b3      10 - 11       /// 
       b4      12 - 12       /// 
       b5      13 - 14       /// 
       b6      15 - 15       /// 
using h:\mdg\data\mdgperson.txt 
save "h:\mdg\data\mdgperson.dta", replace 
 

Stata also uses one command to import the file, infix. This command will use more than one line; 

hence we need to use the continuation marker ///. Character variables will be marked with the str 

format. The variable name, start and end positions for each variable is defined and the name of the 

import file is also needed. We save the dataset with the save command. 

When Stata has executed the import program the data will not automatically be shown. To show the 

data we open the Data editor window (hot-key Ctrl+8): 

 

 

If we want to re-run the import, we have to close the dataset first. This may be done with the clear 

command. 
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7.4. R 

We use the read command to import datafiles. For fixed position files we use read.fwf. For delimited 

files we can use read.csv or read.table. 

mdgperson <- read.fwf( 
  file="H:/MDG/Data/mdgperson.txt", 
  col.names = c("hh","state","urbrur","member","b3","b4","b5","b6"),     
  widths=c(6, 1, 1, 1,  2, 1, 2, 1), 
  
colClasses=c("character","character","character","numeric","numeric","numeric
","numeric","numeric"), 
  skip=0, 
  na.strings="." 
  ) 
 

The read.fwf command will create a data frame by importing the file mentioned in the file argument. 

Beware that in R we must use slash (/) and not backslash (\) to separate folder from sub-folder in the 

file path. The data frame will be named mdgperson. It is assigned by using the <- operator which 

means that the result of the expression to the right of <- will be assigned to the name to the left of <- 

We name the columns (or variables) in the data frame by using the col.names argument. The names 

are put into the concatenation function (c) in the same order as they appear in the data file. 

Furthermore, we must define the width and type of each column. We do that with the widths and 

colClasses arguments as seen above. As there are no space between each column in the data file, we 

tell R that by using the skip argument. Finally we use the na.strings argument to identify values for 

missing values, which in R is called not available (NA). 

The data frame is not shown in R. However, we can use different commands to see the content of 

the data frame. We can use the str command (str is short for structure) like this: 

str(mdgperson) 

This will write an output like this to the console window: 

'data.frame': 48 obs. of  8 variables: 
 $ hh    : chr  "020074" "020074" "060036" "040024" ... 
 $ state : chr  "2" "2" "6" "4" ... 
 $ urbrur: chr  "1" "1" "1" "1" ... 
 $ member: num  5 1 4 1 2 2 5 3 3 2 ... 
 $ b3    : num  2 0 2 0 1 11 4 2 2 1 ... 
 $ b4    : num  1 1 1 2 2 2 2 2 1 2 ... 
 $ b5    : num  10 39 20 20 33 23 16 24 16 60 ... 
 $ b6    : num  NA 3 1 3 2 3 1 1 1 2 ... 
 

It shows that mdgperson is a data frame with 48 observations (rows) and 8 variables (columns). 

Then each variable is listed with name, type and the values of the first observations. We see for b6 

that missing values are represented with the value NA (not available). 

To look at the whole file we can use the View command: 

View(mdgperson) 
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Here is the beginning of the mdgperson data frame: 

 

7.5. Python 

We use a read method to import external files to Python data frames. To import a delimited file, we 

can use the read.csv method. To import a fixed width file, we can use the read_fwf method. But first, 

we should put the path to the data folder into an object, here called datapath. This will make easier 

to move the examples to another folder. We must specify the width of each column (or the start and 

end position) and we should name the columns as well: 

datapath = 'H:/MDG/Data/'  
mdgperson = pd.read_fwf( 
    datapath + 'mdgperson.txt', 
    names=['hh', 'state', 'urbrur', 'member', 'b3', 'b4', 'b5', 'b6'], 
    dtype=object, 
    na_values={'.', ' .'}, 
    widths=[6, 1, 1, 1,  2, 1, 2, 1] 
) 
mdgperson.head(11) 
 

To convert missing values in the data file to missing values in Python, NaN (Not a Number) for 

numbers, we specify na_values. We have also specified that the columns should be objects, which 

means it can literally contain anything. After the import we list the 11 first rows with the head 

function. Beware that the first row has the index 0: 
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For some information about the data frame, we can use the info function: 

mdgperson.info() 

The output is like this: 

 

We see that all columns have been defined as objects, which means they are string columns. When 

we want to specify the column types ourselves, we can use a dictionary in the dtype parameter: 

mdgperson = pd.read_fwf( 
    datapath + 'mdgperson.txt', 
    names=['hh', 'state', 'urbrur', 'member', 'b3', 'b4', 'b5', 'b6'], 
    dtype={'hh': 'object', 'state': 'object', 'urbrur': 'object', 'b3': 
'object', 'b4': 'object', 'b6': 'object'}, 
    na_values={'.',' .'}, 
    widths=[6, 1, 1, 1,  2, 1, 2, 1] 
) 
mdgperson.head(11) 
 

Variables not mentioned in the dtype parameter will be given a type based on the content of each 

column. 
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When we define a column as int64 the import will fail with an error message if a missing value is 

found:  

ValueError: Unable to convert column b5 to type int64 

Instead, we can import the column as float64 as it accepts missing values. 

We only need to specify the columns that will not automatically get the right column types. Columns 

with letters will by default always be objects, integer values without missing values will be int64 and 

integers with missing values and decimal numbers will be float64. 
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8. Getting to know our data 
When our file is imported correctly to Sas, Spss, Stata, R or Python, we will use some procedures to 

get to know our data. We typically use frequency tables and descriptive statistics for this purpose.  

8.1. Frequency tables 

We use frequency tables to get a fast overview of the distribution of variables with few distinct 

values. In Stata missing values are excluded unless we add the miss option. The number of missing 

values is not listed as they are in Sas and Spss. We may include the missing values as regular values 

in the tables in Sas by using the missing option in the Tables statement. In R we use the exclude=NULL 

argument to include NA’s in the frequency tables. In Python, we can use the fillna method to include 

missing values in our calculations. 

Sas 
In base Sas we have to write syntax for this. In Enterprise Guide we find it under Tasks > Describe > 

One-Way Frequencies and Tasks > Describe > Table Analysis. The written syntax for two One-way 

frequency and one Two-way frequency tables may look like this (generated syntax from the menus 

will be more extensive): 

proc freq data=mdgperson; 

 tables state b6 state*b6; 

 title "Frequencies"; 

run; 

 

Executed from Enterprise Guide the result will look like this: 
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Spss 
The One-way frequencies in Spss are found in the menu Analyze > Descriptive statistics > 

Frequencies. For Two-way frequencies we can use Analyze > Descriptive statistics > Crosstabs. When 

we paste the syntax, it looks like this: 

FREQUENCIES VARIABLES=state b6 

  /ORDER=ANALYSIS. 

CROSSTABS 

  /TABLES=state BY b6 

  /FORMAT=AVALUE TABLES 

  /CELLS=COUNT ROW COLUMN TOTAL  

  /COUNT ROUND CELL. 

 

The frequency tables look like this: 
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Stata 
In Stata we find the one-way frequency here: Statistics > Summaries, tables, and tests > Tables > 

Multiple one-way tables. The two-way frequencies are here: Statistics > Summaries, tables, and tests 

> Tables > Two-way tables with measures of association. When we write the commands tab1 and 

tabulate they will be like this: 

tab1 state b6 
tabulate state b6, row column cell 

   

It is also possible to add the fre package to Stata. We can do that with this command (when we have 

Internet connection) 

ssc install fre 

Now we can make one-way frequency tables more like in Sas and Spss: 

fre state b6 
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The frequency tables: 

 

R 
There are several different commands for frequency tables in R. One basic command is the table 

command. It shows the distribution of one or more variables. Here is an example on a one-way 

frequency, beware that the $ sign is used to separate the data frame name from the variable name: 

table(mdgperson$state) 

The output is very simple, with no totals (margins). The different values for the variable state in the 

data frame mdgperson is in the first line of the output and the frequencies are in the second: 

 2  4  5  6  

17 12  6 13  

To add totals, we use the addmargins command. As the R commands are actually functions, we can 

use a command within another command, like this: 

addmargins(table(mdgperson$state)) 

We see that we have now added a total to the output listing: 

  2   4   5   6 Sum  

 17  12   6  13  48  

If we want percentages we can add the prop.table command and multiply by 100: 

addmargins(prop.table (table(mdgperson$state)))*100 

The percentage table: 

        2         4         5         6       Sum  

 35.41667  25.00000  12.50000  27.08333 100.00000 
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These to outputs may be combined with the cbind or rbind commands. cbind combines columns 

while rbind combine rows: 

cbind(frequency=addmargins(table(mdgperson$state)),percent=addmargins(prop.ta
ble (table(mdgperson$state)))*100) 

rbind(frequency=addmargins(table(mdgperson$state)),percent=addmargins(prop.ta
ble (table(mdgperson$state)))*100) 

The 2 outputs, the first as columns and the second as rows: 

    frequency   percent 

2          17  35.41667 

4          12  25.00000 

5           6  12.50000 

6          13  27.08333 

Sum        48 100.00000 

                 2  4    5        6 Sum 

frequency 17.00000 12  6.0 13.00000  48 

percent   35.41667 25 12.5 27.08333 100 

The default for these frequency tables is to omit the NA values. If we want the NA’s, we add the 

exclude argument: 

table(mdgperson$b6,exclude = NULL) 

We see that we have a column fro NA: 

   1    2    3 <NA>  

  19   13    4   12  

To add cumulative frequencies, we can use the transform command which add them after the 

frequency table is converted to a data frame. To convert the output table to a data frame we use the 

as.data.frame function. The data frame will have to variables, state and Freq. We calculate the 

cumulative frequencies by using the cumsum function for the Freq variable. The syntax looks like 

this: 

transform(as.data.frame(table(state=mdgperson$state)),cum_freq=cumsum(Freq)) 

This gives us an output table: 

  state Freq cum_freq 

1     2   17       17 

2     4   12       29 

3     5    6       35 

4     6   13       48 
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Now we can make a table with both cumulative frequencies and percentages and missing values 

included: 

transform(as.data.frame(table(b6=mdgperson$b6,exclude=NULL)),percentage=Freq/
nrow(mdgperson)*100,cum_freq=cumsum(Freq),cum_pct=cumsum(Freq/nrow(mdgperson)
*100)) 

We use the nrow function to find the number of rows in the data frame. This is the output: 

    b6 Freq percentage cum_freq   cum_pct 

1    1   19  39.583333       19  39.58333 

2    2   13  27.083333       32  66.66667 

3    3    4   8.333333       36  75.00000 

4 <NA>   12  25.000000       48 100.00000 

We can use the table command for two-way frequencies also. In this example we include totals and 

NA values: 

addmargins(table(mdgperson$state,mdgperson$b6,exclude=NULL)) 

The two-way frequency with totals and NA’s: 

       1  2  3 <NA> Sum 

  2    4  5  2    6  17 

  4    4  2  2    4  12 

  5    3  3  0    0   6 

  6    8  3  0    2  13 

  Sum 19 13  4   12  48 

There are other commands for frequency tables in other R packages, like summarytools and tabular. 

Python 
We can use the crosstab function to create simple frequency tables: 

pd.crosstab(mdgperson.state, columns="Frequency") 

This will give us a table like this: 
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We can add totals to the table: 

pd.crosstab(mdgperson.state, columns='Frequency', margins=True) 

There will be totals both in the columns and rows: 

 

When we want percentages and cumulative counts and percentages we can calculate them, for 

instance like this: 

freqvar = 'b6' 
freq = mdgperson[freqvar].value_counts(dropna=False).sort_index() 
freq = pd.DataFrame({ 
    freqvar: freq.index, 
    'Frequency': freq.values, 
    'Percent': ((freq.values/freq.values.sum())*100).round(2), 
    'Cumulative Frequency': freq.values.cumsum(), 
    'Cumulative Percent': 
((freq.values.cumsum()/freq.values.sum())*100).round(2) 
} 
) 
freq 
 

The output will be like this: 

 

 

If there are NaN values in the categories they will not be included as separate rows or columns 

unless we change the NaN to a valid value, for instance the text Missing. Here is an example: 

pd.crosstab(mdgperson['b6'].fillna('Missing'), columns='Frequency', 
margins=True) 

The Nan values in the categories are now included as a Missing category as we have filled them with 

the text Missing: 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

40 

 

8.2. Descriptive statistics 

These are the naming of basic statistics made on numeric variables: 

Statistic Sas Spss Stata R Python 

Maximum Max max max max max 

Minimum Min min min min min 

Average Mean mean mean mean mean 

Sum Sum sum sum sum sum 

Number of valid 

values 

N n n or count count count 

Number of missing 

values 

Nmiss N/A N/A ~sum(is.na(.)) (when using 

package dplyr) 

N/A 

Standard deviation Std stddev sd sd std 

Sas 
The basic procedure used in Sas for descriptive statistics is Proc means. It is found in the menu Tasks 

> Describe > Summary statistics. The output for 2 variables with some different statistics is like this: 

 

 

When we write syntax, it will look like this: 

proc means data=mdgperson n mean min max sum std; 

 var member b5; 

 title "Summary statistics"; 

run; 
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Spss 
In Spss we use the Descriptives command, and it is found under Analyze > Descriptive statistics > 

Descriptives. The same statistics as above will be like this in Spss: 

 

The Spss syntax: 

DESCRIPTIVES VARIABLES=member b5 

  /STATISTICS= MEAN MIN MAX SUM STDDEV. 

Stata 
Stata has descriptive statistics under Statistics > Summaries, tables, and tests > Tables > Table of 

summary statistics (tabstat): 

 

We can write the code instead of using the menus: 

tabstat member b5, statistics(count mean min max sum sd) columns(statistics) 

R 
To get basic descriptives on a data frame we can use the summary command: 

summary(mdgperson) 

The output will be like this: 

      hh               state              urbrur              member      

 Length:48          Length:48          Length:48          Min.   :1.000   

 Class :character   Class :character   Class :character   1st Qu.:2.000   

 Mode  :character   Mode  :character   Mode  :character   Median :3.500   

                                                          Mean   :3.458   

                                                          3rd Qu.:5.000   

                                                          Max.   :6.000   
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       b3               b4              b5              b6        

 Min.   : 0.000   Min.   :1.000   Min.   : 1.00   Min.   :1.000   

 1st Qu.: 1.000   1st Qu.:1.000   1st Qu.:11.50   1st Qu.:1.000   

 Median : 2.000   Median :2.000   Median :18.00   Median :1.000   

 Mean   : 2.667   Mean   :1.562   Mean   :21.15   Mean   :1.583   

 3rd Qu.: 2.000   3rd Qu.:2.000   3rd Qu.:25.50   3rd Qu.:2.000   

 Max.   :11.000   Max.   :2.000   Max.   :67.00   Max.   :3.000   

                                  NA's   :1       NA's   :12      

For character variables we only get information about the number of rows (Length: 48). For numeric 

variables we get minimum, 1st quantile, median, 3rd quantile, maximum and NA’s. 

For more specific descriptives we may use the dplyr package. If it is not installed it can be installed 

with the install.packages command  

install.packages("dplyr") 

Packages that are not included in the basic R language need to be loaded and attached by using the 

library command: 

library(dplyr) 

Now we can use it to for instance list some descriptive statistics. The dplyr package can pipe 

commands together and we use %>% as the pipe. First, we choose our input data frame. Then we 

pipe it to our descriptives command: 

mdgperson %>% 
   summarize_if(is.numeric,c("sum","mean","sd","min","max")) 

 

We have chosen that we only want to use the numeric variables in the data frame by using the 

is.numeric function, which will select only the numeric variables. The result is like this: 

  member_sum b3_sum b4_sum b5_sum b6_sum member_mean  b3_mean b4_mean b5_mean 

1        166    128     75     NA     NA    3.458333 2.666667  1.5625      NA 

  b6_mean member_sd    b3_sd    b4_sd b5_sd b6_sd member_min b3_min b4_min 

1      NA  1.687984 3.068948 0.501328    NA    NA          1      0      1 

  b5_min b6_min member_max b3_max b4_max b5_max b6_max 

1     NA     NA          6     11      2     NA     NA 

Variables with NA’s will have NA for all the descriptives. To avoid the NA’s we can omit with the 

argument na.rm=TRUE: 

mdgperson %>% 
   summarize_if(is.numeric,c("sum","mean","sd","min","max"),na.rm=TRUE) 
 

Now we get figures for all the variables: 
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  member_sum b3_sum b4_sum b5_sum b6_sum member_mean  b3_mean b4_mean  b5_mea
n 

1        166    128     75    994     57    3.458333 2.666667  1.5625 21.1489
4 

   b6_mean member_sd    b3_sd    b4_sd    b5_sd     b6_sd member_min b3_min 

1 1.583333  1.687984 3.068948 0.501328 14.07585 0.6917886          1      0 

  b4_min b5_min b6_min member_max b3_max b4_max b5_max b6_max 

1      1      1      1          6     11      2     67      3 

If we want to count the NA’s we can do like this: 

mdgperson %>% 
   summarise_if(is.numeric,~sum(is.na(.))) 
 

The is.na function returns TRUE when a value is NA and FALSE when it is not. The number of true 

values will then be added up for each numeric variable (the dot within is.na symbolize all variables 

within a data frame and is.numeric limit it to the numeric variables. The result is here: 

  member b3 b4 b5 b6 

1      0  0  0  1 12 

We see that the names of the counts of NA’s are the same as the original variable names. Now we 

can combine the descriptives into one data frame. To do that we first put each of the descriptives in 

separate data frames. Then we rename the names of the NA counts with the colnames and paste0 

commands. Finally, we combine them together with the cbind command: 

desc<-mdgperson %>% 
   summarize_if(is.numeric,c("sum","mean","sd","min","max"),na.rm=TRUE) 
nnas<-mdgperson %>% 
   summarise_if(is.numeric,~sum(is.na(.))) 
colnames(nnas) <- paste0(colnames(nnas),'_na') 
cbind(desc,nnas) 
 

First, we create two data frames, desc and nnas. Then we change the column names for the nnas 

data frame so that we add the text _na at the end of each column. We do that with the paste0 

function which concatenate texts together (the 0 in paste0 tells us that there shall be no spaces 

between the concatenated texts). When there is more than one element in the first argument 

(colnames(nnas)), the second argument will be added to all from the first argument. Hence all the 

column names will be changed. Finally, we combine the columns together with the cbind command: 

  member_sum b3_sum b4_sum b5_sum b6_sum member_mean  b3_mean b4_mean  b5_mean 

1        166    128     75    994     57    3.458333 2.666667  1.5625 21.14894 

   b6_mean member_sd    b3_sd    b4_sd    b5_sd     b6_sd member_min b3_min 

1 1.583333  1.687984 3.068948 0.501328 14.07585 0.6917886          1      0 

  b4_min b5_min b6_min member_max b3_max b4_max b5_max b6_max member_na b3_na 

1      1      1      1          6     11      2     67      3         0     0 

  b4_na b5_na b6_na 

1     0     1    12 
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Python 
We can use the describe method in Pandas to get a fast and brief descriptive overview of our 

numeric columns. The syntax is as simple as this: 

mdgperson.describe() 

The result is shown here: 

 

If we want all columns, we can do like this: 

mdgperson.describe(include='all') 

There will be some other statistics for the string columns in the output: 

 

The top category shows the value with highest frequency and the freq category contains the number 

of rows the top value has. 
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8.3. Descriptive statistics grouped 

We can also group the descriptive statistics.  

Sas 
In Sas we add the Class statement to the Proc means procedure like this: 

proc means data=mdgperson n mean min max sum std; 

 class state; 

 var member b5; 

 title "Summary statistics grouped"; 

run; 

 

The program gives this output: 

 

Spss 
To group the descriptive statistics in Spss we switch to the Means procedure (Analyze > Compare 

means > Means): 

MEANS TABLES=member b5 BY state 

  /CELLS COUNT MEAN MIN MAX SUM STDDEV. 
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Stata 

In Stata we stick to the tabstat command and add the By-group: 

tabstat member b5, by (state) statistics(count mean min max sum sd) 
columns(statistics) 
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Here is the table: 

   

1.1.1 R 
We continue with the dplyr package when we want grouped statistics. Now we use summarize_at 

with the vars argument to choose which variables we want to use: 

mdgperson %>% 
   group_by(state) %>% 
   summarize_at(vars(member,b5),c("sum","mean","sd","min","max"),na.rm=TRUE) 
 

We group by state and calculate sum, mean, standard deviation, minimum and maximum values for 

member and b6 and remove NA values. The result will be a data frame which looks like this: 

# A tibble: 4 x 11 

  state member_sum b5_sum member_mean b5_mean member_sd b5_sd member_min b5_min member_max b5_max 

  <chr>      <dbl>  <dbl>       <dbl>   <dbl>     <dbl> <dbl>      <dbl>  <dbl>      <dbl>  <dbl> 

1 2             57    324        3.35    19.1      1.69 12.6           1      3          6     45 
2 4             42    210        3.5     17.5      1.78  9.52          1      7          6     37 
3 5             21    206        3.5     34.3      1.87 23.4           1     13          6     67 
4 6             46    254        3.54    21.2      1.71 11.9           1      1          6     42 

Python 
We can also have our descriptive statistics grouped. Here is an example where we group by state: 

mdgperson.groupby(mdgperson['state']).describe() 

The result is now by state, and the statistics are transposed: 
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The sum of the values is not included in this overview. To calculate the sum, we can use the agg 

function: 

mdgperson.groupby(mdgperson['state']).agg(b5_Sum=('b5', 'sum'), 
                                          b5_N=('b5', 'count'), 
                                          b5_Size=('b5', 'size'), 
                                          b5_Mean=('b5', 'mean'), 
                                          b5_Min=('b5', 'min'), 
                                          b5_Max=('b5', 'max') 
                                         ) 
 

Beware the difference between count and size. count omits NaN’s in the calculation while size 

includes them: 

 

If we want to calculate the number of missing values, there are no built-in aggregation function for 

this. However, we can create our own functions within the aggregation. They are called lambda 

functions. To calculate the number of missing values we subtract the count from the size. Beware 

that there should be no brackets after size, however after count we need brackets: 

mdgperson.groupby(mdgperson['state']).agg(b5_Sum=('b5', 'sum'),  
                                          b5_N=('b5', 'count'),  
                                          b5_Nmiss=('b5', lambda x: (x).size-
(x).count()), 
                                          b5_Mean=('b5', 'mean'),  
                                          b5_Min=('b5', 'min'),  
                                          b5_Max=('b5', 'max')  
                                          ) 
 

The number of missing values is now listed as a separate column: 
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9. Conditions 
Conditions are widely used in programming. We often want to do actions based on conditions. 

These actions are for instance to assign values to new variables or to select which data to read or 

write. A condition will be based on expressions. An expression will usually consist of one or more 

operators, as described on page 18, and one or more variables and sometimes functions. We will 

now look at how we use conditions when we read and write data.  

9.1. Sas 

An If statement is only allowed in the Data step and is used for a condition after an observation is 

read. If we want to select observations upon reading, we use a Where statement. The Where 

statement may be used in the Data step and most of the procedures. This means that we don’t have 

to make a subset of the data before we make a frequency table. We may simply use a Where 

statement with the selection condition in the procedure: 

proc freq data=mdgperson; 

 where b5 >= 11; 

 table b4 /missing; 

 title 'Persons aged 11 years and above'; 

run; 

 

If we want to make a new dataset as a subset of the data, we can use a Data step like this: 

data heads; 

 set mdgperson; 

 where b3 = 0; 

run; 

 

The Where statement selects the observations when the data is read. This is more efficient 

compared to using an If statement instead because the observation which is finally selected is kept 

during all Data step statements. This program gives the same result as the one above, but it will use 

more time: 

data heads; 

 set mdgperson; 

 if b3 = 0 then  

  output; 

run; 

 

If statements for selection should only be used when we use variables made in the actual Data step 

in our conditions.  

9.2. Spss 

The command for selecting data in Spss is Select if. It will select which observations to keep. We can 

make a temporary subset of the data if we use it together with the Temporary command. The whole 

dataset is available again after the Frequency command. For a frequency table based on a subset of 

data we can do like this: 

TEMPORARY. 

SELECT IF (b5 >= 11). 

FREQUENCIES b4. 

 

If we want a permanent subset of our data, we drop the Temporary command and add a Save 

command instead: 
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SELECT IF (b3 = 0). 

SAVE OUTFILE='h:\mdg\data\heads.sav'. 

9.3. Stata 

For the frequency table we can make a subset by adding an if qualifier: 

tab1 b4 if b5 >= 11 

However, this qualifier includes the observations with missing values. To avoid this, we can add one 

more condition like this: 

tab1 b4 if b5 >= 11 & b5 <115 

To create a permanent subset of our data, we can use the keep and save commands: 

keep if b3 == 0 

save "h:\mdg\data\heads.dta", replace 

9.4. R 

We can use the subset command in R when we create our tables. Here we tell that we will make a 

frequency table for the variable state in the mdgperson data frame. We also use the subset 

command to select rows where the variable b5 is greater than 11. NA’s are excluded: 

table(state=subset(mdgperson$state,mdgperson$b5 > 11),exclude=NA) 

To create a new data frame with a subset of the data we can also use subset: 

heads <- subset(mdgperson,b3 == 0) 

For more use of conditions, see the chapter about missing values, page 139. 

9.5. Python 

We can use the loc method to select the rows we want to use in our table. It is connected to the 

column we will distribute the table by: 

pd.crosstab(mdgperson.loc[mdgperson['b5'] >= 11, 'state'], 
columns='Frequency', margins=True) 

Now only those where b5 >= 11 are included in the table: 

 

When we have a crosstab with two columns, we only need the selection once: 
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pd.crosstab(mdgperson.loc[mdgperson['b5'] >= 11, 'state'], 
mdgperson['urbrur'], margins=True) 

We can create a new data frame where we select rows according to a condition: 

heads = mdgperson.loc[mdgperson['b3'] == '0'] 
heads 
 

When we have more than one condition, we should use parenthesises, otherwise we may get an 

error message like this: 

TypeError: Cannot perform 'rand_' with a dtyped [float64] array and scalar 

of type [bool] 

This is due to the precedence of & and >, where & has the higher. Here is an example where we 

want list heads less than 30 years old: 

mdgperson.loc[(mdgperson['b3'] == '0') & (mdgperson['b5'] < 30)] 

When we want to select based on a list of values for a column, we can use the isin function: 

mdgperson.loc[mdgperson['hh'].isin(['040024', '020074'])] 

Instead of using the loc method we can use the query method. The loc selections above will be 

queries like this: 

heads = mdgperson.query('b3 == "0"') 
mdgperson.query('b3 == "0" & b5 < 30') 
mdgperson.query('hh in ["040024", "020074"]') 
 

For the last one we use the in operator instead of the isin function that was used above. 
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10. Dealing with duplicates 
There are usually some variables (or just one) that will identify each observation in our datasets. 

These variables should have unique values, if not the dataset contains duplicates. Duplicates cause 

problems when we match datasets and in other data processing and should be avoided. There are 

several reasons for duplicates in a dataset: 

• Double data entry 

• The same identification used for two different units 

• Mistyping of the identification 

• Programming errors 

 

To get rid of duplicates we can use some programming syntax. First, we have to find which 

duplicates we have. Then we can delete the true duplicates (where all corresponding variables have 

the same value for more than one observation). After we have deleted true duplicates, we find out 

how to deal with the remaining duplicates and write syntax for doing these corrections. 

10.1. Sas 

We need a few lines of code to list the duplicates in Sas: 

proc sql number; 

 title 'Duplicates'; 

 select *, count(1) as no_of_rows 

 from mdgperson 

 group by hh, member 

 having no_of_rows > 1 

 order by hh, member 

 ; 

quit; 

 

This list will be produced: 

 

By looking at this list we find that for household 040024 there are duplicates for each person. 

However, the data for each person differ between the duplicates. It looks like one of the households 

has got a wrong household number. This should be checked and corrected. For household number 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

53 

060041 we see that all variables have the same data for both observations. This looks like doubly 

entered data, called a true duplicate. This should also be checked and one of them is likely to be 

deleted. To delete true duplicates, we can use the noduprecs option in Proc sort. It will delete 

duplicate records (the output dataset without duplicates is the one called mdgperson_noduprec): 

proc sort data=mdgperson out=mdgperson_noduprec noduprecs; 

 by hh member; 

run; 

 

The log will tell us how many records have been deleted: 

NOTE: 1 duplicate observations were deleted. 

If we, after some research, find that one of the household identifications is a mistype of 040034 we 

can change the identification for those and sort the data again: 

data mdgperson_nodup; 

 set mdgperson_noduprec; 

 by hh member; 

 if hh = '040024' and first.member then 

  do; 

   hh = '040034'; 

  end; 

run; 

proc sort data=mdgperson_nodup ; 

 by hh member; 

run;  

 

Finally, we should re-run the duplicate check to be sure there are no duplicates. 

10.2. Spss 

There is a menu for duplicate checking in Spss, however it creates rather complex syntax. Instead, 

we can write our own, easier syntax: 

GET FILE='H:\MDG\Data\mdgperson.sav'. 

SORT CASES BY hh member. 

MATCH FILES FILE=* 

            /FIRST=first_mem 

            /LAST=last_mem 

            /BY hh member 

            . 

EXECUTE. 

TEMPORARY. 

SELECT IF NOT(first_mem and last_mem). 

LIST hh state TO last_mem. 

 

This syntax will give us the same list as the Sas program did. When we want to delete true 

duplicates, we first sort the dataset by all the variables (there is a limit 64 variables, if we have more, 

we can sort by the 64 variables most likely to be different). Then we check for duplicates with the 

Match files command and select those who are the first within the group.  

SORT CASES BY hh TO b6. 

MATCH FILES FILE=* 

            /FIRST=first_rec 

            /LAST=last_rec 

            /BY hh TO b6 

            . 

EXECUTE. 
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TEMPORARY. 

SELECT IF NOT(first_rec and last_rec). 

LIST hh TO last_rec. 

SELECT IF (first_rec = 1). 

EXECUTE.  

 

The Spss log does not tell us if any observations were dropped.  

For the duplicates with the wrong household number, we change the number for the first 

occurrence of each person with the number 040024 to 040034: 

IF (hh = '040024' and first_mem = 1) hh = '040034'. 

EXECUTE. 

SORT CASES BY hh member. 

 

Finally, we delete the first- and last-variables. 

DELETE VARIABLES first_mem last_mem first_rec last_rec. 

EXECUTE. 

10.3. Stata 

We sort the data by the identification variables. Then we generate a duplicate checking variable 

called dup. It will contain the number of records in each group. If this variable has a value greater 

than 1, the observations are duplicates on the identification. 

use "h:\mdg\data\mdgperson.dta", clear 
sort hh member, stable 
by hh member:  generate dup = _N 
list if dup > 1 
 

Now we want to delete the true duplicates. First, we drop the variable dup. Then we sort on all 

variables and create a duplicate identifier called dup_rec. If it has a value above 1 it is the second or 

more duplicate and shall be deleted: 

drop dup  
sort _all, stable 
by _all:  generate dup_rec = _N 
drop if dup_rec>1 
drop dup_rec 

Stata tells us how many observations were dropped: 

(1 observation deleted) 

We now will want to change the value of household number from 040024 to 040034 as we did with 

Sas and Spss above. First, we must create the dup variable, with the syntax below it will contain a 

counter within each group. Then we do our corrections: 

sort hh member, stable 
by hh member:  generate dup = cond(_N==1,0,_n) 
replace hh = "040034" if hh == "040024" & dup == 1 
sort hh member 
drop dup 

Stata tells us how many changes were made: 

(6 real changes made) 
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10.4. R 

To delete rows that are exactly equal we can use the duplicated function. However when we want to 

remove duplicates we use the negation ! in front of duplicated: 

mdgperson_noduprec <- mdgperson[!duplicated(mdgperson), ] 

The syntax is somehow different from previous syntax. Within the brackets we define what to 

extract from the two dimensions of the data frame. Before the comma we select our rows and with 

!duplicated all rows that are not duplicates will be selected. We leave it empty after the comma and 

this means all columns shall be selected. The row names (or numbers) of the selected rows will not 

be updated. We can update them with this command: 

rownames(mdgperson_noduprec)<-1:nrow(mdgperson_noduprec) 

To list duplicates by identification variables, we can use the group_by in the dplyr package where we 

count the number of rows for the id variables and filter those who have more than one: 

mdgperson_noduprec %>% 
   group_by(hh,member) %>% 
   add_count() %>% 
   filter(n>1) %>% 
   arrange(hh,member) 

The code above gives us this list of duplicates: 

   hh     state urbrur member    b3    b4    b5    b6     n 

   <chr>  <chr> <chr>   <dbl> <dbl> <dbl> <dbl> <dbl> <int> 

 1 040024 4     1           1     0     2    20     3     2 
 2 040024 4     1           1     0     1    37     2     2 
 3 040024 4     1           2     1     2    33     2     2 
 4 040024 4     1           2    11     2    23     3     2 
 5 040024 4     1           3    11     2     7    NA     2 
 6 040024 4     1           3     2     2    17     1     2 
 7 040024 4     1           4     2     1    14     1     2 
 8 040024 4     1           4    10     2     9    NA     2 
 9 040024 4     1           5    10     2    18     1     2 
10 040024 4     1           5     2     1     9    NA     2 
11 040024 4     1           6     2     2    11    NA     2 
12 040024 4     1           6    10     1    12     1     2 

To change the values for the first of a duplicated household we can use dplyr. We start with grouping 

by hh and member and then we create a variable called member_first. This variable will have the 

value 1 when it is first within the group and 0 otherwise. Then we group by member to ungroup hh 

because we can’t change a value that is defined in a group. We change to another hh number when 

it is the first within hh 040024. Finally, we sort the data with the arrange command and remove the 

variable member_first with the subset command. All these commands are piped together with %>%. 

mdgperson_nodup <- mdgperson_noduprec %>% 
   group_by(hh,member) %>% 
   mutate(member_first = as.integer(ifelse((row_number() == 1), 1, 0))) %>% 
   group_by(member) %>%   
   mutate(hh=ifelse(hh=="040024" & member_first == 1,"040034",hh)) %>% 
   arrange(hh,member) %>% 
   subset(select=-member_first) 
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10.5. Python 

Python can check if a record is a duplicate and can also choose which duplicate to delete. For a 

duplicate record we can delete duplicates like this: 

mdgperson_noduprec = mdgperson.drop_duplicates() 

As the rows for these duplicates are exactly equal, it does not matter if we keep the first or last of 

these rows. The intention is to get rid of all but one of the rows that are equal. That leaves us with a 

data frame without true duplicates.  

Beware that the index (row numbers) is not updated. If we want to update the index, we can add the 

ignore_index option with the True parameter: 

mdgperson_noduprec = mdgperson.drop_duplicates(ignore_index=True) 

If we want to find the duplicates before we delete them, we can use the duplicated method: 

mdgperson.loc[mdgperson.duplicated() == True] 

To find the duplicates for identification columns we can also use the duplicated method, we just have 

to add the identification columns:  

mdgperson_noduprec[mdgperson_noduprec.duplicated(['hh', 'member'], 
keep='first')].sort_values(['hh', 'member']) 

This gives us a list of the last occurrences of duplicates. The keep=first option tells us that the first 

occurrence is to be kept, hence the last will be the duplicate: 

 

If we want a list of all duplicates, we can use keep=False which selects all duplicates: 

mdgperson_noduprec[mdgperson_noduprec.duplicated(['hh', 'member'], 
keep=False)].sort_values(['hh', 'member']) 
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This will list all the rows with common combinations of the columns hh and member: 

 

We found out that the last of these duplicates should have the hh number 040034 instead of 

040024. To change the hh for these duplicates we can first create a member count (memcount) for 

each combination of hh and member. The count will be 0 for the first, 1 for the second and so on. 

Then we can recode those with memcount = 1 using the loc method.  

mdgperson_noduprec['memcount'] = mdgperson_noduprec.groupby(['hh', 
'member']).cumcount() 
mdgperson_noduprec.loc[(mdgperson_noduprec.memcount == 1) & 
(mdgperson_noduprec.hh == '040024'), 'hh'] = '040034' 
mdgperson_nodup = mdgperson_noduprec 
mdgperson_nodup 

Here we see in the memcount column that the first row within the group is 0 and the next is 1. In 

this way we can separate between the duplicates: 
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11. Labels for variables and data values 
The variable names often do not describe the content of a variable very well. To add some more 

information about the content we should use labels. Adding variable labels will make it easier to use 

the dataset because it gives us a better documentation than just the variable names. Value labels 

(called formats in Sas) are also very helpful. It is much easier for humans to relate to a text instead 

of a code. Value labels are used to replace codes with texts.  

11.1. Sas 

We use the Label statement to add variable labels. This is normally done during a Data step. We 

should add variable labels to all variables we want to keep. When we import an external file to Sas 

we add variable labels. Each new variable we add later to datasets should also be labelled. Here is 

the import program used earlier, now with labels added: 

DATA mdgperson ; 

  INFILE 'H:\MDG\Data\mdgperson.txt' TRUNCOVER LRECL=15; 

  INPUT 

    @01 hh     $CHAR6. 

    @07 state  1. 

    @08 urbrur 1. 

    @09 member 1. 

    @10 b3     2. 

    @12 b4     1. 

    @13 b5     2. 

    @15 b6     1. 

    ; 

  LABEL 

    hh     = 'Household identification' 

    state  = 'State' 

    urbrur = 'Urban/Rural location of household' 

    member = 'Member number within household' 

    b3     = 'Relationship to head of household' 

    b4     = 'Sex' 

    b5     = 'Age' 

    b6     = 'Civil status' 

    ; 

RUN; 

Adding the value labels (formats) is done in a two-step process. First, we create the formats and 

then we connect the formats to their variables. The first step, creating the formats, looks like this: 

PROC FORMAT; 

 VALUE STATE (notsorted) 

   1     = '01 Central' 

   2     = '02 Capital' 

   3     = '03 North' 

   4     = '04 East' 

   5     = '05 South' 

   6     = '06 West' 

   OTHER = 'N/A' 

   ; 

 VALUE URBRUR (notsorted) 

   1     = 'Urban' 

   2     = 'Rural' 

   OTHER = 'N/A' 

   ; 

 VALUE HEAD_REL (notsorted) 

   0     = 'Head' 
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   1     = 'Spouse' 

   2     = 'Daughter/son' 

   3     = 'Spouse of son/daughter' 

   4     = 'Grandchild' 

   5     = 'Sister/brother' 

   6     = 'Sister/brother in-laws' 

   7     = 'Parent' 

   8     = 'Parent-in-law' 

   9     = 'Niece/nephew' 

   10    = 'Other relative' 

   11    = 'Non relative' 

   OTHER = 'N/A' 

   ; 

 VALUE SEX (notsorted) 

   1     = 'Male' 

   2     = 'Female' 

   OTHER = 'N/A' 

   ; 

 VALUE CIVIL_STATUS (notsorted) 

   1     = 'Never married' 

   2     = 'Married – monogamy' 

   3     = 'Married – polygamy' 

   4     = 'Widowed' 

   5     = 'Separated' 

   6     = 'Divorced' 

   .U    = 'N/A' 

   OTHER = 'Missing' 

   ; 

RUN; 

There is a menu in Enterprise guide for creating formats, however it is much easier to type them in 

directly as syntax in a program. It is also possible to create formats from Sas datasets.  

The connection can be done in a Data step if we want a permanent connection or in listing 

procedures like Proc freq, Proc means, Proc print and so on if we want a temporary connection. Of 

course, the formats must be available before we connect them to variables. Here is the permanent 

connection added to the import program: 

DATA mdgperson ; 

  INFILE 'H:\MDG\Data\mdgperson.txt' TRUNCOVER LRECL=15; 

  INPUT 

    @01 hh     $CHAR6. 

    @07 state  1. 

    @08 urbrur 1. 

    @09 member 1. 

    @10 b3     2. 

    @12 b4     1. 

    @13 b5     2. 

    @15 b6     1. 

    ; 

  LABEL 

    hh     = 'Household identification' 

    state  = 'State' 

    urbrur = 'Urban/Rural location of household' 

    member = 'Member number within household' 

    b3     = 'Relationship to head of household' 

    b4     = 'Sex' 

    b5     = 'Age' 

    b6     = 'Civil status' 

    ; 

  FORMAT 
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   state  STATE. 

   urbrur URBRUR. 

   b3     HEAD_REL. 

   b4     SEX. 

   b6     CIVIL_STATUS.  ; 

RUN; 

When we connect the formats to variables we must add a dot at the end of their names, as seen 

above. Format names for character variables must start with a $ sign. Numeric formats can only be 

used for numeric variables and vice versa. 

11.2. Spss 

It is possible to add variable and value labels from the variable view window. This is not 

recommended because we can’t paste the syntax for these operations. If we then must re-create the 

dataset (which is often the case) all our labels will be gone, and we have to type in the labels once 

more. It is far better to use syntax to add the labels. The labels will be permanently added to the 

active dataset when the commands are executed. Here is the syntax for variable labels: 

VAR LABELS 

    hh     'Household identification' 

    state  'State' 

    urbrur 'Urban/Rural location of household' 

    member 'Member number within household' 

    b3     'Relationship to head of household' 

    b4     'Sex' 

    b5     'Age' 

    b6     'Civil status' 

    . 

For value labels it is done in one step. When we create the labels, we also tell Spss which variables 

they shall connect to: 

VALUE LABELS 

    state  

            1  '01 Central' 

            2  '02 Capital' 

            3  '03 North' 

            4  '04 East' 

            5  '05 South' 

            6  '06 West' 

    / 

    urbrur 

            1  'Urban' 

            2  'Rural' 

    / 

    b3     

            0  'Head' 

            1  'Spouse' 

            2  'Daughter/son' 

            3  'Spouse of son/daughter' 

            4  'Grandchild' 

            5  'Sister/brother' 

            6  'Sister/brother in-laws' 

            7  'Parent' 

            8  'Parent-in-law' 

            9  'Niece/nephew' 

            10  'Other relative' 

            11  'Non relative' 

    / 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

61 

    b4     

            1  'Male' 

            2  'Female' 

    / 

    b6     

            1  'Never married' 

            2  'Married – monogamy' 

            3  'Married – polygamy' 

            4  'Widowed' 

            5  'Separated' 

            6  'Divorced' 

            9  'N/A' 

    . 

If the same value labels shall be used for more variables, we don’t repeat the whole value labels 

command. We just add more variable names to the same value labels. 

11.3. Stata 

The variable labels are permanently connected to the opened dataset, similar to Spss: 

label variable hh      "Household identification" 
label variable state   "State" 
label variable urbrur  "Urban/Rural location of household" 
label variable member  "Member number within household" 
label variable b3      "Relationship to head of household" 
label variable b4      "Sex" 
label variable b5      "Age" 
label variable b6      "Civil status" 

 

Beware that only numeric variables may be given value labels. They are added in two steps, like it is 

done in Sas. First, we define the value labels: 

label define state /// 
1 "01 Central" /// 
2 "02 Capital" /// 
3 "03 North" /// 
4 "04 East" /// 
5 "05 South" /// 
6 "06 West" 
label define urbrur /// 
1 "Urban" /// 
2 "Rural" 
label define head_rel /// 
0 "Head" /// 
1 "Spouse" /// 
2 "Daughter/son" /// 
3 "Spouse of son/daughter" /// 
4 "Grandchild" /// 
5 "Sister/brother" /// 
6 "Sister/brother in-laws" /// 
7 "Parent" /// 
8 "Parent-in-law" /// 
9 "Niece/nephew" /// 
10 "Other relative" /// 
11 "Non relative" 
label define sex /// 
1 "Male" /// 
2 "Female" 
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label define civil_status /// 
1 "Never married" /// 
2 "Married - monogamy" /// 
3 "Married - polygamy" /// 
4 "Widowed" /// 
5 "Separated" /// 
6 "Divorced" /// 
.u "N/A" 

Next, we add the value labels permanently to their variables: 

label values state     state 
label values urbrur    urbrur 
label values b3        head_rel 
label values b4        sex 
label values b6        civil_status 

11.4. R 

We add variable labels to a data frame by first creating a vector with the variable names and labels. 

Then we add them to the data frame with the upData command in the Hmisc package. As the Hmisc 

package is not attached as default we attach it first with the library command: 

mdgperson.var.labels <- c(hh     = 'Household identification', 
                          state  = 'State', 
                          urbrur = 'Urban/Rural location of household', 
                          member = 'Member number within household', 
                          b3     = 'Relationship to head of household', 
                          b4     = 'Sex', 
                          b5     = 'Age', 
                          b6     = 'Civil status' 
                          ) 
library(Hmisc) 
mdgperson_nodup <- upData(mdgperson_nodup, labels = mdgperson.var.labels) 

In R we don’t use value labels (formats) in the same way as in the other packages described in this 

document. Instead, R has its own variable type called factor. When we define a variable as a factor it 

converts the values to indexes which are called value levels. These indexes may be given texts, called 

value labels.  

We can see this with a simple example. First, we create a vector with values for sex: 

sex <- c("m","k","k","m","k") 
str(sex) 

The structure looks like this: 

chr [1:5] "m" "k" "k" "m" "k" 

We can create a factor from the vector: 

sexf <- factor(sex) 
str(sexf) 

The structure now looks like this: 

Factor w/ 2 levels "k","m": 2 1 1 2 1 

The factor has two levels (unique values), k and m. They are represented with index values, 1 for 

females (k) and 2 for males (m).  
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To give texts to the values of sex we can convert to factor and at the same time define the levels 

with its labels: 

sexfl <- factor(sex,levels=c("m","k"),labels=c("Male","Female")) 
str(sexfl) 

Males are given the index 1 and females 2 because we defined male before female: 

Factor w/ 2 levels "Male","Female": 1 2 2 1 2 

This is opposite of the first example where females got 1 and males 2. The index always starts with 1 

and for each unique value it is added with 1. For values that goes from 1 and increase by one for 

each value the index will have the same value as the original values. Otherwise, the index will be 

different from the original value.  

When a variable is defined as a factor and we want to subset on values for the variable, we should 

use the variable labels, not the original values. We can use the index, but then we must know which 

index value each unique value has. Some examples with their results, we see that the indexes are 

different between the sexf and the sexfl variables: 

> subset(sex,sex =="k") 

[1] "k" "k" "k" 

> subset(sexf,sexf =="k") 

[1] k k k 

Levels: k m 

> subset(sexf,as.numeric(sexf) =="1") 

[1] k k k 

Levels: k m 

> subset(sexfl,sexfl =="Female") 

[1] Female Female Female 

Levels: Male Female 

> subset(sexfl,as.numeric(sexfl) =="2") 

[1] Female Female Female 

Levels: Male Female 

Now we can change our categorical variables to factors. We start with defining the values (levels) 

and labels for each variable and put them into separate vectors: 

state.codes <- c(1,2,3,4,5,6) 
state.texts <- c('01 Central','02 Capital','03 North','04 East','05 South','0
6 West') 
urbrur.codes <- c(1,2) 
urbrur.texts <- c('Urban','Rural') 
head_rel.codes <- c(0,1,2,3,4,5,6,7,8,9,10,11) 
head_rel.texts <- c("Head","Spouse","Daughter/son","Spouse of son/daughter","
Grandchild","Sister/brother","Sister/brother in-laws","Parent","Parent-in-law
","Niece/nephew","Other relative","Non relative") 
sex.codes <- c(1,2) 
sex.texts <- c('Male','Female') 
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civil_status.codes <- c(1,2,3,4,5,6) 
civil_status.texts <- c('Never married','Married – monogamy','Married – polyg
amy','Widowed','Separated','Divorced') 

We can now use these vectors to define the values and labels for each factor variable we create: 

mdgperson_nodup$state <- factor(mdgperson_nodup$state,levels = state.codes,la
bels=state.texts) 
mdgperson_nodup$urbrur <- factor(mdgperson_nodup$urbrur,levels = urbrur.codes
,labels=urbrur.texts) 
mdgperson_nodup$b3 <- factor(mdgperson_nodup$b3,levels = head_rel.codes,label
s=head_rel.texts) 
mdgperson_nodup$b4 <- factor(mdgperson_nodup$b4,levels = sex.codes,labels=sex
.texts) 
mdgperson_nodup$b6 <- factor(mdgperson_nodup$b6,levels = civil_status.codes,l
abels=civil_status.texts) 

To see the different texts for a variable we can use the levels command: 

levels(mdgperson_nodup$b6) 

The levels are as follows: 

[1] "Never married"      "Married - monogamy" "Married - polygamy" 

[4] "Widowed"            "Separated"          "Divorced"    

11.5. Python 

We can add variable labels as attributes to a data frame. However, they are not shown in any 

outputs. What we can do, though, is to list these attributes. Here is an example: 

varlabels = {'hh': 'Household number', 
             'state': 'State', 
             'urbrur': 'Urban/rural', 
             'member': 'Member number', 
             'b3': 'Relationshipp to head', 
             'b4': 'Sex', 
             'b5': 'Age', 
             'b6': 'Civil status' 
            } 
mdgperson_nodup.attrs = varlabels 
mdgperson_nodup.attrs 

This will give us a listing like this: 

 

We can also list just one variable label: 

mdgperson_nodup.attrs['b5'] 
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When it comes to value labels for variables, we can put the codes and texts in a nested dictionary 

and then add them to our data frame with a replace command. Here is an example on how a nested 

dictionary with value labels for several variables may look like: 

labels = {'state': 
          {'1': '01 Central', 
           '2': '02 Capital',  
           '3': '03 North', 
           '4': '04 East', 
           '5': '05 South', 
           '6': '06 West', 
           np.nan: 'missing'}, 
          'urbrur': 
          {'1': 'Urban', 
           '2': 'Rural'}, 
          'b3': 
          {'0': 'Head',  
           '1': 'Spouse',  
           '2': 'Daughter/son',  
           '3': 'Spouse of son/daughter', 
           '4': 'Grandchild', 
           '5': 'Sister/brother', 
           '6': 'Sister/brother in-laws', 
           '7': 'Parent', 
           '8': 'Parent-in-law', 
           '9': 'Niece/nephew', 
           '10': 'Other relative',  
           '11': 'Non relative'}, 
          'b4': 
          {'1': 'Male',  
           '2': 'Female'}, 
          'b6': 
          {'1': 'Never married',  
           '2': 'Married - monogamy',  
           '3': 'Married - polygamy',  
           '4': 'Widowed',  
           '5': 'Separated',  
           '6': 'Divorced', 
           np.nan: 'missing'} 
         } 

The variable names (state, urbrur etc.) are used as dictionary keys. For each key we have sets 

consisting of codes and texts. That is what makes the directories nested. The codes must be of the 

same types as they are in the data frame. If it is to be connected to an object variable, the codes 

should be in quotes, otherwise no quotes are needed. Beware that you might have to add blanks if 

codes are of different lengths (see the b3 variable it has codes with both 1 and 2 digits. For those 

with one digit, a space has been added at the beginning). 

Now that we have a dictionary with our code lists, we want to add them to our data frame. It can be 

done separately for each variable, for instance with the map function: 

mdgperson_nodup['state'] = mdgperson_nodup['state'].map(labels['state']) 

When we have many code lists to add, it is better to add them all in one command. We do this with 

the replace function: 

mdgperson_nodup = mdgperson_nodup.replace(labels) 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

66 

If the labels are in different nested directories, we can add them together with a concatenate 

directories syntax: {**dict1, **dict2}. Here is an example: 

states = {'state': 
          {'1': '01 Central', 
           '2': '02 Capital',  
           '3': '03 North', 
           '4': '04 East', 
           '5': '05 South', 
           '6': '06 West', 
           np.nan: 'missing'} 
         } 
urbanity = {'urbrur': 
            {'1': 'Urban', 
             '2': 'Rural'} 
           } 
labs = {**states, **urbanity} 
labs 
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12. Storing datasets 
When we have processed our data, we usually want to store them permanently. If we have not 

stored our datasets, both Spss and Stata ask us if we want to store when we exit. R will also ask if we 

want to store unsaved items. Nevertheless, we should store our data before we exit. In Sas we must 

make sure to store our data permanently. The default is that all datasets are stored in a temporary 

folder which is deleted when we exit Sas. To store datasets permanently we first make a Sas alias for 

the folder in which we will store. This alias is called a libref and is defined with a Libname statement. 

We don’t have a specific command for storing datasets permanently, we decide if the data is to be 

stored temporary or permanently when we name our output dataset in a Data step or in a Proc step.  

In Spss we use the Save command and use the whole physical file name with the .sav extension. 

There is an option to define the name of the working directory with the Cd command. If we use this, 

we can later omit the path in the Save command, as it has already been defined. For Stata we use a 

Save command as well. We can also use a Cd command similar to Spss to define the working 

directory. For R we can use the save or saveRDS commands, they store the data in two different 

formats where RDS is the latest. In Python we can save in various data formats. However, the 

parquet format seems to be the preferred one. 

12.1. Sas 

We must define a folder name in Sas for the permanent storage of our data. This is done with the 

libname statement, and the folder is given a local name in Sas, an alias. The folder h:\mdg\data is 

called mdg in Sas. This is called a libref. After the libname statement is executed, Sas will now which 

folder to search in every time we reference to the libref mdg: 

libname mdg 'H:\MDG\Data'; 
proc sort data=mdgperson_nodup out=mdg.mdgperson_nodup; 

 by hh member; 

run; 

The input dataset in this sort, mdgperson_nodup is temporary while the output dataset mdg. 

mdgperson_nodup will be permanent. When we omit the libref, Sas uses the dataset with the libref for 

the temporary folder work. If we try to read or write datasets from a permanent directory and it is 

not defined in the Sas session, we will get an error message like this: 

ERROR: Libname MDG is not assigned. 

This means that the Libname statement must be executed every time a Sas session is started for the 

folder to be available for our use in Sas.  

Formats may also be stored permanently. We must add a folder for the format file with another 

Libname statement and then add the option Libname to the Proc format statement. The formats will 

be stored in a file called formats.sas7bcat. The libref for the formats must be called library. It may 

look like this: 

libname library 'H:\MDG\Cat'; 

PROC FORMAT LIB=library; 

 VALUE SEX (notsorted) 

   1     = 'Male' 

   2     = 'Female' 

   OTHER = 'N/A' 

   ; 

RUN; 
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12.2. Spss 

To store the active dataset, we simply use the Save command: 

SAVE /OUTFILE 'h:\mdg\data\mdgperson_nodup.sav' . 

As mentioned above we can extract the path into a Cd command and then use only the filename in 

the Save command: 

CD 'h:\mdg\data'. 

SAVE /OUTFILE 'mdgperson_nodup.sav' . 

12.3. Stata 

Stata is similar to Spss, we use a save command. Replace is not the default here as it is in Spss, so we 

add the replace option: 

save "h:\mdg\data\mdgperson_nodup.dta", replace 

If we use the cd command, it will be like this: 

cd "h:\mdg\data\" 
save "mdgperson_nodup.dta", replace 

Using these relative paths makes it easier to move or copy our Spss and Stata systems. If we want to 

move a system from a path called h:\mdg\data to c:\mdg\data we will need to change the path only 

in the cd command. If we don’t use relative paths, we will have to change all places where a path is 

mentioned. However, it does not help much to add the cd command to every syntax file. We should 

extract it to a file that could be invoked at start-up. The next chapter describes how we do this. 

12.4. R 

We can use either the save or the saveRDS commands to save data files in R format. With the save 

command the data file will be saved as a Rdata file, hence we should add the extension .Rdata: 

save(mdgperson_nodup,file="h:/MDG/Data/mdgperson_nodup.Rdata") 

When we want to save the file as an RDS file, we use the .rds extension: 

saveRDS(mdgperson_nodup,file="h:/MDG/Data/mdgperson_nodup.rds") 

We can set the working directory and then use relative paths instead of the full path name. To check 

what the current working directory is we use the the getwd command: 

getwd() 

To change the working directory, we use the setwd command: 

setwd("h:/MDG") 

Now we can save the file in the Data folder in H:/MDG without typing the full path: 

save(mdgperson_nodup,file="Data/mdgperson_nodup.Rdata") 
saveRDS(mdgperson_nodup,file="Data/mdgperson_nodup.rds") 
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12.5. Python 

We can store data frames as python pickles, which have the extension .pkl. It is an easy operation: 

mdgperson_nodup.to_pickle(datapath + 'mdgperson_nodup.pkl') 

To open a pickle, we can do this: 

mdg_from_pickle = pd.read_pickle(datapath + 'mdgperson_nodup.pkl') 

The pickle format is not safe as it may include malicious code which can be executed while reading.  

Another possibility is to save our file in json format: 

mdgperson_nodup.to_json(datapath + 'mdgperson_nodup.json') 

This may be opened again like this: 

mdg_from_json = pd.read_json(datapath + 'mdgperson_nodup.json') 

As parquet is the recommended data storage for Python, we should use it. However, it is not 

included in the standard version of Python. Hence, we must install and import it. The installation can 

be done with this code (when we are connected to internet): 

!pip install pyarrow 

This is a one-time operation. The ! at the beginning tells Python to run a system command, which in 

this case is pip. pip is used to install additional modules in Python. Before we can save as a parquet 

file, we must import the pyarrow module, like this: 

import pyarrow 

Now we can save our data frame as a parquet file: 

mdgperson_nodup.to_parquet(datapath + 'mdgperson_nodup.parquet') 

Now we can open the parquet file again: 

mdg_from_parquet = pd.read_parquet(datapath + 'mdgperson_nodup.parquet') 
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13. Automatic invocation at start-up 
We usually want to execute some commands every time we start a session. When we are ready to 

work, all these commands should have been executed. This is possible in Sas and Stata. In Spss we 

can open a syntax file on invocation, but there is no easy way to execute it automatically. The 

commands we want to execute on start-up are typically definition of working directories and they 

will differ from one task to another (i.e., working separately on two different surveys). Therefore, we 

should have separate icons for each survey. 

13.1. Sas 

In Base Sas we put our start-up statements in a file called autoexec.sas. When this file is located in 

the start-up directory, the statements will be executed upon start. As there will be separate 

autoexec.sas files for each survey, they should have separate Sas icons. When a Sas icon is on our 

desktop, we will change the start-up directory in its properties: 

 

Here we have changed the start directory to h:\mdg\syntax. If we put an autoexec.sas file in this 

folder the statements in that file will be executed upon start. The autoexec.sas may look like this: 

libname mdg 'H:\MDG\Data'; 
libname library 'H:\MDG\Cat'; 

If we will use more permanent folders for our data, we simply add more Libname statements to the 

autoexec.sas file. If we have these Libname statements in other programs, we should remove them 

from the other programs when they are put in the autoexec.sas file. We can add other statements in 

the autoexec.sas file as well. 
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If we use Enterprise Guide, we will create a process flow called Autoexec and put the start-up tasks 

there. We add a new process flow with File > New > Process flow. We will rename this new process 

flow by opening the process flow properties and change the name: 

 

We create a new program with File > New > Program and type in the Libname statement. It will 

appear like this in the process flow chart (shown side by side. Menu: View > Workspace layout > Side 

by side): 

 

When we open this project the Autoexec process flow will be executed. As mentioned before 

Libname statements should only be placed in the autoexec.sas process flow. 

13.2. Spss 

There is no easy way to automate execution of commands at start-up in Spss. A solution is to open a 

syntax file when Spss starts and execute it ourselves. We move the Cd command to a file called 

start.sps which is to be located in the syntax folder of the survey: 

CD 'h:\mdg\data'. 
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Then we will change the properties for the Spss icon for our survey on the desktop. At the invocation 

of Spss we add our start.sps command file: 

 

The syntax file h:\mdg\syntax\start.sps will now be opened when we start Spss. 

13.3. Stata 

In Stata we can run a command file upon invocation. We add the command run and the name of the 

start-up command file in the properties for the Stata Icon for our survey: 

 

The command file h:\mdg\syntax\start.do will be executed when we start Stata. The start.do file 

looks like this: 

cd "h:\mdg\data" 
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1.2 R 

In RStudio we can save our workspace when we exit. When we start Rstudio we will be back were we 

last ended. We just save the workspace when we exit: 

 

Libraries not attached in the basic R will have to attached with the library command, though. 

13.4. Python 

There are no built-in procedures for automatic execution of start-up code in Python. There are some 

techniques for automatic execution of code at session invocation. However, these are not discussed 

in this document. 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

74 

14. Matching files 
To match files together is a very important part of data processing. There are usually several ways to 

match datasets together. We must choose the right way according to the results we want. We also 

must know the algorithms of matching. The algorithm may be different from one software to 

another. We should not match more than two datasets at a time. Another thing to avoid is to have 

common variables in both datasets which are not part of the matching key. This usually causes 

trouble. We have added a common variable, county, in our example datasets to show how it is 

treated in the different matching. 

When we match two datasets with a key variable it may appear: 

• 1 time in each dataset (1:1) 

• 1 time in dataset 1 and many times in dataset 2 (1:many) 

• Many times in dataset 1 and 1 time in dataset 2 (many:1) 

• Many times in dataset 1 and many times in dataset 2 (many:many) 

• 1 time in dataset 1 and zero times in dataset 2 (1:zero) 

• Many times in dataset 1 and zero times in dataset 2 (many:zero) 

• Zero times in dataset 1 and 1 time in dataset 2 (zero:1) 

• Zero times in dataset 1 and many times in dataset 2 (zero:many) 

 

We will see how Sas, Spss, Stata, R and Python treat these situations by looking at match examples. 

We start with two data files with a common key variable. In our datasets all the above situations will 

appear when we match the datasets. Here are the two datasets: 

Reg 1. 

id mstat county 

3 c 03 

1 a 

2 b 02 

4 e 05 

3 d 04 

4 f 06 

4 g 07 

7 i 09 

5 h 08 

7 j 10 

Reg 2. 

id cstat county 

2 y 19 

1 z 20 

2 x 18 

4 v 06 

3 w 17 

4 u 15 

8 s 12 

6 t 14 

8 r 11 
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We should be very careful to match datasets with duplicates on both files. Usually, we get rid of 

duplicates in at least one of the files before we match. However, sometimes we need to match 

datasets with duplicates and therefore we should know the algorithms for this kind of matching too.  

We will now look at some different matching we can do in each of the software packages.  

14.1. Sas 

We start with importing the data files to Sas. In this example we include the file in the import 

program: 

data reg1; 

 input 

  @1 id       $1. 

  @3 mstat    $1. 

  @5 county   $2. 

  ; 

cards; 

3 c 03 

1 a 

2 b 02 

4 e 05 

3 d 04 

4 f 06 

4 g 07 

7 i 09 

5 h 08 

7 j 10 

; 

run; 

data reg2; 

 input 

  @1 id       $1. 

  @3 cstat    $1. 

  @5 county   $2. 

  ; 

cards; 

2 y 19 

1 z 20 

2 x 18 

4 v 06 

3 w 17 

4 u 15 

8 s 12 

6 t 14 

8 r 11 

; 

run; 

We can use Proc sql, Data step with Merge and Data step with Update to match datasets in Sas. We 

start with looking at Proc sql. Proc sql has many ways to match datasets; inner join, right join, left join 

and full join are the most commonly used. The difference between these is which observations are 

written to the output dataset. The match algorithm is the same.  

 Inner join. Only observations with matching keys are written to output. 
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 Left join. Observations with matching keys and observations only in the left (first 

mentioned) dataset are written to output. 

  Right join. Observations with matching keys and observations only in the right (last 

mentioned) dataset are written to output. 

 Full join. All observations are written to output. 

The algorithm of the match is that all observations with the same keys in both datasets match with 

each other. The result of full join shows this: 

 

The syntax of the Proc sql looks like this: 

PROC SQL; 

   CREATE TABLE regs_joined2 AS  

   SELECT coalesce(t1.id, t2.id) as id, 

          t1.mstat,  

          t1.county,  

          t2.cstat,  

          t2.county AS county1 

      FROM WORK.REG1 t1 FULL JOIN WORK.REG2 t2 ON (t1.id = t2.id) 

      ORDER BY id; 

QUIT; 

The coalesce function is used to unite the id variables from both datasets into one variable in the 

output dataset. For inner, right and left joins we do not need to use the coalesce function. 
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When we use the Data step to merge the two datasets they must be sorted on the key variable 

before the match is done. The default match is similar to the full join. However, the algorithm is 

different. Here is syntax for a merge: 

proc sort data=reg1 OUT=reg1s; 

 by id; 

run; 

 

proc sort data=reg2 OUT=reg2s; 

 by id; 

run; 

 

data regs_matched_all ; 

   merge reg1s 

         reg2s 

         ; 

   by id ; 

run; 

 

The algorithm difference between Proc sql and the Data step with Merge appears mainly when there 

are duplicates on both datasets, which happen for id = 4 in our example. While Proc sql matched all 

with the same keys in the first dataset with all with the same keys in the second, Merge will turn the 

many:many matches into as many 1:1 matches as possible and the remaining will be changed into 

either a 1:many or many:1 match. For 1:many and many:1 matches the one matches all in the other 

dataset. However, the order of the datasets mentioned in the Merge statement will influence the 

content of variables with common names which are not key variables in the datasets. This happens 

for the county variable in our example. The variable is in both datasets but not as a key variable. The 
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variable will end up with data from the dataset that is read last and that differs when we swap the 

order in the Merge statement: 

data regs_matched_all_opp ; 

   merge reg2s 

         reg1s 

         ; 

   by id ; 

run; 

 

As an observation is only read once, the last read will come from the last-mentioned dataset for all 

but the second and above observations in a many:1 match. For those the last read will come from 

the first mentioned dataset. In a 1:many match the last read will always come from the last 

mentioned dataset. 

The default match with the Merge statement is similar to a full join in the way that all observations 

that do not match will be added to the output dataset. If we want to have matches similar to other 

joins we will have to add some options and statements to our program. For each of the datasets we 

can create a temporary variable which is true (1) when the dataset contributes to the match and 

false (0) when it doesn’t. Then we can use these variables to decide what output we want to put on 

the result dataset.  
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Here is an example of a program where only the observations that match will be written to the 

output dataset: 

data regs_matched ; 

   merge reg1s (in=ds1) 

         reg2s (in=ds2) 

         ; 

   by id ; 

   if ds1 and ds2 then 

    output; 

run; 

For a left match we change the condition: 

   if ds1 then 

    output; 

A right match can have this condition: 

   if ds2 then 

    output; 

Another way to match files with Sas is to use the Update statement instead of the Merge statement. 

The Update statement will use the first mentioned file as a master table and the second as a 

transaction table. The algorithm for Update is different form Merge. With Update the first observation 

in the master dataset with matching key will be updated with the observations from the transaction 

dataset. If there are more than one observation with the same key in the transaction dataset, the 

value from the last one will be the updated one. When it comes to missing values, the default is that 

missing values will not override values in the master dataset. We can force missing values to 

override by using the option updatemode=nomissingcheck in the Update statement: 

data reg_updated_opp_miss ; 

   update reg2s 

          reg1s updatemode=nomissingcheck 

         ; 

   by id ; 

run; 
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14.2. Spss 

We create the two datasets with this syntax in Spss: 

DATA LIST/ 

  id      1-1 (A) 

  mstat   3-3 (A) 

  county  5-6 (A) 

  . 

BEGIN DATA 

3 c 03 

1 a 

2 b 02 

4 e 05 

3 d 04 

4 f 06 

4 g 07 

7 i 09 

5 h 08 

7 j 10 

END DATA. 

SORT CASES BY id. 

SAVE /OUTFILE='reg1.sav'. 

DATA LIST/ 

  id      1-1 (A) 

  cstat   3-3 (A) 

  county  5-6 (A) 

  . 

BEGIN DATA 

2 y 19 

1 z 20 

2 x 18 

4 v 16 

3 w 17 

4 u 15 

8 s 12 

6 t 14 

8 r 11 

END DATA. 

SORT CASES BY id. 

SAVE /OUTFILE='reg2.sav'. 

The datasets we shall match have to be sorted on the key variables before we match. We can match 

files with two different commands: Match files and Update files. The Match files command is similar to 

the Merge statement in Sas, however the algorithms are different. We have two different ways to use 

the Match files command; one is to match two files where both provide observations to the new 

dataset, the second is to use one of the datasets as a lookup table. Observations from the lookup 

table with keys that is not found in the other dataset will not be added to the output dataset. A 

lookup dataset is defined with the Table subcommand and may not have duplicates. Here is syntax 

for matching the two files: 

MATCH FILES FILE='reg1.sav' 

           /IN=ds1 

           /FILE='reg2.sav' 

           /IN=ds2 

           /BY id 

           . 

EXECUTE. 
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The File subcommands name the files to match. With the In subcommand, we create a variable 

which shows when the file contributes to the match. This is used in a similar way to the In option in 

Sas. The key variables are defined with the By subcommand. 

In an ordinary match Spss will always match 1:1 even if there are duplicates in the datasets. If there 

are duplicates a warning is written to the log: 

Warning # 5132 

Duplicate key in a file.  The BY variables do not uniquely identify each case 

on the indicated file.  Please check the results carefully. 

The output from the match is shown here:   

 

As it is only 1:1 matches that is used, we see that when there are duplicates, they only match as long 

as matches are found by matching 1:1. This is illustrated by looking at the values of the variables ds1 

and ds2. These variables are not needed for the match, but they are useful when we want to select 

observations based on the result of the match (as seen below). Uneven observations will not be 

matched, but they will be added to the output data. We see that for observations with ids 2, 3 and 4. 

Another difference from the Sas merge is that when there are common variables which are not key 

variables, the value from the first dataset is kept when they match. If they don’t match the value 

from the contributing dataset will be kept. 
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We can use the In variables to choose which observations to keep on the output dataset. We use the 

Select If command after the match to choose which observations to keep. The syntax for keeping the 

observations which match: 

SELECT IF(ds1 AND ds2). 

EXECUTE. 

If we want all the observations from the first (left) dataset to the output, we use this instead: 

SELECT IF(ds1). 

EXECUTE. 

The other way round, observations from the last (right) dataset kept: 

SELECT IF(ds2). 

EXECUTE. 

The match with using a lookup table demands that the lookup table is without duplicates. We can 

delete the duplicates in reg2s and then match the files by using the reg2s without duplicates as a 

lookup table: 

MATCH FILES FILE='reg2.sav' 

           /FIRST=first_id 

           /BY id 

           . 

SELECT IF (first_id). 

EXECUTE. 

 

DELETE VARIABLES first_id. 

 

MATCH FILES FILE='reg1.sav' 

           /IN=ds1 

           /TABLE=* 

           /IN=ds2 

           /BY id 

           . 

EXECUTE. 

We use the Table subcommand and name the file with *. This means we will use the active dataset 

as input. The active dataset is the reg2s without duplicates. Now there will be many:1 matches as 

well as 1:1 matches. When the datasets don’t match all observations from the first dataset will be 

kept, but none from the lookup dataset: 
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The order of the datasets is important here as well when there are non-key variables with same 

names in both datasets, therefore it should be avoided. 

When we want to have an update instead of a match, the master dataset is not allowed to have 

duplicates. If there are duplicates on the transaction dataset the value from the last observation 

within the group of observations with the same key will be picked. Here is a syntax where we first 

delete duplicates on the master dataset and then use the Update command: 

MATCH FILES FILE='reg2.sav' 

           /FIRST=first_id 

           /BY id 

           . 

SELECT IF (first_id). 

EXECUTE. 

 

DELETE VARIABLES first_id. 

 

UPDATE FILE=* 

      /IN=ds1 

      /FILE='reg1.sav' 

      /IN=ds2 

      /BY id 

      . 

EXECUTE. 

The output dataset will now be like this: 
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If a variable value from the transaction dataset is missing it will not replace the value in the master 

dataset. 

14.3. Stata 

We use the joinby or merge command to match datasets in Stata, but the datasets must be sorted on 

the key variables before the matching. Here is the syntax for creating the two datasets: 

clear 
input str1 id str1 mstat str2 county 
3 c 03 
1 a 
2 b 02 
4 e 05 
3 d 04 
4 f 06 
4 g 07 
7 i 09 
5 h 08 
7 j 10 
end 
sort id, stable 
save "reg1.dta", replace 
clear 
input str1 id str1 cstat str2 county 
2 y 19 
1 z 20 
2 x 18 
4 v 16 
3 w 17 
4 u 15 
8 s 12 
6 t 14 
8 r 11 
end 
sort id, stable 
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save "reg2.dta", replace 

We will now look at the joinby command, which joins datasets in a similar way to a sql join. The 

syntax may look like this for an inner join: 

clear 
use "reg1.dta" 
joinby id using "reg2.dta" 

The matching algorithm is the same as in Proc sql in Sas; all observations with a key in the first 

dataset match all observations with the same key in the second dataset. The difference between 

Proc sql in Sas and joinby is when there are common non-key variables. In Proc sql the common 

variables will usually be separated in two variables in the output dataset. With the joinby command 

we will have only one variable in the output dataset, but the content may be picked from both 

datasets. When they match the values are taken from the first dataset mentioned unless we use the 

update and replace options. If so, non-missing vales are taken from the second dataset, otherwise 

values from the first dataset are used. If they don’t match and we choose to add the observation to 

the output, the values will be taken from the dataset mentioned in the use command. 

The default match with the joinby command is similar to an inner join. If we want a full join, we have 

to add the unmatched option: 

clear 
use "reg1.dta" 
joinby id using "reg2.dta", unmatched(both) 

The output data will be like this; an extra variable, _merge, is added: 

 

If we change the order of the files, the commands will be like this: 

clear 
use "reg2.dta" 
joinby id using "reg1.dta", unmatched(both) 
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We see that the content of the common variable county has changed and also the order of the 

variables: 

 

The content of the common variables changes for non-missing values when we add the update and 

replace options: 

use "reg2.dta", clear 
joinby id using "reg1.dta", unmatched(both) update replace 

This is like the previous joinby example, except where id equals 1, 6 and 8 where values from the 

first dataset are kept because they are missing in the second. The values of the _merge variable 

have also changed when the datasets match: 

 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

87 

If we want a left join, we can use these commands: 

clear 
use "reg1.dta" 
joinby id using "reg2.dta", unmatched(master) 

A right join is executed with this syntax: 

clear 
use "reg1.dta" 
joinby id using "reg2.dta", unmatched(using) 

Another way to merge the files is by using the merge command. Stata strongly recommends not 

matching files with duplicates on both files with the merge command. Nevertheless, it is interesting 

to know the algorithm used. Here is syntax for a match with the merge command: 

clear 
use "reg1.dta" 
merge id using "reg2.dta" 
sort id, stable 

When we use the merge command without telling what kind of match we want, we get some notes in 

the viewer: 

(note: you are using old merge syntax; see [D] merge for new syntax) 

variable id does not uniquely identify observations in the master data 

variable id does not uniquely identify observations in reg2.dta 

The result will be the same if we add the match type (see page 74) to the command, but the notes 

disappear: 

clear 
use "reg1.dta" 
merge m:m id using "reg2.dta" 

Instead, we get other information: 

    Result                           # of obs. 

    ----------------------------------------- 

    not matched                             6 

        from master                         3  (_merge==1) 

        from using                          3  (_merge==2) 

    matched                                 8  (_merge==3) 

    ----------------------------------------- 
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The output dataset from the matching is this: 

 

The algorithm is like the Merge in Sas, except for the common non-key variable county. Its values are 

taken from the first dataset as long as they contribute to the match. This can be changed by using 

the update and replace options: 

use "reg1.dta", clear 
merge m:m id using "reg2.dta", update replace 

A new variable, _merge, is also added to the output dataset. This variable tells which observations 

that match and from what dataset the non-matching observations are taken. The order of the 

datasets is important in Stata as well when it comes to these common non-key variables as their 

values will be different if the order changes.  

To keep only the observations which match, we use the keep option like this: 

use "reg1.dta", clear 
merge m:m id using "reg2.dta", keep(matched) 

For keeping all observations from the first dataset we use this command: 

use "reg1.dta", clear 
merge m:m id using "reg2.dta", keep(matched master) 

The other way around: 

use "reg1.dta", clear 
merge m:m id using "reg2.dta", keep(matched using) 

We can add an update option to the merge, then it will use the second dataset for updating the 

common variables (here: county). The syntax is like this: 

merge m:m id using "reg2.dta", update 
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The result shows that only missing values from the first dataset will be updated. If the first dataset 

already has a valid value for the variable, it will keep that value. The variable _merge tells us how the 

merge went: 

 

The difference from the merge without the update option is that missing values in the first dataset 

will be updated from the second, which is the case for the first observation in the result. We see that 

in the _merge variable. When the first dataset already has a value, the _merge will contain a message 

of a nonmissing conflict. 

14.4. R 

In R the matching algorithm follows the join as in Sas proc sql and Stata joinby. We can create the 

same datasets in R: 

id <-c("3","1","2","4","3","4","4","7","5","7") 
mstat <-c("c","a","b","e","d","f","g","i","h","j") 
county <- c("03","","02","05","04","06","07","09","08","10") 
reg1 <- data.frame(id,mstat,county) 
print(reg1) 
id<-c("2","1","2","4","3","4","8","6","8") 
cstat<-c("y","z","x","v","w","u","s","t","r") 
county<-c("19","20","18","06","17","15","12","14","11") 
reg2 <- data.frame(id,cstat,county) 
print(reg2) 

Now we can match with a full join. We use the dplyr package with its joins for this and use the 

arrange command to sort the output data:  

fulljoin <- full_join(x=reg1,y=reg2,by="id") %>% arrange(id) 
print(fulljoin) 

The result: 

   id mstat county.x cstat county.y 

1   1     a              z       20 
2   2     b       02     y       19 
3   2     b       02     x       18 
4   3     c       03     w       17 
5   3     d       04     w       17 
6   4     e       05     v       06 
7   4     e       05     u       15 
8   4     f       06     v       06 
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9   4     f       06     u       15 
10  4     g       07     v       06 
11  4     g       07     u       15 
12  5     h       08  <NA>     <NA> 
13  6  <NA>     <NA>     t       14 
14  7     i       09  <NA>     <NA> 
15  7     j       10  <NA>     <NA> 
16  8  <NA>     <NA>     s       12 
17  8  <NA>     <NA>     r       11 

All combinations of rows with the same value of id have been added to the output. The common 

variable county which was not part of the match key has been added separately from each data 

frame. The names have a suffix, .x for the variable from the data frame mentioned in the x 

argument and .y for the data frame mentioned in y argument. 

To do an inner join we replace full_join with inner_join: 

innerjoin <- inner_join(x=reg1,y=reg2,by="id") %>% arrange(id) 
print(innerjoin) 

Now only those who match are added to the output data frame: 

   id mstat county.x cstat county.y 

1   1     a              z       20 
2   2     b       02     y       19 
3   2     b       02     x       18 
4   3     c       03     w       17 
5   3     d       04     w       17 
6   4     e       05     v       06 
7   4     e       05     u       15 
8   4     f       06     v       06 
9   4     f       06     u       15 
10  4     g       07     v       06 
11  4     g       07     u       15 

For left join and right join we change the name of joins: 

leftjoin <- left_join(x=reg1,y=reg2,by="id") %>% arrange(id) 
print(leftjoin) 
rightjoin <- right_join(reg1,reg2,by="id") %>% arrange(id) 
print(rightjoin) 

We may also find rows in the first data frame that has one or more matches in the second data 

frame with a semi_join. This will not join the files, only output those from the first data frame that 

has a match in the second: 

semijoin <- semi_join(reg1,reg2,by="id") %>% arrange(id) 
print(semijoin) 

These rows have a match: 

  id mstat county 

1  1     a        
2  2     b     02 
3  3     c     03 
4  3     d     04 
5  4     e     05 
6  4     f     06 
7  4     g     07 

To do the opposite, find those who don’t match, we can use anti_join: 
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antijoin1 <- anti_join(reg1,reg2,by="id") %>% arrange(id) 
print(antijoin1) 

Now we see those who don’t match: 

  id mstat county 

1  5     h     08 
2  7     i     09 
3  7     j     10 

Instead of using joins in dplyr we may use the merge command. It will match the files as the joins, 

but the syntax is different. Here we have examples on full, inner, left and right joins: 

reg1and2fj<-merge(x = reg1, y = reg2, by = "id", all = TRUE) 
print(reg1and2fj) 
reg1and2ij<-merge(x = reg1, y = reg2, by = "id", all = FALSE) 
print(reg1and2ij) 
reg1and2lj<-merge(x = reg1, y = reg2, by = "id", all.x = TRUE) 
print(reg1and2lj) 
reg1and2rj<-merge(x = reg1, y = reg2, by = "id", all.y = TRUE) 
print(reg1and2rj) 

We define the type of join arguments all, all.x and all.y 

• Full join all=TRUE or all.x=TRUE and all.y=TRUE 

• Inner join all=FALSE 

• Left join all.x=TRUE 

• Right join all.y=TRUE 

 

There is a possibility to update values from one data frame with values from another data frame. 

However, there are some restrictions with this update: key variables must be unique, so we must 

delete duplicates on both files. Furthermore, key values in the second data frame must exist in the 

first data frame. That means we must delete rows in the second data frame that does not have the 

same key in the first data frame before we update. Finally, it is not allowed to have variables in the 

second data frame that is not present in the first. Here is some code that prepares the data frames 

for update: 

reg1u <- reg1[!duplicated(reg1[c(1)]),] 
reg2x <- subset(reg2, select = -cstat) 
reg2u <- reg2x[!duplicated(reg2x[c(1)]),] 
reg2u <- semi_join(reg2u,reg1,by="id") %>% arrange(id) 

Now we can update the first dataset with values from the second with rows_update in dplyr: 

reg1u %>%  
  rows_update(reg2u, by = "id") 

The result shows that rows where the keys are found in the first dataset are updated with data from 

second data frame:  

  id mstat county 

1  3     c     17 
2  1     a     20 
3  2     b     19 
4  4     e     06 
8  7     i     09 
9  5     h     08 
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14.5. Python 

The matching in Python is done with the merge command. The syntax is similar to the merge 

command in R and the match algorithm is identical to join as in Sas proc sql, Stata joinby and merge 

in R. 

We start with creating two files that contains all the possible match situations: 

reg1file=""" 
3 c 03 
1 a 
2 b 02 
4 e 05 
3 d 04 
4 f 06 
4 g 07 
7 i 09 
5 h 08 
7 j 10 
""" 
reg1 = pd.read_csv( 
        StringIO(reg1file), 
        names=['id', 'mstat', 'county'], 
        dtype=object, 
        header=None, 
        sep=' ' 
) 
 
reg2file=""" 
2 y 19 
1 z 20 
2 x 18 
4 v 06 
3 w 17 
4 u 15 
8 s 12 
6 t 14 
8 r 11 
""" 
reg2 = pd.read_csv( 
        StringIO(reg2file), 
        names=['id', 'cstat', 'county'], 
        dtype=object, 
        header=None, 
        sep=' ' 
) 
display(reg1, reg2) 
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The data frames are here: 

         

We start with the easiest merge where all with the same ids will match and only those who match 

will be included in the output. This is called an inner join: 

pd.merge(reg1, reg2, on='id') 

We see that the variable county, which is not a key, but are in both datasets, will be included from 

both data frames (with new names): 

 

If we want to sort the result by the id, we can add the sort_values function: 

pd.merge(reg1, reg2, on='id').sort_values('id') 
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Now the result is sorted: 

 

We can specify the key for each data frame. This is useful when the keys have different names: 

pd.merge(reg1, reg2, left_on='id', right_on='id').sort_values('id') 

We can also define the suffixes for common variables. This example will change the suffixes from _x 

and _y to _1 and _2: 

pd.merge(reg1, reg2, on='id', suffixes=('_1', '_2')).sort_values('id') 

Now we can merge with a full join, all with the same id matches and all id’s that don’t match will be 

included in the output. We add an indicator as well to show how the match went: 

pd.merge(reg1, reg2, on='id', how='outer', indicator=True).sort_values('id') 
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Now we see how the data frames matched: 

 

Here we have examples on left and right joins: 

pd.merge(reg1, reg2, on='id', how='left', indicator=True).sort_values('id') 

pd.merge(reg1, reg2, on='id', how='right', indicator=True).sort_values('id') 
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We see that in addition to the rows that match, the rows that are only in the left dataset will be 

added to the output in the left merge. Opposite, when we use the right merge rows that are only in 

the right dataset will be added to the output: 

   

All id values from both data frames match when there are duplicates. That is the same in all these 

merges. 

If we just want to see which id’s in reg1 that is also in reg2 without actually match the two data 

frames, we can do a lookup (or a semi-join) using the isin method and check when it is true: 

reg1.loc[reg1['id'].isin(reg2['id']) == True] 

These rows from reg1 are also found with the same id in reg2: 

 

We can find those in reg1 who are not found in reg2 the same way, except that we select those who 

have isin false. This will be a so-called anti-join: 

reg1.loc[reg1['id'].isin(reg2['id']) == False] 
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These rows from reg1 does not match any id’s in reg2: 

 

When we have more than one key, we can use conditions like these: 

reg1.loc[(reg1['id'].isin(reg2['id']) == True) & 
(reg1['county'].isin(reg2['county']) == True)] 

It gives us the single row that are in both data frames: 

 

Another way to merge files is to use one file to update another. We can do that with the update 

method. This method uses the row index as matching key; hence we have to set our identification 

variables to an index. It does not allow duplicate indexes, so we must delete duplicates on both files 

before we do the update. Here is a syntax to drop duplicates and make the id column an index for 

both files. Then we update reg1i with reg2i. Finally, we reset the index so that the id column will be 

an ordinary column again 
reg1u = reg1[~reg1.duplicated(['id'], keep='first')].sort_values(['id']) 
reg1i = reg1u.set_index('id') 
reg2u = reg2[~reg2.duplicated(['id'], keep='first')].sort_values(['id']) 
reg2i = reg2u.set_index('id') 
reg1i.update(reg2i) 
reg1i = reg1i.reset_index() 
reg1i 

Rows with id values that is not in the first data frame will not be added to the result data frame, nor 

will columns that are only in the second file, as we can see from the result: 
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14.6. A matching comparison 

Here is a summation of matching in Sas, Spss, Stata, R and Python: 

Mat

ch  

typ

e 

Sas Spss Stata R Python 

 Proc sql 

join 

Merge Match 

files with 

File 

Match 

files with 

Table 

joinby merge dplyr 

join 

merge pd.merge 

1:1 1:1 match 1:1 

match 

1:1 match 1:1 match 1:1 match 1:1 

match 

1:1 

match 

1:1 match 1:1 match 

1:m 1 matches 

all 

1 

matches 

all 

Divided 

into 

1:1 and 

0:m 

Not 

allowed 

1 matches 

all 

1 

matches 

all 

1 

matches 

all 

1 matches 

all 

1 matches 

all 

m:1 All 

matches 1 

All 

matches 

1 

Divided 

into 

1:1 and 

m:0 

All 

matches 1 

All 

matches 1 

All 

matches 

1 

All 

matches 

1 

All 

matches 1 

All 

matches 1 

m:m All 

matches 

all 

Divided 

into 

1:1, 1:1 

etc. then 

1:m or 

m:1 

Divided 

into 

1:1, 1:1 

etc. then 

1:0, m:0, 

0:1 or 0:m 

Not 

allowed 

All 

matches 

all 

Divided 

into 

1:1, 1:1 

etc. then 

1:m or 

m:1 

All 

matches 

all 

All 

matches 

all 

All 

matches 

all 

0:1 Added to 

output 

with Right 

join or Full 

join 

Omitted 

from 

output 

by using 

In option 

and If 

condition 

May be 

omitted 

from 

output by 

using In 

subcomm

and and 

Select If 

command 

Not added 

to output 

Added to 

output 

with 

umatched

(master) 

or 

umatched

(both) 

option 

Omitted 

from 

output 

with the 

option 

keep(ma

tched 

master) 

Added 

to 

output 

(right_jo

in and 

full_join) 

Added to 

output 

(when 

argument 

all or all.y 

is TRUE) 

Added to 

output 

(when 

argument 

how is 

right or 

outer) 

0:m Added to 

output 

with Right 

join or Full 

join 

Omitted 

from 

output 

when 

using In 

option 

and If 

condition 

Omitted 

from 

output by 

using In 

subcomm

and and 

Select If 

command 

Not added 

to output 

Added to 

output 

with 

umatched

(master) 

or 

umatched

(both) 

option 

Omitted 

from 

output 

with the 

option 

keep(ma

tched 

master) 

Added 

to 

output 

(right_jo

in and 

full_join) 

Added to 

output 

(when 

argument 

all or all.y 

is TRUE) 

Added to 

output 

(when 

argument 

how is 

right or 

outer) 

1:0 Added to 

output 

with Left 

join or Full 

join 

Omitted 

from 

output 

when 

using In 

option 

and If 

condition 

Omitted 

from 

output by 

using In 

subcomm

and and 

Select If 

command 

Added to 

output 

Added to 

output 

with 

umatched

(using) or 

umatched

(both)opti

on 

Omitted 

from 

output 

with the 

option 

keep(ma

tched 

using) 

Added 

to 

output 

(left_join 

and 

full_join) 

Added to 

output 

(when 

argument 

all or all.x 

is TRUE) 

Added to 

output 

(when 

argument 

how is left 

or outer) 

m:0 Added to 

output 

with Left 

join or Full 

join 

Omitted 

from 

output 

when 

using In 

option 

and If 

condition 

Omitted 

from 

output by 

using In 

subcomm

and and 

Select If 

command 

Added to 

output 

Added to 

output 

with 

umatched

(using) or 

umatched

(both) 

option 

Omitted 

from 

output 

with the 

option 

keep(ma

tched 

using) 

Added 

to 

output 

(left_join 

and 

full_join) 

Added to 

output 

(when 

argument 

all or all.x 

is TRUE) 

Added to 

output 

(when 

argument 

how is left 

or outer) 
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15. Aggregation 
To aggregate a dataset means to group observations with common values for some variables 

together into one single observation. When we have a dataset with one observation for each 

member of a household, we can aggregate this dataset to contain one observation for each 

household instead. All observations with the same household identification will be added together. 

Here is an example where we want to aggregate to a household dataset and count the number of 

persons in each household.  

Before aggregation (only the first 17 observations are shown): 

  

For each household we want to count the number of household members (hh_members), number 

of males (males), number of females (females), number of children (children), average age of the 

persons in the household (mean_age) and we want the age of the household head (head_age): 
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Quite often we want the aggregated variables added to the original data, like this: 

 

We see that each person in the household has got the aggregated household variables. The values 

of the household variables are duplicated. 

15.1. Sas 

We can use Proc sql or Proc means to make the aggregated dataset. First, we look at aggregation of 

number of members and average age with proc sql: 

proc sql ; 

 create table household as  

  select hh, count(hh) as hh_members, mean(b5) as mean_age 

  from mdg.mdgperson_nodup  

  group by hh 

  order by hh; 

quit; 

The same aggregation done with proc means: 

proc means data=mdg.mdgperson_nodup noprint nway missing; 

  class hh; 

  var b5; 

  output out=household (rename=(_freq_=hh_members) drop=_type_) 

mean(b5)=mean_age  ; 

run; 

The _freq_ counts the number of observations and is renamed to hh_members. There is also 

created a variable called _type_. It contains a level indicator for the different combinations of class 

variables and is not needed in this example because we have excluded all levels except the most 

detailed with the nway option in the proc means statement. 

For the next types of aggregation, proc sql is the best one to use. Then we can do some calculations 

within the aggregation: 

proc sql ; 

 create table household as  

  select hh, count(hh) as hh_members, mean(b5) as mean_age,  

   N(CASE WHEN b4 = 1 THEN 1 END) as males, 
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   N(CASE WHEN b4 = 2 THEN 1 END) as females, 

   N(CASE WHEN b3 = 2 THEN 1 END) as children, 

   Sum(CASE WHEN b3 = 0 THEN b5 END) as head_age 

  from mdg.mdgperson_nodup  

  group by hh 

  order by hh; 

quit; 

To add the household information to each person we change the syntax a little bit. We select all 

variables from the original dataset with select * instead of just selecting the group by variable: 

proc sql ; 

 create table person_hh as  

  select *, count(hh) as hh_members, mean(b5) as mean_age,  

   N(CASE WHEN b4 = 1 THEN 1 END) as males, 

   N(CASE WHEN b4 = 2 THEN 1 END) as females, 

   N(CASE WHEN b3 = 2 THEN 1 END) as children, 

   Sum(CASE WHEN b3 = 0 THEN b5 END) as head_age 

  from mdg.mdgperson_nodup  

  group by hh 

  order by hh; 

quit; 

15.2. Spss 

Here we will open the dataset with the Get command. Then we do the aggregation with the 

Aggregate command, it is found under the Data > Aggregate menu. Then we open the aggregated 

dataset with the Get command: 

GET FILE='mdgperson_nodup.sav'. 

AGGREGATE 

  /OUTFILE='household.sav' 

  /BREAK=hh 

  /hh_members=N(member)  

  /mean_age=MEAN(b5) . 

GET FILE='household.sav'. 

All variables we need must be added before the aggregation. We create new variables with the If 

command. Then we use the Aggregate command for the aggregation. Finally, we open the 

aggregated dataset with the Get command: 

GET  FILE 'mdgperson_nodup.sav' . 

IF (b4 = 1) males = 1.  

IF (b4 = 2) females = 1.  

IF (b3 = 2) children = 1.  

IF (b3 = 0) head_age = b5. 

EXECUTE. 

AGGREGATE 

  /OUTFILE='household.sav' 

  /BREAK=hh 

  /hh_members=N(member)  

  /mean_age=MEAN(b5)  

  /males=N(males)  

  /females=N(females)  

  /children=N(children)  

  /head_age=MEAN(head_age). 

GET FILE='household.sav'. 
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When we want to add the household information to the active dataset, we include the 

Mode=addvariables sub-command to the Aggregate command and add a Save command (after re-run 

of the Get, If and Execute commands above): 

AGGREGATE 

  /OUTFILE=* MODE=ADDVARIABLES OVERWRITE=YES 

  /BREAK=hh 

  /hh_members=N(member)  

  /mean_age=MEAN(b5)  

  /males=N(males)  

  /females=N(females)  

  /children=N(children)  

  /head_age=MEAN(head_age). 

SAVE /OUTFILE='person_hh.sav'. 

15.3. Stata 

We can use the egen command with by to add grouped average values to the dataset. We can do it 

like this: 

use "mdgperson_nodup", clear 
by hh, sort : egen mean_age = mean(b5) 

However, when we want to add the count, we should switch to the collapse command. The collapse 

command is found under the menu Data > Create or change data > Other variable-transformation 

commands > Make dataset of means, medians, etc., however it is faster to write the syntax: 

use "mdgperson_nodup", clear 
collapse (count) hh_members=member (mean) mean_age=b5 , by(hh) 

Now we want to add the number of males, females, and the age of head to each observation in the 

dataset. This is similar to Spss, we create the variables first with the generate command and 

aggregate with the collapse command: 
use "mdgperson_nodup", clear 
generate males = 1 if b4 == 1 
generate females = 1 if b4 == 2 
generate children = 1 if b3 == 2 
generate head_age = b5 if b3 == 0 
collapse (count) hh_members=member males females children (mean) mean_age=b5 
head_age, by(hh) 

The collapse command does not have the possibility to add the aggregated variables to the original 

dataset. To add these variables, we can use the merge command and sort the data again: 

merge 1:m hh using "mdgperson_nodup.dta" 
sort hh member 

15.4. R 

We can use the dplyr package to aggregate data frames in R. We group by hh and summarise the 

count and average age. 

household <- mdgperson_nodup %>% 
   group_by(hh) %>% 
   summarise(hh_members=n(),mean_age = mean(b5)) 

The result shows that there is a problem with the last household, it has got NA as average age: 
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  hh     hh_members mean_age 

  <chr>       <int>    <dbl> 

1 020074          6     17.8 
2 020100          6     25.3 
3 020118          5     13   
4 040024          6     17.8 
5 040034          6     17.2 
6 050069          6     34.3 
7 060036          6     26.7 
8 060041          6     NA 

This is because when one value is NA, the result will by default be NA. To avoid this and calculate the 

average for those who have valid values, we can add the na.rm=TRUE argument:  

household <- mdgperson_nodup %>% 
   group_by(hh) %>% 
   summarise(hh_members=n(),mean_age = mean(b5, na.rm = TRUE)) 

Now we will have average age for the last household as well: 

  hh     hh_members mean_age 

  <chr>       <int>    <dbl> 

1 020074          6     17.8 
2 020100          6     25.3 
3 020118          5     13   
4 040024          6     17.8 
5 040034          6     17.2 
6 050069          6     34.3 
7 060036          6     26.7 
8 060041          6     15.4 

In the next example, we create variables for each category with the mutate command and then we 

do the actual aggregation with summarise: 

household <- mdgperson_nodup %>% 
mutate(male=if_else(b4=='Male',1,0),female=if_else(b4=='Female',1,0),child=if
_else(b3=='Daughter/son',1,0),head_age=if_else(b3=='Head',as.numeric(b5),0)) 
%>% 
group_by(hh) %>% 
summarise(hh_members=n(),mean_age = mean(b5, na.rm = TRUE),males=sum(male),fe
males=sum(female),children=sum(child),head_age=sum(head_age)) 

Each variable with possible NA’s should include the na.rm = TRUE option to avoid NA in the 

aggregated variables: 

  hh         hh_members mean_age males females children head_age 

  <labelled>      <int>    <dbl> <dbl>   <dbl>    <dbl>    <dbl> 

1 020074              6     17.8     3       3        4       39 
2 020100              6     25.3     3       3        4       45 
3 020118              5     13       1       4        3       27 
4 040024              6     17.8     3       3        2       37 
5 040034              6     17.2     1       5        2       20 
6 050069              6     34.3     2       4        2       67 
7 060036              6     26.7     4       2        4       42 
8 060041              6     15.4     4       2        4       31 
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We can add aggregated data to each row instead of aggregating the data frame. Still, we use dplyr. 

However, we don’t use the summarise command. Finally, we erase the variables we don’t need to 

store with the subset command. 

person_hh <- mdgperson_nodup %>% 
mutate(male=if_else(b4=='Male',1,0),female=if_else(b4=='Female',1,0),child=if
_else(b3=='Daughter/son',1,0),head_a=if_else(b3=='Head',as.numeric(b5),0)) %>
% 
group_by(hh) %>% 
mutate(hh_members=n(),mean_age = mean(b5, na.rm = TRUE),males=sum(male),femal
es=sum(female),children=sum(child),head_age=sum(head_a)) %>% 
subset(select=-c(male,female,child,head_a)) 

15.5. Python 

To aggregate a data frame, we can use the groupby function combined with the variables to group 

by and the variables to aggregate. For the variables we want to aggregate, we also specify what kind 

of aggregation we want. That can be count, mean, sum and others.  

Here we aggregate from persons to households and find the average age of persons and the count 

of members in the households: 

mdgperson_nodup.groupby('hh').agg( 
    mean_age=('b5', 'mean'), 
    hh_member=('member', 'count') 
    ) 

The aggregated data: 

 

We see above that the column(s) we group by (hh) have switched to a row index. Sometimes this is 

wanted, other times we want to keep the column as it is. To avoid the the column(s) to be a row 

index, we can add the option as_index with the False parameter: 

mdgperson_nodup.groupby('hh', as_index=False).agg( 
    mean_age=('b5', 'mean'), 
    hh_member=('member', 'count') 
    ) 
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Now we see that the group column (hh) did not become an index: 

 

Sometimes we need to create new columns before we aggregate. Here is an example where we 

want to count the number of males, females, and children and also the age of the head within each 

household. The columns for males, females and children are set to 1 when b4 are true and 0 when 

they are false. The age of the head is set only for persons who are heads, other persons will be given 

0 for this variable:  

mdgperson_nodup['male'] = np.where(mdgperson_nodup['b4'] == "Male", 1, 0) 
mdgperson_nodup['female'] = np.where(mdgperson_nodup['b4'] == "Female", 1, 0) 
mdgperson_nodup['child'] = np.where(mdgperson_nodup['b3'] == 'Daughter/son', 
1, 0) 
mdgperson_nodup['head_age'] = np.where(mdgperson_nodup['b3'] == 'Head', 
mdgperson_nodup['b5'], 0) 
mdgperson_nodup 

A part of the data frame with the new columns: 
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Now we can aggregate to households: 

mdgperson_nodup.groupby('hh', as_index=False).agg( 
    mean_age=('b5', 'mean'), 
    hh_members=('member', 'count'), 
    males=('male', 'sum'), 
    females=('female', 'sum'), 
    children=('child', 'sum'), 
    head_age=('head_age', 'sum') 
    ) 

The aggregated household data frame: 

 

When we want to add the aggregated variables to each row in the original data frame, we can add 

them one at a time. We use the groupby function combined with the transform function to add 

aggregated values to each row. Finally, we drop the columns we do not need anymore: 

mdgperson_nodup['mean_age'] = 
mdgperson_nodup.groupby(['hh'])['b5'].transform('mean') 
mdgperson_nodup['hh_members'] = 
mdgperson_nodup.groupby(['hh'])['member'].transform('count') 
mdgperson_nodup['males'] = 
mdgperson_nodup.groupby(['hh'])['male'].transform('sum') 
mdgperson_nodup['females'] = 
mdgperson_nodup.groupby(['hh'])['female'].transform('sum') 
mdgperson_nodup['children'] = 
mdgperson_nodup.groupby(['hh'])['child'].transform('sum') 
mdgperson_nodup['head_age'] = 
mdgperson_nodup.groupby(['hh'])['head_age'].transform('sum') 
mdgperson_nodup = mdgperson_nodup.drop(columns=['male', 'female', 'child']) 
mdgperson_nodup 
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We see that the aggregated variables have the same values within the same hh numbers: 
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16. Restructuring files 
There are many ways to restructure data files. The most common are transposing observations to 

variables and transposing variables to observations. In our original dataset there is one observation 

for each person. If we want, we can restructure this dataset to have one set of variables for each 

person. This will be to transpose from observations to variables. As we see in our data the b3 

variable contains the relation to the head of the household. When we transpose this to one variable 

for each person it is common to name the new variables b3_1-b3_n, where n is the maximum 

number of persons in a household. We want to transpose the variables with person information. 

The household variables are not to be transposed; they will be kept as they are in the new dataset.  

Here is how the dataset looks like before the restructure: 

 

After the restructure we want it to be like this: 

 

Above, the new variables are shown for the first two persons within each household. Usually this is 

how our data is structured after data entry. We would like to restructure the data from variables to 

cases before further data processing.  
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16.1. Sas 

In Sas we have a transpose procedure which can be used. To restructure the data as shown above 

we restructure each of the b-variables separately and then merge the data together.  

PROC TRANSPOSE DATA=MDG.MDGPERSON_NODUP OUT=hh_b3 PREFIX=b3_ ; 

  BY hh state urbrur; 

  ID member; 

  VAR b3 ; 

RUN;  

PROC TRANSPOSE DATA=MDG.MDGPERSON_NODUP OUT=hh_b4 PREFIX=b4_ ; 

  BY hh state urbrur; 

  ID member; 

  VAR b4 ; 

RUN;  

PROC TRANSPOSE DATA=MDG.MDGPERSON_NODUP OUT=hh_b5 PREFIX=b5_ ; 

  BY hh state urbrur; 

  ID member; 

  VAR b5 ; 

RUN;  

PROC TRANSPOSE DATA=MDG.MDGPERSON_NODUP OUT=hh_b6 PREFIX=b6_ ; 

  BY hh state urbrur; 

  ID member; 

  VAR b6; 

RUN;  

data households; 

 merge hh_b3 hh_b4 hh_b5 hh_b6; 

 by hh state urbrur; 

 drop _name_; 

run; 

Each transposed variable is put into a separate dataset together with the identification variables. 

The prefix option in the Proc transpose statement gives the prefix of the new variable names. The Id 

statement is used for the suffixes of the new variable names. The By statement defines the 

identification variables and the Var statement tells which variable to transpose. Finally, we merge 

the datasets together within a Data step. Usually, we should not merge more than two datasets at a 

time, but as long as we have no duplicates on our person dataset it is safe to merge all five together 

with one merge. 

When we know how to use macros in Sas we can reduce the code to this: 

%macro ObsToVar(varname); 

proc transpose data=mdg.mdgperson_nodup out=hh_&varname. prefix=&varname._ ; 

  by hh state urbrur; 

  id member; 

  var &varname. ; 

run; 

%mend; 

%ObsToVar(b3); 

%ObsToVar(b4); 

%ObsToVar(b5); 

%ObsToVar(b6); 

data households; 

 merge hh_b3 hh_b4 hh_b5 hh_b6; 

 by hh state urbrur; 

 drop _name_; 

run; 

The Proc transpose procedure is not useful when we change back to the original structure. Instead, 

we do it with a Data step: 
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data persons (keep=hh state urbrur b3 b4 b5 b6 member); 

 set households; 

 by hh state urbrur ; 

 if first.urbrur then 

  member = 0; 

 array b3a (*) b3_1-b3_6; 

 array b4a (*) b4_1-b4_6; 

 array b5a (*) b5_1-b5_6; 

 array b6a (*) b6_1-b6_6; 

 do i = 1 to dim(b3a); 

  member +1; 

  b3 = b3a(i); 

  b4 = b4a(i); 

  b5 = b5a(i); 

  b6 = b6a(i); 

  if sum(b3,b4,b5,b6) ne . then 

   output; 

 end; 

 label 

  b3 = 'Relationship to head of household' 

  b4 = 'Sex' 

  b5 = 'Age' 

  b6 = 'Civil status' 

  member = 'Member number within household' 

  ; 

  format b3 head_rel. b4 sex. b6 civil_status.; 

run; 

In the Data statement we name the new dataset and choose which variables to keep. Then we read 

the dataset households with the Set statement and use the By statement to define a grouped 

treatment of the data. We define each group of variables which have the same type of content in 

separate arrays with Array statements. Then we will loop through the arrays. The loop is done within 

the Do – End block. If there is data in any of the b-variables we will output a new observation. Finally, 

we label the variables and variable values. 

16.2. Spss 

First, we open the file we will restructure with the Get command. Then we use the Casetovars 

command in Spss for our restructure and we can restructure all variables with just one command. 

The Casetovars command is found as a wizard under the Data > Restructure menu and the 

generated syntax will look like this: 

GET FILE= 'mdgperson_nodup.sav' . 

SORT CASES BY hh state urbrur member. 

CASESTOVARS 

  /ID=hh state urbrur 

  /INDEX=member 

  /SEPARATOR='_' 

  /GROUPBY=VARIABLE. 

The Id subcommand defines the variables to group by, the Index subcommand defines the index 

where the suffixes for the restructured variable names are found. The rest of the variables will be 

copied to the new dataset. The subcommand Groupby defines how the new variables are to be 

grouped in the output dataset, either by the original variables (option variable: b3_1 b3_2 .. b3_6, .., 

b6_1 b6_2 .. b6_6) or by the index variable (option index: b3_1, b4_1, b5_1, b6_1, .. b3_6, b4_6, b5_6, 

b6_6). 
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To go back to the original data structure, we use the Vartocases command which is also found under 

the Data > Restructure menu. The generated syntax is this: 

VARSTOCASES 

  /MAKE b3 FROM b3_1 b3_2 b3_3 b3_4 b3_5 b3_6 

  /MAKE b4 FROM b4_1 b4_2 b4_3 b4_4 b4_5 b4_6 

  /MAKE b5 FROM b5_1 b5_2 b5_3 b5_4 b5_5 b5_6 

  /MAKE b6 FROM b6_1 b6_2 b6_3 b6_4 b6_5 b6_6 

  /INDEX=member(6)  

  /KEEP=hh state urbrur 

  /NULL=DROP. 

If the variables were stored after each other in the dataset, we could use a syntax that choose all the 

variables from the first one to the last one within the group: 

b3_1 TO b3_6 

The syntax above will choose all variables from b3_1 to b3_6 in the order they appear in the dataset. 

As the variables b3_1 to b3_6 are not stored after each other in our dataset, we must stick to listing 

all the variables as shown in the varstocases example above. 

16.3. Stata 

The reshape command is found under Data > Create or change data > Other variable-transformation 

commands > Convert data between wide and long. We have a very compact code for doing this in 

Stata, we just open the dataset to restructure with the use command, rename the variables with the 

rename command (to add the underscores) and restructure with the reshape command: 

use "mdgperson_nodup.dta", clear 
rename b* b*_ 
reshape wide b*_, i(hh) j(member) 

With the wide option the structure is changed from observations (long) to variables (wide). The b*_ 

are the variables to be restructured (= b3_ b4_ b5_ b6_). The hh is the by-variable for the restructure; 

member is used to give suffixes to the restructured variable names. The rest of the variables will be 

copied to the new dataset.  

The restructure back to the original form uses the long option. After the reshape we rename the b-

variables: 

reshape long b3_ b4_ b5_ b6_ , i(hh) j(member) 
rename b*_ b* 

16.4. R 

We can use the reshape command to go from a long to a wide data frame. The idvar argument 

defines the group variables, the timevar argument identifies the variable that will be used to 

differentiate multiple records from the same group, direction tells it will be made a wide data frame 

and sep gives the separator between the original variable name and the timevar counter. 

householdsr <- reshape(data.frame(mdgperson_nodup),idvar=c("hh","state","urbr
ur"),timevar="member",direction="wide",sep="_") 

The new data frame householdsr will have one variable for each member in the household for each 

of the b3, b4, b5 and b6 variables where the member number is an index in the variable names. All 

variables ending with _1 will contain information about member 1, all ending with 2 contain 
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information about member 2 and so on. There is one row for each combination of the variables hh, 

state, urbrur which were the group variables. Here we see some of the variables: 

 

When we have our data organised in the wide way, as seen above, we can use reshape to transpose 

to the long data frame. Then all the variables with the same prefix, like b3_1-b3_6, will be 

transformed to the same variable in separate rows. We use the reshape command again, now with 

the long direction: 

persons <- reshape(householdsr,idvar=c("hh","state","urbrur"),timevar="member
",direction="long",sep="_") 

There are some issues with the new, long data frame. The first is that the new variable names end 

with _1. The second is that there are added some rows where all transposed values are missing (for 

households which have fewer than the maximum number of household members). The third is that 

the data frame is not sorted by the hh and member variables. The fourth is that the row 

identification is a combination of the group variables and not row numbers: 

 

We see that the new variables are called b3_1, b4_1, b5_1 and b6_1. We want to delete the suffix _1 in 

the names. We use the sub command with a regular expression and say that the suffix _1 in the 

column names should be replaced with an empty string:  

colnames(persons) <- sub("_1$", "", colnames(persons)) 
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Next, we will delete the row that has NA’s for all the new variables (marked yellow in the list above). 

We count the NA’s for variable 5:8 and keep only those were the count is not 4 (as it is four new 

variables). The ,5:8 means all rows and columns 5:8. The last comma tell us to use all columns in the 

data frame in the output.: 

persons <- persons[rowSums(is.na(persons[,5:8]))!=4,] 

Now we will sort the data frame by the hh and member variables: 

persons <- persons %>% arrange(hh,member) 

Finally, we want to change the row names to row numbers: 

rownames(persons)<-1:nrow(persons) 

The data frame is now as we want it to be: 

 

16.5. Python 

Our survey, before aggregation, is in the long format. Here that means every person within a 

household has a separate row in the data frame. If we instead want one row for each household 

and repeated columns for the persons in the household, we can use the pivot function. 

We define the variables to keep once for each household in the index parameter. Then we use the 

columns parameter to specify the person number. Finally, we use the values parameter to specify 

the columns to pivot: 

householdsr = mdgperson_nodup.pivot(index=['hh', 'state', 'urbrur'], 
columns='member', values= ['b3', 'b4', 'b5', 'b6']) 
householdsr  
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The data frame is now in the wide format: 

 

Each of the variables b3, b4, b5 and b6 has now 6 columns (the maximum number of persons in a 

household. For households with less than 6 members, the values are set to NaN for numbers higher 

than the number of persons in the household (see row 3, member 6). 

There are some issues with this data frame. First the pivoted columns have multi-index names 

which should be changed to normal column names. Second, the household variables are defined as 

an index, they should be ordinary columns. We rename the column names with a for loop through 

the column names: 

householdsr.columns = [f'{x}_{y}' for x, y in householdsr.columns] 

Another way to rename the column names is to use the get_level_values function: 

householdsr.columns = householdsr.columns.get_level_values(0) + '_' + 
householdsr.columns.get_level_values(1).astype('str') 

Then we use the reset_index method to change our household variables back to normal columns: 

householdsr = householdsr.reset_index() 
householdsr 

The result: 
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When we have a data frame in wide format like the one above, we can use the wide_to_long function 

to transpose to the long format. First, we specify the name of the data frame to transpose. Then the 

variables we want to transpose (b3, b4, b5, b6). They are called stub variables. We specify the 

separator for these stub variables (here: _ because the original variables are named b3_1, b3_2 and 

so on). Then we specify the variables to copy with the i parameter. Finally, we number the new rows 

within each household with the j parameter: 

persons = pd.wide_to_long(householdsr, ['b3', 'b4', 'b5', 'b6'], sep='_', 
i=['hh', 'state', 'urbrur'], j='member') 
persons 

The new, long format data frame: 

 

We should delete the lines were all the transposed variables are NaN. Furthermore, we can change 

the household variables from index to normal columns. We use the dropna function to drop all rows 

with NaN for member characteristics. It is important to drop the NaN rows before we reset the 

index. Otherwise, the household variables will be included in the dropna test. They are not Nan, and 

no rows would then be deleted. 

persons = persons.dropna(how='all') 
persons = persons.reset_index() 
persons 
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Here are the first rows our data frame after deletion and index reset: 

 

If there are many stub variables the list could be long. Instead of typing them all in, we can put them 

in a list based on the column names. In our dataset we want to find all variables that ends in an 

underscore and one or more numbers and extract the name without the underscore and the 

number. Then we select the rows where the same extracted name appears more than once. Finally, 

we drop the help variable idx and convert to a single list. We can do it like this: 

stubvars = pd.DataFrame(householdsr.columns) 
stubvars = stubvars.replace('_[0-9*]$', '', regex=True) 
stubvars['idx'] = stubvars.groupby(0).cumcount() 
stubvars = stubvars.loc[stubvars['idx'] == 1] 
stubvars = stubvars.drop(columns='idx') 
stubvars = stubvars.stack().values.tolist() 
stubvars 

The first line converts the variable names into a data frame called stubvars. The second replace the 

variable names without the extension of underscore and number(s) by using a regular expression 

that says: find an underscore and one or more numbers from 0-9 at the end of the string and 

replace it with an empty string. The third line add a column called idx which number each row with 

the same name within the data frame. This means that variables names where the extension is 

deleted will appear more than once, with different idx numbers. The fourth line delete all rows 

except the once where idx equals 1 to get rid of duplicates and names that should not be stub 
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variables. In the fifth line we delete the idx column. Finally, in the sixth line we convert the data 

frame to a single list. To make it single we use the stack method. Without using the stack method, the 

list will contain one list for each variable and not fit into the stubnames parameter. The list will look 

like this and fit: 

['b3', 'b4', 'b5', 'b6'] 

Now we can use the stubvars list in the stubnames parameter: 

persons = pd.wide_to_long(householdsr, stubnames=stubvars, sep='_', i=['hh', 
'state', 'urbrur'], j="member") 
persons = persons.dropna(how='all') 
persons = persons.reset_index() 
persons  

 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

118 

17. Recoding 
The usual recoding is when we want to group values of one variable, for instance create age groups 

from age. In Spss and Stata we have a separate command for this called recode. In Sas we can use 

the Select construction to do the recode if we want to have a new variable on the dataset. In R we 

can use the case_when command in dplyr. In Sas, if we just need the recode for tabulation or other 

listings, we can use a format instead of the recode. When we recode, we must decide what to do 

with invalid and missing values (more about missing values on page 139). 

17.1. Sas 

Here are two examples on how to recode age into age groups. The first method creates a new 

variable; the second just uses a format to group values and then uses it in a frequency table. The 

Select construction consists of a number of When statements and an Otherwise statement. The order 

of the When statements is often important because Sas leaves the Select construction after the first 

true When condition is executed.  

When we create a new variable, we should also make a format for it. This is done with Proc format. 

We also make the format that group codes together as is shown in the second Value statement in 

Proc format. The formats are then loosely connected in the Freq procedure: 

data mdgperson2; 

 set mdg.mdgperson_nodup; 

 select; 

  when ( 0<= b5 <  5) agegroup = 1; 

  when ( 5<= b5 < 10) agegroup = 2; 

  when (10<= b5 < 20) agegroup = 3; 

  when (20<= b5 < 40) agegroup = 4; 

  when (40<= b5 < 60) agegroup = 5; 

  when (b5 >= 60)     agegroup = 6; 

  otherwise           agegroup = 9; 

 end; 

 label agegroup = 'Age groups'; 

run; 

 

proc format; 

 value agegroup 

 1 = '0-4 years' 

 2 = '5-9 years' 

 3 = '10-19 years' 

 4 = '20-39 years' 

 5 = '40-59 years' 

 6 = '60 years and above' 

 9 = 'N/A' 

; 

 value agegrouped (notsorted) 

 0- <  5 = '0-4 years' 

 5- < 10 = '5-9 years' 

10- < 20 = '10-19 years' 

20- < 40 = '20-39 years' 

40- < 60 = '40-59 years' 

60- high = '60 years and above'   

other    = 'N/A' 

; 

run; 

 

proc freq data=mdgperson2; 

 table agegroup b5 /missing; 

 format b5 agegrouped. agegroup agegroup.; 
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 title 'Age grouped, two methods'; 

run; 

The result of the two ways of recoding: 

 

The notsorted option in the Value statement in Proc format is used to tell Sas not to sort the values. 

The original order is kept. In some of the Sas procedures, like Proc means and Proc tabulate, we can 

use this order in the table. Proc freq does not have this functionality. 

17.2. Spss 

In Spss we use the Recode command to group the ages, then create the variable and value labels 

and the frequency table: 

GET FILE='mdgperson_nodup.sav'. 

RECODE b5  

 (0 thru 4=1) 

 (5 thru 9=2) 

 (10 thru 19=3) 

 (20 thru 39=4) 

 (40 thru 59=5) 

 (60 thru Highest=6) 

 (SYSMIS=9)  

 INTO agegroup. 

VARIABLE LABELS agegroup 'Age grouped'. 

 

EXECUTE. 

VALUE LABELS agegroup 

 1 '0-4 years' 

 2 '5-9 years' 

 3 '10-19 years' 

 4 '20-39 years' 

 5 '40-59 years' 

 6 '60 years and above' 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

120 

 9 'N/A' 

. 

FREQUENCIES agegroup. 

The output gives us the same distribution as in Sas: 

 

17.3. Stata 

The recode in Stata is similar to Spss, except the syntax is even shorter: 

use "mdgperson_nodup.dta", clear 
 
recode b5 (1/4 = 1) (5/9 = 2) (10/19 = 3) (20/39 = 4) (40/59 = 5) (60/max = 6) /// 
 (else = 9), gen(agegroup) 
 
label define agegroup /// 
 1 "0-4 years" /// 
 2 "5-9 years" /// 
 3 "10-19 years" /// 
 4 "20-39 years" /// 
 5 "40-59 years" /// 
 6 "60 years and above" /// 
 9 "N/A" 
 
label values agegroup agegroup 
 
tab1 agegroup 

The table looks like this: 
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17.4. R  

We can use the case_when command in dplyr to recode a variable into a new one. First is an example 

for integer values. We use %in for the intervals for the different age groups. 0:4 is recoded to age 

group 1 and so on. The last condition, TRUE ~ 7 is to recode values that are not already grouped into 

the other groups to 7. After the recode, we create levels and labels and add them to the age group 

variable when we convert it to a factor variable. Finally, we make a frequency table as a data frame. 

When the table is converted to a data frame the table is transposed as we see in the result. We also 

name the column in the table command: 

mdgperson2 <- mdgperson_nodup %>%  
   mutate(agegroup= 
            case_when( 
              b5 %in%  0:4 ~ 1, 
              b5 %in%  5:9 ~ 2, 
              b5 %in% 10:19 ~ 3, 
              b5 %in% 20:39 ~ 4, 
              b5 %in% 40:59 ~ 5, 
              b5 >=60 ~ 6, 
              TRUE ~ 7)) 
agegroup.codes <- c(1,2,3,4,5,6,7) 
agegroup.texts <- c('0-4 years','5-9 years','10-19 years','20-39 years','40-5
9 years','60 years and above','N/A') 
mdgperson2$agegroup <- factor(mdgperson2$agegroup,levels = agegroup.codes,lab
els=agegroup.texts) 
as.data.frame(addmargins(table(agegroup=mdgperson2$agegroup))) 

The result: 

            agegroup Freq 

1          0-4 years    2 

2          5-9 years    7 

3        10-19 years   16 

4        20-39 years   15 

5        40-59 years    4 

6 60 years and above    2 

7                N/A    1 

8                Sum   47 
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In the previous example we recoded the NA’s to agegroup 7. If we want to leave it as NA, we can 

drop the TRUE ~7 condition. Then we also must remove the NA from the levels and labels when we 

convert to factor variable. Finally, in the next example the conditions allow decimals: 

mdgperson2 <- mdgperson_nodup %>%  
  mutate(agegroup= 
           case_when( 
             b5 >= 0 & b5 <5 ~ 1, 
             b5 >= 5 & b5 < 10 ~ 2, 
             b5 >= 10 & b5 < 20 ~ 3, 
             b5 >= 20 & b5 < 40 ~ 4, 
             b5 >= 40 & b5 < 60 ~ 5, 
             b5 >=60 ~ 6)) 
 
agegroup.codes <- c(1,2,3,4,5,6) 
agegroup.texts <- c('0-4 years','5-9 years','10-19 years','20-39 years','40-5
9 years','60 years and above') 
mdgperson2$agegroup <- factor(mdgperson2$agegroup,levels = agegroup.codes,lab
els=agegroup.texts) 
as.data.frame(addmargins(table(agegroup=mdgperson2$agegroup,exclude = NULL))) 

The first condition, b5 >= 0 & b5 <5, tells us that all values up to 5 (but not 5) should be recoded to 1. 

The second condition, b5 >= 5 & b5 < 10, include 5. That means there are no values between the end 

of the interval in the first condition and the start of the interval in the second condition. We can say 

that the intervals are closed. That is not the case in the first recode example. The first condition, 

%in% 0-4, ends with the value 4 and the second condition, %in% 5:9, starts with 5. Between 4 and 5 

there are room for values like 4.1, 4.5 and 4.9. In the first example these would have been recoded 

to 7, in the second they will be recoded to 1. 

The output table is now like this: 

            agegroup Freq 

1          0-4 years    2 

2          5-9 years    7 

3        10-19 years   16 

4        20-39 years   15 

5        40-59 years    4 

6 60 years and above    2 

7               <NA>    1 

8                Sum   47 

17.5. Python 

We can use several ways to recode a column into a new one. One way is to write a recode function 

and then use it with an apply method to add the recoded column to the data frame: 

def age_groups(recodevar): 
    if 0 <= recodevar < 5: 
        return '1' 
    elif 5 <= recodevar < 10: 
        return '2' 
    elif 10 <= recodevar < 20: 
        return '3' 
    elif 20 <= recodevar < 40: 
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        return '4' 
    elif 40 <= recodevar < 60: 
        return '5' 
    elif recodevar >= 60: 
        return '6' 
    else: 
        return '9' 
persons['AgeGroup'] = persons['b5'].apply(age_groups) 
persons 

With this recode all rows will get a value for the new AgeGroup column, even the NaN values will be 

recoded as they are included in the else clause. 

Another way is to use the cut method. However, to be sure the recode is done correctly the column 

to recode should be a float or integer (integers don’t allow NaN’s), not object. We define the edge 

values in one list and the recode values in another list. We can choose to include the rightmost edge 

values or not in our recode (the right parameter). We can also choose whether the first interval 

should be left-inclusive or not (the include_lowest parameter). NaN values will not be recoded with 

this method. 

ages = [0, 5, 10, 20, 40, 60, 120] 
agegroups=[1, 2, 3, 4, 5, 6] 
persons['b5'] = persons['b5'].astype('float64') 
persons['age_grp'] = pd.cut(persons['b5'], bins=ages, labels=agegroups, 
right=False) 
pd.crosstab(persons['age_grp'].astype('object').fillna('Missing'), 
columns='Frequency', margins=True) 

This recode will not include the right edges in the current interval. For instance, the age 20 will be 

recoded to 4, not 3. The number of agegroups must be one less than the number of age edges. The 

agegroup 1 will include the age values 0 to 4, the second from 5 to 9 and so on. Values from 120 and 

up from -1 and down will be Nan. A NaN value for age will result in a NaN value for age_grp. 

The crosstab of the recoded age_grp: 

 

We can fill the missing values with a value after the recode, but then we must change type to object 

first: 

persons['age_grp'] = pd.cut(persons['b5'], bins=ages, labels=agegroups, 
right=False).astype('object').fillna('9') 
pd.crosstab(persons['age_grp'], columns='Frequency', margins=True) 
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Now we have the value 9 for the missing value, just like for the first recode: 
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18. Functions 
Functions help doing our work easier. A function is a set of rules which take one or more arguments 

and returns an answer. There are lots of functions like arithmetic, character (string), date and time, 

mathematical, logical, random number, and truncation functions. The functions may differ in how 

they work between Sas, Spss, Stata, R and Python so we have to be sure how they work before we 

use them. This is a list of commonly used functions: 

Function Function type Sas Spss Stata R Python 

Extract a 

substring 

Character Substr Substr substr substr or 

substring 

str[start:end] 

(beware that 

first position is 

0 and end is 

not included) 

Concatenate 

string 

Character Cat, cats, 

catt or catx 

Concat concat paste, paste0 + 

Replace 

string values 

Character Translate or 

tranwrd 

Replace subinstr or 

subinword 

sub (first) or 

gsub (all) 

str.replace 

Change string 

to lowercase 

letters 

Character Lowcase Lower lower tolower str.lower 

Change string 

to uppercase 

letters 

Character Upcase Upcase upper toupper str.upper 

Reverse a 

string 

Character Reverse N/A reverse stri_reverse (in 

package stringi) 

str[::-1] 

Count 

appearances 

of a string 

Character Count N/A N/A str_count (in 

package stringr) 

str.count 

Position of 

first 

occurrence of 

a string 

Character Find, findc, 

findw, 

index, 

indexc or 

indexw 

Char.index strpos str_locate and 

str_locate_all (in 

package stringi) 

str.find 

Position of 

last 

occurrence of 

a string 

Character Findc, 

indexc or 

indexw 

Char.rindex strrpos str_locate and 

str_locate_all (in 

package stringi) 

str.rfind 

Length of a 

string 

Character Length, 

lengthc or 

lengthn 

Char.length or 

length 

length nchar str.len 

Remove 

leading and 

trailing 

blanks 

Character Strip N/A N/A trimws str.strip 

Remove 

leading 

characters 

Character Left Ltrim Ltrim trimws 

(argument 

which="left") 

str.lstrip 
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Remove 

trailing 

blanks 

Character Trim Rtrim Rtrim trimws 

(argument 

which="right") 

str.rstrip 

Fill string with 

blanks at the 

left 

Character Right Char.lpad N/A str_pad (in 

package stringr, 

argument 

side="right") 

str.pad (with 

side='left') 

Fill string with 

blanks at the 

right 

Character Subpad Char.rpad N/A str_pad (in 

package stringr, 

argument 

side="left") 

str.pad (with 

side='right') 

Split text into 

separate 

words as a 

list 

Character N/A N/A split (into 

separate 

variables) 

strsplit str.split 

Join text from 

words in a list 

Character N/A N/A N/A paste (when 

the list is not in 

a data frame 

column) 

str.join 

Addition Mathematical Sum Sum rowtotal rowSums or 

sum (dplyr) 

+ 

Exponentiatio

n 

Mathematical Exp Exp exp exp ** or np.power 

Absolute 

value 

Arithmetic Abs Abs abs abs abs 

The modulus 

of a fraction 

Arithmetic Mod Mod mod %% % 

Square root Arithmetic Sqrt Sqrt sqrt sqrt np.sqrt 

Check for 

values 

Logical N/A Any strmatch str_match in 

stringr package 

str.contains 

 

Check for 

missing value 

Logical Missing Missing or 

sysmis 

missing is.na isna 

Coefficient of 

variation 

Statistical Cv Cfvar N/A cv N/A (but we can 

use 

np.std(x)/np.me

an(x)) 

 

Maximum 

value 

Statistical Max Max rowmax max (with 

rowwise in 

dplyr package) 

np.max 

Average 

value 

Statistical Mean Mean rowmean rowmeans np.mean 

Median value Statistical Median Median rowmedian median (in 

dplyr package) 

np.median 
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Minimum 

value 

Statistical Min Min rowmin min (with 

rowwise in 

dplyr package) 

np.min 

Number of 

missing 

values 

Statistical Nmiss Nmiss rowmiss rowSums(is.na()

) 

isnull in 

combination 

with sum 

Number with 

valid, non-

missing 

values 

Statistical N Nvalid rownonmiss rowSums(!is.na(

)) 

count 

Standard 

deviation 

Statistical Std Sd rowsd sd (in dplyr 

package) 

np.std 

Variance Statistical Var Variance N/A rowVars np.var 

Round a 

number 

Truncation Round Rnd round round round 

 

The integer 

of a number 

Truncation Int Trunc int integer og 

as.integer 

astype(int) 

 

Random 

normal 

distribution 

Random 

number 

Normal Normal normal rnorm np.random.nor

mal 

Random 

uniform 

distribution 

Random 

number 

Uniform Uniform runiform runif np.random.unif

orm 

Difference 

between 

dates 

Date and time Datdif Datedif tin or twithin difftime N/A (but can 

use arithmetic 

difference 

between 2 date 

variables) 

Convert to 

date variable 

Date and time Mdy Date.dmy or 

Date.mdy 

date as.Date pd.to_datetime 

Convert to 

time variable 

Date and time Dhms Time.hms clock POSIXct pd.to_datetime 

Return date 

from a 

date/time 

variable 

Date and time Datepart Xdate.date dofc or dofC strftime dt.date 

Return hour 

from a 

date/time 

variable 

Date and time Hour Xdate.hour hh or hhC strftime dt.hour 

Return Julian 

date from a 

date/time 

variable 

Date and time Juldate Xdate.jday doy strftime dt.strftime('%j') 
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Return day of 

month from a 

date/time 

variable 

Date and time Day Xdate.mday day strftime dt.day  

Return 

minute from 

a date/time 

variable 

Date and time Minute Xdate.minute mm or mmC strftime dt.minute 

Return 

month from a 

date/time 

variable 

Date and time Month Xdate.month month strftime dt.month 

Return 

quarter from 

a date/time 

variable 

Date and time Qtr Xdate.quarter quarter quarters dt.quarter 

Return 

second from 

a date/time 

variable 

Date and time Second Xdate.second ss or ssC strftime dt.second 

Return time 

of day from a 

date/time 

variable 

Date and time Timepart Xdate.time N/A strftime dt.time 

Return week 

from a 

date/time 

variable 

Date and time Week Xdate.week week strftime dt.isocalendar().

week 

Return day of 

week from a 

date/time 

variable 

Date and time Weekday Xdate.wkday dow strftime dt.weekday 

Return year 

from a 

date/time 

variable 

Date and time Year Xdate.year year strftime dt.year 

Fetch a value 

from a 

previous 

observation 

Special Lag Lag Use 

varname[_n -

x] instead of a 

function 

lag (in dplyr 

package) 

shift or ffill 

Convert 

string to 

number 

Special N/A Number real as.numeric astype(int) 

Convert 

number to 

string 

Special N/A String string as.character astype(str) 

Convert 

string/numbe

r to factor 

N/A N/A N/A N/A as.factor astype('categor

y') 
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Functions are used as part of the programming and may be used in many places.  

Below are examples on some of the string functions and how they can be used in each of the 

softwares. There is also an example of the use of the addition (Sum in Sas and SPSS, rowtotal in Stata, 

rowSums in R and + in Python) function. We also show the difference between adding variables 

together with sum functions and adding them together the ordinary way (with +). 

18.1. Sas 

Functions may be used both in data and proc steps. As seen above there are lots of functions to 

choose from. We will now look at examples of a of these functions. We start with importing an 

inserted dataset which have full texts in the variables. the texts are not connected as formats 

because we can’t use functions directly on formatted values, only the actual values. Here is a subset 

of our survey data: 

data mdgperson_txt; 

 infile cards truncover dlm=';'; 

 input hh : $6.  

       state : $10. 

       urbrur : $5. 

       member : $1. 

       b3 : $17. 

       b4 : $6. 

       b5 : 2. 

       b6 : $18. 

       ; 

cards4; 

020074;02 Capital;Urban;1;Head;Male;39;Married - polygamy 

020074;02 Capital;Urban;2;Spouse;Female;21;Married - monogamy 

020074;02 Capital;Urban;3;Daughter/son;Male;16;Never married 

040024;04 East;Urban;1;Head;Male;37;Married - monogamy 

040024;04 East;Urban;2;Non relative;Female;23;Married - polygamy 

040024;04 East;Urban;3;Daughter/son;Female;17;Never married 

040024;04 East;Urban;4;Other relative;Female;9;Missing 

050069;05 South;Rural;1;Head;Male;67;Married - monogamy 

050069;05 South;Rural;2;Spouse;Female;60;Married - monogamy 

050069;05 South;Rural;3;Grandchild;Female;16;Never married 

060036;06 West;Urban;1;Head;Male;42;Married - monogamy 

060036;06 West;Urban;2;Spouse;Female;40;Married - monogamy 

;;;; 

run; 

Now we can use some functions on some of these variables. Note that for the substr function we 

don’t need to specify the length of the substring when we want the rest of the string from the start 

value. We can also nest functions. They are evaluated from inner to outer: 

data mdgperson_f; 

 set mdgperson_txt; 

 state_no = substr(state,1,2); 

 state_txt = substr(state,4); 

 urbrur_low = lowcase(urbrur); 

 urbrur_up = upcase(urbrur); 

 b3_repl = tranwrd(b3,'/',' or '); 

 state_urbrur = catx(' ',substr(state,4),urbrur); 

 b3_find = find(b3,'e'); 

 b3_rfind = findc(b3,'e','b'); 

 b6_count = count(b6,'e'); 

 b3_repl_count = count(b3_repl,'r '); 

run; 
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The new variables are added as shown here: 

 

There is a distinction between the SUM function and addition with + which is important to know. To 

illustrate this, we first use the Data step to create a dataset with some income data. Then, in the 

same step we calculate total income and age in two different ways. Then we list the dataset with 

Proc print: 

data test; 

  input yearbirth income overtime; 

  income_total1 = income+overtime; 

  income_total2 = SUM(income,overtime); 

  age1  = 2012-yearbirth; 

  age2  = SUM(2012,-yearbirth); 

cards; 

1974 234000 002320 

1965 256000      0 

1967 235350      . 

   . 432330 033203 

   .      .      . 

; 

run; 

 

proc print data=test; 

  title 'Differences?' ; 

run; 

The listing of the dataset looks like this: 

 

We see that Sas calculates different results when one or more of the variables we add together are 

missing. With the sum function all non-missing variables are added together. The assumption made 

in this calculation is that missing values have the value of 0 (except if all variables have missing 

values, see observation 5). If that is not what we want, we can use ordinary addition instead. Then 

Sas will not calculate a sum unless all added variables have valid values. The assumption now is that 

because we don’t have enough information, we can’t calculate a sum. This last assumption is correct 
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when it comes to calculating the age. However, when we calculate the total income, which method 

to use is not given.  

18.2. Spss 

The functions in Spss work similar to Sas. We use them in the Compute command. The functions 

work on the values, not the value labels. Here is a program that import variables where the text is 

the values so that we can use functions on them: 

DATA LIST LIST (";")/  

       hh (a6)  

       state (a10)  

       urbrur (a5)  

       member (f1) 

       b3 (a17) 

       b4 (a6) 

       b5 (f2) 

       b6 (a18) 

       . 

BEGIN DATA 

020074;02 Capital;Urban;1;Head;Male;39;Married - polygamy 

020074;02 Capital;Urban;2;Spouse;Female;21;Married - monogamy 

020074;02 Capital;Urban;3;Daughter/son;Male;16;Never married 

040024;04 East;Urban;1;Head;Male;37;Married - monogamy 

040024;04 East;Urban;2;Non relative;Female;23;Married - polygamy 

040024;04 East;Urban;3;Daughter/son;Female;17;Never married 

040024;04 East;Urban;4;Other relative;Female;9;Missing 

050069;05 South;Rural;1;Head;Male;67;Married - monogamy 

050069;05 South;Rural;2;Spouse;Female;60;Married - monogamy 

050069;05 South;Rural;3;Grandchild;Female;16;Never married 

060036;06 West;Urban;1;Head;Male;42;Married - monogamy 

060036;06 West;Urban;2;Spouse;Female;40;Married - monogamy 

END DATA. 

Now we use the same functions as in the Sas example above. Beware that there is no function in 

Spss the counts the number of occurrences of a string in a text. Instead, we can use the length and 

replace functions to count. It is done by first finding the total length of the variable. Then we 

subtract the length of the variable where all occurrences of our string are replaced with nothing. 

This will work when we count only one character. If we count more than one character, we must 

divide the result by the number of characters we search for, see example below: 

STRING state_no (a2) state_txt (a7) urbrur_low (a5) urbrur_up (a5) b3_repl 

(a17) state_urbrur (a14). 

COMPUTE state_no = substr(state,1,2). 

COMPUTE state_txt = substr(state,4). 

COMPUTE urbrur_low = lower(urbrur). 

COMPUTE urbrur_up = upcase(urbrur). 

COMPUTE state_urbrur = concat(substr(state,4),' ',urbrur). 

COMPUTE b3_find = char.index(b3,'e'). 

COMPUTE b3_rfind = char.rindex(b3,'e'). 

COMPUTE b3_repl = replace(b3,'/',' or '). 

COMPUTE b6_count = length(b6)-length(replace(b6,'e','')). 

COMPUTE b3_repl_count = (length(b3_repl)-length(replace(b3_repl,'r ','')))/2. 

EXECUTE. 

The new variables as they are added to the dataset: 
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The sum function and addition in Spss work similar to Sas. Here is the syntax in Spss to illustrate the 

differences: 

DATA LIST FREE/ 

 yearbirth income overtime . 

BEGIN DATA 

1974 234000 002320 

1965 256000      0 

1967 235350      . 

   . 432330 033203 

   .      .      . 

END DATA. 

COMPUTE income_total1 = income+overtime. 

COMPUTE income_total2 = SUM(income,overtime). 

COMPUTE age1  = 2012-yearbirth. 

COMPUTE age2  = SUM(2012,-yearbirth). 

EXECUTE. 

We create the Spss dataset with the Data list command, do the calculations with Compute commands 

and finally execute them with the Execute command.  

Spss also have the same distinction between the normal addition and using the sum function, as this 

output shows: 

 

18.3. Stata 

The different functions in Stata work either horizontally or vertically. Some functions are used with 

the generate (gen) command and some work with the egen command. There is no function to count 

the number of occurrences of a string in a text, but we can do it by combining the length and subinstr 

functions similar to Spss. As in Sas and Spss, Stata operates on the actual values for the variables, 

not the value labels. Hence, in our example we import a test dataset with the value labels as values 

and then calculate the new variables by using different functions: 

clear 
input str6 hh str10 state str5 urbrur member str17 b3 str6 b4 b5 str18 b6 
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020074 "02 Capital" Urban 1 "Head" Male 39 "Married - polygamy" 
020074 "02 Capital" Urban 2 "Spouse" Female 21 "Married - monogamy" 
020074 "02 Capital" Urban 3 "Daughter/son" Male 16 "Never married" 
040024 "04 East" Urban 1 "Head" Male   37 "Married - monogamy" 
040024 "04 East" Urban 2 "Non relative" Female 23 "Married - polygamy" 
040024 "04 East" Urban 3 "Daughter/son" Female 17 "Never married" 
040024 "04 East" Urban 4 "Other relative" Female 9 "Missing" 
050069 "05 South" Rural 1 "Head" Male   67 "Married - monogamy" 
050069 "05 South" Rural 2 "Spouse" Female 60 "Married - monogamy" 
050069 "05 South" Rural 3 "Grandchild" Female 16 "Never married" 
060036 "06 West" Urban 1 "Head" Male 42 "Married - monogamy" 
060036 "06 West" Urban 2 "Spouse" Female 40 "Married - monogamy" 
end 
 
gen state_no = substr(state,1,2) 
gen state_txt = substr(state,4,.) 
gen urbrur_low = lower(urbrur) 
gen urbrur_up = upper(urbrur) 
gen b3_repl = subinstr(b3,"/"," or ",.) 
egen state_urbrur = concat(state_txt urbrur), punct(" ") 
gen b3_find = strpos(b3,"e") 
gen b3_rfind = strrpos(b3,"e") 
gen b6_count = length(b6) - length(subinstr(b6, "e", "", .)) 
gen b3_repl_count = (length(b3_repl) - length(subinstr(b3_repl, "r ", "", .)))/2 

The new variables are added to our dataset: 

 

There are differences between using functions and normal addition in Stata as well. We start with 

clearing the data editor with the clear command and creating the dataset with the input command. 

Then we generate the new variables with generate, egen and replace commands. Here is a syntax that 

creates the variables as above and some vertically calculated variables too: 

clear 
input yearbirth income overtime 
1974 234000 002320 
1965 256000      0 
1967 235350      . 
   . 432330 033203 
   .      .      . 
end 
generate income_total1 = income+overtime 
egen income_total2 = rowtotal(income overtime) 
generate age1  = 2012-yearbirth 
generate year = -2012 
egen age2  = rowtotal(year yearbirth) 
replace age2 = abs(age2) 
drop year 
generate cumulative_income_total = sum(income_total2) 
egen income_total = total(income_total2) 
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The output looks like this: 

 

18.4. R 

As in Stata, many functions may work both horizontal and vertical. The way they work depend on 

the arguments to the functions. There are two libraries with useful string functions we can use, 

string and stringi. We first activate them with the library command. Then we import our file into an R 

data frame as an inserted file. Finally, we use the different string functions to calculate new 

variables:  

library(stringr) 
library(stringi) 
mdgperson_txt <- read.csv(sep=";",header=FALSE, 
                 col.names=c("hh","state","urbrur","member","b3","b4","b5","b
6"), 
colClasses=c("character","character","character","numeric","character","chara
cter","numeric","character"), 
                 text=" 
020074;02 Capital;Urban;1;Head;Male;39;Married - polygamy 
020074;02 Capital;Urban;2;Spouse;Female;21;Married - monogamy 
020074;02 Capital;Urban;3;Daughter/son;Male;16;Never married 
040024;04 East;Urban;1;Head;Male;37;Married - monogamy 
040024;04 East;Urban;2;Non relative;Female;23;Married - polygamy 
040024;04 East;Urban;3;Daughter/son;Female;17;Never married 
040024;04 East;Urban;4;Other relative;Female;9;Missing 
050069;05 South;Rural;1;Head;Male;67;Married - monogamy 
050069;05 South;Rural;2;Spouse;Female;60;Married - monogamy 
050069;05 South;Rural;3;Grandchild;Female;16;Never married 
060036;06 West;Urban;1;Head;Male;42;Married - monogamy 
060036;06 West;Urban;2;Spouse;Female;40;Married - monogamy") 
 
mdgperson_txt$state_no = substr(mdgperson_txt$state,1,2) 
mdgperson_txt$state_txt = substring(mdgperson_txt$state,4) 
mdgperson_txt$urbrur_low = tolower(mdgperson_txt$urbrur) 
mdgperson_txt$urbrur_up = toupper(mdgperson_txt$urbrur) 
mdgperson_txt$b3_repl = gsub("/"," or ",mdgperson_txt$b3) 
mdgperson_txt$state_urbrur = paste(mdgperson_txt$state_txt,mdgperson_txt$urbr
ur) 
mdgperson_txt$b3_find = str_locate(mdgperson_txt$b3,"e") 
mdgperson_txt$b3_rfind = stri_locate_last(mdgperson_txt$b3,fixed="e") 
mdgperson_txt$b6_count = str_count(mdgperson_txt$b6,"e") 
mdgperson_txt$b3_repl_count = str_count(mdgperson_txt$b3_repl,"r ") 
mdgperson_txt$b6_split = strsplit(mdgperson_txt$b6,split=" ") 
View(mdgperson_txt) 
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The new data frame as shown with the View command. We see that when a string is not found with 

the str_locate and stri_locate functions, N/A is returned (not 0): 

 

When it comes to missing values, NA’s, they are treated the same way as usual in R. This means that 

if an NA is part of our expression, the result will be NA. To avoid an NA as result we can use the 

na.rm = TRUE argument. Here is the same example as above, with R syntax: 

test <- read.table(header=TRUE,text=" 
yearbirth income overtime 
1974 234000     2320      
1965 256000        0      
1967 235350       NA      
  NA 432330    33203      
  NA     NA       NA        
"   
) 
# Differences between sum and addition 
test$income_total1 <- test$income+test$overtime 
test$income_total2 <- rowSums(test[, c("income","overtime")],na.rm=TRUE) 
test$age1 <- 2012-test$yearbirth 
test$age2 <- 2012-rowSums(test['yearbirth'],na.rm=TRUE) 
test 

The rowSums function add sums for each selected row in our data frame. By using an empty string 

and a comma first, we select all rows. After the comma we name the variables to add together and 

also make sure to leave out NA’s with the na.rm = TRUE argument. We are not allowed to subtract 

values with the rowSums function. Instead, we calculate the second age variable with the rowSums 

function even though it is only one variable, because then we can remove the NA’s. The result is like 

this: 

  yearbirth income overtime income_total1 income_total2 age1 age2 

1      1974 234000     2320        236320        236320   38   38 

2      1965 256000        0        256000        256000   47   47 

3      1967 235350       NA            NA        235350   45   45 

4        NA 432330    33203        465533        465533   NA 2012 

5        NA     NA       NA            NA             0   NA 2012 

If we don’t want to repeat the data frame name every time we mention a variable, we can use the 

with function. First, we tell which data frame to use and then we do our calculation: 

test$income_total1 <- with(test,income+overtime) 

We can use the dplyr package to do the same calculations. Here we may use the sum function, which 

also take arguments with minus signs. First, we use the rowwise function to make sure the 

calculations are made for each row. Then we use the mutate function and create our new variables. 

Here we can also calculate the age2 variable: 

test <- test %>%  
  rowwise() %>%  
  mutate( 
    income_total1 = income+overtime, 
    income_total2 = sum(income,overtime, na.rm = TRUE), 
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    age1 = 2012-yearbirth, 
    age2 = sum(2012, -yearbirth, na.rm = TRUE) 
    ) 
test 

The result: 

# A tibble: 5 x 7 

  yearbirth income overtime income_total1 income_total2  age1  age2 

      <int>  <int>    <int>         <int>         <int> <dbl> <dbl> 

1      1974 234000     2320        236320        236320    38    38 

2      1965 256000        0        256000        256000    47    47 

3      1967 235350       NA            NA        235350    45    45 

4        NA 432330    33203        465533        465533    NA  2012 

5        NA     NA       NA            NA             0    NA  2012 

18.5. Python 

In python we have several functions and also many methods. The functions are not associated with 

any objects and can be invoked by its name. Methods are always associated with an object and 

cannot be invoked just by its name. For practical usage of functions and methods it is often just that 

we use different syntax to call functions compared to methods. Here is a small example where we 

define a function that adds to numbers together. The function is then called by its name: 

def add(x, y): 
    return x+y 
add(1,4) 

We can do the same with a method. Methods are always defined within an object which are defined 

by a class. Here we define a class object called arithmetic and within that class object we define two 

methods, addition and subtraction. The method is called both by the class object name and the 

method: 

class arithmetic: 
    def __init__(self, x, y): 
                  self.x = x 
                  self.y = y 
    def addition(self): 
        return self.x + self.y 
    def subtraction(self): 
        return self.x - self.y 
arithmetic(1,4).addition() 

Here are some examples on how we can use built-in functions for columns in data frames. We start 

with importing a data file with some string variables. Then we use different string functions to create 

new columns. Beware that for string functions, we add the str argument. For the substring there is 

no actual function, we just select the string with start and end positions (where 0 is the first position 

and the last position is not included in the string). When it comes to concatenation, we don’t use a 

function, we just use the + sign. However, the columns must be of object (str) type, not category or 

numeric: 
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data="""                           
020074;02 Capital;Urban;1;Head;Male;39;Married - polygamy 
020074;02 Capital;Urban;2;Spouse;Female;21;Married - monogamy 
020074;02 Capital;Urban;3;Daughter/son;Male;16;Never married 
040024;04 East;Urban;1;Head;Male;37;Married - monogamy 
040024;04 East;Urban;2;Non relative;Female;23;Married - polygamy 
040024;04 East;Urban;3;Daughter/son;Female;17;Never married 
040024;04 East;Urban;4;Other relative;Female;9;Missing 
050069;05 South;Rural;1;Head;Male;67;Married - monogamy 
050069;05 South;Rural;2;Spouse;Female;60;Married - monogamy 
050069;05 South;Rural;3;Grandchild;Female;16;Never married 
060036;06 West;Urban;1;Head;Male;42;Married - monogamy 
060036;06 West;Urban;2;Spouse;Female;40;Married - monogamy 
""" 
mdgperson_txt = pd.read_csv( 
                StringIO(data), 
                names=['hh', 'state', 'urbrur', 'member', 'b3', 'b4', 'b5', 
'b6'], 
                dtype={'hh': 'object', 'state': 'object', 'urbrur': 
'category', 'b3': 'object', 'b4': 'object', 'b6': 'object'}, 
                header=None, 
                sep=';' 
                )            
mdgperson_txt['state_no'] = mdgperson_txt['state'].str[0:2] 
mdgperson_txt['state_text'] = mdgperson_txt['state'].str[3:] 
mdgperson_txt['urbrur_low'] = mdgperson_txt['urbrur'].str.lower() 
mdgperson_txt['urbrur_up'] = mdgperson_txt['urbrur'].str.upper() 
mdgperson_txt['b3_repl'] = mdgperson_txt['b3'].str.replace('/',' or ') 
mdgperson_txt['state_urbrur'] = mdgperson_txt['state'].str[3:] + ' ' + 
mdgperson_txt['urbrur'].astype(str) 
mdgperson_txt['b3_find'] = mdgperson_txt['b3'].str.find('a') 
mdgperson_txt['b3_rfind'] = mdgperson_txt['b3'].str.rfind('e') 
mdgperson_txt['b6_count'] = mdgperson_txt['b6'].str.count('e') 
mdgperson_txt['b3_repl_count'] = mdgperson_txt['b3_repl'].str.count('r ') 
mdgperson_txt['b6_split'] = mdgperson_txt['b6'].str.split(' ') 
mdgperson_txt['b6_join'] = mdgperson_txt['b6_split'].str.join('/') 
mdgperson_txt['b6_third_word'] = mdgperson_txt['b6_split'].str[2] 
mdgperson_txt 

For most of these string functions, we must insert str. before the actual function to make it work on 

data frames. We see that when a string is not found, the find and rfind functions return -1. For 

substrings, we use the slice technique where we define the slices (substring) within brackets ([]). 

When the column contains a list, the slice will be the elements in the list, not the positions within the 

whole text (compare the first and last of the examples above). Beware that the positions within the 

string starts with 0, not 1: 
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When it comes to addition with NaN values, we can only use addition or subtraction. To deal with 

NaN’s we can use the fillna function. With the fillna function we can treat the NaN values as zeros. 

Here is an example: 

data="""                      
1974,234000,2320 
1965,256000,0 
1967,235350,. 
.,432330,33203 
.,.,. 
""" 
test = pd.read_csv( 
        StringIO(data), 
        names=['yearbirth', 'income', 'overtime'], 
        dtype=float, 
        na_values={'.', ' .'}, 
        header=None 
       )   
 
# Differences between sum and addition 
test['income_total1'] = test['income'] + test['overtime'] 
test['income_total2'] = test['income'].fillna(0) + test['overtime'].fillna(0) 
test['age1'] = 2012 - test['yearbirth'] 
test['age2'] = 2012 - test['yearbirth'].fillna(0) 
test 

This is the output: 

 

 

 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

139 

19. Missing values 
As seen in the previous chapter missing values should be treated with care. Missing values are 

usually not included in calculations. They are also treated a little different in some situations across 

Sas, Spss, Stata, R and Python. We will show some of the differences in this chapter. 

A string variable in Stata is missing when the value is an empty string. A blank (= one space) string is 

a valid value. In Sas both a space and an empty string are defined as missing values. Spss differs 

between system missing and user missing values. Only numeric variables have system missing 

values. User missing may be defined as any character for string variables and any number for 

numeric variables. However, we should be careful with what values we define as user missing and 

when we assign these values. If a numeric value is set as user missing in the data, we also have to 

define them as missing with the Missing values command. For string variables, it is usual to set 

missing to an empty string or a space. In Sas and Spss there is no difference between a space and 

an empty string when it comes to handling of missing values. If we set the user missing value to an 

empty string in Spss, a string of spaces will also be defined as user missing.  

For numeric variables both Sas and Stata operates with several special missing values. The valid 

missing values are defined from .a to .z in Stata and .A to .Z in Sas. Otherwise, the default value of 

missing for numeric values in Sas and Stata is a dot (.). This makes it possible for us to define the dot 

as system missing and choose other values for user missing. Sas and Stata do not differ between 

system missing and user missing values when it comes to frequencies and tabulation the same way 

as Spss does. 

In R there is only one missing value, and it is called NA (not available). However, there is also a value 

for impossible values (e.g., dividing by zero), NaN (not a number). The NA is the same for both 

character and numeric values. 

For Python, we have some different values for missing. The usual one is for numbers and is called 

NaN (not a number). We also have NaT (not a time, for time variables) and None which symbols and 

empty string value. 

19.1. Sas 

Here is a Data step where we set the Civil status (b6) to the special missing value .U when it miss a 

value where there should be one. We start with the Data statement and name the output dataset. 

Then we read the existing dataset with the Set statement. The If statement is used to conditionally 

set the value of b6 to .U. Then we do the tabulation with Proc tabulate. 

data mdgperson3; 

 set mdg.mdgperson_nodup; 

 if b5 >= 11 and b6 = . then b6 = .U; 

run; 

proc tabulate data=mdgperson3 missing f=11.; 

 class urbrur b4 ; 

 class b6 /preloadfmt order=data; 

 table all='Total' urbrur='Urban/rural location of household' b6='Civil 

Status' 

       , 

  all='Total' b4='Sex'; 

 format urbrur urbrur. b6 civil_status. b4 sex.; 

 title 'Urban/rural and civil status by sex'; 

run; 
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The output shows that both missing values are incorporated in the table: 

 

For Civil status the row with missing values should be excluded. There is no easy way to exclude 

them in Sas without excluding the observations from the whole table as well. 

When we want to deal with missing values in an If construction, we must know that missing values 

are included in any condition which checks for values less than a number. For instance, the 

condition b6 < 7 will be true for all values less than 7, including all missing values. Hence the first If 

construction below will not give the expected result. Instead, we use the second If construction: 

data mdgperson4; 

 set mdgperson3; 

 if (b6 <= 6) then 

  valid_b6_w = 1; 

 else if b6 = .U then 

  valid_b6_w = 3; 

 else if b6 = . then 

  valid_b6_w = 2; 

 else 

  valid_b6_w = 9; 

 

 if (1<= b6 <= 6) then 

  valid_b6 = 1; 

 else if b6 = .U then 

  valid_b6 = 3; 

 else if b6 = . then 

  valid_b6 = 2; 

 else 

  valid_b6 = 9; 

run; 

 

proc freq data=mdgperson4; 

 tables valid_b6_w valid_b6/missing; 

 title 'After if'; 

run; 
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With the frequencies made with the Proc freq above, we see the differences between the two If 

constructions: 

 

19.2. Spss 

For numeric variables in Spss we have to choose a number as user missing value. For categorical 

variables we usually set user missing to a higher number than any of the valid values. When the 

value is set, we must remember to use the Missing values command to define the value as user 

missing. For scale variables we usually do not differ between system and user missing values. A 

normal approach for categorical variables is to set them to system missing when they are not 

supposed to have a value. This is typical for questions in a survey which have been skipped due to 

answers to a previous question. Those who are not to answer the question will be given system 

missing for these variables. User missing is set when there should be a value, but none is entered or 

imputed. The categorical user missing values should be included in tabulations, but not the system 

missing values. 

We want to create a table with urban/rural and civil status in the rows and sex in the columns. For 

the question of civil status, it is only asked persons 11 years and above. Hence, we want to set 

missing values for people with age 11 and above to user missing and include them in the table. 

People below 11 should not be included in this category. First, we use an If command to set values 

to user missing. Then we use the Missing values command to define user missing values. Finally, we 

use the Ctables command to create the table: 

GET FILE='mdgperson_nodup.sav'. 

 

IF (b5 >= 11 and missing(b6) = 1) b6 = 9. 

 

MISSING VALUES b6 (9). 

 

CTABLES 

  /VLABELS VARIABLES=b6 b4 DISPLAY=LABEL 

  /TABLE urbrur + b6 BY b4 [COUNT F40.0] 

  /CATEGORIES VARIABLES=urbrur ORDER=A KEY=VALUE EMPTY=INCLUDE TOTAL=YES 

POSITION=BEFORE   

  /CATEGORIES VARIABLES=b6 ORDER=A KEY=VALUE EMPTY=INCLUDE TOTAL=YES 

POSITION=BEFORE MISSING=INCLUDE 

  /CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=INCLUDE TOTAL=YES 

POSITION=BEFORE. 
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We see that the table includes user missing (N/A), but not system missing for the Civil status 

category: 

 

We have to be aware how Spss deals with missing when it comes to conditions. If we want to check 

against a missing value with a Do if command, we must use the functions Missing or Sysmis, 

otherwise our condition will never be true for missing values. In addition, we must start with our 

check for missing values.  

This is a syntax example which shows two different Do if constructions, only the last one will give the 

intended result: 

DO IF (b6 <= 6). 

 COMPUTE valid_b6_w = 1. 

ELSE IF (b6 = 9). 

  COMPUTE valid_b6_w = 3. 

ELSE. 

 COMPUTE valid_b6_w = 2. 

END IF. 

 

DO IF (sysmis(b6) = 1). 

  COMPUTE valid_b6 = 2. 

ELSE IF (missing(b6) = 1). 

  COMPUTE valid_b6 = 3. 

ELSE IF (b6 <6 ). 

  COMPUTE valid_b6 = 1. 

ELSE. 

  COMPUTE valid_b6 = 9. 

END IF. 

 

FREQUENCIES valid_b6_w valid_b6. 
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As our frequency table shows, the variable valid_b6_w is not given a value when b6 is missing: 

 

19.3. Stata 

As Sas, Stata uses numbers as missing values. Where missing values are lower than the lowest legal 

number in Sas it is higher than the highest legal in Stata. This means that missing values will be 

included in all conditions where we use > or >=. When we use conditions like these and don’t want to 

include the missing values, we have to add another condition to exclude them.  

When we want to set a special missing value for the civil status when it is missing, and age is above 

10 we can do like this: 

use "mdgperson_nodup.dta", clear 
replace b6 = .u if b5 >= 11 & b6 == . 

In the tabulation the missing value . is omitted, but the user defined missing .u is included. Here is 

syntax to create two tables: 

table urbrur b4, scol col row 
table b6 b4, scol col row 
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The tabulation omits the observations with system user missing values. That is why the total is 

different in the tables. User missing is as we see included in the table: 

 

It does not seem to be an easy way to concatenate the row variables into one table in Stata, hence 

we create two separate tables. 

Stata does not have the same If construction as Sas and Spss for normal use. Instead, we use either 

a combination of generate and replace commands or a recode command. We may do it in the wrong 

way when it comes to the missing values: 

generate valid_b6_w = 3 if b6 == .u 
replace  valid_b6_w = 2 if b6 == . 
replace  valid_b6_w = 9 if b6 > 6 & b6 < . 
replace  valid_b6_w = 1 if b6 >= 1 
 
tab1 valid_b6_w 
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The order of the commands above is wrong as the condition in the last replace includes the missing 

values: 

 

Instead, we change the order of the commands: 

use "mdgperson_nodup.dta", clear 
replace b6 = .u if b5 >= 11 & b6 == .  
 
generate valid_b6 = 1 if b6 >= 1 
replace  valid_b6 = 3 if b6 == .u 
replace  valid_b6 = 2 if b6 == . 
replace  valid_b6 = 9 if b6 > 6 & b6 < . 
tab1 valid_b6 

Now the recode is as intended: 

 

For a recode like the one above it is usually better to use the recode command: 

recode b6 (1/6 = 1) (.u = 3) (. = 2) (else = 9), gen(valid_b6) 

More about the recode command is found in the chapter Recoding, page 118. 

19.4. R 

When we deal with missing values in R, it is useful to know about some functions.  

• is.na   Check if a value is NA or not 

• na.rm   Remove (TRUE) or keep (FALSE) NA’s 

• complete.cases Check if a row has NA’s 
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Some examples: 

> mdgperson$b5 

 [1] 10 39 20 20 33 23 16 24 16 60 27  8  3  8 18 14 16 13 21  5 13 18  9 41 
10 

[26] 31 67 17 NA 22 21 16  8  7 19 42 45 20 20  9 11 30 40 17  1 12 37 17 

> is.na(mdgperson$b5) 

 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

[25] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

> mean(mdgperson$b5) 

[1] NA 

> mean(mdgperson$b5,na.rm = TRUE) 

[1] 21.14894 

> complete.cases(mdgperson) 

 [1] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE 

[13] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE 

[25] FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE 

[37]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE 

We see that numeric operations like mean are not calculated if one or more values are NA unless we 

add the na.rm = TRUE argument. 

We can create a variable valid_b6 that is 1 when b6 has a value and NA if it is missing and make a 

frequency table for the new variable: 

mdgperson_nodup$valid_b6 <- ifelse(is.na(mdgperson_nodup$b6),NA,1) 
as.data.frame(addmargins(table(valid_b6=mdgperson_nodup$valid_b6,exclude = NU
LL))) 

Here is the frequency table: 

  valid_b6 Freq 

1        1   35 

2     <NA>   12 

3      Sum   47 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

147 

19.5. Python 

We should always be aware of missing values and how we can deal with them. Python operates with 

both NaN and None as missing values. There are some differences between NaN and None. A 

comparison with NaN is never true, but a comparison with None can be true. This small program 

shows that: 

print('None == None is', None == None) 
print('np.nan == np.nan is', np.nan == np.nan) 

The printed output: 

 

To deal with missing values we have some functions: 

• isna Check if value is NaN (can also use the alias isnull). Returns True or False. 

• notna Check if value is not NaN (can also use the alias notnull). Returns True or False. 

• dropna Drop row if NaN appears in at least one element specified  

• fillna Replace NaN with specified value 

Here is an example where we create a data frame, p, with the b5 column and add new columns with 

the isna, notna and fillna functions: 

 
p = pd.DataFrame(persons['b5']) 
p['b5_isna'] = persons['b5'].isna() 
p['b5_notna'] = persons['b5'].notna() 
p['b5_fillna'] = persons['b5'].fillna('Missing') 
p.tail(8) 

The list of the last 8 rows: 

 

We can drop rows with the dropna function. Either we can drop rows where at least one of the 

columns are missing or we can drop rows based on a subset of columns. Here are examples on 

both: 

persons.dropna() 
persons.dropna(subset=['b5']) 
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By default, calculations are based on non-missing values. We can calculate the count, mean, and 

sum for a data frame and list them: 

persons['b5'].count(), persons['b5'].sum(), persons['b5'].mean() 

The list: 
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20. Date and time formats 
We operate with three different variable types for date and time:  

• Date  A date, e.g., March 9, 1954 

• Time  A time, e.g., 14:13:22.00 

• Datetime A time within a date, e.g., March 9, 1954 14:13:22.00 

 

There are some issues to be aware of when we are working with time and date variables. A time 

variable consists of both a date and a time. A date variable is limited to contain the value of a 

specific date. If we define times and dates as time and date variables, we are able to use lots of built-

in facilities in the software. A date variable is stored as a number in a row. Sas and Stata have set 

January 1, 1960 as date 0, R starts at January 1, 1970 for R. All previous dates have negative values 

and newer dates are positive. Spss starts with the number 86400 at the beginning of October 14, 

1582 and adds 1 for each second since then. It does not differ between time and date variables 

when it comes to how they are stored. To extract a date from a time variable we use the Xdate.date 

function (see page 127). 

Sas, Stata and R differ between datetime, date and time variables. A datetime variable in Sas counts 

the seconds as a number starting at the beginning of January 1, 1960 as second 0. Milliseconds are 

stored as decimals to these numbers. A time variable has a value from 0 to 86400, which is the 

number of seconds in a day. Stata just count milliseconds from the beginning of January 1, 1960, as 

being millisecond 0. When we convert data between these softwares, we may have to recalculate 

time and date values to make sure they are correct. Invalid dates are set to missing values when the 

data is imported. R use January 1, 1970 as their date 0. However, in R we can define the 0 date when 

we convert date and datetime from other formats. 

There are different formats we use to show the time and date variables. Once a variable is stored as 

date or time, we can use these formats. We can also use functions to extract parts of a time or date, 

for instance to extract the year. Other functions are used to calculate time spans between two 

points in time. 

See more about time and date variables in the next chapter. 

20.1. Sas 

We want to read a data file with date and time variables to a Sas dataset. To make sure the variables 

are stored as times or dates, we use Sas informats when we read the data. To show the variables in 

a readable way we use the Format statement to format the variables. Here we also make 

unformatted copies of the variables (with suffix _nf) to show which values are actually stored for 

times and dates on the dataset: 

data times; 

 infile cards dlm=',' dsd truncover; 

 input id time :  datetime19. time2 :  datetime19. date : yymmdd10. date2 : 

yymmdd10. ; 

 time_nf = time; 

 time2_nf = time2; 

 date_nf = date; 

 date2_nf = date2; 

 format time time2 datetime19. date date2 yymmdd10.; 

cards; 

01,01-MAR-1999 11:42:00,24-APR-1962 18:25:31,1962-12-15,2005-04-16 

02,25-DEC-2002 02:40:12,09-MAR-1954 15:35:26,1961-09-03,1990-09-24 
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03,02-AUG-1973 03:27:41,30-NOV-1962 08:56:23,1962-04-25,1966-10-01 

04,08-APR-1984 17:06:49,04-APR-1935 15:34:40,1962-11-16,1979-04-14 

05,04-FEB-2003 19:42:52,18-FEB-1963 06:53:54,1962-12-04,2013-03-17 

06,02-SEP-1966 09:37:17,02-NOV-1935 16:23:38,1962-01-10,2000-07-13 

07,26-SEP-1969 22:23:10,19-SEP-1964 22:15:04,1960-06-28,1986-09-18 

08,10-FEB-1995 20:17:57,08-FEB-1963 06:09:53,1964-03-01,1984-05-10 

09,01-SEP-1970 17:19:39,01-SEP-1970 13:58:32,1960-12-20,2018-01-05 

10,20-DEC-1979 04:57:52,22-JUN-1963 05:37:12,1963-01-21,1985-04-07 

11,19-JUL-2002 18:23:49,29-FEB-1961 15:41:51,1960-10-02,1960-08-21 

12,04-SEP-2001 03:25:32,28-SEP-1961 03:25:32,1963-09-19,1963-09-19 

; 

run; 

When the data is imported to Sas, and new variables and formats added, the dataset looks like this: 

 

20.2. Spss 

In Spss we can also use formatting when we import the data file. Here we use the datetime format 

for the time variables and the sdate format for the date variables. When the data is imported, we 

add new variables with the Compute commands. Finally, we add formats with the Formats command 

and save the dataset with the Save command. 

DATA LIST / 

 id    1-2   (f) 

 time  4-23  (datetime) 

 time2 25-44 (datetime) 

 date  46-55 (sdate) 

 date2 57-66 (sdate) . 

BEGIN DATA 

01,01-MAR-1999 11:42:00,24-APR-1962 18:25:31,1962-12-15,2005-04-16 

02,25-DEC-2002 02:40:12,09-MAR-1954 15:35:26,1961-09-03,1990-09-24 

03,02-AUG-1973 03:27:41,30-NOV-1962 08:56:23,1962-04-25,1966-10-01 

04,08-APR-1984 17:06:49,04-APR-1935 15:34:40,1962-11-16,1979-04-14 

05,04-FEB-2003 19:42:52,18-FEB-1963 06:53:54,1962-12-04,2013-03-17 

06,02-SEP-1966 09:37:17,02-NOV-1935 16:23:38,1962-01-10,2000-07-13 

07,26-SEP-1969 22:23:10,19-SEP-1964 22:15:04,1960-06-28,1986-09-18 

08,10-FEB-1995 20:17:57,08-FEB-1963 06:09:53,1964-03-01,1984-05-10 

09,01-SEP-1970 17:19:39,01-SEP-1970 13:58:32,1960-12-20,2018-01-05 

10,20-DEC-1979 04:57:52,22-JUN-1963 05:37:12,1963-01-21,1985-04-07 

11,19-JUL-2002 18:23:49,29-FEB-1961 15:41:51,1960-10-02,1960-08-21 

12,04-SEP-2001 03:25:32,28-SEP-1961 03:25:32,1963-09-19,1963-09-19 
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END DATA. 

COMPUTE time_nf = time. 

COMPUTE time2_nf = time2. 

COMPUTE date_nf = date. 

COMPUTE date2_nf = date2. 

FORMATS time_nf time2_nf date_nf date2_nf (f16). 

EXECUTE. 

SAVE OUTFILE='times.sav'. 

We see in the imported dataset that both the time and date values are stored as time variables. For 

the date variables the time will be set to 00:00:00: 

 

20.3. Stata 

In Stata embedded files have limited functionality when it comes to date and time formats. We start 

with importing the variables as strings. The time variables should be defined as numeric double for 

the precision of the times. For the time variables we then concatenate the day with the time and 

convert to a time variable with the clock function. Finally, we format the variables and delete the 

temporary variables. For the date variables we convert them with the date function and add formats. 

clear 
input id str11 day str8 hour str11 day2 str8 hour2 str10 datec str10 date2c 
01 01-MAR-1999 11-42-00 24-APR-1962 18-25-31 1962-12-15 2005-04-16 
02 25-DEC-2002 02-40-12 09-MAR-1954 15-35-26 1961-09-03 1990-09-24 
03 02-AUG-1973 03-27-41 30-NOV-1962 08-56-23 1962-04-25 1966-10-01 
04 08-APR-1984 17-06-49 04-APR-1935 15-34-40 1962-11-16 1979-04-14 
05 04-FEB-2003 19-42-52 18-FEB-1963 06-53-54 1962-12-04 2013-03-17 
06 02-SEP-1966 09-37-17 02-NOV-1935 16-23-38 1962-01-10 2000-07-13 
07 26-SEP-1969 22-23-10 19-SEP-1964 22-15-04 1960-06-28 1986-09-18 
08 10-FEB-1995 20-17-57 08-FEB-1963 06-09-53 1964-03-01 1984-05-10 
09 01-SEP-1970 17-19-39 01-SEP-1970 13-58-32 1960-12-20 2018-01-05 
10 20-DEC-1979 04-57-52 22-JUN-1963 05-37-12 1963-01-21 1985-04-07 
11 19-JUL-2002 18-23-49 29-FEB-1961 15-41-51 1960-10-02 1960-08-21 
12 04-SEP-2001 03-25-32 28-SEP-1961 03-25-32 1963-09-19 1963-09-19 
end 
 
egen timec = concat(day hour) ,punct(" ") 
gen double time = clock(timec,"DMYhms") 
egen time2c = concat(day2 hour2) ,punct(" ") 
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gen double time2 = clock(time2c,"DMYhms") 
gen date = date(datec,"YMD") 
gen date2 = date(date2c,"YMD") 
gen double time_nf = time 
gen double time2_nf = time2 
gen date_nf = date 
gen date2_nf = date2 
format time time2 %tc 
format date date2 %td 
format time_nf time2_nf %17.0f 
drop day day2 hour hour2 timec time2c datec date2c 
save "times.dta" 

The time variables are defined in milliseconds starting at the beginning of January 1, 1960: 

 

20.4. R 

R is good at date and time processing. We can import most different date and time formats and 

store them as date, datetime or time variables. Here is the same data as used previously, now 

imported to a R data frame: 

times <- read.csv(sep=",",header=FALSE, 
         col.names=c("id","time","time2","date", "date2"), 
         colClasses=c("character","character","character","Date","Date"), 
text=" 
01,01-MAR-1999 11:42:00,24-APR-1962 18:25:31,1962-12-15,2005-04-16 
02,25-DEC-2002 02:40:12,09-MAR-1954 15:35:26,1961-09-03,1990-09-24 
03,02-AUG-1973 03:27:41,30-NOV-1962 08:56:23,1962-04-25,1966-10-01 
04,08-APR-1984 17:06:49,04-APR-1935 15:34:40,1962-11-16,1979-04-14 
05,04-FEB-2003 19:42:52,18-FEB-1963 06:53:54,1962-12-04,2013-03-17 
06,02-SEP-1966 09:37:17,02-NOV-1935 16:23:38,1962-01-10,2000-07-13 
07,26-SEP-1969 22:23:10,19-SEP-1964 22:15:04,1960-06-28,1986-09-18 
08,10-FEB-1995 20:17:57,08-FEB-1963 06:09:53,1964-03-01,1984-05-10 
09,01-SEP-1970 17:19:39,01-SEP-1970 13:58:32,1960-12-20,2018-01-05 
10,20-DEC-1979 04:57:52,22-JUN-1963 05:37:12,1963-01-21,1985-04-07 
11,19-JUL-2002 18:23:49,29-FEB-1961 15:41:51,1960-10-02,1960-08-21 
12,04-SEP-2001 03:25:32,28-SEP-1961 03:25:32,1963-09-19,1963-09-19 
") 

For dates we can define date formats directly in the import, but for datetime variables we first 

define them as characters. After they are imported, we can convert into real datetime variables. 

The structure R data frame after import: 

str(times) 
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'data.frame': 12 obs. of  5 variables: 

 $ id   : chr  "01" "02" "03" "04" ... 

 $ time : chr  "01-MAR-1999 11:42:00" "25-DEC-2002 02:40:12" "02-AUG-1973 03:
27:41" "08-APR-1984 17:06:49" ... 

 $ time2: chr  "24-APR-1962 18:25:31" "09-MAR-1954 15:35:26" "30-NOV-1962 08:
56:23" "04-APR-1935 15:34:40" ... 

 $ date : Date, format: "1962-12-15" "1961-09-03" "1962-04-25" "1962-11-16" .
.. 

 $ date2: Date, format: "2005-04-16" "1990-09-24" "1966-10-01" "1979-04-14" .
.. 

Even though the datetime variables look fine, they are not real datetime variables, but character 

variables. To be able to use calculations on them and to format them, we have to convert them to 

real datetime variables. We use the as.POSIXct function for this: 

times$time <- as.POSIXct(times$time,format="%d-%b-%Y %H:%M:%S")  
times$time2 <- as.POSIXct(times$time2,format="%d-%b-%Y %H:%M:%S") 

The datetime format is given by these parameters: 

%a Abbreviated weekday 

%A Full weekday 

%b Abbreviated month 

%B Full month 

%c Locale-specific date and time 

%d Decimal date 

%H Decimal hours (24 hour) 

%I Decimal hours (12 hour) 

%j Decimal day of the year 

%m Decimal month 

%M Decimal minute 

%p Locale-specific AM/PM 

%S Decimal second 

%U Decimal week of the year (starting on Sunday) 

%w Decimal Weekday (0=Sunday) 

%W Decimal week of the year (starting on Monday) 

%x Locale-specific Date 

%X Locale-specific Time 

%y 2-digit year 

%Y 4-digit year 

%z Offset from GMT 

%Z Time zone (character) 
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Now we can see that the datetime variables are converted: 

str(times) 

'data.frame': 12 obs. of  5 variables: 

 $ id   : chr  "01" "02" "03" "04" ... 

 $ time : POSIXct, format: "1999-03-01 11:42:00" NA "1973-08-02 03:27:41" "19
84-04-08 17:06:49" ... 

 $ time2: POSIXct, format: "1962-04-24 18:25:31" "1954-03-09 15:35:26" "1962-
11-30 08:56:23" "1935-04-04 15:34:40" ... 

 $ date : Date, format: "1962-12-15" "1961-09-03" "1962-04-25" "1962-11-16" .
.. 

 $ date2: Date, format: "2005-04-16" "1990-09-24" "1966-10-01" "1979-04-14" .
.. 

POSIX is an abbreviation for Portable Operating System Interface. 

20.5. Python 

Working with dates in Python is quite flexible. It is easy to convert an object to a datetime variable. 

We use the pd.to_datetime method with parameters that describe the date and time format. We also 

convert the variables to datetime64: 

data="""                      
01,01-MAR-1999 11:42:00,24-APR-1962 18:25:31,1962-12-15,2005-04-16 
02,25-DEC-2002 02:40:12,09-MAR-1954 15:35:26,1961-09-03,1990-09-24 
03,02-AUG-1973 03:27:41,30-NOV-1962 08:56:23,1962-04-25,1966-10-01 
04,08-APR-1984 17:06:49,04-APR-1935 15:34:40,1962-11-16,1979-04-14 
05,04-FEB-2003 19:42:52,18-FEB-1963 06:53:54,1962-12-04,2013-03-17 
06,02-SEP-1966 09:37:17,02-NOV-1935 16:23:38,1962-01-10,2000-07-13 
07,26-SEP-1969 22:23:10,19-SEP-1964 22:15:04,1960-06-28,1986-09-18 
08,10-FEB-1995 20:17:57,08-FEB-1963 06:09:53,1964-03-01,1984-05-10 
09,01-SEP-1970 17:19:39,01-SEP-1970 13:58:32,1960-12-20,2018-01-05 
10,20-DEC-1979 04:57:52,22-JUN-1963 05:37:12,1963-01-21,1985-04-07 
11,19-JUL-2002 18:23:49,29-FEB-1961 15:41:51,1960-10-02,1960-08-21 
12,04-SEP-2001 03:25:32,28-SEP-1961 03:25:32,1963-09-19,1963-09-19 
""" 
times =   
    )  
times['timea'] = pd.to_datetime(times.time, format='%d-%b-%Y %H:%M:%S', 
errors='coerce').astype('datetime64[ns]') 
times['time2a'] = pd.to_datetime(times.time2, format='%d-%b-%Y %H:%M:%S', 
errors='coerce').astype('datetime64[ns]') 
times['datea'] = pd.to_datetime(times.date, format='%Y-%m-%d', 
errors='coerce').astype('datetime64[ns]') 
times['date2a'] = pd.to_datetime(times.date2, format='%Y-%m-%d', 
errors='coerce').astype('datetime64[ns]') 
times['time_diff'] = times['timea'] - times['time2a'] 
times['date_diff'] = times['datea'] - times['date2a'] 
times 
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We now have a data frame with datetime variables. If a datetime is invalid it sets the value to NaT 

(not a time), see row 10: 
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The datetime format is given by these parameters: 

%a Locale’s abbreviated weekday name. 

%A Locale’s full weekday name. 

%b Locale’s abbreviated month name. 

%B Locale’s full month name. 

%c Locale’s appropriate date and time representation. 

%d Day of the month as a decimal number [01,31]. 

%H Hour (24-hour clock) as a decimal number [00,23]. 

%I Hour (12-hour clock) as a decimal number [01,12]. 

%j Day of the year as a decimal number [001,366]. 

%m Month as a decimal number [01,12]. 

%M Minute as a decimal number [00,59]. 

%p Locale’s equivalent of either AM or PM. 

%S Second as a decimal number [00,61]. 

%U 
Week number of the year (Sunday as the first day of the week) as a decimal number [00,53]. 

All days in a new year preceding the first Sunday are considered to be in week 0. 

%w Weekday as a decimal number [0(Sunday),6]. 

%W 
Week number of the year (Monday as the first day of the week) as a decimal number [00,53]. 

All days in a new year preceding the first Monday are considered to be in week 0. 

%x Locale’s appropriate date representation. 

%X Locale’s appropriate time representation. 

%y Year without century as a decimal number [00,99]. 

%Y Year with century as a decimal number. 

%z 

Time zone offset indicating a positive or negative time difference from UTC/GMT of the form 

+HHMM or -HHMM, where H represents decimal hour digits and M represents decimal 

minute digits [-23:59, +23:59]. 

%Z Time zone name (no characters if no time zone exists). 

%% A literal '%' character. 
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21. Tabulation 
We have seen earlier how we can make tables for frequencies and descriptive statistics. Quite often 

we need to create more advanced tables. There are several kinds of tables, and we will now look 

into some of them and see how we can create them in the different software packages. The results 

may come in different formats. Sas creates Html files as default, the other packages put the table in 

more or less plain text formats as default. In some of the packages it is possible to wrap layout 

around the table and display them in other formats. We will here only look at the default output. 

There are different types of tables, and they may be rather complex. The basic tables consist of two 

dimensions with one or more variables in the rows and one or more variables in the columns. It 

should be possible to add totals and subtotals, and also to decide if they shall be placed before or 

after the rows or columns. When we have more than one variable in one dimension, they can be 

either nested or stacked. A nested variable appears as a subgroup to another variable, while stacked 

variables appear independently after each other. 

The variables used in our tables can either be used as categorical or as measure variables. 

Categorical variables are used for distribution as there will be one row or column for each value of a 

categorical variable. Measure variables will be used for different statistical measures like sum, mean, 

median, etc. 

We will now show some different table types and how they can be made in the different software 

packages. The simplest table is a two-way table with one categorical variable in the rows and one in 

the columns. In the cells of the table the frequency is counted: 

Table 1. Simple cross tabulation with frequency counts 

Var1 Var2 

  X Y Z 

A 6 5 8 

B 11 7 9 

C 4 2 4 

 

For each combination of the categories in the rows and columns, the number of observations/rows 

are counted. 

Totals can be added in both dimensions. It should be possible to place them either before or after 

the categories. Here is an example with totals after: 

Table 2. Simple cross tabulation with frequency counts and total 

Var1 Var2   

  X Y Z Total 

A 6 5 8 19 

B 11 7 9 27 

C 4 2 4 10 

Total 21 14 21 56 
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We can have nested variables in the rows and/or columns: 

Table 3. Cross tabulation with nested variables in the rows, frequency counts and total 

Var1 Var3 Var2   

    X Y Z Total 

A G 4 1 5 10 

  H 2 4 3 9 

B G 8 3 5 16 

  H 3 4 4 11 

C G 4 0 1 5 

  H 0 2 3 5 

Total   21 14 21 56 

 

Here we have nested variables in both dimensions: 

Table 4. Cross tabulation with nested variables in the rows and columns, frequency counts and total 

Var1 Var3 Var2   

    X Y   Z   Total 

    Var4 Var4 Var4   

    M P M P M P   

A G 2 2 1 0 2 3 10 

  H 2 0 0 4 2 1 9 

B G 2 6 2 1 2 3 16 

  H 1 2 3 1 2 2 11 

C G 3 1 0 0 1 0 5 

  H 0 0 1 1 1 2 5 

Total   10 11 7 7 10 11 56 
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Now we add subtotals. We see that the total is also calculated for Var3 in the rows and Var4 in the 

columns. The subtotals of these will add up to the grand total: 

Table 5. Cross tabulation with two nested variables in the rows and two nested in the columns, frequency counts, 

total and subtotals 

Var1 Var3 Var2       

    X Y Z Total 

    Var4 Var4 Var4 Var4 

    M P Subtotal M P Subtotal M P Subtotal M P Subtotal 

A G 2 2 4 1 0 1 2 3 5 5 5 10 

  H 2 0 2 0 4 4 2 1 3 4 5 9 

  Subtotal 4 2 6 1 4 5 4 4 8 9 10 19 

B G 2 6 8 2 1 3 2 3 5 6 10 16 

  H 1 2 3 3 1 4 2 2 4 6 5 11 

  Subtotal 3 8 11 5 2 7 4 5 9 12 15 27 

C G 3 1 4 0 0 0 1 0 1 4 1 5 

  H 0 0 0 1 1 2 1 2 3 2 3 5 

  Subtotal 3 1 4 1 1 2 2 2 4 6 4 10 

Total G 7 9 16 3 1 4 5 6 11 15 16 31 

  H 3 2 5 4 6 10 5 5 10 12 13 25 

  Subtotal 10 11 21 7 7 14 10 11 21 27 29 56 

 

Instead of nested variables, we can have them stacked: 

Table 6. Cross tabulation with stacked variables in rows and 
columns, frequency counts and total 

Var1 Var2 Var4   

  X Y Z M P Total 

A 6 5 8 9 10 19 

B 11 7 9 12 15 27 

C 4 2 4 6 4 10 

Var3 
     

  

G 16 4 11 15 16 31 

H 5 10 10 12 13 25 

Total 21 14 21 27 29 56 
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Instead of counting the frequency, we can count the sum, mean etc. of a measure variable. We can 

still have categorical variables in the rows and columns. Her we have chosen to put the sum of the 

Var6 variable into the cells of the tables: 

Table 7. Cross tabulation with sum of measure 
variable and totals 

Var1 Var2   

  X Y Z Total 

  Var6 Var6 Var6   

  Sum Sum Sum Sum 

A 21 33 11 65 

B 24 26 15 65 

C 27 21 12 60 

Total 72 80 38 190 

 

We should be able to calculate percentages in our tables, both total, row and columns percentages: 

Table 8. Cross tabulation with 
percent of total frequency 
counts 

 

Table 9. Cross tabulation with 
percent of row frequency counts 

 

Table 10. Cross tabulation with 
percent of column frequency counts 

Var1 Var2 Total 

 

Var1 Var2 Total 

 

Var1 Var2 Total 

  X Y Z   

 

  X Y Z   

 

  X Y Z   

A 10,7 8,9 14,3 33,9 

 

A 31,6 26,3 42,1 100,0 

 

A 28,6 35,7 38,1 33,9 

B 19,6 12,5 16,1 48,2 

 

B 40,7 25,9 33,3 100,0 

 

B 52,4 50,0 42,9 48,2 

C 7,1 3,6 7,1 17,9 

 

C 40,0 20,0 40,0 100,0 

 

C 19,0 14,3 19,0 17,9 

Total 37,5 25,0 37,5 100,0 

 

Total 37,5 25,0 37,5 100,0 

 

Total 100,0 100,0 100,0 100,0 

 

Finally, different counts can be shown in the same table. Here we have both frequencies and column 

frequencies: 

Table 11. Cross tabulation with percent of column frequency counts     

Var1 N % 

  Var2   Var2 Total 

  X Y Z Total X Y Z   

A 6 5 8 19 28,6 35,7 38,1 33,9 

B 11 7 9 27 52,4 50,0 42,9 48,2 

C 4 2 4 10 19,0 14,3 19,0 17,9 

Total 21 14 21 56 100,0 100,0 100,0 100,0 
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These are just some examples on what kind of tables it should be possible to make in a tabulation 

procedure. Now we will look at how these tables can be made in the different software packages. 

21.1. Sas 

In Sas, there are two procedures that is suitable for making tables: Proc tabulate and Proc report. The 

default output is sent to the result window as an html file. This means the tables looks fine and they 

can easily be exported to for instance Excel. Here, we will only look at Proc tabulate.  

We use the Proc tabulate statement to choose the dataset to create the table from. We have to 

define how the variables we use in the table is to be used and we do that with the Class and Var 

statements. Variables mentioned in the Class statement will be used as categorical variables. 

Variables mentioned in the Var statement will be used as measure variables. The table layout will be 

defined in the Table statement.  

Here is the syntax to create a two-way table with frequency counts: 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state urbrur; 

 table state 

       , 

    urbrur 

    /misstext='-'; 

 title "Table 1. Persons by state and location"; 

run; 

As we define both state and urbrur in the Class statement, they will be categorical variables. In the 

Table statement the comma divides the dimensions from each other. What is placed before the 

comma will end up in the rows and after the comma in the columns. As we have not explicitly 

defined what to count, Sas will count the frequencies and show that with the column header N. We 

can add some options for the table after the slash. Here we have added the option Misstext to tell 

that we want to fill empty cells with a dash. The table will be like this: 

 

We can add total to the table with the All option. We also tell that we want to count the frequencies 

with the N option, and then we can also tell that we don’t want any column header for it. The syntax 

is now like this: 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state urbrur; 

 table all='Total' state='' 

       , 

    (all='Total' urbrur='')*n='' 

    /misstext='-'; 

 title "Table 2. Persons by state and location. With totals"; 

run; 
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We have put the totals before the categories: 

 

Now we will have two nested variables in the rows. We add the gender variable (b4) to the class 

statement and include the variable in the rows in the table statement. To nest the variables, we 

insert an * sign between the two variables: 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state urbrur b4; 

 table all='Total' state=''*b4='' 

       , 

    (all='Total' urbrur='')*n='' 

    /misstext='-' nocellmerge; 

 title "Table 3. Persons by state, sex and location. Nested"; 

run; 

The table have now two nested variables in the rows. For each value of the state variable, which is 

mentioned first, we will have a gender distribution. The sub-group b4 is not distributed for the total, 

it is only a grand total: 

 

We will now add a nested variable, b6, in the columns as well. It is done the same way as previously, 

except the new variable is inserted in the columns of the table definition: 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state urbrur b4 b6; 

 table all='Total' state=''*b4='' 

       , 

    (all='Total' b6=''*urbrur='')*n='' 

    /misstext='-' nocellmerge; 

 title "Table 4. Persons by state, sex, civil status and location. Nested"; 

run; 
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The table show the nesting in both dimensions. Categories with no values are excluded, we can see 

that because there is no Rural column for Missing values or Married - Polygamy: 

 

We can now add subtotals to our nested table. We add the all option for the subtotals and introduce 

parenthesis for adding have the distribution of the nested variables for the totals as well: 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state urbrur b4 b6; 

 table (all='Total' state='')*(all='Both genders' b4='') 

       , 

    (all='Total' b6='')*(all='Both locations' urbrur='')*n='' 

    /misstext='-' nocellmerge; 

 title "Table 5. Persons by state, sex, civil status and location. Nested 

with totals"; 

run; 

Our table is now extended: 

 

Now we want to have our variables stacked after each other instead of nested within each other. To 

stack the variables, we simply drop the * sign between the listed variables in the table statement: 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state urbrur b4 b6; 

 table all='Total' state b4 

       , 

    (all='Total' b6 urbrur)*n='' 

    /misstext='-' nocellmerge; 

 title "Table 6. Persons by state, sex, civil status and location. Stacked"; 

run; 
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We see that our variables are now stacked, both in the rows and columns: 

 

Now we will introduce a measure variable. It shall be defined in the Var statement. When we use it, 

we should also connect it to a measurement, like sum or mean. If not, the sums will be calculated. 

We want to calculate the average age (b5) of the persons distributed by state and b4:  

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state b4 ; 

 var b5; 

 table all='Total' state='' 

       , 

    (all='Total' b4='')*b5=''*mean='' 

    /misstext='-' nocellmerge; 

 title "Table 7. Average age of persons by state and sex"; 

run; 

The connection is done with the * sign. The table cells will now contain average age: 

 

Now we will look at three ways to calculate percentages, of grand total, rows and columns. We 

choose between these with either pctn, rowpctn or colpctn: 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state b4 ; 

 table all='Total' state='' 

       , 

    (all='Total' b4='')*pctn='' 

    /misstext='-' nocellmerge; 

 title "Table 8. Persons by state and sex. Percent of total"; 

run; 

 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state b4 ; 

 table all='Total' state='' 
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       , 

    (all='Total' b4='')*rowpctn='' 

    /misstext='-' nocellmerge; 

 title "Table 9. Persons by state and sex. Percent of rows"; 

run; 

 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state b4 ; 

 table all='Total' state='' 

       , 

    (all='Total' b4='')*colpctn='' 

    /misstext='-' nocellmerge; 

 title "Table 10. Persons by state and sex. Percent of columns"; 

run; 

The tables will be like this: 

 

Finally, we can combine absolute figures with percentages. Her we choose all the absolute figures in 

the first columns and then the column percentages: 

proc tabulate data=mdg.mdgperson_nodup f=15. missing; 

 class state b4 ; 

 table all='Total' state='' 

       , 

    (n rowpctn='%')*(all='Total' b4='') 

    /misstext='-' nocellmerge; 
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 title "Table 11. Persons by state and sex. Absolute figures and percent of 

rows"; 

run; 

This is the table produced: 

  

It is possible to create other kinds of tables with Proc tabulate, so it is a useful procedure to learn. 

21.2. Spss 

In Spss the CTABLES command is suitable for tabulation. It is found under the 

Analyze➔Tables➔Custom Tables menu. Here we can generate syntax which can be executed, or we 

can write our own syntax. The default output is sent formatted to the Output Window. From there it 

is easy to export the tables into for instance Excel. We just right click on the table and choose Copy 

and then Excel spreadsheet. 

In CTABLES we can use these subcommands for our basic tabulation: 

• VLABELS Decide how to display value labels 

• TABLE  Define the table layout. The rows are defined first. Then, after BY, the 

columns are defined 

• CATEGORIES Describe options for the categorical variables 

• TITLES The title of the table 

 

The variables can be defined as Categorical (C), Ordinal (O) or Scale (S). This can be done within the 

Table subcommand. Only Scale variables may be used for measures. 

In our first example we have decided to show the labels of the variables state and urbrur. In the table 

we put state in the rows and urbrur in the columns. In the cells of the table, we put the count which 

will count the number of cases with the different values for these categorical variables. In the 

Categories subcommand we say that both variables are to be sorted in ascending order by the value 

of the variables. We also will exclude user missing values if there were any present in the variables 

used (system missing values are always excluded):  

GET FILE='mdgperson_nodup.sav'. 

CTABLES 

  /VLABELS VARIABLES=state urbrur DISPLAY=LABEL 

  /TABLE state [COUNT F40.0] BY urbrur 

  /CATEGORIES VARIABLES=state urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE 

  /TITLES 

    TITLE='Table 1. Persons by state and location'. 
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When we run, the table is sent to the Output window and looks like this: 

 

We can now add the totals to our table and choose to have them before the variables. For this, we 

use the Total=yes and Position=before options: 

CTABLES 

  /VLABELS VARIABLES=state urbrur DISPLAY=NONE 

  /TABLE state [COUNT F40.0] BY urbrur 

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=state urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE 

TOTAL=YES POSITION=BEFORE 

  /TITLES 

    TITLE='Table 2. Persons by state and location. With totals'. 

Totals are now added to our table: 

 

We can add a nested variable, b4, to our rows. Then we use the > sign to do the nesting. We see that 

we can have more than one Categories subcommand. When parameters differ between the 

categorical variables, we need more Categories subcommands: 

CTABLES 

  /VLABELS VARIABLES=state b4 urbrur DISPLAY=NONE 

  /TABLE state > b4 [COUNT F40.0] BY urbrur 

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=state urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE 

TOTAL=YES POSITION=BEFORE 

  /CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE 

  /TITLES 

    TITLE='Table 3. Persons by state, sex and location. Nested'. 
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The table shows the nested variables in the rows. We see that the subgroup b4 is also used for the 

total. However, there is no grand total in this table: 

 

Now we want to add the variable b6 nested under to the urbrur variable in the columns. b6 has 

missing values and to include them in the table they must be set to user missing or a valid value. We 

set them to user missing first and then make the table: 

IF (missing(b6) = 1) b6 = 9.  

MISSING VALUES b6 (9). 

 

CTABLES 

  /VLABELS VARIABLES=state b4 b6 urbrur DISPLAY=NONE 

  /TABLE state > b4 [COUNT F40.0] BY b6 > urbrur 

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=state b6 ORDER=A EMPTY=EXCLUDE TOTAL=YES 

POSITION=BEFORE MISSING=include 

  /CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=NO 

LABEL='Both sexes'  

    POSITION=BEFORE 

  /CATEGORIES VARIABLES=urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=NO 

LABEL='Both locations'  

    POSITION=BEFORE 

  /TITLES 

    TITLE='Table 4. Persons by state, sex, civil status and location. 

Nested'. 
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For the variable b6, we have added the missing=include option in the Categories subcommand. The 

user missing values will now be included in the table: 

 

In the next table we want to add sub-totals. We do that by changing the Total parameter to Yes in the 

Categories commands. We have also made different labels for the sub-totals: 

CTABLES 

  /VLABELS VARIABLES=state b4 b6 urbrur DISPLAY=NONE 

  /TABLE state > b4 [COUNT F40.0] BY b6 > urbrur 

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=state b6 ORDER=A EMPTY=EXCLUDE TOTAL=YES 

POSITION=BEFORE MISSING=include 

  /CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES 

LABEL='Both sexes'  

    POSITION=BEFORE 

  /CATEGORIES VARIABLES=urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES 

LABEL='Both locations'  

    POSITION=BEFORE 

  /TITLES 

    TITLE='Table 5. Persons by state, sex, civil status and location. Nested 

with totals'. 

The sub-totals are now added. We see that for the total we have both the grand total and the totals 

within the b4 and urbrur variables: 
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We would now like to stack the variables in the row and columns. Then we use the + sign instead of 

the > sign in the Tables subcommand: 

CTABLES 

  /VLABELS VARIABLES=state b4 b6 urbrur DISPLAY=LABEL 

  /TABLE state [COUNT F40.0] + b4 [COUNT F40.0] BY b6 + urbrur 

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=state ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES 

POSITION=BEFORE 

  /CATEGORIES VARIABLES=b4 urbrur ORDER=A KEY=VALUE EMPTY=EXCLUDE 

  /CATEGORIES VARIABLES=b6 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES 

POSITION=BEFORE MISSING=INCLUDE     

  /TITLES 

    TITLE='Table 6. Persons by state, sex, civil status and location. 

Stacked'. 

Now the variables follow each other, they are stacked: 

 

We will now introduce b5 as a scale variable, so we can have average age in our table cells. Now we 

nest b4 with b5 and choose the mean of the b5 variable. We include [S] after the variable name to 

make sure it is used as a scale variable. For b4 we have added [C] to be sure it is used as a 

categorical variable. This is only necessary if the variables are not defined the way we want to use 

them: 

CTABLES 

  /VLABELS VARIABLES=state b4 b5 DISPLAY=NONE 

  /TABLE state BY b4 [C] > b5 [S] [MEAN F40.0] 

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=state b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES 

POSITION=BEFORE 

  /TITLES 

    TITLE='Table 7. Average age of persons by state and sex'. 

The table with the average ages is here: 
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To make percentage tables we use the tablepct.count, rowpct.count and the colpct.count measures. 

This will give us tables with percentages made by the grand total, the row totals and the column 

totals: 

CTABLES 

  /VLABELS VARIABLES=state b4 DISPLAY=NONE 

  /TABLE state BY b4 [TABLEPCT.COUNT F40.0] 

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=state b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES 

POSITION=BEFORE 

  /TITLES 

    TITLE='Table 8. Persons by state and sex. Percent of total'. 

CTABLES 

  /VLABELS VARIABLES=state b4 DISPLAY=NONE 

  /TABLE state BY b4 [ROWPCT.COUNT F40.0] 

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=state b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES 

POSITION=BEFORE 

  /TITLES 

    TITLE='Table 9. Persons by state and sex. Percent of rows'. 

 

CTABLES 

  /VLABELS VARIABLES=state b4 DISPLAY=NONE 

  /TABLE state BY b4 [COLPCT.COUNT F40.0] 

  /SLABELS VISIBLE=NO 

  /CATEGORIES VARIABLES=state b4 ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES 

POSITION=BEFORE 

  /TITLES 

    TITLE='Table 10. Persons by state and sex. Percent of columns'. 

The percentage tables: 
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Finally, we will combine absolute figures with column percentages: 

CTABLES 

  /VLABELS VARIABLES=state b4 DISPLAY=NONE 

  /TABLE state BY b4 [COUNT 'N' F40.0] + b4 [COLPCT.COUNT '%' F40.0] 

  /CATEGORIES VARIABLES=state ORDER=A KEY=VALUE EMPTY=EXCLUDE TOTAL=YES 

POSITION=BEFORE 

  /CATEGORIES VARIABLES=b4 ORDER=A KEY=VALUE EMPTY=INCLUDE TOTAL=YES 

POSITION=BEFORE 

  /TITLES 

   TITLE='Table 11. Persons by state and sex. Absolute figures and percent of 

columns'. 

Unfortunately, the measure texts (N, %) are placed under the variable and repeated. It would be 

better to have them once above the variable texts. It does not seem to be possible to change this in 

an easy way (one way is to copy the b4 variable to a new name, give them different labels and use 

one of them for the absolute figures and the other one for the percentages): 

 

There are several more ways to use the CTABLES command. Hence, it is very useful for presenting 

results in Spss. 

21.3. Stata 

In Stata we can use the procedures table, tabulate and tab2 for cross tabulation. These procedures 

are not especially flexible but can be useful to create basic tables. The table is sent to the Log and 

listing window. To copy the table to another format we can mark the table, right click, and choose 

Copy Table or Copy table as Html. Then we can paste it into for instance Excel. 

The table, tabulate (tab) and tab2 procedures syntax are short and concise. It is not possible to add 

titles to table within these procedures. Stata operates with rows, superrows, columns and 

supercolumns. Supercolumns are used for nesting variables in the columns and the by option to 

nest variables in the rows (superrows). It is not possible stack variables in either dimension. 

We will start with a simple table with one categorical variable in each dimension. We just mention 

the two variables in the table procedure and the first (state) will be placed in the rows and the 

second (urbrur) in the columns. We add the missing option to display a dot in empty cells: 

table state urbrur, missing 
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This is the table: 

 

Next, we will add totals. They will always appear at the end. We just change to tab procedure and the 

totals will be included in our table: 

tab state urbrur 

Now we have totals in both dimensions. Empty cells are filled with zeros: 

 

Now we want to have two nested variables in the rows. We use the table procedure and add the row 

and col options to have totals added. We use the variable state in the by option to have it as the first 

variable (superrows) in the rows. To have dots instead of nothing in empty cells we use the missing 

option: 

table b4 urbrur, by(state) row col missing 
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We have now a table with two nested variables in the rows. The totals added are actually subtotals 

for each of the states. The grand total is not included in the table: 

 

We now want nested variables in the columns as well. In the table command, we start we the nested 

variable b4. Then we name the two variables in the columns. Urbrur is named first and will be the 

nested one. B6 is then mentioned and will be the supercolumn. After the comma, we use the by 

option to name the state variable in the rows, as the superrow variable. We also add subtotals with 

the row (row totals), col (column totals) and sc (supercolumn totals) options. Finally, we include the 

missing option to place dots in empty cells: 

table b4 urbrur b6, by(state) row col sc missing 
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The table is a little bit strange because there are columns for the total of the nested variable, urbrur, 

independent of the b6 variable. However, for the rows there are no independent totals for b4, which 

is the nested variable there. In addition, there are no grand totals: 

 

Missing values in the categories are always excluded. If we want to include missing values, we must 

recode to a valid value. We also change the value labels: 

replace b6 = 9 if b6 == . 
 
label define civil_status /// 
1 "Never married" /// 
2 "Married - monogamy" /// 
3 "Married - polygamy" /// 
4 "Widowed" /// 
5 "Separated" /// 
6 "Divorced" /// 
9 "N/A", replace 
 
table b4 urbrur b6, by(state) row col sc missing 
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The new table include the missing variables: 

 

When it comes to tables with stacked variables, it is not possible within these tabulation procedures. 

Instead, we can divide the table into separate two-way tables: 

tab2 state b6, missing 
tab2 state urbrur 
tab2 b4 b6, missing 
tab2 b4 urbrur 

There are some problems with the labels for the b6 variable, they are truncated. In the table 

procedure it is possible to set the cell width up to 20 positions, however that is not possible in the 

tab2 procedure. The 4 tables: 
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Now we want to calculate the average age by state and b4. We use the contents option with the 

mean statistic and the variable name, b5. We format the cells with a fixed format with no decimals. 

table state b4, contents(mean b5) row col format(%9.0f) 

The table cells are now average age without decimals: 

 

When we want to make frequency tables, we turn back to the tab2 procedure. We add the cell option 

to add the percentages of the grand total and nofreq to suppress the frequencies to the first table. 

Then we use the row option to have row percentages in the second and col for column percentages 

in the third table: 

tab2 state b4, cell nofreq 
tab2 state b4, row nofreq 
tab2 state b4, col nofreq 
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We have now three tables with percentages of the grand total, the rows and the columns: 

  

 

Finally we wil combine the absolute figures with percentages. To do that we just delete the nofreq 

option: 

tab2 state b4, col 

The absolute figures and the percentages will be placed in the different rows, not in different 

columns: 

 

These tabulation procedures have very concise syntax and that makes the possibilities somewhat 

limited. The additional tabout procedure (see 

https://www.ianwatson.com.au/stata/tabout_tutorial.pdf) is also a possibility, however its syntax is 

rather complex. 

21.4. R 

There are no flexible tabulation commands in base R. However, there is a package called tables that 

includes the function tabular. This is a flexible function that can create many kinds of tables. It 

seems to be inspired by the Proc tabulate procedure in Sas, as the syntax is similar to the table 

statement in Proc tabulate. 

We activate the tabular procedure with the library function, if it is not installed we have to do that 

first with the install.packages command: 

https://www.ianwatson.com.au/stata/tabout_tutorial.pdf
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install.packages("tables") 
library(tables) 

The dimensions are separated by the ~ sign. To nest variables and to combine with measures, we 

use the * sign. We can stack variables with the + sign. To add totals and subtotals we simply add a 1 

where we want them. Our categorical variables must be defined as factor variables. 

The output can be displayed directly in the Console or written to an R object. When it is written to an 

object it consists of several lists. The output in the Console window is a plain text and it is not easy to 

export it properly to other formats. However, we may wrap the table into other functions, like knitr 

or latex to convert to for instance html. 

There is no option within the tabular function to add titles to the table. 

First, we will look at a simple two-way table with state in the rows and urbrur in the columns: 

tabular(state ~ urbrur,data=mdgperson_nodup) 

The table: 

 

We want to add totals and do that with adding 1 before the variables because we want the totals 

before the distributions. The + sign is used to stack the total with the categorical variables: 

tabular(1 + state ~ 1 + urbrur,data=mdgperson_nodup) 

Now totals are included: 

 

To nest variables in the rows we use the * sign: 

tabular(1 + state*b4 ~ 1 + urbrur,data=mdgperson_nodup) 
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Here we see that b4 is distributed for every value of state: 

 

As mentioned, categorical variables must be defined as factors. To include NA’s we have to change 

b6 to a factor which don’t exclude them before we can use it in our table. We can now nest b6 with 

urbrur: 

mdgperson_nodup$b6 <- factor(mdgperson_nodup$b6, exclude = NULL) 
tabular(1 + state*b4 ~ 1 + b6*urbrur,data=mdgperson_nodup) 

The table will now include the NA’s: 

 

We will add subtotals and also have b4 and urbrur distributed on the totals. We do that by adding 

parenthesis. The expression (1 + state)*(1 + b4) will combine 1 and state to both 1 and b4. 1*1 will 

be the grand total and 1 * b4 the subtotals. We also add headings and they must be placed before 

the variable and be connected with the * sign:  

tabular((1 + state)*(Heading('Both sexes')*1+b4) ~ (1 + b6)*(Heading('Both 
locations')*1 + urbrur),data=mdgperson_nodup) 

The table with the grand total and all the subtotals: 

 

For stacking variables, we use the + sign: 

tabular(1 + state + b4 ~ 1 + b6 + urbrur,data=mdgperson_nodup) 
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This is the table with stacked variables: 

 

When we want to add measures, the default is that they are not calculated when there are NA’s 

(missing values). That means the table will be filled with NA’s in these cells. We see that when we 

introduce the b5 variable to calculate the average ages. We have also formatted the numbers in the 

cells with no decimals: 

tabular(1 + state ~ (1 + 
Heading()*b4)*Heading()*b5*Heading()*mean*Format(digits=1),data=mdgperson_nod
up) 

The table looks like this: 

 

To calculate average values for all non-missing values, we can create a new Mean function that will 

exclude NA’s and the create the table again: 

 

Mean <- function(x) base::mean(x, na.rm=TRUE) 
tabular(1 + state ~ (1 + 
Heading()*b4)*Heading()*b5*Heading()*Mean*Format(digits=1),data=mdgperson_nod
up) 

Now only those where all values are missing will be NA: 

 

If we want to exclude the empty categories for state we can exclude the missing values: 

mdgperson_nodup$state <- factor(mdgperson_nodup$state, exclude = NULL) 
tabular(1 + state ~ (1 + 
Heading()*b4)*Heading()*b5*Heading()*Mean,data=mdgperson_nodup) 
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The new table omits the empty categories: 

 

Now we will look at percentages, both calculated on the grand total, rows and columns. We use the 

Percent option, first without any parameters for the grand total. Then row and col parameters for 

row and column percentages: 

tabular(1 + state ~ (1 + b4)*Percent()*Format(digits=1),data=mdgperson_nodup) 
tabular(1 + state ~ (1 + 
b4)*(RowPct=Percent("row"))*Format(digits=1),data=mdgperson_nodup) 
tabular(1 + state ~ (1 + 
b4)*(ColPct=Percent("col"))*Format(digits=1),data=mdgperson_nodup) 

The percentage tables: 

  

 

Finally, we will combine absolute figures with column percentages: 

tabular(Heading('Total')*1 + state ~ Heading('N')*(Heading('Total')*1 + 
Heading()* b4) + (Heading('%')*(Heading('Total')*1 + Heading()* b4)* 
Heading()* Percent("col"))*Format(digits=1),data=mdgperson_nodup) 

The table now includes both absolute figures and column percentages: 

  

The tabular function is a very flexible tabulation tool. However, the output format has by default a 

very simple layout. 

21.5. Python 

In Python, we have the Pandas crosstab we can use for tabulation. It has a simple syntax and can 

create tables with more nested levels both in the rows and columns. It does not stack variables in 

either dimension and it does not support sub-totals. 

We start with a simple two-way table. The row variable is defined first, then the column variable: 
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pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.urbrur) 

The output table: 

 

We will now add totals and also name them. Furthermore, we give name to the row variable and 

suppress the column name: 

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.urbrur, 
margins=True, margins_name='Total',  
            rownames=['State'], colnames=[''] 
           ) 

The output table with totals, they are always placed at the end: 

 

Now we will add sex to the rows as a sub-item to state. To do that we add the b4 variable and put it 

in brackets together with state. We also add Sex to the rownames in a similar way: 

pd.crosstab([mdgperson_nodup.state, mdgperson_nodup.b4], 
columns=mdgperson_nodup.urbrur, margins=True, margins_name='Total',  
            rownames=['State', 'Sex'], colnames=['Location'] 
           ) 
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There are no subtotals within each state in the output table: 

 

We can have nested variables in the columns as well, we just add the variable to the columns and 

colnames parameters: 

pd.crosstab([mdgperson_nodup.state, mdgperson_nodup.b4], 
columns=[mdgperson_nodup.b6, mdgperson_nodup.urbrur],  
            margins=True, margins_name='Total', rownames=['State', 'Sex'], 
colnames=['Marital status', 'Location'] 
           ) 

We have now a table with two nested variables both in the rows and columns. We see that there are 

no columns for the combinations of Marital status and Location that is not in the data: 

 

Now we can look at how to add average values of a measure variable to our table. We only use on 

variable in each dimension in this example. The variable to calculate the averages by is added to the 

values parameter and we tell that we want the averages with the aggfunc parameter. We also style 

the figures with one decimal and decimal comma: 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

185 

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.b4, 
values=mdgperson_nodup.b5, aggfunc='mean',  
            margins=True, margins_name='Total' 
           ).style.format(decimal=',', precision=1) 

Missing values are omitted from the calculations: 

 

As seen above, we can do formatting with style.format. Here are some useful options: 

• precision Number of decimals 

• decimal Decimal sign 

• thousands Thousand separator 

• na_rep  Representation of missing values 

There are 3 basic percentage tables, percentages based on the grand total, the row total, and the 

column total. Here are examples on these 3. We choose which percentage calculation we want in 

the normalize parameter. We also use the round function and multiply with 100 to display the 

percentages with one decimal: 

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.b4, margins=True, 
margins_name='Total',  
            normalize=True 
           ).round(3)*100 

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.b4, margins=True, 
margins_name='Total',  
            normalize='index' 
           ).round(3)*100 

pd.crosstab(mdgperson_nodup.state, columns=mdgperson_nodup.b4, margins=True, 
margins_name='Total',  
            normalize='columns' 
           ).round(3)*100 
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We see that the total column is omitted from the row percentages table and the total row is omitted 

from the column percentages table as the values are always 100: 

    

Crosstab is easy to learn, however the tables we can create are limited. 
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22. Graphs 
All these softwares have possibilities for creating different kind of graphs, like line plots, bar charts, 

pie charts, scatter plots and so on. There are lots of options when it comes to layout and combining 

different graphs in the same chart. We will now have a brief glimpse of some bar charts just to lead 

the way to different and more complex graphs. 

22.1. Sas 

There is an additional module with extra license fee for graphs in Sas, called Sas/Graph. When it is 

available, we can create many different graphs and also enhance the layout. There are some basic 

chart procedures with limited layout like Proc chart and Proc plot. Sas have made more flexible 

procedures called Proc gchart and Proc gplot, which we will use here. 

We start with a simple vertical bar chart which counts the number of persons (observations) by 

state. There will we one bar for each state. We use the discrete option to make sure that there will be 

one bar for each state: 

proc gchart data=mdg.mdgperson_nodup; 

 vbar state /discrete; 

 title 'Persons by state'; 

run; 

This syntax will create a graph like this: 

 

We can introduce another variable, b4, to create a stacked bar chart. When we define it as a 

subgroup, it will be stacked: 

proc gchart data=mdg.mdgperson_nodup; 

 vbar state / subgroup=b4 discrete; 

 title 'Persons by state and sex'; 

run; 
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We see that we have sex stacked in each bar: 

 

Now we can put the sex variable in separate columns. To do that, we can change the order of the 

variables in the vbar statement and make state a group instead of a subgroup. To get the same 

colour for the same sex, we use the parameter midpoint for the patternid option: 

proc gchart data=mdg.mdgperson_nodup; 

 vbar b4 / group=state discrete patternid=midpoint ; 

 title 'Persons by state and sex'; 

run; 

Sex is now in separate bars within each state: 

 

We will now add the measure variable b5 (age) and calculate the average age. To do that we use the 

type and sumvar options: 
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proc gchart data=mdg.mdgperson_nodup; 

 vbar b4 / type=mean group=state sumvar=b5 discrete patternid=midpoint ; 

 title 'Average age of persons by state and sex'; 

run; 

The graph made for average age: 
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22.2. Spss 

In Spss, we have a Graph command that creates graphs with nice layout. There is also the Ggraph 

command, which is more flexible. However, the syntax is much more complicated. The Ggraph also 

needs the GPL (Graphics Productions Language) to define the graph. We will look at some vertical 

bar charts. First, one with one bar for each state: 

DATASET CLOSE all. 

GET FILE='mdgperson_nodup.sav'.  

GRAPH /BAR = count by state  

      /TITLE='Persons by state'. 

The syntax above will give us this graph: 

 

We add the b4 variable and stack it for each state: 

GRAPH /BAR (stacked) = count by state b4  

      /TITLE='Persons by state and sex'. 

Now the bars show the distribution by sex: 
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We can put the sex variable into separate bars: 

GRAPH /BAR = count by state b4  

      /TITLE='Persons by state and sex'. 

The graph: 

 

Finally, we can add a measure variable, b5, to the graph and make the average age: 

GRAPH /BAR = mean(b5) by state b4  

      /TITLE='Average age of persons by state and sex'. 

The graph looks like this: 
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We can use the menus in Spss to create graphs. However, the pasted syntax will be for the Ggraph 

command. We find the graphs under Graphs > Chart builder. Here is the generated syntax for the 

same graph as the first one above: 

GGRAPH 

  /GRAPHDATASET NAME="graphdataset" VARIABLES=state COUNT()[name="COUNT"] 

MISSING=LISTWISE  

    REPORTMISSING=NO 

  /GRAPHSPEC SOURCE=INLINE. 

BEGIN GPL 

  SOURCE: s=userSource(id("graphdataset")) 

  DATA: state=col(source(s), name("state"), unit.category()) 

  DATA: COUNT=col(source(s), name("COUNT")) 

  GUIDE: axis(dim(1), label("State")) 

  GUIDE: axis(dim(2), label("Count")) 

  GUIDE: text.title(label("Persons by state")) 

  SCALE: linear(dim(2), include(0)) 

  ELEMENT: interval(position(state*COUNT), shape.interior(shape.square)) 

END GPL. 

As we see, the syntax for the Graph command is much easier than the Ggraph syntax. However, 

there are more possibilities when using Ggraph. 

22.3. Stata 

In Stata, we have separate commands for different plots. There is for instance the bar command for 

vertical bar charts, line for line plots and the graph pie command for pie charts.  

We can make a simple vertical bar chart for the state variable like this: 

use "mdgperson_nodup.dta", clear 
graph bar (count), over(state) title(Persons by state) 

This will produce a graph like this: 
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We introduce the b4 variable and make separate bars for each value: 

graph bar (count), over(b4) over(state) title(Persons by state and sex) asyvars 

The asyvars option will give us different colours for the sexes: 

 

We can use the stack option to put the sex variable in the same bar for each state: 

graph bar (count), over(b4) over(state) stack title(Persons by state and sex) asyvars 

The graph has now stacked bars for each state: 
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We can add a measure variable to our graph, here we choose to calcluate the average age (b5) of the 

persons: 

graph bar (mean) b5, over(b4) over(state) title(Average age of persons by state and 
sex) asyvars 

The graph: 
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22.4. R 

In R there are different procedures for creating graphs. One of the most common is ggplot2. It has a 

broad variety of graphs, see https://ggplot2.tidyverse.org/. Now we will create some bar charts. We 

start with a vertical bar chart that counts the number of persons (rows) for each state: 

library(ggplot2) 
mdgperson_nodup <- readRDS("../data/mdgperson_nodup.rds") 
ggplot(data=mdgperson_nodup, aes(x=state)) + 
  geom_bar(stat="count") + 
  ggtitle("Persons by state") 

This will give us a very simple bar chart: 

 

We can add some colours and make the bars a little bit slimmer: 

ggplot(mdgperson_nodup, aes(x=state)) + 
  geom_bar(stat="count", width=0.7, fill="steelblue") + 
  ggtitle("Persons by state") 

It looks better now: 

 

https://ggplot2.tidyverse.org/
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Now we want to add the b4 variable to our chart: 

ggplot(mdgperson_nodup, aes(x=state, fill=b4)) + 
  geom_bar(stat="count", width=0.7) + 
  ggtitle("Persons by state and sex") 

As we now have a fill variable, R chooses automatically different colours for each of the stacked 

sexes: 

 

We can put sex in separate bars within each state by adding the position option: 

ggplot(mdgperson_nodup, aes(x=state, fill=b4)) + 
  geom_bar(stat="count", width=0.7, position=position_dodge())+ 
  ggtitle("Persons by state and sex") 

The graph: 

 

We introduce a measure variable, for instance b5 and calculate the mean values: 
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ggplot(mdgperson_nodup, aes(x=state, y=b5, fill=b4)) + 
  geom_bar(stat="summary", fun="mean", width=0.7, position=position_dodge()) 
+ 
  ggtitle("Average age of persons by state and sex") 

Now the graph shows the average age in the bars: 

 

  

There are lots of other possibilities within the ggplot2 procedure, both when it comes to different 

chart types and layout. We can also use the plotly package for R. It is like plotly in Python, see the 

next chapter. 

  



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

198 

22.5. Python 

In Python, we have several different modules for making graphs, for instance matplotlib, seaborn 

and plotly. We will now have a brief look at plotly (https://plotly.com/python/). With plotly, we can 

make quite nice graphs with just a little code. 

We may have to install plotly before we can use it: 

!pip install plotly 

When plotly is installed, we import it: 

import plotly.express as px 

We start with a vertical bar chart for state, and will use histogram to make the graph: 

px.histogram(mdgperson_nodup, x='state', title='Persons by state') 

The graph looks like this: 

 

We will add the column b4 as a stacked variable in our chart: 

px.histogram(mdgperson_nodup, x='state', color='b4', title='Persons by state 
and sex') 

Now our graph looks like this: 

 

https://plotly.com/python/


Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

199 

We can put sex in separate bars in our chart by adding the barmode option: 

px.histogram(mdgperson_nodup, x='state', color='b4', barmode="group", 
title='Persons by state and sex') 

  

We may add a measure variable, like b5, and calculate the mean values: 

px.histogram(mdgperson_nodup, x='state', y='b5', color='b4', histfunc='avg',  
             barmode="group",  
             title='Averge age of persons by state and sex') 

Now we have average age in our graph: 

 

There are lots of other possibilities for different chart types in plotly. We can also enhance the layout 

to a large extent. 
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23. Data exchange 
As Sas, Spss, Stata, R and Python stores data in their own proprietary formats, we can’t use datasets 

from one software in another without doing a data conversion. They can all import delimited or 

from fixed format files. Delimited files use a special character as a delimiter, like a comma, a semi-

colon or a tabulator, between each column. However, we will now look at how the data exchange is 

made easier with built-in conversion of data files. 

23.1. Sas 

Sas has a possibility to read Spss and Stata datasets, but to do that we have to license the module 

“Access interface to PC file formats”. Not all versions are compatible. When it comes to R, we can use 

the Proc iml procedure to import and export R data frames and also run R code. 

Import 
When the PC access module is licensed, we can import an Spss file like this: 

proc import out=work.MDGPERSON_NODUP  

  datafile = "h:\mdg\data\mdgperson_nodup.sav"  

  dbms = SAV replace;  

run; 

The formats for the variables are also copied. However, they are stored in a temporary folder. They 

may be extracted from that temporary storage and put on a dataset like this: 

proc format cntlout=formats; 

run; 

To save the formats with the other permanent formats we use this syntax (if a format exists it will 

overwrite it): 

proc format cntlin=formats lib=library; 

run; 

When we have an Spss dataset with date and time variables and want to import it to Sas, we have to 

convert date variables and unformatted time variables. Even though we format date variables in 

Spss, Sas will import the Spss time values for that date. We can use a program like this to import the 

Spss dataset and convert the times and dates: 

proc import out=times_from_spss  

  file= "H:\MDG\Data\times.sav"  

  dbms = SAV replace;  

run; 

data times_from_spss; 

 set times_from_spss; 

 date = datepart(date-11903760000); 

 date2 = datepart(date2-11903760000); 

 date_nf = datepart(date_nf - 11903760000); 

 date2_nf = datepart(date2_nf - 11903760000); 

 time_nf = time_nf - 11903760000; 

 time2_nf = time2_nf - 11903760000; 

 format date date2 yymmdd10. ; 

run; 

If we don’t have a license for Access to PC file formats, the dataset should be exported to a Sas 

dataset in Spss before importing it to Sas, see page 205. 
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When it comes to importing Stata datasets, Sas version 9.4 can read Stata datasets at least up to 

release 16. If we cannot import the datasets, it might be because the Stata dataset may be stored in 

a higher version of Stata than Sas can read. If so, we must use the saveold command in Stata first: 

use "mdgperson_nodup.dta", clear 
saveold "mdgperson_nodup10.dta", replace 

Then we import the dataset in the same way as Spss except for the dbms option: 

proc import out=work.MDGPERSON_NODUP10  

  datafile = "H:\MDG\Data\mdgperson_nodup10.dta"  

  dbms = DTA replace;  

run; 

If the Stata dataset is saved in newer version than Sas can read, these messages are given in the log: 

Didn't see end for |varnames| element.  Got -> || 

Requested Input File Is Invalid 

ERROR: Import unsuccessful.  See SAS Log for details. 

The formats can be copied the same way as for imported Spss datasets. 

When we have a Stata dataset with time and date variables and import it to Sas, we have to convert 

all time variables and format them in Sas: 

proc import out=times_from_stata  

  file= "H:\MDG\Data\times.dta"  

  dbms = DTA replace;  

run; 

 

data times_from_stata; 

 set times_from_stata; 

 time = time /1000; 

 time2 = time2 /1000; 

 time_nf = time_nf /1000; 

 time2_nf = time2_nf /1000; 

 format time time2 datetime19. ; 

run; 

There is no built-in functionality in Sas to import R data frames. However, we can call R from Sas. To 

be able to that, we have to add some settings. We must set the Rlang option in our sasv9.cfg file. The 

sasv9.cfg file is stored in a sub-folder where Sas is installed, usually something like this: c:\Program 

Files\SASHome\x86\SASFoundation\9.4\nls\en\sasv9.cfg. If we search our c-drive for sasv8.cfg, we 

might find more than one. Usually, we set the Rlang option in the stored in the nls\en subfolder. At 

the bottom of this file, we add this line: 

-RLANG 

When that is done and we have restarted Sas, we can add the path to R. Before we do that, we must 

know the path to the R installation we will use. We do that with Sys.getenv command in R: 

Sys.getenv("R_HOME") 

Then we can copy the path to our Sas program:  

options set=R_HOME="C:/Users/krl/DOCUME~1/R/R-40~1.0"; 
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We can now use the Proc iml procedure in Sas and put our R code between the submit/r and 

endsubmit statements. Then we use the call statement to call the ImportDataSetFromR routine to 

convert from R data frame to Sas dataset: 

proc iml; 

submit/r; 

load("H:/Mdg/Data/mdgperson_nodup.Rdata") 

endsubmit; 

call ImportDataSetFromR("mdgperson_nodup_sas","mdgperson_nodup"); 

quit; 

To convert from the newer rds data format we use the readRDS command: 

proc iml; 

submit/r; 

mdg <- readRDS("H:/Mdg/Data/mdgperson_nodup.rds") 

endsubmit; 

call ImportDataSetFromR("mdgperson_nodup_sas_rds","mdg"); 

quit; 

The factor variables from the R data frame will we character variables in the Sas dataset where the 

levels from R will be values in Sas: 

 

To keep the original values from the data frame it should be converted to a Sas dataset before the 

variables are changed to factors in R. However, the value formats then have to be added within Sas. 

Sas version 9.4 cannot read Python data formats like pickle and parquet files. Instead, files should 

be converted to csv-files or similar in Python before importing to Sas. In Sas Viya though, it is 

possible. We can use the parquet engine in the libname statement and then read directly from a 

parquet file and save it as an Sas dataset: 

libname pydata parquet 'h:\mdg\data\parquet'; 

data medgperson_nodup; 

 set pydata.mdgperson_nodup; 

run; 
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23.2. Export 

It is also possible to export datasets from Sas to Spss or Stata formats. Then we must add a fmtlib 

statement if we want to bring the formats over. Here we export to Spss with formats: 

proc export data=work.MDGPERSON_NODUP  

  outfile= "H:\MDG\Data\mdgperson_nodup_from_sas.sav"  

  dbms = SAV replace;  

  fmtlib=library.formats;  

run; 

When we export date and time variables for use in Spss they should have formats connected before 

the export. For time variables we can use the datetime19. format and for date variables yymmdd10. 

is suitable: 

format time time2 datetime19. date date2 yymmdd10.; 

The syntax for export to Stata with formats is like this: 

proc export data=mdg.MDGPERSON_NODUP  

  outfile= "c:\temp\mdgperson_nodup_from_sas.dta"  

  dbms = DTA replace;  

  fmtlib=library.formats;  

run; 

However, we should avoid format names with more than 8 positions as they will not be added to the 

Stata datasets when we open them in Stata. If the numeric variables without value labels is less 

readable, we can change them like this: 

use "mdgperson_nodup_from_sas.dta", clear 
format member %1.0f  
format b5 %2.0f 

When we export time variables to an Spss dataset, formatted date and time variables will be 

converted correctly. If they are not formatted, we have to recalculate to get the values right, see 

page 204.  

When we export to a Stata dataset with time variables, they will be converted to date variables if 

they have datetime formats in Sas. If we want to keep the whole time value, we should not use time 

formats in Sas. To drop formats in Sas we can use the Format statement in a Data step:  

data times; 

 set times; 

 format time time2 ; 

run;  

 

proc export data=work.times 

  outfile= "H:\MDG\Data\times_from_sas.dta"  

  dbms = DTA replace;  

run; 

We must convert the time variables after we have imported the Stata dataset that was created by 

Sas, see page 209. 

If we don’t have the Access to PC file formats module licensed, we can export the dataset to a 

delimited file and then import that to Stata instead or we can use the Stata import sas functionality, 

see page 208.  
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To create an R file in Sas, we can use the R interface in Proc Iml. Before we do that, some settings in 

Sas must be added, see page 201. 

Now we are ready to convert the Sas dataset to an R data frame. We use the Proc iml procedure in 

Sas and put our R code between the submit/r and endsubmit statements. First, we use the call 

statement to call the ExportDataSetToR routine to convert the Sas dataset to an R data frame. Then 

we use the saveRDS command to save the R data frame: 

proc iml; 

 call ExportDataSetToR("mdg.mdgperson_nodup","mdg_nodup_person_from_sas"); 

 submit/r; 

 

saveRDS(mdg_nodup_person_from_sas,file="H:/Mdg/Data/mdgperson_nodup_from_sas.

rds") 

 endsubmit; 

quit; 

Beware that formats are not included in the R data frame. If formats are needed it is better to 

import the Sas dataset in R, because then the formats are included as labels (see page 212). 

When we want to import date and time variables from R, they are imported to Sas as dates and 

times if they are defined as date/time variables in R. 

Sas version 9.4 cannot export to Python data formats like parquet or pickle. Instead, we can export 

to a csv-file or similar before we import the file in Python. In Sas Viya though, it is possible. We can 

use the parquet engine in the libname statement and then write directly to a parquet file: 

libname pydata parquet 'h:/mdg/data/parquet'; 

data pydata.mdgperson_nodup; 

 set mdg.mdgperson_nodup; 

run; 

23.3. Spss 

Import 
It is easy to import Sas datasets within Spss. We can use syntax like this: 

GET SAS DATA='mdgperson_nodup.sas7bdat'. 

However, value labels (formats) are not included with this syntax. Instead, we can add the formats 

with the subcommand Formats. Before we can do that, the formats have to be permanently stored 

in Sas (see page 67). To include the value labels, we do like this: 

GET SAS DATA='mdgperson_nodup.sas7bdat' /FORMATS='..\cat\formats.sas7bcat'. 

Sometimes, the formats will not be imported. It may be because of encoding problems. If so, it will 

be better to convert to Spss in Sas instead of trying to import a Sas dataset into Spss. 

When we import date and time variables, the date variables are shown as we want. However, to 

show the time variables in a readable way we should add a Formats command in Spss: 

FORMATS time time2 (DATETIME22). 

Time variables which do not have a time format when they are exported from Sas will get wrong 

time values if we just add the Formats command in Spss. This is because Sas and Spss use different 
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numbers to represent the same time. The same goes for date variables. These will also have to be 

adjusted. To adjust from Sas time and date variables to Spss time and date variables we have to re-

compute the time variables: 

GET SAS DATA='times.sas7bdat'. 

COMPUTE time_nf =  11903760000 + time_nf. 

COMPUTE time2_nf = 11903760000 + time2_nf. 

COMPUTE date_nf = TIME.DAYS(date_nf+137775). 

COMPUTE date2_nf = TIME.DAYS(date2_nf+137775). 

EXECUTE. 

FORMATS time time2 time_nf time2_nf (datetime22) date_nf date2_nf (adate10). 

The Time.days function returns the day number since day 1 in the Spss day count.  

To import a Stata dataset, we do it in a similar way: 

GET STATA FILE='mdgperson_nodup.dta' . 

Value labels in the Stata dataset are automatically included in the converted Spss dataset. Data files 

stored from Stata 16 are imported without problems. If the Stata version dataset is not supported, 

we get an error message like this: 

Error # 7202.  Command name: GET STATA 

Input dictionary read error. 

Execution of this command stops. 

Your new version of Stata is not supported 

We must beware of the fact that all different missing values set in Sas and Stata will be converted to 

system missing in Spss. 

When we import a Stata dataset with time and date variables to Spss we have to convert 

unformatted dates and all time variables. We can do it like this: 

GET STATA FILE='times.dta'. 

COMPUTE date_nf = TIME.DAYS(date_nf+137775). 

COMPUTE date2_nf = TIME.DAYS(date2_nf+137775). 

COMPUTE time =  11903760000 + (time/1000). 

COMPUTE time2 = 11903760000 + (time2/1000). 

COMPUTE time_nf =  11903760000 + (time_nf/1000). 

COMPUTE time2_nf = 11903760000 + (time2_nf/1000). 

EXECUTE. 

 

FORMATS time time2 (datetime22). 

FORMATS time_nf time2_nf date_nf date2_nf (f16). 

SAVE OUTFILE='times_from_stata.sav'. 

There is now built-in functionality to import an R or Python data frame to an Spss dataset. It is easy 

to read and write Spss datasets in R or Python, so it should be done there instead (see page 213). 

Export 
To export Spss data to Sas we use the Save translate command. When it comes to value labels, we 

can add them with the subcommand Valfile.  

GET FILE='mdgperson_nodup.sav'. 

SAVE TRANSLATE OUTFILE='mdgperson_nodup_from_spss.sas7bdat' 
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  /TYPE=SAS 

  /VERSION=7 

  /PLATFORM=WINDOWS 

  /MAP 

  /REPLACE 

  /VALFILE='..\syntax\formats.sas'. 

Here we name a syntax file that will include the Sas syntax needed to create the formats and the 

connection to the data. This syntax file will assume that the formats and the datasets are in the 

same folder which they should not. We have to change a little bit in the Sas syntax before the 

program is executed, we end up with this: 

proc format library = library ; 

   value STATE 

      1 = '01 Central'   

      2 = '02 Capital'   

      3 = '03 North'   

      4 = '04 East'   

      5 = '05 South'   

      6 = '06 West' ; 

   value URBRUR 

      1 = 'Urban'   

      2 = 'Rural' ; 

   value B3F 

      0 = 'Head'   

      1 = 'Spouse'   

      2 = 'Daughter/son'   

      3 = 'Spouse of son/daughter'   

      4 = 'Grandchild'   

      5 = 'Sister/brother'   

      6 = 'Sister/brother in-laws'   

      7 = 'Parent'   

      8 = 'Parent-in-law'   

      9 = 'Niece/nephew'   

      10 = 'Other relative'   

      11 = 'Non relative' ; 

   value B4F 

      1 = 'Male'   

      2 = 'Female' ; 

   value B6F 

      1 = 'Never married'   

      2 = 'Married - monogamy'   

      3 = 'Married - polygamy'   

      4 = 'Widowed'   

      5 = 'Separated'   

      6 = 'Divorced' ; 

run; 

 

proc datasets library = mdg nolist; 

modify mdgperson_nodup_from_spss; 

   format    state STATE.; 

   format    urbrur URBRUR.; 

   format    b3 B3F.; 

   format    b4 B4F.; 

   format    b6 B6F.; 

quit; 

The definitions of the librefs Library and Mdg are assigned earlier in the Autoexec flow. 

If there are problems with adding the formats, it might be encoding mismatches. An error message 

like this will be shown in the log: 
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ERROR: File MDG.MDGPERSON_NODUP_FROM_SPSS cannot be updated because its 

encoding does not match the session encoding or the file is  

       in a format native to another host, such as WINDOWS_32. 

We can add the formats this way instead: 

data mdg.mdgperson_nodup_from_spss; 

 set mdg.mdgperson_nodup_from_spss; 

 format state STATE.; 

 format urbrur URBRUR.; 

 format b3 B3F.; 

 format b4 B4F.; 

 format b6 B6F.; 

run; 

To export Spss dataset to Stata we also use the Save translate command. Here the value labels are 

automatically added to the Stata dataset. We use this syntax: 

SAVE TRANSLATE OUTFILE='mdgperson_nodup_from_spss.dta' 

  /TYPE=STATA 

  /MAP 

  /REPLACE. 

Both system missing and user missing values are converted to the missing value dot (.) in converted 

Sas and Stata datasets. 

When we export datasets with time and date variables, we should not use formats for the time 

variables as Stata will convert them to date variables. We change the formats before the export: 

GET FILE='times.sav'. 

FORMATS time time2 time_nf time2_nf (f16). 

 

SAVE TRANSLATE OUTFILE='times_from_spss.dta' 

  /TYPE=STATA 

  /MAP 

  /REPLACE. 

The time variables will have to be converted after they are converted to a Stata dataset, see page 

209. 

There is now built-in functionality to export an Spss dataset to an R or Python data frame. It is easy 

to read and write Spss datasets in R and Python, so it should be done there instead (see page 213). 
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23.4. Stata 

Import 
Before version 16 of Stata there was no easy way to store Stata datasets as Sas or Spss datasets 

within Stata. Beginning with version 16, import functions are added. We can use the interface from 

the File➔Import menu and choose Sas or Spss data. A window will appear when we have chosen 

our import file. We can mark all our variables (CTRL+A) and click on the arrow to include them in the 

import: 

 

When we click OK, the import will be executed. The command will appear in the Results window. 

This may be copied into a do file if we like. It looks like this: 

import sas hh state urbrur member b3 b4 b5 b6 using 
"H:\Mdg\Data\mdgperson_nodup.sas7bdat", clear 

However, when we use syntax, we don’t need to mention the variable names when we want to 

import them all: 

import sas using "H:\Mdg\Data\mdgperson_nodup.sas7bdat", clear 

To import formats, we can add the name of the format catalog name with the bcat option. To do this 

we have to use syntax. After the import we must add the value labels to the variables. To find the 

value labels names we can run the label list command. Then we can add them with the label values 

command: 

import sas using "H:\Mdg\Data\mdgperson_nodup.sas7bdat", 
bcat("H:\Mdg\Cat\formats.sas7bcat") clear 
label list 
 
label values state STATE 
label values urbrur URBRUR 
label values b3 HEAD_REL 
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label values b4 SEX 
label values b6 CIVIL_STATUS 

As only numeric variables can have value labels in Stata, formats for character variables cause 

problems. If there are character formats in the formats.sas7bcat file, we can get an note like this: 

note: invalid numeric value for value label CIVIL_STATUS, skipped 

Even though it is only a note, the import will not be executed. The note says it is a problem with one 

of the numeric formats, however the problem is that there is at least one character format in the 

formats.sas7bcat file. This must be deleted from the formats.sas7bcat file before we can use it in 

Stata. Here is an example on how we delete the character format $sex in Sas: 

proc catalog catalog=library.formats; 

  delete sex.formatc; 

quit; 

Missing values and the Other group in Sas formats will not be included in the value labels in Stata. 

We might get an error message if some data cannot be read because of different encoding. This was 

thrown when there were problems with a special dash in the formats: 

may not label -2.0603e-289 

To solve this problem, we must change the value in Sas before the formats are imported to Stata. 

Stata counts time in milliseconds and Sas in seconds with milliseconds as decimals. This means we 

have to multiply unformatted date values with 1000 to get the right times in Stata. Stata and Sas use 

the same numbers for the dates, so it does not matter if these date variables have no formats. In 

Stata we should do like this to correct the date and time values: 

use "times_from_sas.dta", clear 
replace time = time * 1000 
replace time2 = time2 * 1000 
replace time_nf = time_nf * 1000 
replace time2_nf = time2_nf * 1000 
format time %tc 
format time2 %tc 
format time_nf %tc 
format time2_nf %tc 
format date_nf %d 
format date2_nf %d 

The time variables which were formatted in Sas will still just contain the date when imported to 

Stata.  

The process is the same for Spss datasets. The converted datasets will include value labels: 

import spss using "H:\Mdg\Data\mdgperson_nodup.sav", clear 

When importing Stata datasets made in Spss with unformatted time variables we will convert them 

like this in Stata: 

use "times_from_spss.dta", clear 
replace time = (time - 11903760000)*1000 
replace time_nf = (time_nf - 11903760000)*1000 
replace time2 = (time2 - 11903760000)*1000 
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replace time2_nf = (time2_nf - 11903760000)*1000 
format time time2 %tc 
format time_nf time2_nf %17.0f 
replace date_nf = dofc((date_nf - 11903760000)*1000) 
replace date2_nf = dofc((date2_nf - 11903760000)*1000) 

There are no import built-in functions in Stata to import files from R or Python. However, in R we can 

convert a data frame to a Stata dataset, and we can also convert a Stata dataset to an R data frame, 

see page 215. In Python, we can export to Stata with the to_stata function, see page 220. 

23.5. Export 

It is possible to export from Stata to Sas, but only as an export file. The export file may be in version 

5 or 8 of Sas. With version 5, formats are also exported (as long as the value labels names in Stata 

are 8 or less characters). 

Here is an example for export to Sas version 5 xport file: 

export sasxport5 "h:\mdg\data\mdgperson_nodup_from_stata5.v5xpt", replace 

With this program there will be created a data file and a file with the Sas formats. We must convert 

them in Sas to ordinary Sas datasets and formats and create Sas formats from the format xpt file. 

We can use syntax like this to convert: 

libname xptform xport 'h:\mdg\data\formats.xpf'; 

libname xptfile xport 'h:\mdg\data\mdgperson_nodup_from_stata5.v5xpt'; 

 

proc copy in = xptform out = work ; 

run; 
 

proc format cntlin=work.formats; 

run; 

 

proc copy in = xptfile out = work ; 

run; 

We can also use the sasxport8 option for our export. If we want to export the formats as well, we add 

the vallabfile option: 

export sasxport8 "h:\mdg\data\mdgperson_nodup_from_stata8.v8xpt", vallabfile replace 

In addition to the exported data file, Stata will create a Sas program with syntax for the import of the 

data and creation of Sas formats. This file will be stored in the same folder as the data file. However, 

the import program does not work for xport files higher than version 5 of Sas. Hence, we must 

convert it in another way. Sas has made a built-in macro for this which we will use. This macro will 

create a Sas dataset named dataset, with no formats attached. We will create the formats from the 

Sas program. We can add the formats and save the dataset with a new name: 

%xpt2loc(libref=work,  

         filespec='h:\mdg\data\mdgperson_nodup_from_stata8.v8xpt' ); 

proc format library = work ; 

 value STATE 

  1 = '01 Central' 

  2 = '02 Capital' 

  3 = '03 North' 

  4 = '04 East' 

  5 = '05 South' 

  6 = '06 West' ; 
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 value URBRUR 

  1 = 'Urban' 

  2 = 'Rural' ; 

 value HEAD_REL 

  0 = 'Head' 

  1 = 'Spouse' 

  2 = 'Daughter/son' 

  3 = 'Spouse of son/daughter' 

  4 = 'Grandchild' 

  5 = 'Sister/brother' 

  6 = 'Sister/brother in-laws' 

  7 = 'Parent' 

  8 = 'Parent-in-law' 

  9 = 'Niece/nephew' 

  10 = 'Other relative' 

  11 = 'Non relative' ; 

 value SEX 

  1 = 'Male' 

  2 = 'Female' ; 

 value CIVIL_STATUS 

  1 = 'Never married' 

  2 = 'Married - monogamy' 

  3 = 'Married - polygamy' 

  4 = 'Widowed' 

  5 = 'Separated' 

  6 = 'Divorced' ; 

run ; 

data mdgperson_nodup_from_stata; 

 set dataset; 

 format  

  state  state. 

  urbrur urbrur. 

  b3     head_rel. 

  b4     sex. 

  b6     civil_status. 

  ; 

run; 

Date variables are converted correctly, but not time and datetime variables. We must divide them by 

1000 to get the correct values. Date formats from the Stata dataset will be added to date variables, 

but not datetime and time variables. We can import, convert, and correct datetime and time 

variables like this: 

libname xptfile xport 'h:\mdg\data\times_from_stata5.v5xpt'; 

proc copy in = xptfile out = work ; 

run; 

data times_from_stata5; 

 set times_fr; 

 time = time /1000; 

 time2 = time2 /1000; 

 time_nf = time_nf /1000; 

 time2_nf = time2_nf /1000; 

 format time time2 datetime19. ; 

run; 

Stata does not have any built-in functionality for exporting a Stata dataset to an Spss dataset. 

Instead, we can import a Stata dataset to Spss, see page 224.  

Stata does not have any built-in procedures to export files to R or Python. Instead, we can read Stata 

files  
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in R, by using the Haven package to import Stata datasets, see page 214. In Python, we can use 

pd.read_stata to import Stata files. 

23.6. R 

One common R package to read and write data files from other systems is haven (which is also 

included in the tidyverse package). After installation and attaching the package, we can import and 

export files. First, we have to attach the package: 

library(haven) 

Import 
After attaching the haven package, we can import data from other systems. We start with importing 

a Sas dataset: 

mdgfromsas <- read_sas(data_file="h:/mdg/data/mdgperson_nodup.sas7bdat") 

When Sas formats are connected to the Sas dataset we can add them, they are stored in a file called 

formats.sas7bcat: 

mdgfromsaswithformats <- read_sas(data_file="h:/mdg/data/mdgperson_nodup.sas7
bdat",catalog_file ="h:/mdg/cat/formats.sas7bcat") 

The formats are now labels for each variable: 

mdgfromsaswithformats 

# A tibble: 47 x 8 

   hh              state    urbrur member               b3         b4    b5                      b6 

   <chr>       <dbl+lbl> <dbl+lbl>  <dbl>        <dbl+lbl>  <dbl+lbl> <dbl>               <dbl+lbl> 

 1 020074 2 [02 Capital] 1 [Urban]      1 0 [Head]         1 [Male]      39  3 [Married – polygamy] 
 2 020074 2 [02 Capital] 1 [Urban]      2 1 [Spouse]       2 [Female]    21  2 [Married – monogamy] 
 3 020074 2 [02 Capital] 1 [Urban]      3 2 [Daughter/son] 1 [Male]      16  1 [Never married]      
 4 020074 2 [02 Capital] 1 [Urban]      4 2 [Daughter/son] 2 [Female]    13  1 [Never married]      
 5 020074 2 [02 Capital] 1 [Urban]      5 2 [Daughter/son] 1 [Male]      10 NA                      
 6 020074 2 [02 Capital] 1 [Urban]      6 2 [Daughter/son] 2 [Female]     8 NA                      
 7 020100 2 [02 Capital] 1 [Urban]      1 0 [Head]         1 [Male]      45  3 [Married – polygamy] 
 8 020100 2 [02 Capital] 1 [Urban]      2 1 [Spouse]       2 [Female]    41  2 [Married – monogamy] 
 9 020100 2 [02 Capital] 1 [Urban]      3 2 [Daughter/son] 2 [Female]    21  1 [Never married]      
10 020100 2 [02 Capital] 1 [Urban]      4 2 [Daughter/son] 1 [Male]      19  2 [Married – monogamy] 

# ... with 37 more rows 

However, these labels are a little inconvenient to use. Hence, we can convert the variables to factors 

with levels and labels. We use the as_factor function since the as.factor function does not work here. 

The labels are attributes to each variable and the attribute is called labels: 

mdgfromsaswithformats$state <- as_factor(mdgfromsaswithformats$state,levels="
labels") 
mdgfromsaswithformats$urbrur <- as_factor(mdgfromsaswithformats$urbrur,levels
="labels") 
mdgfromsaswithformats$b3 <- as_factor(mdgfromsaswithformats$b3,levels="labels
") 
mdgfromsaswithformats$b4 <- as_factor(mdgfromsaswithformats$b4,levels="labels
") 
mdgfromsaswithformats$b6 <- as_factor(mdgfromsaswithformats$b6,levels="labels
") 

Now the data frame is like this: 

mdgfromsaswithformats 



Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

213 

# A tibble: 47 x 8 

   hh     state      urbrur member b3           b4        b5 b6                 

   <chr>  <fct>      <fct>   <dbl> <fct>        <fct>  <dbl> <fct>              

 1 020074 02 Capital Urban       1 Head         Male      39 Married – polygamy 
 2 020074 02 Capital Urban       2 Spouse       Female    21 Married – monogamy 
 3 020074 02 Capital Urban       3 Daughter/son Male      16 Never married      
 4 020074 02 Capital Urban       4 Daughter/son Female    13 Never married      
 5 020074 02 Capital Urban       5 Daughter/son Male      10 NA                 
 6 020074 02 Capital Urban       6 Daughter/son Female     8 NA                 
 7 020100 02 Capital Urban       1 Head         Male      45 Married – polygamy 
 8 020100 02 Capital Urban       2 Spouse       Female    41 Married – monogamy 
 9 020100 02 Capital Urban       3 Daughter/son Female    21 Never married      
10 020100 02 Capital Urban       4 Daughter/son Male      19 Married – monogamy 

# ... with 37 more rows 

The values behind the levels will change if the original values did not start from 1 and increment 

with 1 (as discussed earlier, page 62. 

When it comes to date and time variables, they will be converted if they are formatted as date or 

time in Sas. If not, the number behind the date or time will be imported: 

times <- read_sas(data_file="h:/mdg/data/times.sas7bdat") 

We can look at the data frame in R: 

times 

# A tibble: 12 x 9 

      id time                time2               date       date2         time_nf   time2_nf date_nf date2_nf 

   <dbl> <dttm>              <dttm>              <date>     <date>          <dbl>      <dbl>   <dbl>    <dbl> 

 1     1 1999-03-01 11:42:00 1962-04-24 18:25:31 1962-12-15 2005-04-16 1235907720   72987931    1079    16542 
 2     2 2002-12-25 02:40:12 1954-03-09 15:35:26 1961-09-03 1990-09-24 1356403212 -183457474     611    11224 
 3     3 1973-08-02 03:27:41 1962-11-30 08:56:23 1962-04-25 1966-10-01  428729261   91961783     845     2465 
 4     4 1984-04-08 17:06:49 1935-04-04 15:34:40 1962-11-16 1979-04-14  765911209 -780827120    1050     7043 
 5     5 2003-02-04 19:42:52 1963-02-18 06:53:54 1962-12-04 2013-03-17 1360006972   98866434    1068    19434 
 6     6 1966-09-02 09:37:17 1935-11-02 16:23:38 1962-01-10 2000-07-13  210505037 -762507382     740    14804 
 7     7 1969-09-26 22:23:10 1964-09-19 22:15:04 1960-06-28 1986-09-18  307318990  148947304     179     9757 
 8     8 1995-02-10 20:17:57 1963-02-08 06:09:53 1964-03-01 1984-05-10 1108066677   97999793    1521     8896 
 9     9 1970-09-01 17:19:39 1970-09-01 13:58:32 1960-12-20 2018-01-05  336676779  336664712     354    21189 
10    10 1979-12-20 04:57:52 1963-06-22 05:37:12 1963-01-21 1985-04-07  630133072  109575432    1116     9228 
11    11 2002-07-19 18:23:49 NA                  1960-10-02 1960-08-21 1342722229         NA     275      233 
12    12 2001-09-04 03:25:32 1961-09-28 03:25:32 1963-09-19 1963-09-19 1315193132   54962732    1357     1357 

We can convert date variables that are not formatted in Sas with the format and as.Date functions. 

We use the origin argument to tell which date is date 0 in Sas (1 December 1960). For datetime 

variables that are not formatted in Sas, we can convert using the as.POSIXct function. The default 

time zone is taken from Sys.timezone(), but may be set with the tz argument, for instance tz="GMT". 

Here is an example: 

times$time_nf <- as.POSIXct(times$time_nf, origin = "1960-01-01") 
times$time_nf2 <- as.POSIXct(times$time2_nf, origin = "1960-01-01",tz=Sys.tim
ezone()) 
times$date_nf <- format(as.Date(times$date_nf, origin="1960-01-01"),"%Y-%m-%d
") 
times$date2_nf <- format(as.Date(times$date2_nf, origin="1960-01-01"),"%Y-%m-
%d") 

To import Spss files is similar to Sas datasets. We use the read_spss command. However, as value 

labels are stored in the Spss file they are included in the import: 

mdgfromspss <- read_spss(file="h:/mdg/data/mdgperson_nodup.sav") 
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The data frame will be like the one read from Sas. That means we can convert the labelled variables 

to factors: 

mdgfromspss$state <- as_factor(mdgfromspss$state,levels="labels") 
mdgfromspss$urbrur <- as_factor(mdgfromspss$urbrur,levels="labels") 
mdgfromspss$b3 <- as_factor(mdgfromspss$b3,levels="labels") 
mdgfromspss$b4 <- as_factor(mdgfromspss$b4,levels="labels") 
mdgfromspss$b6 <- as_factor(mdgfromspss$b6,levels="labels") 

When we convert an Spss dataset with dates and times, we have to convert the Spss time number to 

R date and/or time. Then we have to set the origin to October 14, 1582 as that is date zero in Spss. 

All time and dates are counted in seconds from that time, so we must divide with 86400 if we want 

to convert to a date. There may also be some issues with time zones and daylight-saving time. This 

can lead to some different hours than the original. Here is an example: 

times_spss <- read_sav(file="h:/mdg/data/times.sav") 
times_spss$time_nf <- as.POSIXct(times_spss$time_nf, origin = "1582-10-14") 
times_spss$time2_nf <- as.POSIXct(times_spss$time2_nf, origin = "1582-10-14") 
times_spss$date_nf <- format(as.Date(times_spss$date_nf/86400, origin="1582-1
0-14"),"%Y-%m-%d") 
times_spss$date2_nf <- format(as.Date(times_spss$date2_nf/86400, origin="1582
-10-14"),"%Y-%m-%d") 
times_spss 

The output dataset: 

# A tibble: 12 x 9 

      id time                time2               date       date2      time_nf             time2_nf            date_nf    date2_nf   

   <dbl> <dttm>              <dttm>              <date>     <date>     <dttm>              <dttm>              <chr>      <chr>      

 1     1 1999-03-01 11:42:00 1962-04-24 18:25:31 1962-12-15 2005-04-16 1999-03-01 12:42:00 1962-04-24 19:25:31 1962-12-15 2005-04-16 
 2     2 2002-12-25 02:40:12 1954-03-09 15:35:26 1961-09-03 1990-09-24 2002-12-25 03:40:12 1954-03-09 16:35:26 1961-09-03 1990-09-24 
 3     3 1973-08-02 03:27:41 1962-11-30 08:56:23 1962-04-25 1966-10-01 1973-08-02 04:27:41 1962-11-30 09:56:23 1962-04-25 1966-10-01 
 4     4 1984-04-08 17:06:49 1935-04-04 15:34:40 1962-11-16 1979-04-14 1984-04-08 19:06:49 1935-04-04 16:34:40 1962-11-16 1979-04-14 
 5     5 2003-02-04 19:42:52 1963-02-18 06:53:54 1962-12-04 2013-03-17 2003-02-04 20:42:52 1963-02-18 07:53:54 1962-12-04 2013-03-17 
 6     6 1966-09-02 09:37:17 1935-11-02 16:23:38 1962-01-10 2000-07-13 1966-09-02 10:37:17 1935-11-02 17:23:38 1962-01-10 2000-07-13 
 7     7 1969-09-26 22:23:10 1964-09-19 22:15:04 1960-06-28 1986-09-18 1969-09-26 23:23:10 1964-09-19 23:15:04 1960-06-28 1986-09-18 
 8     8 1995-02-10 20:17:57 1963-02-08 06:09:53 1964-03-01 1984-05-10 1995-02-10 21:17:57 1963-02-08 07:09:53 1964-03-01 1984-05-10 
 9     9 1970-09-01 17:19:39 1970-09-01 13:58:32 1960-12-20 2018-01-05 1970-09-01 18:19:39 1970-09-01 14:58:32 1960-12-20 2018-01-05 
10    10 1979-12-20 04:57:52 1963-06-22 05:37:12 1963-01-21 1985-04-07 1979-12-20 05:57:52 1963-06-22 06:37:12 1963-01-21 1985-04-07 
11    11 2002-07-19 18:23:49 NA                  1960-10-02 1960-08-21 2002-07-19 20:23:49 NA                  1960-10-02 1960-08-21 
12    12 2001-09-04 03:25:32 1961-09-28 03:25:32 1963-09-19 1963-09-19 2001-09-04 05:25:32 1961-09-28 04:25:32 1963-09-19 1963-09-19 

We see that time and time_nf differs with one to two hours. 

We use read_dta to import a Stata file. We can also convert labelled variables to factors: 

mdgfromstata <- read_dta(file="h:/mdg/data/mdgperson_nodup.dta") 
mdgfromstata$state <- as_factor(mdgfromstata$state,levels="labels") 
mdgfromstata$urbrur <- as_factor(mdgfromstata$urbrur,levels="labels") 
mdgfromstata$b3 <- as_factor(mdgfromstata$b3,levels="labels") 
mdgfromstata$b4 <- as_factor(mdgfromstata$b4,levels="labels") 
mdgfromstata$b6 <- as_factor(mdgfromstata$b6,levels="labels") 

For Stata, it is similar to Spss when it comes to datetime variables. However, the time is counted in 

milliseconds, not seconds with decimals as Spss does. This means we have to divide with 1000 to 

convert the datetime values. Still there may be some time zone problems here as well. For date 

variables, we must set the original date 0 to January 1, 1960: 

times_stata <- read_dta(file="h:/mdg/data/times.dta") 
times_stata$time_nf <- as.POSIXct(times_stata$time_nf/1000, origin = "1960-01
-01") 
times_stata$time2_nf <- as.POSIXct(times_stata$time2_nf/1000, origin = "1960-
01-01") 
times_stata$date_nf <- format(as.Date(times_stata$date_nf, origin="1960-01-01
"),"%Y-%m-%d") 
times_stata$date2_nf <- format(as.Date(times_stata$date2_nf, origin="1960-01-
01"),"%Y-%m-%d") 
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times_stata 

Here, time and time_nf differs with up to two hours: 

      id time                time2               date       date2      time_nf             time2_nf            date_nf    date2_nf   

   <dbl> <dttm>              <dttm>              <date>     <date>     <dttm>              <dttm>              <chr>      <chr>      

 1     1 1999-03-01 11:42:00 1962-04-24 18:25:31 1962-12-15 2005-04-16 1999-03-01 12:42:00 1962-04-24 19:25:31 1962-12-15 2005-04-16 

 2     2 2002-12-25 02:40:12 1954-03-09 15:35:26 1961-09-03 1990-09-24 2002-12-25 03:40:12 1954-03-09 16:35:26 1961-09-03 1990-09-24 
 3     3 1973-08-02 03:27:41 1962-11-30 08:56:23 1962-04-25 1966-10-01 1973-08-02 04:27:41 1962-11-30 09:56:23 1962-04-25 1966-10-01 
 4     4 1984-04-08 17:06:49 1935-04-04 15:34:40 1962-11-16 1979-04-14 1984-04-08 19:06:49 1935-04-04 16:34:40 1962-11-16 1979-04-14 
 5     5 2003-02-04 19:42:52 1963-02-18 06:53:54 1962-12-04 2013-03-17 2003-02-04 20:42:52 1963-02-18 07:53:54 1962-12-04 2013-03-17 
 6     6 1966-09-02 09:37:17 1935-11-02 16:23:38 1962-01-10 2000-07-13 1966-09-02 10:37:17 1935-11-02 17:23:38 1962-01-10 2000-07-13 
 7     7 1969-09-26 22:23:10 1964-09-19 22:15:04 1960-06-28 1986-09-18 1969-09-26 23:23:10 1964-09-19 23:15:04 1960-06-28 1986-09-18 
 8     8 1995-02-10 20:17:57 1963-02-08 06:09:53 1964-03-01 1984-05-10 1995-02-10 21:17:57 1963-02-08 07:09:53 1964-03-01 1984-05-10 
 9     9 1970-09-01 17:19:39 1970-09-01 13:58:32 1960-12-20 2018-01-05 1970-09-01 18:19:39 1970-09-01 14:58:32 1960-12-20 2018-01-05 
10    10 1979-12-20 04:57:52 1963-06-22 05:37:12 1963-01-21 1985-04-07 1979-12-20 05:57:52 1963-06-22 06:37:12 1963-01-21 1985-04-07 
11    11 2002-07-19 18:23:49 NA                  1960-10-02 1960-08-21 2002-07-19 20:23:49 NA                  1960-10-02 1960-08-21 
12    12 2001-09-04 03:25:32 1961-09-28 03:25:32 1963-09-19 1963-09-19 2001-09-04 05:25:32 1961-09-28 04:25:32 1963-09-19 1963-09-19 

We can import parquet files from Python with the read_parquet command in the arrow library. This 

library is not included in the basic R installation, so we have to install it first. With internet 

connection we can install it like this: 

install.packages('arrow') 

When it is properly installed, we can activate it: 

library(arrow) 

Now we can import a parquet file to R: 

mdgperson_from_parquet <- read_parquet('h:/mdg/data/mdgperson.parquet')  

Export 
To export a R data frame to a Sas dataset we could use the write_sas command. However, it is 

experimental and doesn’t seem to work. Instead, we can run R from Sas and convert from R to Sas 

within Proc iml, see page 202.  

To write to an Spss dataset we can use the write_sav command. 

write_sav(data=mdgperson_nodup,path="h:/mdg/data/mdgperson_nodup_from_r.sav",
compress = TRUE) 

This will create a compressed Spss dataset which can be opened with this command in SPSS. 

Variable and value labels will be included if they are stored in the R data frame. Factor variables with 

levels will be converted to numeric variables with value labels. The same goes for numeric variables 

with label attributes. 

If we don’t want the Spss dataset to be compressed, we can omit the compress argument or set it to 

FALSE. 

To open the dataset in Spss we can use the GET command: 

GET FILE ="h:\mdg\data\mdgperson_nodup_from_r.sav" . 

We can use the write_dta command to convert a R data frame to a Stata dataset: 

write_dta(data=mdgperson_nodup,path="h:/mdg/data/mdgperson_nodup_from_r.dta") 

It converts factors variables with levels and numeric variables with label attributes to numeric 

variables with value labels.  
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To open the converted Stata dataset, we can use a command like this: 

use "h:\mdg\data\mdgperson_nodup_from_r.dta", clear 

We can write parquet files from R. To do that, we need the arrow package. It is not included in the 

basic R installation, so page 215 how to install it. We activate the library and do our export: 

library(arrow) 
write_parquet(mdgperson_nodup, 'h:/mdg/data/mdgperson_from_r.parquet') 

23.7. Python 

Import 
We can use Pandas read_sas to read a Sas dataset into a Python data frame. But that demands that 

pyreadstat is installed and imported: 

!pip install pyreadstat 
import pyreadstat 

When it is installed, it is easy to import: 

mdgperson_from_sas = pd.read_sas(datapath + 'mdgperson.sas7bdat') 

For variables with value labels, these are not converted into category variables. Only the codes are 

imported. Character variables are sometimes, if the locale of the Sas dataset is different from what 

is used in Python, surrounded by b''. To avoid these annoyances, we can use this syntax instead 

where we add the encoding parameter: 

mdgperson_from_sas = pd.read_sas(datapath + 'mdgperson.sas7bdat', 
 encoding ='iso-8859-1') 

Another way to do this is to use pyreadstat.read_sas7bdat instead: 

mdgperson_from_sas, meta = pyreadstat.read_sas7bdat(datapath + 
'mdgperson.sas7bdat') 

Date and time variables will be converted correctly as long as they are formatted in Sas with a 

datetime or date format. Unformatted date and time variables will have the number behind the date 

and time imported. We can convert these numbers to datetime variables in Python. One way to do it 

is to use the Pandas timedelta function and count the seconds from the time 0 in Sas which is 

January 1, 1960. 

times_sas, meta = pyreadstat.read_sas7bdat(datapath + 'times.sas7bdat') 
times_sas['time_nf'] = pd.to_timedelta(times_sas['time_nf'], unit='s') + 
pd.Timestamp('1960-01-01') 
times_sas['time2_nf'] = pd.to_timedelta(times_sas['time2_nf'], unit='s') + 
pd.Timestamp('1960-01-01') 
times_sas['date_nf'] = pd.to_timedelta(times_sas['date_nf'], unit='D') + 
pd.Timestamp('1960-01-01') 
times_sas['date2_nf'] = pd.to_timedelta(times_sas['date2_nf'], unit='D') + 
pd.Timestamp('1960-01-01') 
times_sas 
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The imported and converted data frame with converted datetime variables: 

 

We can use Pandas read_spss to read an Spss dataset into a Python data frame. But, that demands 

that pyreadstat is installed and imported: 

!pip install pyreadstat 
import pyreadstat 

When it is installed, it is easy to import: 

mdgperson_from_spss = pd.read_spss(datapath + 'mdgperson.sav') 

For variables with value labels, these are converted into category variables so that the labels are 

imported to the Python data frame. 

When we import date and time variables, those who are defined as datetime variables in Spss are 

converted without problems. For date variables, the number behind the actual date is imported. 

That is the number of seconds since October 14, 1582. We can convert that number to a date 

number starting from January 1, 1970, which is the Python time 0 by subtracting the number 

12219379200. We also tell that the date and time is given in seconds with the parameter unit: 

times_spss = pd.read_spss(datapath + 'times.sav') 
times_spss['date']= pd.to_datetime(times_spss['date'] - 12219379200, 
unit="s") 
times_spss['date2']= pd.to_datetime(times_spss['date2'] - 12219379200, 
unit="s") 
times_spss['time_nf']= pd.to_datetime(times_spss['time_nf'] - 12219379200, 
unit="s") 
times_spss['time2_nf']= pd.to_datetime(times_spss['time2_nf'] - 12219379200, 
unit="s") 
times_spss['date_nf']= pd.to_datetime(times_spss['date_nf'] - 12219379200, 
unit="s") 
times_spss['date2_nf']= pd.to_datetime(times_spss['date2_nf'] - 12219379200, 
unit="s") 
times_spss 

We may not use the origin parameter with a Timestamp as the first valid timestamp is September 

22, 1677.  
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The output has now datetime variables that are converted correctly: 

 

Invalid date and time are given the missing value NaT (Not a Time). 

We can use Pandas read_stata to read a Stata dataset into a Python data frame. But that demands 

that pyreadstat is installed and imported: 

!pip install pyreadstat 
import pyreadstat 

When it is installed, it is easy to import: 

mdgperson_from_stata = pd.read_stata(datapath + 'mdgperson.dta') 

For variables with value labels, these are converted into category variables so that the labels are 

imported to the Python data frame. 

Date and time variables are converted when they are formatted as date or datetime variables. If 

they are not formatted in Stata, the number of the date or time will be imported. They can be 

converted with the Pandas timedelta function. We add the number of days or seconds since day 0 in 

Stata, January 1, 1960: 

times_stata = pd.read_stata(datapath + 'times.dta') 
times_stata['time_nf'] = pd.to_timedelta(times_stata['time_nf'], unit='s') + 
pd.Timestamp('1960-01-01') 
times_stata['time2_nf'] = pd.to_timedelta(times_stata['time2_nf'], unit='s') 
+ pd.Timestamp('1960-01-01') 
times_stata['date_nf'] = pd.to_timedelta(times_stata['date_nf'], unit='D') + 
pd.Timestamp('1960-01-01') 
times_stata['date2_nf'] = pd.to_timedelta(times_stata['date2_nf'], unit='D') 
+ pd.Timestamp('1960-01-01') 
times_stata 
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The Python frame with converted datetime variables: 

 

There is a Python library called pyreadr which can be used to import R data frames to Python. First, 

we have to install and import the library: 

!pip install pyreadr 
import pyreadr 

Now we can import an Rdata file. It returns an ordered dictionary which we can extract to a data 

frame: 

result = pyreadr.read_r(datapath + 'mdgperson_nodup.Rdata') 
mdgperson_from_rdata = result['mdgperson_nodup'] 
mdgperson_from_rdata 

To import an rds file, we do almost the same. The only difference is that data imported to result has 

no name. We use None instead: 

result = pyreadr.read_r(datapath + 'mdgperson_nodup.rds') 
mdgperson_from_rds = result[None] 
mdgperson_from_rds 

Export 
There is no direct way in Python to convert to Sas datasets without using the saspy library. The 

saspy library needs Sas to be installed on our computer. Then we must connect to Sas from Python, 

and in order to do that we need to some setup first. It is described here: 

https://sassoftware.github.io/saspy/.  

There is a write_xport function to export to Sas xport format. However, it does not create an xport 

file that Sas can read. Instead, we can create a csv file and import it in Sas. 

To export a Python data frame to an Spss dataset we can use pyreadstat as well. The variables are 

exported with their values, which also goes for category variables. That means it is the text for the 

category that is exported, not the code behind. We can do it like this: 

pyreadstat.write_sav(mdgperson_nodup, datapath + 
'mdgperson_nodup_from_python.sav') 

When we write a Python data frame to an Spss dataset, datetime variables will also be datetime 

variables in Spss:  

pyreadstat.write_sav(times_spss, datapath + 'times_from_python.sav') 

https://sassoftware.github.io/saspy/


Documents 2023/1 Data processing in Sas, Spss, Stata, R and Python. A comparison 

 

220 

To export a Python data frame to a Stata dataset we can use to_stata function. The variables are 

exported with their values, which also goes for category variables. That means it is the text for the 

category that is exported, not the code behind. We can do it like this: 

mdgperson_nodup.to_stata(datapath + 'mdgperson_nodup_from_python.dta') 

This syntax is also possible, however it may throw an error message in Stata, depending on the Stata 

implementation: 

pyreadstat.write_dta(mdgperson_nodup, datapath + 
'mdgperson_nodup_from_python.dta') 

This message may appear: 

dataset too large 

    This .dta file format was created by Stata/MP and has more variables than your 
Stata can handle. 

 

When we save a Python data frame to a Stata dataset all datetime variables will be kept as datetime 

variables in Stata. Syntax like this should work: 

times_stata.to_stata(datapath + 'times_from_python.dta') 

There is no method to export to Rdata or rds datasets in base Python. Instead, we can save the data 

frame as a feather file. To do that we will first have to install the feather-format package: 

!pip install feather-format 

Then we will import the package. 

import feather 

Finally, we can write to the feather format: 

feather.write_dataframe(mdgperson_nodup, datapath + 
'mdgperson_nodup_from_python.feather') 

There is a feather library in R. However, when we try to use that on feather files made with Python, 

we may get an error message like this: 

Error in openFeather(path) : Invalid: Not a feather file 

Instead, we can use the arrow package in R. It will read the feather file from Python. The R program 

may look like this: 

install.packages('arrow') 
library(arrow) 
mdgperson_nodup_from_python <- arrow::read_feather('h:/mdg/data/mdgperson_nod
up_from_python.feather') 

It is by the time of writing not possible to read Python files like pickles into R. However, to import 

Python files in R it should be possible to call Python from R. To do that we can use a package called 

reticulate. But then it is a chance that R does not find any Python installations (even though Python 

is installed!). If it does not find any Python, R will ask if we will install a Miniconda version of Python. 
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We can do that by answering y to that question. We also need to install Pandas and create a Python 

script that reads a pickle file. The Python script may look like this: 

import pandas as pd 
def read_pickle_file(file): 
    pickle_data = pd.read_pickle(file) 
    return pickle_data 

In R, we call the Python script (called pickle_reader.py) in a program like this: 

install.packages('reticulate') 
require("reticulate") 
py_install("pandas") 
py_install("pickle")  
source_python("h:/mdg/syntax/pickle_reader.py") 
nmdgperson_nodup_from_pickle <- read_pickle_file("H:/mdg/data/mdgperson_nodup
.pkl") 

However, it may give us error messages like this. 

PackagesNotFoundError: The following packages are not available from current 
channels: 

  - pickle 

Error: one or more Python packages failed to install [error code 1] 

Error in py_get_attr_impl(x, name, silent) :  

  AttributeError: 'NoneType' object has no attribute 'axes' 

It is better to save to the feather format in Python because R can read feather files. We can try a 

program like this:  

library(feather) 
mdgperson_nodup_from_python <- read_feather('h:/mdg/data/mdgperson_nodup_from
_python.feather') 

An error message like this may appear:  

Error in openFeather(path) : Invalid: Not a feather file 

Instead, we can use the arrow package as shown above. 
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Appendix A:  

Command names 

These are sets of commonly used commands and subcommands used in Sas, Spss, Stata, R and 

Python: 

Action Sas Spss Stata R Python 

Define an 

import dataset 

Input Data list infix, infile or 

insheet 

read read 

Naming an 

external import 

file 

Infile File using 

(subcommand) 

Within read 

command 

Within read 

command 

Labelling 

variables 

Label Variable labels label variable upData (in Hmisc 

package) 

attrs 

Labelling 

values 

Proc format Value labels label define factor with levels 

and labels 

arguments 

Dictionary with 

keys and values 

Connect value 

labels to 

variables 

Format Value labels label values factor with levels 

and labels 

arguments 

map or replace 

from dictionary 

Save dataset Data Save outfile save or saveold save or saveRDS pd.to_json, 

pd.to_pickle, 

pd.to_parquet 

and others 

One-way 

frequency table 

Proc freq Frequencies tab1 table pd.crosstab or 

stb.freq (from 

siedtable 

module) 

Two-way 

frequency table 

Proc freq Crosstabs tabulate table pd.crosstab 

Descriptive 

statistics 

Proc means Descriptives tabstat summary describe 

Descriptive 

statistics 

grouped 

Proc means Means tabstat summarise in 

dplyr package 

groupby with 

agg function 

Subsets of data Where or If Select If, 

Temporary  

if (qualifier), drop subset loc 

Conditions If, Where or Select If or Do if if (qualifier), 

recode 

if, ifelse, filter in 

dplyr package 

if, np.where 

Sort data Proc sort or Proc sql Sort cases sort order, arrange in 

dplyr package 

sort_values 

Read a dataset Set Get file use read read_... 

List data Proc print List list print, head, str print, head, 

sample 

Compute on 

variables 

assignment: 

variable=expression (no 

keyword) 

Compute generate (new 

variable) 

replace (existing 

variable) or egen 

assignment: 

variable <- 

expression, 

mutate in dplyr 

package 

assignment: 

variable = 

expression (no 

keyword) 
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Delete 

variables 

Drop or keep Delete 

variables 

drop or keep subset drop 

Define working 

directory 

Libname Cd cd setwd os.chdir() 

Match files Proc sql or Data step 

with Merge and By 

Match files joinby or merge full_join, 

inner_join, 

left_join, 

right_join, merge 

pd.merge 

Aggregate data Proc sql Aggregate collapse group_by and 

summarise in 

dplyr package 

groupby with 

agg function or 

groupby with 

transform 

Restructure 

from 

observations to 

variables 

Proc transpose and 

Data steps with Merge 

and By 

Casetovars reshape reshape pivot 

Restructure 

from variables 

to observations 

Data step with Set, By, 

Array, If, Do, Output, 

Label and Format 

Varstocases reshape reshape wide_to_long 

Defining an 

array 

Array Vector varlist 

(subcommand to 

foreach) 

array array 

Looping Do Loop foreach for for 

Recoding Select Recode recode case_when in 

dplyr package 

cut, np.where or 

define a function 

Format 

variables 

Format Formats format format format 

Tabulation Proc tabulate or Proc 

report 

Ctables table, tab2, 

tabulate 

tabular in tables 

package 

pd.crosstab 

Graphs Proc gchart, Proc gplot 

and other graph 

procedures 

Graph or 

Ggraph 

graph ggplot2 or plotly plotly, 

matplotlib, 

seaborn and 

others 

Import data 

files from other 

software 

Proc import Get Sas or Get 

Stata 

N/A (or download 

usesas or 

usespss) 

read_sas, 

read_sav, 

read_stata from 

package haven, 

read.sas7bdat 

from package 

sas7bdat 

read_sas, 

read_spss, 

read_stata, 

read_r 

Export data 

files to other 

software 

Proc export Save Translate outfile (plain text 

format) or 

outsheet 

write_sas, 

write_spss, 

write_stata, from 

package haven 

write_sav, 

to_stata 

Comment /* comment */ or * 

comment ; 

/* comment */ 

or * comment 

. 

* comment line 

// comment rest 

of line 

/* comment */ 

# comment (on 

each line) 

# comment (on 

each line) 
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Person dataset 

The dataset that is used in most of the examples in this document is listed below. The positions in 

the dataset are these: 

hh     1 - 6 Household identification 

state        7 - 7 State 

urbrur     8 - 8 Urban/rural location of household 

member   9 - 9 Member number within household 

b3        10 - 11 Relationship to head of household 

b4        12 - 12 Sex 

b5        13 - 14 Age 

b6        15 - 15 Civil status 

 

This is the dataset with fixed positions which is used in most of the examples: 

020074215 2110. 

020074211 01393 

060036614 21201 

040024411 02203 

040024412 12332 

040024412112233 

050069525 42161 

060036613 22241 

020074213 21161 

050069522 12602 

020118211 01272 

060041615 21 8. 

020118215 22 3. 

020074216 22 8. 

060036615 21181 

040024414 21141 

060036616 21161 

020074214 22131 

020100213 22211 

020118214 22 5. 

050069526 41131 

040024415102181 

040024415 21 9. 

020100212 12412 

020100216 2110. 

060041611 02312 

050069521 01672 

060041614 22171 

060041613101 .1 

020118212 12222 

020074212 12212 

020100215 22161 

020118213 22 8. 

040024413112 7. 

020100214 21192 

060036611 01422 

020100211 01453 

060041612 21201 

050069524 22201 

040024414102 9. 

040024416 2211. 

050069523 22302 

060036612 12402 

060041614 22171 

060041616 21 1. 

040024416101121 

040024411 01372 

040024413 22171 
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