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A B S T R A C T

We introduce a Convolutional Neural Network (CNN) to reduce grains’ manual inspection time after image
processing on raw 3D x-ray computed tomography (3DXRCT) images from a sample of granular material to
obtain level-set function-based digital twins of individual grains. The CNN automatically distinguishes properly
segmented digital grains with up to 90% of accuracy. This algorithm is trained using, ground-truth, level
set-based digital grain representations from a natural soil sampled at Jaramijó (Ecuador). The implemented
convolutional neural network provides groundbreaking processing power, reducing the, otherwise, manual
inspection time expended for a small sample, e.g., 200 000 grains, from approximately a couple of weeks
to only a few hours. Furthermore, transfer learning and training from scratch are compared for artificially
graded granular materials such as Øysand (Norway) and Hostun sand (France). The CNN’s learning process
is interpreted by means of grain morphological parameters, i.e., sphericity, roundness, grain diameter, and
volume-surface ratio. Hence, being able to automatically segment a greater amount of grains from 3DXRCT
images of natural and artificial soils in a short period of time, enables us, for first time, to perform actual 3DLS-
DEM-based virtual laboratory testing (a plug-and-play one-stop shop). Providing unprecedented and unique
data for engineering applications.
1. Introduction

Image processing is a powerful tool for the study of granular mate-
rials related phenomena such as failure, shear banding, critical state,
and dilation (Jerves et al., 2019). For example, to obtain a digital
representation of a soil sample, a 3D X-Ray Computed Tomography
(3DXRCT) is needed. Then, the grains are extracted from the tomog-
raphy with image processing algorithms. Studies with the obtained
grains contribute in engineering and space exploration. In engineer-
ing, the digital grains can be used for accurate soil characterization
(e.g., by computing the morphological parameters defined in Cho et al.,
2006) and mechanics (Cheng and Wang, 2018; Sivakugan et al., 2015;
Daub et al., 2010), which, in turn, are important for the construction
industry. In space exploration, study of granular materials may help
address the issues related to the abrasive effects of charged particles on
equipment, exploration vehicles and fabrics of space suits (Stubbs et al.,
2007). Some of the aforementioned image processing algorithms have
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first been developed for medical applications like Magnetic Resonance
Imaging (MRI). For example, on accurate image segmentation (Dill
et al., 2015; Liu et al., 2021; Kim et al., 2013) and morphological
measurements of organs and tissues such as the brain’s hippocampus to
help to an early diagnosis of dementia and cognitive impairment (Uhl
et al., 2018).

In the context of granular mechanics, image processing techniques
have been used, for example, to characterize inter-particle contacts
for granular materials with watershed algorithms on 3D binary im-
ages (Viggiani et al., 2013; Andò et al., 2013). Similarly, level set (LS)
functions have proven effective not only to capture arbitrary grain
shapes from tomographic images, but also to be used for discrete
element method (DEM) simulations (Vlahinić et al., 2014, 2017). In
addition, novel 𝜇-XRCT provides high resolution images that combined
with threshold-based image segmentation, contribute to increase the
segmentation accuracy of grains in contact (Wiebicke et al., 2017).
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Moreover, a novel toolbox that is often used for analysis of granular
materials’ images is the Software for the Practical Analysis of Materials
(SPAM), a Python package developed in Grenoble (Stamati et al.,
2020).

In the realm of artificial intelligence and machine learning ap-
plied to the study of soil and granular materials, so far, the focus
has been put on tasks such as establishing an alternate segmentation
process to the otherwise well-established procedures (i.e., thresholding
or watershed-based segmentation). For example, the implementation
of a Convolutional Neural Network (CNN) based U-net model for
3DXRCT image segmentation of 7 different soil samples. The 3DXRCT
grayscale and binarized images were considered as their ground-truth
data, reporting that the segmentation error varied from 5% to 130%,
depending on the granular material (Lavrukhin et al., 2021). Fur-
thermore, a similar work uses a machine learning technique called
Trainable Weka Segmentation to segment 3DXRCT images, having
obtained 77% of grains from a small soil sample tomography of Mojave
Martian Simulant (Lai and Chen, 2019). Another application has been
implemented for urban and agricultural use of soils, with the classifi-
cation of different land covers with a CNN model. However, instead of
3DXRCT images, the classification is performed from spectral measure-
ments acquired by visible near-infrared spectroscopy technology. The
CNN classification accuracy is above 87% (Li et al., 2021).

Finally, it is worth mentioning that there are several devices for
size and morphological characterization of fine-particulate materials,
which are based on laser diffraction and the angle of light scattered by
a stream of particles passing through a laser beam, the so-called particle
size analyzers (CompareNetworks, 2009).

In this work, an image segmentation technique to obtain level set-
based grains from raw 3DXRCT images of a soil sample is followed,
facing common problems such as oversegmentation and undersegmen-
tation in the process. Researchers have worked on this problem and
proposed different solutions, however, image processing algorithms can
still be improved in order to successfully segment more grains from the
tomography. The aforementioned research projects were carried out in
an effort to answer a fundamental question: Is it possible to create a
scheme/framework for image processing capable of processing soil sample’s
grains obtained from 3DXRCT regardless of their morphology, i.e., size and
shape?.

Incorrectly segmented level set-based grains from image process-
ing need to be discarded, requiring manual visual inspection. This
inspection is a long, repetitive, time consuming, tedious and error
prone task because small ‘‘academic’’ soil samples normally contain
from 2,000 to 100 000 grains that need to be inspected one by one.
Thus, the fundamental goal of this project is to develop an algorithm
that automatically detects properly segmented digital grains from a real soil
sample or, at least, that reduces manual inspection time. The main interest
in keeping only the correctly segmented grains is to use them for 3D
level set discrete element method (3DLS-DEM)-based virtual laboratory
simulations (Jerves et al., 2016; Medina and Jerves, 2019; Bustamante
et al., 2020).

Fig. 1 sketches the improvements incorporated into the design of
the image processing algorithm discussed by Vlahinić et al. (2014),
and used to obtain digital grains from raw 3DXRCT images of natural
and artificial soil samples. The main added improvement is a CNN
classification model that substitutes the manual inspection of seg-
mented grain images. A soil sample from a given location of interest is
extracted, Fig. 1(a). Then, the sample of Fig. 1(b) is 3DXRCT-scanned in
a laboratory facility, Fig. 1(c). The original image processing algorithm
is used (Fig. 1(d)), obtaining ‘‘faithful’’ and ill-segmented digital level
set-based grain representations, Fig. 1(e).

A total of four improvements are included in the original algo-
rithm, i.e., a contrast limited adaptive histogram equalizer (CLAHE)
(Zuiderveld, 1994), tiny local minima filtering (Soille, 2000), a filling
algorithm tool for holes in a binarized image, and the calculation of the
2

centroid from each individual grain, Fig. 1(f).
Regarding the aforementioned CNN classification model, it is trained
by using a ground-truth dataset of manually inspected ‘‘faithful’’ and ill-
segmented level set-based grain representations. The person in charge
of the manual inspection procedure needs to bear enough knowledge
and experience to accurately identify most of the properly segmented
digital grains. This may be a long learning process, taking at least sev-
eral weeks of continuous training. Once the training has finished, the
average time that takes to visually inspect one grain is approximately 5
s. Nevertheless, the introduced convolutional neural network rises as a
powerful, user friendly, tool, that radically reduces the training process
to a couple of hours. Once the CNN is trained, the average time that
takes to automatically classify one grain is around 5×10−3 s, being at
least 1000 times faster, with an accuracy up to 90%.

Moreover, in order to ensure the reliability of the model we use
four different soil samples, with varied morphological characteristics
(large, small, rounded, angular), to train and test the CNN. The samples
include a natural soil from Ecuador (Jaramijó sand), and three artifi-
cially modified soils from United States (Martian Regolith Simulant),
France (Hostun sand) and Norway (Øysand). Furthermore, an attempt
to interpret the learning process of the CNN is performed, taking an
educated guess based on the morphological characterization of the
automatically classified grains by the CNN. Finally, properly processed
grains can be used for analysis and 3DLS-DEM-based virtual laboratory
simulations, Fig. 1(h).

The present work is divided in four sections. As depicted by Fig. 1,
the first section details the steps of the original image processing
algorithm, followed by the applied improvements (see Fig. 1(f)). In
the second section, the proposed CNN architecture is detailed (see
Fig. 1(g)), which was evaluated by means of accuracy, precision, recall
and F1-scores with digital grains of Jaramijó’s sample. In the third
section, morphological parameters of the predicted digital grains from
Jaramijó are calculated to interpret the CNN’s learning process. In the
last section, the CNN was tested with other granular material than the
one used to train it, such as ‘‘faithful’’ digital Martian Regolith Simulant
grains, as a first attempt to estimate the scope of the CNN. Next,
training from scratch and transfer learning were evaluated as methods
to train the CNN with other granular materials, e.g., digital grains
from artificially graded soils like Øysand and Hostun sand Wiebicke
(2020), comparing the metrics to determine which method has better
classification results.

This work and its results aim to be part of a process that seeks
to automate and industrialize 3DLS-DEM-based virtual laboratories
(a one-stop shop). This, through material morphological character-
ization and physics-based simulations, can unravel the micro- and
nano-mechanics that furnishes the microscopic behavior of granular
materials, providing unprecedented and unique physical and morpho-
logical data. The process starts from a raw 3DXRCT image of any
type of soil sample, and ends with the ‘‘faithful’’ level set-based grains
automatically selected by the CNN to, then, be used in 3DLS-DEM-based
simulations.

Finally, nowadays, one significant shortcoming in the study of gran-
ular materials is the lack of available, consistent, and well-documented
databases. Scarce databases for natural or artificial soils exist around
the world. However, these databases often lack information about
the samples’ geographic location, classification of the material, phe-
nomenological parameters such as friction angle and cohesion, morpho-
logical parameters, e.g., roundness and sphericity, or state parameters
such as porosity and water content. These databases are very scarce
as well as scattered worldwide. Hence, this work attempts to help
triggering the automation and industrialization of 3DLS-DEM-based
virtual laboratories, enabling the creation of novel databases that not
only host the aforementioned information, but also drastically diminish
the need for sampling. Thus, once a digital twin sample is casted from
a physical sample, the twin can be reconfigured at will by changing
its so-called state parameters and performing as many virtual tests as

desired.
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Fig. 1. Digital grains’ processing and classification procedure: first, a real soil sample is extracted from (a) a location of interest. (b) A sample is then scanned with the aid of a
(c) 3DXRCT to obtain raw images of the grains. (d) These are then processed through the image processing algorithm proposed by Vlahinić et al. (2014), nevertheless, it produces
as outcome (e) some properly and improperly segmented digital grains. (f) Improvements are applied on the original algorithm, nevertheless, some digital grains still need to be
manually inspected. For that reason, (g) a Convolutional Neural Network (CNN) is proposed to automate this time consuming operation. In this case, the CNN is trained with
an input dataset of properly and improperly segmented level set-based grains, obtained after a visual inspection and manual labeling of the two mentioned categories is carried
out. Further, the CNN’s hyperparameters are fine-tuned to achieve a highly efficient classifier that successfully eliminates improperly processed grains. Finally, (h) the resultant
properly processed grains of the digitized sample can be incorporated in 3DLS-DEM-based virtual laboratory simulations for the study of morphological and physical phenomena
such as failure, shear banding, critical state and dilation.
2. Image processing algorithm

A briefly description of each step in the algorithm by Vlahinić
et al. (2014) is provided, starting from the image processing of raw
3DXRCT images of a soil sample to the generation of a 3D level
set (LS) representation of each grain in the tomography. Then, four
proposed improvements to the algorithm are detailed, which includes
two additional filters, a filling algorithm for binarized images, and
the centroid calculation of each grain in the 3DXRCT image, detailing
important calibration parameters in order to reduce the number of
incorrectly processed grains.

2.1. Original algorithm

Vlahinic’s image processing algorithm describes five consecutive
steps to obtain the 3D level set (LS) representations of individual grains
from a raw 3DXRCT image. First, 2D radiographs of a soil sample are re-
constructed to a 3D volume using the filtered back projection technique
slice by slice, obtaining the raw 3DXRCT grayscale image. Second, the
raw 3DXRCT images are enhanced by a non-local means denoising
filter, which helps to preserve details on phase/grain boundaries. Third,
phases (i.e. voids, grains, or water) are identified in the denoised
3DXRCT grayscale images by a thresholding technique that analyzes
the histogram of pixel intensities, giving a binarized image as result.
Fourth, each individual grain in the binarized image is segmented
and labeled by means of a watershed algorithm, which computes the
distance map in the binary image and expands the ‘‘islands’’ (local
maxima or minima) until each grain boundary is reached (Digabel and
Lantuejoul, 1978; Vincent and Soille, 1991). Then, a division line in
grains that are in contact is created depending on the implemented wa-
tershed algorithm. Finally, an initial guess for each individual grain is
generated from the watershed labeled image. Then, this is used as input
for a distance regularized level set evolution (DRLSE) scheme (Li et al.,
3

2005, 2010). Hence, level set-based mathematical representations are
obtained for each grain Kawamoto et al. (2016).

Vlahinic tested the algorithm on 3DXRCT images of artificially
modified soil samples such as Hostun sand or Caicos ooids, which are
made of uniformly graded grains. However, the initial focus of this
work was to test the algorithm in a well graded natural soil with varied
grain diameters and shapes, such as the grains from Jaramijó’s sand.

This natural soil sample is extracted from a beach located in the
town of Jaramijó, Ecuador. In Fig. 2(a), a single slice from the raw
3DXRCT image of Jaramijó’ s sand is displayed, with angular, rounded,
small and large grains. For instance, the grain diameters range from
0.002 mm to 1 mm (see Fig. 7), with a maximum to minimum ratio
of 500. For a more detailed description of the sample’s gradation, see
Section 2.2 and Fig. 7.

Thus, the image processing algorithm (described above) was used
as well as fine tuned to process a 500x500x1000 voxel 3DXRCT image
taken from a sample of Jaramijó’ s sand. Then, the resultant level
set-based grains where manually checked (as detailed in Section 2.2),
finding that only 43% were properly processed, i.e., these grains are
faithful representations of their physical counterpart. Hence, these
results were the main motivation to improve the image processing al-
gorithm, with the objective to achieve a higher segmentation accuracy
on raw 3DXRCT images of natural soil samples as well as artificially
modified soil samples.

2.2. Algorithm improvements

First, as an introduction for this section, it is worth mentioning that
all the steps shown by Fig. 4 are based on the Matlab Image Processing
Toolbox. Second, the main four additions made to the original algo-
rithm by Vlahinić et al. (2014) for this work are: the Contrast Limited
Adaptive Histogram Equalization filter (step 1 in Fig. 4), hole filling
algorithm in binarized images (step 4 in Fig. 4), tiny local minima
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Fig. 2. (a) A single slice from a raw 3DXRCT image of the soil sample extracted from Jaramijó, displaying round, angular, small and large grains. (b) 3D representation of 500
slices from the raw 3DXRCT image of Jaramijó’s soil.
Fig. 3. (a) Image processing with the original algorithm. (b) Image processing with the improved algorithm.
filtering (step 5 in Fig. 4), and grains centroid calculation (step 7
in Fig. 4).

The Contrast Limited Adaptive Histogram Equalization (CLAHE)
filter (Zuiderveld, 1994) makes it easier to identify grain borders,
when the images are binarized, by improving the contrast between
grains and voids in the 3DXRCT scans. The objective of this filter is to
redistribute the brightness values across the image to reduce the noise
in it. The CLAHE filter needs a contrast parameter as input. With this
filter, the amount of grains that are mistakenly joined together during
binarization is reduced, as shown in Fig. 3.

A common error of the watershed algorithm is oversegmentation
(see Fig. 3(a)), caused when more than one local minima in the same
grains are calculated in the distance map. To reduce the oversegmenta-
tion error, tiny local minima was filtered by applying extended-minima
transform (Soille, 2000). As consequence, a single local minima on the
grain is ensured, reducing the probability of the watershed algorithm
4

to draw segmentation lines in the same grain. One drawback of tiny
local minima filtering is that the minima of one grain may match a
value from other grain, merging them together and labeling it as a
single one (undersegmentation). The filter was tested with denoised
3DXRCT scans of Øysand (Norwegian sand), determining that the
amount of fixed oversegmented grains was higher in contrast with
undersegmented grains caused by the filter, as seen in Fig. 2(b).

The above listed additions were tested and validated with three
sands, namely the Ecuadorian (Jaramijó sand), Norwegian (Øysand)
and French (Hostun sand), following the algorithm in Fig. 4, where the
parameters have to be calibrated for each soil sample (see Appendix).

1. A raw 3DXRCT image can be improved applying the CLAHE fil-
ter with the Matlbab function ‘‘adapthisteq’’. The ‘‘adapthisteq’’
function controls the contrast with the ‘‘ClipLimit’’ parameter,
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Fig. 4. Flowchart of the algorithm to generate level set-based digital twins of individual grains from raw 3DXRCT images. The parameters specified within each step of the
Flowchart were calibrated for 3DXRCT images on a sample from Øysand (Norway). This calibration is also used as a basis for parameters customization on 3DXRCT images from
Jaramijó (Ecuador), and Hostun sand (France) samples.
which is calibrated through trial and error, since a bigger value
may make the image too bright or a small one will not give
enough brightness. As per in Fig. 4, a clip limit value of 0.01
worked fine with the tested images.

2. A non-local means filter accepts as input the CLAHE filtered im-
age. The parameters of the filter determines the volume of voxels
(or window) to be analyzed with its neighbors. The parameters
specified in Fig. 4 were selected considering processing time and
memory usage constraints (i.e., a higher filter strength helps to
reduce noise, but the filter takes more time to process).

3. A thresholding binarization method is applied to the non-local
means denoised image, changing grains pixels to 1 and void
pixels to 0. In this study, the threshold was determined using
either global methods such as Otsu (1979), or local schemes such
as Adaptive (Bradley and Roth, 2007) with the ‘‘imbinarize’’
Matlab function.

4. Voids inside the grains can be fixed with the Matlab function
‘‘imfill’’ (Soille, 2004), which applies a filling algorithm (see
Fig. 4) based on morphological reconstruction, analyzing the
location and connectivity of void pixels to obtain as output a
binary image.

5. The process of grain segmentation starts with the tiny local
minima filtering with extended minima transform, implemented
with the Matlab function ‘‘imextendedmin’’, which finds tiny
local minima in the distance map and eliminates it in order to be
ignored as islands, reducing oversegmentation. The parameter
that determines the filtering is H-minima, calibrated by trial and
error depending on the soil sample. A similar process can be
performed by using the adaptive watershed described in Sun and
Luo (2009).

6. The Fernand Meyer watershed algorithm (Meyer, 1994), im-
plemented with the Matlab function ‘‘watershed’’, is applied in
the distance map filtered with the extended-minima transform,
identifying each individual grain as an island and labeling them
5

with a number, having a total number of labels equal to the total
number of grains.

7. Both non-local means filtered and watershed segmented images
are used as input for the level set generation, but first, it is
necessary to separate each grain in these images. For this, the
global coordinates of each bounding box containing a single
grain are determined. In parallel, the global coordinates of each
individual grain’s centroid are calculated from the watershed
labels as follows: first, the grain is located with its given label in
the watershed segmented image. Then, a zero value is assigned
to all the voxels with other labels, and a value of one to the
voxels with the label of that grain. Finally, the means for all x, 𝑦
and z positions of the grain voxels are computed, giving as result
the global coordinates of the grain’s centroid.

8. With the coordinates of the bounding boxes, watershed seg-
mented and non-local means filtered images are trimmed to
separate each grain. In this step, the center of mass of each grain
is saved for later re-processing when needed.

9. The level set evolution process starts with the initial guess of a
grain, binarizing the trimmed watershed segmented image with
an initial binary function.

10. The algorithm ends with the level set evolution, using the param-
eters specified in Fig. 4 and, as input, the initial guess done with
the watershed label of a grain, paired with its corresponding
non-local means filtered image. The evolution is done until a
DRLSE energy functional is locally minimized. As output, data,
such as the level set matrix, centroid, and bounding box’s coor-
dinates, is obtained for each segmented grain from the 3DXRCT
image.

The described algorithm was tested with the same 3DXRCT image
of the natural soil sample from Jaramijó’ s sand previously processed
with the original algorithm (described in Section 2.1). In order to
compare the results, the parameters for filters, such as the non-local
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Fig. 5. Types of defects in the image segmentation process described by Fig. 4 to go from raw 3DXRCT images of a real sample of Jaramijó’s soil to individual level set-based digital
grain avatars: (a) Individual parts are given the same label during the semantic segmentation process, and finally coming up as one level set function, (b) typical undersegmentation
case caused by different grains in contact being recognized as a single one, (c) typical oversegmentation case caused by a single grain split into several parts, and (d) unrealistic
shapes caused by the detection of voids, noise, or grain clustering. From 2935 digital grain avatars, 45% of them display some kind of defect, and 55% corresponds to the properly
processed digital avatars.
Fig. 6. Visual examination procedure followed for each grain’s level set representation: (a) individual localization of the grain’s level set in the raw 3DXRCT image by means of
its centroid coordinates, (b) 3D visualization of the corresponding raw 3DXRCT image, and (c) visual comparison of the grain’s level set representation to the raw 3DXRCT image.
means filter, were the same in both algorithms. The original image
processing algorithm yielded 43% of correctly processed level set-based
grains, however, the improved image processing algorithm gives 55%
of correctly processed digital grains, representing an improvement of
12%.

To determine the percentage of properly segmented digital grains,
and discard the improperly segmented ones, all of the level set-based
grains were manually classified, one by one, as described below. In
Fig. 5 some defects corresponding to the incorrectly processed grains
are displayed.

2.3. The manual inspection protocol (ground-truth)

The manual inspection procedure is as follows: first, a visual exami-
nation of each grain’s level set representation is carried out. During the
examination, the grains are individually localized in the raw 3DXRCT
image by means of their centroids coordinates, described in step 7
of Fig. 4. Then, the level set representation is compared to the raw
3DXRCT image, as shown in Fig. 6, assuring that the level set does not
show errors such as oversegmentation or undersegmentation.

Second, once manual classification has finished, all of which are
considered as ‘‘faithful’’ level set representations are computed their
6

morphological parameters (Cho et al., 2006; Jerves et al., 2016; Med-
ina and Jerves, 2019), i.e., grain’s diameter, aspect ratio, sphericity,
roundness, volume, and surface area, as defined by Eqs. (5)–(7). Then,
the cumulative grain size distribution from the digital ‘‘faithful’’ grains
is obtained and validated with respect to its counterpart from the
physical laboratory (see Fig. 7). Previously, the real sample grain
size distribution has been acquired by the physical laboratory using
the following procedure: the grain size distribution ranging between
−11𝜙 and −4𝜙 (𝜙 = -log2d, where d is the grain diameter in mm)
was determined by area image analysis. The sample was dry-sieved
from −4𝜙 to 4𝜙 (1𝜙 interval), and from 4𝜙 to 11𝜙 the grains size
were determined by Laser Scattering Particle Size Distribution Analyzer
(LA-300 Horiba) (Roverato et al., 2018).

Third, after validation with respect to the physical laboratory grain
size distribution, a final validation is performed to discard the grains
whose diameter is too close to the 3DXRCT resolution (smaller than
15 times the 3DXRCT scan resolution). This final step is carried out
because the grains whose sizes are too close to the 3DXRCT resolution
tend to yield wrong values of their other morphological parameters and
induce numerical errors on 3DLS-DEM-based simulations. Unlike other
works (Lavrukhin et al., 2021; Lai and Chen, 2019), here the 3DXRCT
grayscale and binarized images are not used as the ground-truth data.
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Fig. 7. Grain size distribution of 1000 Jaramijó grains. Digital grains (blue line), and
physical laboratory results (red line).

Instead, the remaining ‘‘faithful’’ level set-based grain representations are
considered as the ground-truth for training and testing the Convolutional
Neural Network described in the following section.

Furthermore, from a more in depth analysis of Fig. 7, the level set-
based Jaramijó grains yield a coefficient of uniformity 𝐶𝑢 = 𝐷60∕𝐷10 =
2.49 and a coefficient of curvature 𝐶𝑐 = 𝐷2

30∕(𝐷10 ×𝐷60) = 1.08. On the
other hand, the real sample yields a 𝐶𝑢 = 4.82 and 𝐶𝑐 = 1.17, where
𝐷10, 𝐷30, and 𝐷60 are the grain diameters at 10, 30, and 60% passing,
respectively. Both 𝐶𝑐 and 𝐶𝑢 are measures of soil gradation, they help
to identify if a soil is well graded or poorly graded. Thus, for 𝐶𝑢, values
between 4 to 6 determine a well graded soil, while lower values than 4
determine a poorly or uniformly graded soil. Moreover, values between
1 and 3 of 𝐶𝑐 determine a well graded soil, while poorly otherwise.
In the same way, it is worth noticing that even though 𝐶𝑢 and 𝐶𝑐 are
both used as measures of soil gradation, 𝐶𝑐 takes into account more
information about the grain size distribution (it also includes 𝐷30),
giving a more accurate measurement.

Hence, from the last paragraph and Fig. 7, it can be inferred that
𝐶𝑢 from the digital grains gives an error of 48.22% with respect to the
real sample. However, the error for 𝐶𝑐 is 7.45% only. This suggests that
the grain size distribution from the small digital sample (made of 1000
grains) shows physical and statistical convergence with respect to the
real sample (439.6g ≈ 1 pound). The aforementioned convergence can
also be noticed from Fig. 7, where the digital and real samples have
similar values of 𝐷60.

Finally, it is worth mentioning that for sand-like materials, discard-
ing the grains whose diameters are smaller than 15 times the 3DXRCT
scan resolution does not affect the level set grain size distribution
curve, since these resolutions are orders of magnitude smaller than the
average grain’s diameter.

Remark

The value of 15 times the 3DXRCT scan resolution was determined
so the roundness-scale (grain diameter/10) (Cho et al., 2006) can
be fully captured. Hence, if the grain’s diameter is smaller than ten
times the 3DXRCT scan resolution, all the morphological information
provided by the roundness is lost. Additionally, a security factor of 1.5
7

is considered to ensure a proper calculation of roundness values.
3. A neural network based grains classifier

Commonly used for image and video classification and analysis
(Rawat and Wang, 2017; Guo et al., 2017; Xu et al., 2016; Burney and
Syed, 2016), Convolutional Neural Networks (CNN) are characterized
by its computational efficiency by reducing the amount of hidden
layers, and its learning process that is constrained through spatial
correlation. A CNN consists of convolutional operations which extract
feature maps (Khandelwal, 2020) from the input data. Feature maps
analyze important objects of interest from the data, e.g., first layers
extract general information like edges, color (in case of a RGB input
image), curves, etc., while later layers extract specific and detailed
features. To build a CNN architecture or model, a group of layers and
a set of hyper-parameters have to be specified. During the training
process, these hyper-parameters (e.g., training rate, layers, activation
functions, dropouts, number of neurons in a layer, and many others)
are tuned until the best score is obtained, depending on the selected
evaluation metric (i.e., accuracy, precision, recall, F1-score, etc.). CNNs
have been used before for 3DXRCT image segmentation of different
soil samples, considering the grayscale and binarized image as ground-
truth for training (Lavrukhin et al., 2021). It has also been used for
3D sand particles generation as in Shi et al. (2021), and for sand type
classification in 2D grayscale images (Kim and Yun, 2021).

As previously mentioned in Section 2.2, manual inspection of digital
grains is a long and tedious process, subjected to human error, but
necessary to discard badly segmented grains. Nowadays, however, a
solution to this issue can be found in machine learning. In specific,
CNNs offer a powerful tool that can be trained with the objective of
automatically distinguish ‘‘faithful’’ digital representations of individ-
ual physical grains from their ill-processed counterparts, simplifying
and optimizing the pipeline. Thus, in this case, the CNN would require
for its training a binary classification, labeling the former group with a
value of 1 (considered as our ground-truth) and the latter group with a
value of 0. In favor of simplicity, from now on, we call them as ‘‘good’’
(properly segmented) and ‘‘bad’’ (ill-segmented) grains.

3.1. Convolutional neural network

For this work, the convolutional neural network was implemented
in Python 3, aided by Keras, and TensorFlow libraries, using the free
cloud services hosted by Google Colab. The free version of Google Colab
offers a GPU with a runtime up to 12 h (prioritizing an interactive use),
and it comes with an Intel Xeon CPU @2.20 GHz, 13 GB of RAM, a
Tesla K80 accelerator, and 12 GB GDDR5 VRAM. The CNN arquitecture,
described in Fig. 8, has the following structure:

• 1. Pre-processing: to implement the neural network, input data
must be pre-processed, in this case, 3D matrices (that correspond
to the level set representation of each grain) are used. The net-
work requires the level set function bounding boxes to be, first,
normalized to the same size, i.e., 41 × 41 × 41, and then, their
values mapped into an interval between zero and one by applying
min–max normalization (Aksu et al., 2019).

• 2. Convolution block: the CNN’s architecture has a set of sequential
layers grouped in two convolutional blocks (2a and 2b, respec-
tively, in Fig. 8) that extract information from the input data.
(i) The block 2a requires the specification of the input data size,
i.e., one channel for the level set data, and one channel for each
of the three RGB color bands. (ii) Two 3D convolutional layers are
used to begin with the data analysis, extracting information. (iii)
The weights of the network are normalized with a tanh activation
function. (iv) A batch normalization layer is implemented to
avoid overfitting (i.e., the CNN adapts well to the training data,
however, predictions are poor with unknown data). (v) The most
relevant features are extracted with a 3D max pooling layer,
which reduces the size of the input level set matrix for the next
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Fig. 8. Pre-processing of the grains’ level sets and architecture of the implemented CNN, resulting on the binary classification of ‘‘good’’ or ‘‘bad’’ grains.
convolutional block. (vi) The block 2b has the same layers as 2a,
and it is used to extract more specific features or details from the
data.

• 3. Fully connected: convolutional layers only extract information,
but in the fully connected block it is where the predictions are
made. The flatten layer takes the 3D output from the 2b convolu-
tion block and resizes it into a N-dimension vector. Then, a dense
layer, where the hidden neurons are located, takes the weights
from the N-dimensional vector to make a prediction. Finally, for
a binary classification task (e.g., determining if a digital grain
is ‘‘good’’ or ‘‘bad’’) a sigmoid activation function is required,
having as output a probability between zero (‘‘bad’’ grain) and
one (‘‘good’’ grain).

All of the manually classified digital grains were used as input data,
consisting of 2500 Jaramijó digital grains in total, with imbalanced
groups of 1000 ‘‘good’’ and 1500 ‘‘bad’’ grains. Then, 70% of the digital
grains from each ‘‘good’’ and ‘‘bad’’ groups were randomly picked and
used as the training set, while the remaining 30% was left for testing,
in order to evaluate metrics, like accuracy, after each epoch. Metrics,
such as precision and recall, are used with imbalanced data to evaluate
the CNN, as suggested by Juba and Le (2019). The definitions of the
metrics used for this work are described in Taner et al. (2021). There,
accuracy is defined as:

𝐴𝑐𝑐 = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(1)

where, 𝑇𝑃 is the number of true positive cases, 𝑇𝑁 is the number of
true negative cases, 𝐹𝑃 is the number of false positive cases, and 𝐹𝑁
is the number of false negative cases. Moreover, precision is defined as:

𝑃𝑟 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

(2)

whereas, recall is defined as:

𝑅𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

(3)

and, F1-score is defined as:

𝐹1 = 2 × 𝑅𝑒 × 𝑃𝑟
𝑅𝑒 + 𝑃𝑟

(4)

Initially, the applied architecture consisted of convolutional layers
followed by max pooling layers and an output of fully connected hidden
8

Table 1
Parameters and output shapes of the data on each layer of the best CNN model.

Layer Hyperparameters Activation Output shape

Input 41 × 41 × 41 matrix
Conv 3D filters: 16, kernel size: 3 TanH 39 × 39 × 39
Conv 3D filters: 16, kernel size: 3 TanH 37 × 37 × 37
Batch Normalization 37 × 37 × 37
Max Pooling 3D stride: 2, shape: 2 × 2 × 2 18 × 18 × 18
Conv 3D filters: 32, kernel size: 3 TanH 16 × 16 × 16
Conv 3D filters: 32, kernel size: 3 TanH 14 × 14 × 14
Batch Normalization 14 × 14 × 14
Max Pooling 3D stride: 2, shape: 2 × 2 × 2 7 × 7 × 7
Flatten 10976
Dense 100 neurons TanH
Output Sigmoid 1

layers (Mital and Andrade, 2022). After the first trials, changes were
implemented on this architecture until a final version of it was decided
based on the accuracy scores given while tuning the hyperparame-
ters (for more details of the hyperparameter tuning results, refer to
Appendix). The objective of the tuning process is to get the best arqui-
tecture for the CNN, that is, to get the best scores and reduce problems
during the training process such as overfitting (i.e., the application of
dropout (Srivastava et al., 2014) and batch normalization (Bjorck et al.,
2018) layers help to reduce this problem).

The best model in terms of accuracy and F1-score displays a per-
centage of 89% correctly classified ‘‘good’’ grains and 90% of correctly
classified ‘‘bad’’ grains. The architecture in Table 1 was chosen to
analyze the results of the classification given by the CNN.

To better understand the classification results given by the CNN, a
confusion matrix is built and shown in Fig. 9(a). This tool allows the
visualization of metrics such as true positive (‘‘good’’ grains correctly
classified), true negative (‘‘bad’’ grains correctly classified), false pos-
itive (‘‘bad’’ grains classified as ‘‘good’’), and false negative (‘‘good’’
grains classified as ‘‘bad’’) cases. A higher value in precision (89%)
indicates a lower rate of false positive cases (upper right value of the
matrix), in contrast with a lower value of recall (85%), which indicates
a higher rate of false negative cases (lower left value of the matrix).

The CNN’s confusion matrix in Fig. 9(a) indicates that from a total
of 300 ‘‘good’’ Jaramijó’s digital grains, 255 (85%) were correctly
classified and 45 (15%) misclassified, on the other hand, from a total
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Fig. 9. Classification results of the CNN, (a) the confusion matrix indicates the values and percentages of correctly classified and misclassified grains, (b) the probability histogram
is shown in order to determine the certainty in which the network classifies the grains on their respective groups, with 89% correctly classified ‘‘good’’ grains and 90% correctly
classified ‘‘bad’’ grains.
Fig. 10. Time comparison between a set of manually classified (red line) digital grains,
and automatic classification by the CNN (blue line) with sets of 250, 500 and 1000
grains.

of 450 ‘‘bad’’ grains, 419 (93%) were correctly classified while 31 (7%)
were misclassified.

In Fig. 9(b), a probability histogram of the classified digital grains
is shown. The histogram visualizes the certainty of the network when
it classifies each digital grain in their respective group, considering
probabilities that are lower than 0.5 as ‘‘bad’’ grains and higher than
this value as ‘‘good’’ grains. It is worth mentioning that the network
is confident enough in the classification of the grains, existing low
frequencies of probabilities between 0.1 and 0.9 and higher frequencies
in range 0 to 0.1 and 0.9 to 1.

Once the CNN is trained and tested, a benchmark test was per-
formed with the aim of estimating and comparing manual vs. CNN
classification times. The test consisted of generating randomly picked
groups of digital grains (250, 500 and 1000 units), each made of
properly (50%) and ill-segmented (50%) grains. Then, each group was
classified manually (in one seat) and with the CNN, recording the time
taken for each method. The results of the test are displayed in Fig. 10.

As it can be inferred from Fig. 10, manual classification takes much
more time to execute in comparison to the CNN. For a group of 250
9

digital grains, the estimated manual classification time is of 1129.5 s,
while for the network is of 1.09 s, being the latter at least 1036 times
faster. Thus, even though manual inspection of digital grains is a long,
repetitive, and tedious process, it is necessary to generate a training
dataset for the CNN. Nevertheless, once a couple of thousand grains are
inspected and used for training, the CNN is capable of automatically
distinguish a much bigger sample of digital grains in less time. For
example, given a group of 200 000 digital grains, the estimated manual
inspection time, based on the results in Fig. 10, would be of 903 600
s (251 h). On the other hand, to train the CNN, a group of at most
5000 grains is taken and classified in an estimated time of 6.27 h, then,
the pre-processing and training estimated time is about 4 h (with the
computational resources described at the start of this section), summing
a total of 10.27 h. Finally, the 195 000 remaining grains are classified
by the CNN in an estimated time of 12.42 minutes. Hence, the time
taken to prepare the CNN until the digital grains are automatically
classified is of approximately 10.5 h, which is 23.9 times faster than
the manual inspection in this example.

3.2. A morphological based interpretation of the CNN’s learning process

Now that a CNN architecture has been successfully trained and
tested to classify the digital grains of the Jaramijó’s sample, we aim
to understand how the CNN is learning from the level set data used
as input. For this, morphological parameters that are commonly used
to describe shape qualitatively and quantitatively, such as roundness,
sphericity, aspect ratio, volume, surface area, and grain’s diameter,
are used. The definition of the aforementioned descriptors are taken
from Jerves et al. (2016), Medina and Jerves (2019) and Cho et al.
(2006). For instance, sphericity is defined as:

𝑆 =
𝑟𝑖𝑛,𝑚𝑎𝑥
𝑟𝑐𝑖𝑟,𝑚𝑖𝑛

(5)

where 𝑟𝑖𝑛,𝑚𝑎𝑥 is the maximum inscribable radius and 𝑟𝑐𝑖𝑟,𝑚𝑖𝑛 is the
minimum circumscribable radius of a given grain. Roundness is defined
as:

𝑅 =

1
𝑁

𝑁
∑

𝑖=1
𝑟𝑖

𝑟𝑐𝑖𝑟,𝑚𝑖𝑛
(6)

where 𝑟𝑖 is the radius of curvature at the 𝑖th corner and 𝑁 is the total
number of corners. Aspect ratio is defined as:

𝐴𝑅 =
𝑚𝑖𝑛𝑝𝑟𝑖𝑛.−𝑑𝑖𝑟. (7)

𝑚𝑎𝑥𝑝𝑟𝑖𝑛.−𝑑𝑖𝑟.
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Fig. 11. Morphological distribution of the correctly classified and misclassified grains. (a) Volume-surface ratio distribution of the correctly classified and misclassified grains, (b)
iameter distribution of the correctly classified and misclassified grains.
here 𝑚𝑖𝑛𝑝𝑟𝑖𝑛.−𝑑𝑖𝑟. is the minimum principal direction and 𝑚𝑎𝑥𝑝𝑟𝑖𝑛.−𝑑𝑖𝑟.
is the maximum principal direction of a given grain.

In the case of a CNN, its weights are updated during the training
process, however, the specific information that the neural network is
using to ‘‘learn’’ from the data remains unknown. In this regard, the
best thing that can be done is to take an educated guess based on
information from the training data that can be made sense by a person.
In this section, we attempt to interpret the aforementioned learning
process by using the most intuitive morphological information that can
be put into quantitative and qualitative measures as described in the
previous paragraph.

3.2.1. Morphological characterization of Jaramijó ’s level set grains
Jaramijó’s sample consists of 1500 ‘‘bad’’ grain level sets and 1000

‘‘good’’ grain level sets, whose morphological parameters have been
computed and are shown in Figs. 11 to 13.

The volume to surface ratio distributions are displayed in Fig. 11(a).
The distribution of each group of digital grains (‘‘good’’, ‘‘bad’’ and
misclassified) was plotted together with their corresponding mean
value. This process was repeated for all the morphological parameters
considered in this study. From Fig. 11(a) it can be observed that both
‘‘good’’ grains and misclassified ‘‘bad’’ grains share similar mean values
of 2.3 μm and 2.4 μm, respectively, contrasting to ‘‘bad’’ grains that
differs with a mean value of 3.4 μm. However, misclassified ‘‘good’’
rains had a mean of 2.8 μm that tends to the mean of ‘‘bad’’ grains,
eing slightly off with the ‘‘good’’ grains’ mean by 0.5 μm. In terms of

volume surface ratio, some ‘‘bad’’ grains may be misclassified as ‘‘good’’
due to their similarities. Albeit, false negative grains share similar mean
values between ‘‘good’’ and ‘‘bad’’, which suggests that some grains
may be misleadingly classified in a wrong group.

The diameter distributions of the digital grains were plotted in
Fig. 11(b). Grain’s diameter is defined by the smallest sphere that
contains the grain, where the sphere’s diameter matches the diameter
of the grain. A similar behavior as volume-surface ratio is observed,
i.e., the mean values of both ‘‘good’’ and false positive grains (22.8 μm
and 28.0 μm respectively) are comparable, contrasting with ‘‘bad’’
grains that have greater grain diameter values and a mean of 48 μm,
which may be caused by undersegmented grains. Again, the false
negative grains’ mean value of 32 μm is limited between ‘‘good’’ and
‘‘bad’’ grains’ diameter mean, with a difference of 9 μm and 17 μm
respectively.

Aspect ratio distribution plots are shown in Fig. 12(a). In this case,
10

a different behavior is observed, contrasting with the digital grains’
diameter and volume to surface ratio plots. For ‘‘good’’ grains, aspect
ratio have a slightly higher mean value (0.62) in comparison to the
mean of ‘‘bad’’ grains (0.56), and both false negative, and false positive
grains (0.57) are close to the aspect ratio mean of ‘‘bad’’ grains. In
terms of aspect ratio, the distribution plots are similar, i.e., there is little
difference between the mean value of each group. This suggests that
the CNN may have difficulties to differentiate the grains based solely
on aspect ratio.

Sphericity’s morphological distribution is plotted for each group
in Fig. 12(b). A clear difference between ‘‘good’’ and ‘‘bad’’ grains is
noted, with means of 0.33 and 0.27, respectively. The mean value
of misclassified grains tends to move to the mean value of ‘‘bad’’
grains, with both false negative, and false positive grains with almost
identical mean sphericity (0.29). This may indicate that the network
could correctly classify digital grains with bigger values of sphericity,
in comparison to grains with smaller sphericity values.

Finally, a plot of roundness distribution, seen in Fig. 13, is analyzed.
The first observation is the difference between ‘‘good’’ and ‘‘bad’’ digital
grains, with means of 0.90 and 0.73 respectively. Then, once more,
false negative and false positive grains share similar mean values with
0.85 and 0.86 respectively. Thus, in terms of roundness the network
could correctly identify ‘‘bad’’ grains with lower roundness than ‘‘good’’
grains. Nevertheless, in both groups there were grains with similar
roundness values, in which the network had difficulties to differentiate,
thus including them in their wrong group.

Almost every distribution has similar behavior, with exception of
volume-surface ratio seen in Fig. 12(a) were false positive grains had a
similar mean than ‘‘good’’ grains. Fig. 14 displays a group of misclassi-
fied grains, both false positive and false negatives, with slightly difficult
errors to spot or possible patterns in the morphology that could cause
confusion to the CNN, with their corresponding mean value in each
morphological parameter in which it is observed that in most cases are
similar between each other.

Mean measures of Jaramijó’s digital ‘‘good’’, ‘‘bad’’, false positive
and false negative grains were calculated in Table 2.

4. CNN-based classification of other digitalized soil samples

4.1. Martian Regolith Simulant sample (sensibility testing)

Once the CNN is trained and tested with Jaramijó’s level set-based
grain representations, yielding an accuracy of up to 90%, a sensibility

test is performed with another soil sample to estimate the dependency
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Fig. 12. Morphological distribution of the correctly classified and misclassified grains. (a) Aspect ratio distribution of the correctly classified and misclassified grains. (b) Sphericity
distribution of the correctly classified and misclassified grains.
Table 2
Mean values of Jaramijó’s classified digital grains.

Parameter ‘‘good’’ grains ‘‘bad’’ grains False negative grains False positive grains

Roundness 0.90 0.73 0.85 0.86
Sphericity 0.33 0.27 0.29 0.29
Diameter 23 48 32 28
Aspect Ratio 0.62 0.56 0.57 0.57
Volume surface ratio 2.3 3.4 2.8 2.4
n
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Fig. 13. Roundness distribution of the correctly classified and misclassified grains.

f the CNN on the type of granular material. With this purpose, a
ataset of 2000 previously segmented and manually inspected ‘‘good’’
evel set-based Martian Regolith Simulant grains is used (raw 3DXRCT
mages are not available). The dataset is pre-processed, following the
rocedure described in Section 3.1, and then classified by the CNN. Its
erformance is shown by the probability histogram of Fig. 15.

The histogram of Fig. 15 shows that the CNN trained with Jaramijó’s
igital grains failed to correctly identify Regolith simulant ‘‘good’’
rains. Just the 6% of grains are being classified correctly, indicating
hat the actual CNN model just works to classify Jaramijó’s digital
rains and is unable to properly classify other granular material.
11

d

4.2. Øysand and Hostun sand samples

The incorrect classification of Martian Regolith Simulant’s digital
grains demonstrates that there is a need to retrain the CNN with infor-
mation specific to the granular material of interest. For that purpose,
raw 3DXRCT images from samples of Øysand (2000 × 2000 × 2000
voxel) and Hostun sand (1500 × 1500 × 1500 voxel) (see Fig. 16) are
processed using the algorithm described in Fig. 4.

Once the raw 3DXRCT images from Øysand and Hostun sand are
processed, each one of the grains’ level set representation is manually
inspected. Then, for each sample, the cumulative grain size distribution
from the properly segmented digital grains is obtained and validated
with respect to its counterpart from the physical laboratory, as shown
in Fig. 17.

A similar analysis to the one performed for Fig. 7, in Section 2.2,
is carried out for Fig. 17(a). Here, the level set-based Øysand grains
give a 𝐶𝑢 = 1.41 and a 𝐶𝑐 = 0.98, that are comparable to the values
yielded by their real counterparts, i.e., 𝐶𝑢 = 1.47 and 𝐶𝑐 = 0.97. Thus,
ote that 𝐶𝑐 is almost the same for the digital and real samples, error =
.21%, while for 𝐶𝑢 the error is of 3.83%. In terms of size and statistical
onvergence, the digital sample made of 604 grains, corresponds to
early 50% of the real sample (1442 grains). Hence, the digital sample
rain size distribution shows physical as well as statistical convergence
see Fig. 17(a)).

Additionally, the Hostun digital sample (see Fig. 17(b)) displays a
𝑢 = 1.33 and a 𝐶𝑐 = 0.99, that show convergence to the 𝐶𝑢 = 1.42
nd 𝐶𝑐 = 0.96 from the real sample. In this case, the error is of 3.76%
nd 6.51%, respectively. Finally, in terms of statistical significance, the
igital sample is composed of 8497 grains.

Finally, the level set-based grains are labeled and pre-processed
o separate 70% of the grains for training, and 30% left for testing
he CNN. With an existing pre-trained CNN model, a training method

efined as Transfer Learning could be considered instead of training the
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Fig. 14. Morphological comparison between (a) misclassified digital ‘‘bad’’ grains (top row) and (b) misclassified ‘‘good’’ grains (bottom row), with their means on their respective
morphological parameter.
Fig. 15. Probability histogram of the CNN tested on 2000 ‘‘good’’ Martian Regolith
Simulant digital grains, with only 6% of grains correctly classified as ‘‘good’’.

CNN from scratch. Transfer learning consists of freezing the weights
of a previously trained CNN model, eliminating only the last fully
connected layers and replacing them with new ones, whose weights are
updated with the new input data during the training process (Tammina,
2021; Lu et al., 2015; Brownlee, 2019; Chollet, 2020). It is worth
mentioning that transfer learning have advantages such as fast training,
reaching the highest classification accuracy in less epochs. Thus, it
allows to use a small data set as input. However, in case of overfitting,
12
early layers cannot be modified as an attempt to solve it, being a
disadvantage for transfer learning.

In the following subsections, the selected CNN model is trained from
scratch and with transfer learning using digital grains from Øysand and
Hostun sand, with the objective to compare which method is adequate
for this particular classification task (classification between ‘‘faithful’’
and ill-segmented digital grain representations), evaluating the results
of each method with the same metrics described in Section 3.1.

Remark

Applying the most optimal parameter tuning to the algorithm de-
scribed in Fig. 4, a 3DXRCT scan from an Øysand sample was processed.
Thus, a total of 1350 digital grains was obtained, with 987 (73.11%)
‘‘good’’ and 363 (26.89%) ‘‘bad’’ grains. However, the image processing
results of the same Øysand sample introduced in the following section
corresponds to a non optimal set of parameters applied to Fig. 4. This
was performed with the aim of obtaining a greater amount of ‘‘bad’’
grains, so the CNN can be trained in a more proper manner.

4.2.1. Øysand
For Øysand fine gravel, a total of 1405 digital grains were used,

a sample of 4 out of 604 ‘‘good’’ and 4 out of 801 ‘‘bad’’ grains are
displayed in Fig. 18.

With the manually inspected digital grains, the data is pre-processed
and used as input for the CNN. A total of 983 grains were used for
training and 422 for testing. Transfer learning gave better results in
terms of accuracy (84%), in comparison with training from scratch
(83% of accuracy). The classification results were analyzed with the
aid of the confusion matrix (see Fig. 19) for transfer learning method.

With the results shown by the confusion matrix of Fig. 19. It is
inferred that the base model of the CNN can be successfully trained with
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Fig. 16. Sample of (a) Hostun sand and (b) Øysand.

Fig. 17. Grain size distribution of (a) 604 Øysand grains and (b) 8497 Hostun sand grains. Digital grains (blue line), and physical laboratory results (red line).

Fig. 18. Examples of processed (a) ‘‘good’’ grains and (b) ‘‘bad’’ grains from Øysand soil.
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Table 3
Mean measures of Øysand’s classified grains.

Parameter ‘‘good’’ grains ‘‘bad’’ grains False negative grains False positive grains

Roundness 0.17 0.17 0.17 0.17
Sphericity 0.43 0.38 0.42 0.39
Diameter 2.91 3.27 3.05 3.36
Aspect Ratio 0.54 0.53 0.55 0.54
Volume surface ratio 0.55 0.53 0.56 0.54
Fig. 19. Classification results of the CNN trained with Øysand grains using transfer
learning.

information from other granular materials. In this case, the confusion
matrix displays an asymmetry, suggesting a better classification ratio
of ‘‘good’’ grains (grains predicted as ‘‘good’’ actually belong to that
group).

Similarly than with the soil sample from Jaramijó, the morpholog-
ical parameters of the classified digital grains are analyzed, grouping
the mean value of each parameter in Table 3.

From Table 3, note that ‘‘good’’ and ‘‘bad’’ digital grains have similar
mean values. Also, the mean values of misclassified grains do not show
significant difference either. This suggests that it was challenging for
the CNN to distinguish patterns, in terms of morphological parameters,
between each group of grains. Moreover, this might also explain the
lower classification accuracy (84%) for Øysand in comparison to the
accuracy of the CNN trained with Jaramijó’s digital grains (90%).

4.2.2. Hostun sand
A group of 3325 Hostun sand digital grains were obtained following

the steps from Fig. 4. A sample of 4 out of 2040 ‘‘good’’ and 4 out of
1285 ‘‘bad’’ Hostun digital grains are displayed in Fig. 20.

After pre-processing the data, the CNN is trained with the Hostun
sand digital grains. A total of 2327 digital grains were used for training
and 998 for testing. In this case, training from scratch gave better
results in terms of accuracy (84%), when compared to transfer learning
(82% of accuracy). Similarly as with Øysand, the classification results
are analyzed with the confusion matrix in Fig. 21. This yields an
asymmetry, in the same way, the recall obtained is higher than the
precision, with 90% and 86% respectively.

For Hostun sand, the CNN trained from scratch could be tested
on more unknown data. Besides from the group of 3325 manually
inspected digital grains, another group of 12188 grains was processed,
using the CNN to classify them. It is worth noticing that while the
estimated manual inspection time taken to prepare the dataset of 3325
digital grains for training was of 4.17 h, the remaining 12188 grains
were classified by the CNN in an estimated time of 53 s, observing the
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potential scope of this tool. The CNN identified a total of 7718 ‘‘good’’
grains and 4470 ‘‘bad’’ grains. Then, the 7718 classified as ‘‘good’’
grains were manually inspected, for testing purposes, to determine
what percentage of grains actually belonged to that group. From the
group of 7718 classified as ‘‘good’’ digital grains, 6468 were actually
‘‘good’’ and 1250 were misclassified, which represents a classification
accuracy of 84%.

From a group of both manually and CNN classified grains, a total
number of 8497 Hostun sand digital grains were obtained. As an
attempt to reconstruct the original sample in 3D (see Fig. 22), the cen-
troid of each grain was calculated, locating them in their corresponding
position.

In the render of Fig. 22, some blank spaces may be spotted between
the grains, corresponding to the ‘‘bad’’ grains that were not included
in the reconstruction of the sample. In general, missing grains do
not represent an issue to characterize the mechanical behavior of the
sample, only the right morphology is required. When a bigger size of
the sample is needed, ‘‘bad’’ grains may be compensated with a cloning
algorithm (Medina and Jerves, 2019) that increases the amount of
grains while maintaining the morphological parameters of the sample.

Sometimes, to characterize granular material at a microscopic scale,
the reconstruction of the whole original sample may be required to
simulate experiments, like the triaxial test that tracks the evolution
and interaction of each grain in a real soil sample (such as the studies
carried out by Andò et al., 2012; Cheng and Wang, 2018). Our approach
makes it possible to locate each ‘‘bad’’ digital grain in the tomography
and reprocess it, as shown in Fig. 23, with the objective to reconstruct
a one to one digital representation of the original sample.

Finally, an analysis on morphological parameters of Hostun sand’s
digital grains was made. Reviewing the morphological parameters dis-
tributions, it can be inferred that Hostun sand results are comparable
with the results from Øysand. Both have similar distributions corre-
sponding to each group of grains (‘‘good’’, ‘‘bad’’, false positive and
false negative grains), and their corresponding mean values are sim-
ilar between each other, indicating that there is not much difference
in morphological parameters when contrasting ‘‘good’’ with ‘‘bad’’
grains. Hence, the CNN faced a challenge at the time of classifica-
tion. The mean measures of the described and analyzed morphological
distributions were grouped in Table 4.

4.2.3. Transfer learning vs. training from scratch
In sub- Sections 4.2.1 and 4.2.2 only the best training results were

displayed. Training from scratch and transfer learning yield similar
classification results, with a maximum difference of 2% in accuracy and
1% in F1-score. Thus, not particular method was proved to be the best.

As a second evaluation criteria, the number of epochs taken to
reach the maximum classification accuracy during training (with each
method) was analyzed, also studying the influence of the number of
digital grains used for training the CNN. For this purpose, a test was
carried out as follows: from the total number of Øysand and Hostun
sand digital grains (1405 and 3325 respectively), random sub-datasets
of 250, 500 and 1000 grains were made for each soil sample. The
same ratio between ‘‘good’’ and ‘‘bad’’ grains (43% ‘‘good’’ and 57%
‘‘bad’’ for Øysand, and 61% ‘‘good’’ and 39% ‘‘bad’’ for Hostun sand) is
kept. Then, each dataset is used to train the CNN with transfer learning
and learning from scratch, determining the classification accuracy and
number of epochs taken. The results of this test are shown in Fig. 24.
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Fig. 20. Examples of processed (a) ‘‘good’’ grains and (b) ‘‘bad’’ grains from Hostun sand.
Table 4
Mean measures of Hostun classified grains.

Parameter ‘‘good’’ grains ‘‘bad’’ grains False negative grains False positive grains

Roundness 0.54 0.51 0.53 0.55
Sphericity 0.39 0.34 0.37 0.38
Diameter 0.52 0.66 0.57 0.60
Aspect Ratio 0.56 0.55 0.56 0.57
Volume surface ratio 0.055 0.058 0.056 0.054
Fig. 21. Classification results of the CNN trained from scratch using Hostun sand
grains.

In Fig. 24(a) it is observed that, for Øysand, a better accuracy
is obtained with transfer learning in comparison with training from
scratch. On the other hand, with Hostun sand in Fig. 24(b), training
from scratch gave better accuracy than transfer learning. However, the
difference in accuracy between each method is of 3% maximum, which
does not represent a significant difference when classifying the grains.
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From the results of Fig. 24, it is determined that either method may
be appropriate to train other granular materials. The main advantage
of transfer learning over training from scratch is a smaller number of
epochs required to reach the maximum accuracy, as seen in Fig. 24,
which represents a lower computational cost at the time of training
the network.

5. Further improvements

The image processing algorithm can be further improved in order to
obtain more digital avatars of grains from raw 3DXRCT images. In the
present work, one of the steps that takes time to apply on the 3DXRCT
images and demands high costs of computational resources is the non-
local means filter. In future works, the non-local means filter, and
other steps in the algorithm, could be optimized with high-performance
computing (HPC) parallelization techniques, thus taking advantage of a
multiprocessor system to execute several instructions at the same time,
speeding up the processing time of the algorithm.

Further work can be done in order to reduce under and over-
segmentation of the image processing algorithm. In some cases, tiny
local minima filtering helps to reduce the amount of grains that were
being oversegmented. Yet, as stated before, its parameters still need
to be calibrated depending on the granular material and the quality
of the CT scan (voxel size, noise, composition of material, etc.). Also,
other watershed techniques, such as marker based or adaptive wa-
tershed, could be tested and evaluated. A neural network approach
trained to identify contacts between grains may also help to overcome
segmentation problems of the image processing.

The centroid calculation of each individual grain allows us to locate
them in the 3DXRCT image, that includes both ‘‘good’’ and ‘‘bad’’ digi-
tal grains. With this approach, in case that a one to one representation
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Fig. 22. 3D render of the Hostun sand sample consisting of 8497 ‘‘good’’ grains and their respective original positions obtained as in the laboratory from the image processing
algorithm.

Fig. 23. Reprocessed ‘‘bad’’ grains. (a) A case of undersegmentation where the joined grains were successfully separated. (b) A case of oversegmentation where the whole grain
could be obtained.

Fig. 24. Accuracy vs number of grains used to train the CNN with transfer learning and training from scratch, and the corresponding number of epochs (eps) using: (a) random
sub-datasets of Øysand grains and (b) random sub-datasets of Hostun sand grains.
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of the original sample is needed, the group of ‘‘bad’’ digital grains can
be reprocessed, securing to correct every segmentation error.

The digital grains classified as ‘‘good’’ by the CNN were used
in 3DLS-DEM-based simulations. While the results of the simulations
were being evaluated, it was noted that some grains had an incon-
sistent behavior, yielding incorrect results. This group correspond to
misclassified grains that went ‘‘under the radar’’, being an error that
also happens in manual inspection, induced by inherent human error.
However, the CNN can always be further improved to reach a higher
classification accuracy, reducing the number of misclassified grains
for 3DLS-DEM-based virtual laboratory experiments. Some improve-
ments include a different model with its respective hyperparameter
tuning, or to increase the amount of ‘‘good’’ and ‘‘bad’’ digital grains
as training data. Finally, it is worth pointing out that most ‘‘bad’’
grains that are misclassified by the algorithm as ‘‘good’’, come from
undersegmentation in the image processing.

At this point, all of the image processing algorithm and the input
data pre-processing for the CNN are implemented in Matlab, and the
CNN’s training and prediction are implemented in Python. In the
future, we aim to establish a single pipeline for all these processes,
starting from the import of a sample’s raw 3DXRCT image, until the
classification of the obtained digital grains between ‘‘good’’ or ‘‘bad’’.

6. Conclusion

In the present work we have introduced a new tool to speed up the
digitalization process of grains from a raw 3DXRCT image of a sample,
involving a CNN in the process. The digital grains are obtained with
an image processing algorithm that generates a level set representation
of each grain, which needs to be manually inspected, one by one,
to discard incorrectly segmented grains. This tool implements a CNN
(trained with Jaramijó’s soil level set digital grain representations as
ground-truth) that classifies the digital grains between ‘‘faithful’’ or
ill-segmented representations with a validation accuracy above 80%,
speeding up the manual inspection process by at least 1036 times.

The tool is general enough to be applied in natural and artificially
modified granular materials, with techniques such as training from
scratch or transfer learning. Training from scratch is a common process
when a same architecture is used to do a different task, in contrast,
transfer learning uses an already trained architecture and adapts it to
solve other problem with similar features. Both methods were tested
with manually classified digital grains of Hostun sand and Øysand,
using as a base model the architecture trained with Jaramijó’s soil
digital grains for transfer learning. In general, neither training from
scratch nor transfer learning provided any significant difference, both
methods can be used when training the CNN with other granular
material. However, transfer learning takes less epochs to reach the
maximum classification accuracy, representing a lower computational
cost during training, while providing similar results when compared to
training from scratch.

To obtain more ‘‘faithful’’ segmented digital grains from a raw
3DXRCT image, four improvements were implemented in the image
processing algorithm. First, a calibrated CLAHE filter was applied to the
raw 3DXRCT image to improve its contrast, helping in later binarization
process. Second, a filling algorithm was implemented to fix the holes
inside some grains in the binarized image. Third, as a solution for
some over segmented grains, tiny local minima filtering with extended
minima transform is used as part of the watershed segmentation pro-
cess. And fourth, with the labeled image obtained from the watershed
algorithm, the centroid of each grain in the 3DXRCT is calculated,
allowing to locate and reprocess them if needed.

All of the image processing algorithm is implemented following
a single pipeline, i.e., every step of the algorithm is implemented
in Matlab using its built-in functions, starting from the import of a
3DXRCT image, to the generation of the level set representation of each
individual grain in the 3DXRCT image.
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The developed tool generates digital grain avatars (one to one
representation) from natural or artificial soil samples, towards the
creation of an automated and industrialized 3DLS-DEM-based virtual
laboratory pipeline (a one-stop shop). Thus, these avatars can be used
for an accurate 3D morphological as well as physical characterization
via 3DLS-DEM-based virtual laboratory testing. Finally, this pipeline
not only enables the creation of databases of digitalized soil samples
from around the world together with their phenomenological, state,
and morphological parameters. Most of all, it allows for the design and
testing of new novel granular materials and their potential applications.
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ppendix

mage processing algorithm calibration

Some parameters from the image processing algorithm, displayed
n Fig. 4, are calibrated depending on the soil sample. In the following
able, the respective parameters used for Jaramijó’s sand, Øysand and
ostun sand are specified. It is worth noticing that the parameters in
ig. 4 that are not included in the table are the same for all the soil
amples (see Table A.1).

Table A.1
Image processing algorithm parameters calibrated depending on the soil type.

Filter: Tiny local minima NLM CLAHE
Parameter: H-minima Filter strength Clip limit

Jaramijó 1 0.11 0.005
Øysand 2 0.04 0.01
Hostun sand 2 0.09 0.005
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Table A.2
Parameters of the different tested CNNs models.

Parameters Models

Sigmoid 1 Sigmoid 2 Sigmoid 3 TanH

Convolutions 2 4 5 4
Activation function Sigmoid Sigmoid Sigmoid TanH
Filters 10–20 16–16–32–32 10–10–20–20–40 16–16–32–32
Kernel Size 5–5 5–5–5–5 5–5–5–5–3 3–3–3–3
Dropout 0 0 0.1 0
Batch normalization Yes No Yes Yes
MaxPooling 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2 2 × 2 × 2
Table A.3
Metrics of the different trained CNNs and their percentages of correctly classified grains.

Model Precision Recall Accuracy F1 Score Correctly Classified

‘‘good’’ grains ‘‘bad’’ grains

Sigmoid 1 90% 83% 89% 86% 90% 88%
Sigmoid 2 76% 88% 86% 81% 76% 93%
Sigmoid 3 74% 90% 86% 81% 74% 95%
TanH 84% 90% 90% 87% 90% 89%
Hyperparameter tuning

This method is known as hyperparameter tuning (Lianne, 2020), it
establishes a range of, or, certain values which will be evaluated on
some training epochs, then the best results are taken and the model
is then trained again, with more epochs if necessary, to evaluate the
results. In the following table, four evaluated and tuned architectures
are listed including filter number, activation functions, kernel sizes,
dropout and application of batch normalization used (see Table A.2).

The evaluation criteria consisted of the analysis of prediction of
data based on accuracy. However, since the data is unbalanced (more
‘‘bad’’ than ‘‘good’’ grains) this metric not necessarily gives a correct
estimation of the performance. Instead, it is possible to analyze other
metrics such as precision (of all positive predictions, how many were
correct) and recall (of all the positive cases in the dataset, how many
were predicted correctly). In the following table, the metrics for the
architectures tried (see previous table), are presented, including the
percentages of correctly classified ‘‘good’’ and ‘‘bad’’ grains, and a
F1-score metric, which computes both precision and recall to give
a general overview of the performance of the neural network (see
Table A.3).

References

Aksu, G., Oktay, C., Taha, M., 2019. The effect of the normalization method used in
different sample sizes on the success of artificial neural network model. Int. J.
Assess. Tools Educ. 6 (2), 170–192, https://doi.org/10.21449/ijate.479404.

Andò, E., Hall, S., Viggiani, G., Desrues, J., Bésuelle, P., 2012. Experimental microme-
chanics: grain-scale observation of sand deformation. Géotech. Lett. 2 (3), 107–112.
http://dx.doi.org/10.1680/geolett.12.00027.

Andò, E., Viggiani, G., Hall, S.A., Desrues, J., 2013. Experimental micro-mechanics
of granular media studied by x-ray tomography: recent results and challenges.
Géotech. Lett 3 (3), 142–146. http://dx.doi.org/10.1680/geolett.13.00036.

Bjorck, J., Gomes, C., Selman, B., Weinberger, K.Q., 2018. Understanding batch
normalization. In arXiv [cs.LG]. https://proceedings.neurips.cc/paper/2018/file/
36072923bfc3cf47745d704feb489480-paper.pdf.

Bradley, D., Roth, G., 2007. Adaptive thresholding using the integral image. J. Graph.
Tools 12 (2), 13–21. http://dx.doi.org/10.1080/2151237x.2007.10129236.

Brownlee, J., 2019. Transfer learning in keras with computer vision mod-
els. Machine Learning Mastery. https://machinelearningmastery.com/how-to-
use-transfer-learning-when-developing-convolutional-neural-network-models/ (Ac-
cessed 24 September 2021).

Burney, A., Syed, T.Q., 2016. Crowd video classification using convolutional neural
networks. Int. Conf. Front. Inform. Technol. (FIT) 24, 7–251. http://dx.doi.org/10.
1109/FIT.2016.052.

Bustamante, D., Jerves, A.X., Pazmiño, S.A., 2020. A generalized three-dimensional
discrete element method with electrostatic induced cohesion. Gran. Matter 22 (4),
http://dx.doi.org/10.1007/s10035-020-01048-4.

Cheng, Z., Wang, J., 2018. Experimental investigation of inter-particle contact evolution
of sheared granular materials using X-ray micro-tomography. Soils Found. 58 (6),
1492–1510. http://dx.doi.org/10.1016/j.sandf.2018.08.008.
18
Cho, G.C., Dodds, J., Santamarina, J.C., 2006. Particle shape effects on packing density,
stiffness, and strength: Natural and crushed sands. J. Geotech. Geoenviron. Eng. 132
(5), 591–602. http://dx.doi.org/10.1061/(asce)1090-0241(2006)132:5(591).

Chollet, F., 2020. Transfer learning & fine-tuning. Keras.Io. https://keras.io/guides/
transfer_learning/ (Accesed 24 September 2021).

CompareNetworks, 2009. Particle size analyzer (particle analyzers/particle sizer).
Labcompare. https://www.labcompare.com/laboratory-analytical-instruments/32-
particle-size-analyzer-particle-analyzers-particle-sizer/ (Accessed 23 November
2022).

Daub, E.G., Manning, M.L., Carlson, J.M., 2010. Pulse-like, crack-like, and supershear
earthquake ruptures with shear strain localization. J. Geophys. Res. 115 (B5),
http://dx.doi.org/10.1029/2009jb006388.

Digabel, H., Lantuejoul, C., 1978. Iterative algorithms. In: Proceedings of 2nd European
Symposium on Quantitative Analysis of Microstructures in Material Science, vol. 8.
pp. 5–99.

Dill, V., Franco, A.R., Pinho, M.S., 2015. Automated methods for hippocampus
segmentation: the evolution and a review of the state of the art. Neuroinform
13, 133–150. http://dx.doi.org/10.1007/s12021-014-9243-4.

Guo, T., Dong, J., Li, H., Gao, Y., 2017. Simple convolutional neural network on image
classification. In: 2nd International Conference on Big Data Analysis (ICBDA), vol.
72. pp. 1–724. http://dx.doi.org/10.1109/ICBDA.2017.8078730.

Jerves, A., Ávila, C., Mulas, M., Galindo Torres, S., Samaniego, E., 2019. Across
fields and scales: an integrating roadmap for the prediction and prevention of
volcanic lahar phenomena. Adv. Eng. Res. Retrieved June 11, 2022, from https:
//novapublishers.com/shop/advances-in-engineering-research-volume-32/.

Jerves, A.X., Kawamoto, R.Y., Andrade, J.E., 2016. Effects of grain morphology on
critical state: a computational analysis. Acta Geotech. 11 (3), 493–503. http:
//dx.doi.org/10.1007/s11440-015-0422-8.

Juba, B., Le, H.S., 2019. Precision-recall versus accuracy and the role of large data sets.
In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33. (01), pp.
4039–4048. http://dx.doi.org/10.1609/aaai.v33i01.33014039.

Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E., 2016. Level set discrete element
method for three-dimensional computations with triaxial case study. J. Mech. Phys.
Solids 91, 1–13. http://dx.doi.org/10.1016/j.jmps.2016.02.021.

Khandelwal, R., 2020. Convolutional neural network: Feature map and filter visualiza-
tion. Towards Data Science. https://towardsdatascience.com/convolutional-neural-
network-feature-map-and-filter-visualization-f75012a5a49c (Accessed 20 March
2021).

Kim, M., Wu, G., Shen, D., 2013. Unsupervised deep learning for hippocampus
segmentation in 7.0 Tesla MR images. In: Wu, G., Zhang, D., Shen, D., Yan, P.,
Suzuki, K., Wang, F. (Eds.), Machine Learning in Medical Imaging, MLMI. In:
Lecture Notes in Computer Science, vol. 8184, Springer, Cham, pp. 1–8. http:
//dx.doi.org/10.1007/978-3-319-02267-3_1.

Kim, Y., Yun, T.S., 2021. How to classify sand types: A deep learning approach. Eng.
Geol. 288 (106142), 106142. http://dx.doi.org/10.1016/j.enggeo.2021.106142.

Lai, Z., Chen, Q., 2019. Reconstructing granular particles from X-ray computed
tomography using the TWS machine learning tool and the level set method. Acta
Geotech. 14 (1), 1–18. http://dx.doi.org/10.1007/s11440-018-0759.-x, Springer
Vieweg, Berlin, Heidelberg.

Lavrukhin, E.V., Gerke, K.M., Romanenko, K.A., Abrosimov, K.N., Karsanina, M.V.,
2021. Assessing the fidelity of neural network-based segmentation of soil XCT
images based on pore-scale modelling of saturated flow properties. Soil Tillage
Res. http://dx.doi.org/10.1016/j.still.2021.104942.

Li, X., Fan, P., Li, Z., Chen, G., Qiu, H., Hou, G., 2021. Soil classification based on deep
learning algorithm and visible near-infrared spectroscopy. J. Spectroscopy. 2021,
http://dx.doi.org/10.1155/2021/1508267.

https://doi.org/10.21449/ijate.479404
http://dx.doi.org/10.1680/geolett.12.00027
http://dx.doi.org/10.1680/geolett.13.00036
https://proceedings.neurips.cc/paper/2018/file/36072923bfc3cf47745d704feb489480-paper.pdf
https://proceedings.neurips.cc/paper/2018/file/36072923bfc3cf47745d704feb489480-paper.pdf
https://proceedings.neurips.cc/paper/2018/file/36072923bfc3cf47745d704feb489480-paper.pdf
http://dx.doi.org/10.1080/2151237x.2007.10129236
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
https://machinelearningmastery.com/how-to-use-transfer-learning-when-developing-convolutional-neural-network-models/
http://dx.doi.org/10.1109/FIT.2016.052
http://dx.doi.org/10.1109/FIT.2016.052
http://dx.doi.org/10.1109/FIT.2016.052
http://dx.doi.org/10.1007/s10035-020-01048-4
http://dx.doi.org/10.1016/j.sandf.2018.08.008
http://dx.doi.org/10.1061/(asce)1090-0241(2006)132:5(591)
https://keras.io/guides/transfer_learning/
https://keras.io/guides/transfer_learning/
https://keras.io/guides/transfer_learning/
https://www.labcompare.com/laboratory-analytical-instruments/32-particle-size-analyzer-particle-analyzers-particle-sizer/
https://www.labcompare.com/laboratory-analytical-instruments/32-particle-size-analyzer-particle-analyzers-particle-sizer/
https://www.labcompare.com/laboratory-analytical-instruments/32-particle-size-analyzer-particle-analyzers-particle-sizer/
http://dx.doi.org/10.1029/2009jb006388
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb14
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb14
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb14
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb14
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb14
http://dx.doi.org/10.1007/s12021-014-9243-4
http://dx.doi.org/10.1109/ICBDA.2017.8078730
https://novapublishers.com/shop/advances-in-engineering-research-volume-32/
https://novapublishers.com/shop/advances-in-engineering-research-volume-32/
https://novapublishers.com/shop/advances-in-engineering-research-volume-32/
http://dx.doi.org/10.1007/s11440-015-0422-8
http://dx.doi.org/10.1007/s11440-015-0422-8
http://dx.doi.org/10.1007/s11440-015-0422-8
http://dx.doi.org/10.1609/aaai.v33i01.33014039
http://dx.doi.org/10.1016/j.jmps.2016.02.021
https://towardsdatascience.com/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
https://towardsdatascience.com/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
https://towardsdatascience.com/convolutional-neural-network-feature-map-and-filter-visualization-f75012a5a49c
http://dx.doi.org/10.1007/978-3-319-02267-3_1
http://dx.doi.org/10.1007/978-3-319-02267-3_1
http://dx.doi.org/10.1007/978-3-319-02267-3_1
http://dx.doi.org/10.1016/j.enggeo.2021.106142
http://dx.doi.org/10.1007/s11440-018-0759.-x
http://dx.doi.org/10.1016/j.still.2021.104942
http://dx.doi.org/10.1155/2021/1508267


Computers and Geotechnics 160 (2023) 105510S.B. Cevallos et al.
Li, C., Xu, C., Gui, C., Fox, M.D., 2005. Level set evolution without re-initialization: A
new variational formulation. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05). 43, 0–436. http://dx.doi.org/10.1109/
CVPR.2005.213.

Li, C., Xu, C., Gui, C., Fox, M.D., 2010. Distance regularized level set evolution and its
application to image segmentation. IEEE Trans. Image Process. 19 (12), 3243–3254.
http://dx.doi.org/10.1109/TIP.2010.2069690.

Lianne, J., 2020. Hyperparameter tuning with python: Keras step-by-step guide why
and how to use with an example of keras. Just into data. https://www.justintodata.
com/hyperparameter-tuning-with-python-keras-guide/ (Accessed 18 April 2021).

Liu, B., Zheng, Q., Zhao, K., Li, H., Ma, C., Wu, S., Tong, X., 2021. HPCSeg-Net:
Hippocampus Segmentation Network Integrating Autofocus Attention Mechanism
and Feature Recombination and Recalibration Module. In: Lecture Notes in Com-
puter Science, In: Lecture Notes in Computer Science, vol. 12889, 773–782.http:
//dx.doi.org/10.1007/978-3-030-87358-5_63,

Lu, J., Behbood, V., Hao, P., Zuo, H., Xue, S., Zhang, G., 2015. Transfer learning
using computational intelligence: A survey. Knowl.-Based Syst. 80, 14–23. http:
//dx.doi.org/10.1016/j.knosys.2015.01.010.

Medina, D.A., Jerves, A.X., 2019. A geometry-based algorithm for cloning real grains
2.0. Gran. Matter 21 (1), http://dx.doi.org/10.1007/S10035-018-0851-9.

Meyer, F., 1994. Topographic distance and watershed lines. Signal Process. 38 (1),
113–125. http://dx.doi.org/10.1016/0165-1684(94)90060-4.

Mital, U., Andrade, J.E., 2022. Bridging length scales in granular materials using
convolutional neural networks. Comp. Part. Mech. 9, 221–235. http://dx.doi.org/
10.1007/s40571-021-00405-1.

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans.
Syst. Man Cybern. 9 (1), 62–66. http://dx.doi.org/10.1109/tsmc.1979.4310076.

Rawat, W., Wang, Z., 2017. Deep convolutional neural networks for image classification:
A comprehensive review. Neural Comput. 29 (9), 2352–2449. http://dx.doi.org/10.
1162/NECO_a_00990.

Roverato, M., Larrea, P., Casado, I., Mulas, M., Béjar, G., Bowman, L., 2018. Char-
acterization of the cubilche debris avalanche deposit, a controversial case from
the Northern Andes, Ecuador. J. Volcanol. Geotherm. Res. 360, 22–35. http:
//dx.doi.org/10.1016/j.jvolgeores.2018.07.006.

Shi, J.-J., Zhang, W., Wang, W., Sun, Y.-H., Xu, C.-Y., Zhu, H.-H., Sun, Z.-X., 2021.
Randomly generating three-dimensional realistic schistous sand particles using deep
learning: Variational autoencoder implementation. Eng. Geol. 291, http://dx.doi.
org/10.1016/j.enggeo.2021.106235.

Sivakugan, N., Das, B.M., Sivakugan, S., 2015. Introduction to Geotechnical Engi-
neering. Cengage Learning, United States, http://dx.doi.org/10.1016/B978-0-444-
41782-4.50012-9.

Soille, P., 2000. Morphological Image Analysis: Principles and Applications.
Springer-Verlag, pp. 170–171. http://dx.doi.org/10.1108/sr.2000.08720cae.001.

Soille, P., 2004. Morphological Image Analysis: Principles and Applications. pp.
173–174. http://dx.doi.org/10.1007/978-3-662-05088-0,
19
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014.
Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res.: JMLR 15 (56), 1929–1958, http://jmlr.org/papers/v15/srivastava14a.html.

Stamati, et al., 2020. Spam: Software for practical analysis of materials. J. Open Source
Softw. 5 (51), 2286. http://dx.doi.org/10.21105/joss.02286.

Stubbs, T.J., Vondrak, R.R., Farrell, W.M., 2007. Impact of dust on lunar exploration.
Dust Planet. Syst. 23, 9–243.

Sun, H.Q., Luo, Y.J., 2009. Adaptive watershed segmentation of binary particle image.
J. Microsc. 233 (2), 326–330. http://dx.doi.org/10.1111/j.1365-2818.2009.03125.
x.

Tammina, S., 2021. Transfer learning using VGG-16 with deep convolutional neural
network for classifying images. Int. J. Sci. Res. Publ. 9 (10), http://dx.doi.org/10.
29322/IJSRP.9.10.2019.p9420.

Taner, A., Öztekin, Y.B., Duran, H., 2021. Performance analysis of deep learning
CNN models for variety classification in hazelnut. Sustainability 13 (12), http:
//dx.doi.org/10.3390/su13126527.

Uhl, A., Liedlgruber, M., Butz, K., Höller, Y., Kuchukhidze, G., Taylor, A., Thom-
schevski, A., Tomasi, O., Trinka, E., 2018. Hippocampus segmentation and SPHARM
coefficient selection are decisive for MCI detection. In: Maier, A., Deserno, T.,
Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (Eds.), Informatik Aktuell. Bild-
verarbeitung Für Die Medizin, Springer Vieweg, Berlin, Heidelberg, pp. 239–244.
http://dx.doi.org/10.1007/978-3-662-56537-7_65.

Viggiani, G., Andò, E., Jaquet, C., Talbot, H., 2013. Identifying and following particle-
to-particle contacts in real granular media: an experimental challenge. AIP Conf.
Proc. 1542 (1), 60–65. http://dx.doi.org/10.1063/1.4811868.

Vincent, L., Soille, P., 1991. Watersheds in digital spaces: an efficient algorithm based
on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13 (6), 583–598.
http://dx.doi.org/10.1109/34.87344.

Vlahinić, I., Andò, E., Viggiani, G., Andrade, J.E., 2014. Towards a more accurate
characterization of granular media: extracting quantitative descriptors from tomo-
graphic images. Granul. Matter 16 (1), 9–21. http://dx.doi.org/10.1007/s10035-
013-0460-6.

Vlahinić, I., Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E., 2017. From computed
tomography to mechanics of granular materials via level set bridge. Acta Geotech.
12, 85–95. http://dx.doi.org/10.1680/geolett.13.00036.

Wiebicke, M., 2020. Experimental analysis of the evolution of fabric in granular soils
upon monotonic loading and load reversals. (Ph.D. thesis). Technische Universität
Dresden, Germany.

Wiebicke, M., Andò, E., Herle, I., Viggiani, G., 2017. On the metrology of interparticle
contacts in sand from x-ray tomography images. Meas. Sci. Technol. 28, http:
//dx.doi.org/10.1088/1361-6501/aa8dbf.

Xu, Z., Hu, J., Deng, W., 2016. Recurrent convolutional neural network for video
classification. In: International Conference on Multimedia and Expo (ICME).
Springer-Verlag, pp. 170–171. http://dx.doi.org/10.1109/ICME.2016.7552971.

Zuiderveld, K., 1994. Contrast limited adaptive histogram equalization. Graph. Gems
47, 4–485. http://dx.doi.org/10.1016/B978-0-12-336156-1.50061-6.

http://dx.doi.org/10.1109/CVPR.2005.213
http://dx.doi.org/10.1109/CVPR.2005.213
http://dx.doi.org/10.1109/CVPR.2005.213
http://dx.doi.org/10.1109/TIP.2010.2069690
https://www.justintodata.com/hyperparameter-tuning-with-python-keras-guide/
https://www.justintodata.com/hyperparameter-tuning-with-python-keras-guide/
https://www.justintodata.com/hyperparameter-tuning-with-python-keras-guide/
http://dx.doi.org/10.1007/978-3-030-87358-5_63
http://dx.doi.org/10.1007/978-3-030-87358-5_63
http://dx.doi.org/10.1007/978-3-030-87358-5_63
http://dx.doi.org/10.1016/j.knosys.2015.01.010
http://dx.doi.org/10.1016/j.knosys.2015.01.010
http://dx.doi.org/10.1016/j.knosys.2015.01.010
http://dx.doi.org/10.1007/S10035-018-0851-9
http://dx.doi.org/10.1016/0165-1684(94)90060-4
http://dx.doi.org/10.1007/s40571-021-00405-1
http://dx.doi.org/10.1007/s40571-021-00405-1
http://dx.doi.org/10.1007/s40571-021-00405-1
http://dx.doi.org/10.1109/tsmc.1979.4310076
http://dx.doi.org/10.1162/NECO_a_00990
http://dx.doi.org/10.1162/NECO_a_00990
http://dx.doi.org/10.1162/NECO_a_00990
http://dx.doi.org/10.1016/j.jvolgeores.2018.07.006
http://dx.doi.org/10.1016/j.jvolgeores.2018.07.006
http://dx.doi.org/10.1016/j.jvolgeores.2018.07.006
http://dx.doi.org/10.1016/j.enggeo.2021.106235
http://dx.doi.org/10.1016/j.enggeo.2021.106235
http://dx.doi.org/10.1016/j.enggeo.2021.106235
http://dx.doi.org/10.1016/B978-0-444-41782-4.50012-9
http://dx.doi.org/10.1016/B978-0-444-41782-4.50012-9
http://dx.doi.org/10.1016/B978-0-444-41782-4.50012-9
http://dx.doi.org/10.1108/sr.2000.08720cae.001
http://dx.doi.org/10.1007/978-3-662-05088-0
http://jmlr.org/papers/v15/srivastava14a.html
http://dx.doi.org/10.21105/joss.02286
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb44
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb44
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb44
http://dx.doi.org/10.1111/j.1365-2818.2009.03125.x
http://dx.doi.org/10.1111/j.1365-2818.2009.03125.x
http://dx.doi.org/10.1111/j.1365-2818.2009.03125.x
http://dx.doi.org/10.29322/IJSRP.9.10.2019.p9420
http://dx.doi.org/10.29322/IJSRP.9.10.2019.p9420
http://dx.doi.org/10.29322/IJSRP.9.10.2019.p9420
http://dx.doi.org/10.3390/su13126527
http://dx.doi.org/10.3390/su13126527
http://dx.doi.org/10.3390/su13126527
http://dx.doi.org/10.1007/978-3-662-56537-7_65
http://dx.doi.org/10.1063/1.4811868
http://dx.doi.org/10.1109/34.87344
http://dx.doi.org/10.1007/s10035-013-0460-6
http://dx.doi.org/10.1007/s10035-013-0460-6
http://dx.doi.org/10.1007/s10035-013-0460-6
http://dx.doi.org/10.1680/geolett.13.00036
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb53
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb53
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb53
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb53
http://refhub.elsevier.com/S0266-352X(23)00267-7/sb53
http://dx.doi.org/10.1088/1361-6501/aa8dbf
http://dx.doi.org/10.1088/1361-6501/aa8dbf
http://dx.doi.org/10.1088/1361-6501/aa8dbf
http://dx.doi.org/10.1109/ICME.2016.7552971
http://dx.doi.org/10.1016/B978-0-12-336156-1.50061-6

	Towards a more accurate characterization of granular media 2.0: Involving AI in the process
	Introduction
	Image processing algorithm
	Original algorithm
	Algorithm improvements
	 The manual inspection protocol (ground-truth)
	Remark

	A neural network based grains classifier
	Convolutional neural network
	A morphological based interpretation of the CNN's learning process
	Morphological characterization of Jaramijo 's level set grains


	CNN-based classification of other digitalized soil samples
	Martian Regolith Simulant sample (sensibility testing)
	Øysand and Hostun sand samples
	Remark
	Øysand
	Hostun sand
	Transfer learning vs. training from scratch


	Further improvements
	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgment
	Appendix
	Image processing algorithm calibration
	Hyperparameter tuning

	References


