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Abstract: Hyperspectral (HS) imaging (HSI) expands the number of channels captured within
the electromagnetic spectrum with respect to regular imaging. Thus, microscopic HSI can
improve cancer diagnosis by automatic classification of cells. However, homogeneous focus is
difficult to achieve in such images, being the aim of this work to automatically quantify their focus
for further image correction. A HS image database for focus assessment was captured. Subjective
scores of image focus were obtained from 24 subjects and then correlated to state-of-the-art
methods. Maximum Local Variation, Fast Image Sharpness block-based Method and Local Phase
Coherence algorithms provided the best correlation results. With respect to execution time, LPC
was the fastest.
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1. Introduction

Traditionally, the study of histology slides in medicine is considered as the gold standard for the
clinical diagnosis of cancer and performing differential diagnosis with tissue alterations (e.g.,
infection or inflammation) [1]. In classical histology analysis, pathologists, using standard bright-
field (BF) microscopy, visually examine the sample (regularities of cell shapes, distributions,
etc.). Then, they study different parameters to determine if the tissue is cancerous and if positive,
evaluate its malignancy level. This procedure is broadly used in hospitals, including prostate [2]
and, cancer diagnosis [3].

Nowadays, the histopathology research trend is to digitize histology slides into whole RGB
(red-green-blue) slides for further computational image analysis. This approach can enhance
diagnosis accuracy, making it more objective in a shorter time [4]. Conventional RGB imaging
differs from hyperspectral (HS) imaging (HSI) in the big number of spectral channels (also
called bands or wavelengths) which HSI can acquire in the electromagnetic spectrum (within
and beyond the visual range). This technology enables the highly precise differentiation of the
materials captured, and so, it can help pathologists to identify and diagnose tissue histology
samples with higher precision compared to traditional RGB microscopy [5].

In previous works of this research group, HS histological images were captured for tumor cell
classification [6] or to synthesize HS images from standard RGB images of normal and cancer
cells using conditional generative adversarial networks (GANs) [7]. However, images may not
have high quality due to several distortions, being the focus one of the most relevant parameters
in HS microscopic images [8]. BF microscopy is a good technique for capturing thin materials
(one layer cell cultures or thin tissue portions) on glass slides but has limitations imaging thick
samples [9,10].
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Z-stacking techniques are a solution to blurred images produced by imaging non-flat samples.
This approach uses images captured at several working distances (having different parts of the
image focused) and stacks them together into one clearly focused image [11]. For this process to
be automatic, image quality assessment (IQA) must firstly be evaluated [12]. Until now, the most
precise quality evaluation of an image is made by the human eye since it is the end-user of the
multimedia devices. However, obtaining subjective rating by users is a high costly and inefficient
task [13]. Thus, effective, and objective IQA methods are needed for automatically predict the
quality of images before further processing methods are applied.

In this work, we aim to quantify the focus of microscopic images captured at different working
distances. First, a background framework will be presented to deeply explain the different IQA
methods for blur quantification. Then, the materials and methods employed in the experiments
will be described. A microscope with HS capabilities will be used to capture a hyperspectral
image dataset for focus analysis (HIDFA) [14]. Focus of the images will be evaluated using
the human visual system (HVS) and state-of-the-art algorithms [13]. Concluding, both type of
evaluations will be correlated to analyze and discuss the performance of the studied algorithms
applied to different configurations of the HS data, such as synthetic RGB (generated from the HS
images) or monochromatic images.

2. Background framework

2.1. Limitations in HS microscopic data capturing

Blurring in HS microscopic images is highly influenced by the depth of field (DOF) [15]. is the
length between the closest and the farthest points where an object can be captured in acceptably
sharp focus (Fig. 1(a)). Eq. (1) shows the parameters involved to compute the DOF: focal length
(f ), which is the distance from the center of the magnifying lens to the focal point of the sensor;
working distance (WD), which is the distance between the magnifying lens and the surface of the
specimen; f-number (N), which is the ratio of the system’s focal length to the diameter of the
lens aperture; and diameter of circle of confusion (c), which is the light ring formed by the light
beams when not focusing on the same sport. Since c and N are intrinsic to the optical system, the
blurring (Fig. 1(c)) occurs when there are changes in WD and/or f (Fig. 1(b) and (d)).

DOF =
2 · WD2 · N · c

f 2 (1)

First, changes in the WD may occur because of the irregular nature of microscopic samples.
Since the samples are not flat, different areas of the image can be focused on several WDs
(Fig. 1(b)). Figure 1(c) shows the final image when capturing at 20× magnification a non-flat rat
intestine sample using a custom designed HS microscope. Second, variations in f could happen
when several wavelengths are captured. A typical optical issue, chromatic aberration, takes place
when a lens cannot guide all wavelengths’ rays to the same focal plane (Fig. 1(d)).

2.2. Image quality assessment (IQA)

IQA is defined as a process that systematically evaluates the quality of an image based on
human quality judgments (sharpness, graininess, tone scale, and color rendition) [16]. Focused
captures are crucial in most of his applications (e.g., cancer diagnosis in histological samples
[17]), therefore, IQA becomes a key technique that must be investigated. IQA algorithms can be
divided into:

• Full-Reference IQA (FR-IQA) calculates the image quality index by comparing it with a
ground truth capture (e.g., image versus its compressed version). The Peak Signal to Noise
Ratio (PSNR) is a technique of this type [18].
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Fig. 1. Graphical representation of (a) DOF, (b) WD shift and, (d) chromatic aberration
problems. (c) Example of an unfocused rat intestine (20×).

• Reduced-Reference IQA (RR-IQA) extracts features from an image and its reference
for further calculation of the image quality (e.g., extraction of image features for easier
recompositing after compression). The free-energy-based distortion metric is an algorithm
of this type [19].

• No-reference IQA (NR-IQA) does not need any reference image for providing the quality
of an image (e.g., focus of blurred image). The perceptual sharpness index (PSI) algorithm
is classified in this type [20].

In this work, the interest is to enhance the quality of microscopic HS images. Sometimes,
specimens are not perfectly flat, and the high gradient of the sample is bigger than the DOF
offered by the imaging system. The aim of this work is to quantify the blurriness of the captured
image, for a later selection of the most focused image regions. However, due to the lack of ground
truth of blur images, NR-IQA is the best option, but it comes with its challenges. State-of-the-art
studies indicate that the most relevant strategy for judging image quality when no reference is
available, is HVS [13]. Thus, effectiveness of NR-IQA methods can be calculated by correlating
their results (called Objective Scores (OS)) to the values given to the images by the HVS (called
Subjective Scores (SS)). NR-IQA algorithms applied to RGB captures are further classified into
learning-free (edge-free and edge-based), and learning-based (wavelet and Fourier like) methods.
A general summary of the different techniques can be found in Fig. 2 [13]. Next Sections 2.4 and
2.5, will show a more detailed explanation of the state-of-the-art methods to finally select the
ones employed in this work at Fig. 7.

Fig. 2. Summary of the main NR-IQA methods found in the literature.



Research Article Vol. 31, No. 8 / 10 Apr 2023 / Optics Express 12264

2.3. Database design

Before calculating image quality scores, a database (DB) showing different levels of blurriness
must be created. The state-of-the-art shows that available DBs for NR-IQA are mainly based
on RGB images, where blurriness is obtained synthetically by applying a filter over a reference
image. These DBs employ several distortions, such as gaussian noise, chromatic aberrations, or
image denoising to the reference images using several intensity levels.

Some of the most famous RGB DBs used by numerous researchers are the TID2013 [21],
LIVE [22] and CSIQ [23]. Only a few multi/HS image DBs have been found, being the most
relevant one the SIDQ DB [24]. A summary of the state-of-the-art in DBs for NR-IQA is shown
in Table 1.

Table 1. Summary of the Characteristics of the NR-IQA State-of-the-Art DBs

No. reference
images

Spectral range
(nm)

Spatial
range

Types of
distortion

Levels of
distortion

Total No. of
images

TID2013 [21] 25 RGB Macro 24 5 3000

LIVE [22] 29 RGB Macro 5 5 779

CSIQ [23] 30 RGB Macro 6 4 to 5 ∼810

SIDQ [24] 9
410 - 1000

Macro 5 1 45
160 bands

2.4. Subjective scores (SSs)

Traditional methodologies for SS calculation are based on simple stimuli. Nowadays they are
more complex, also registering user strategies and confidence in an opinion [25]. Some of
the new parameters under study are measurement of consistency of the opinion (reliability),
of correct feature (validity) and of specific empirical manipulation (sensitivity) [26]. Before
planning a test to obtain subjective ratings, the panel of subjects must first be decided following
the considerations shown in Table 2. Afterwards, a testing method should also be chosen. The
main characteristics of the different methods can be summarized as follows in Table 3 [25].
Finally, a summary of the main characteristics of the most famous NR-IQA DBs is shown in
Table 4.

Table 2. Characteristics of Subject’s Panel for NR-IQA

Parameter Range

No. of evaluators There are several ITU (International Telecommunication Union) recommendations
(Rec.), such as ITU-T Rec. P.911 [27] or ITU-R Rec. BT.500-11 [28], which describe
subjective assessment methods for evaluating one-way overall audiovisual quality at
multimedia applications. ITU-T Rec. P.911 states: “The possible number of subjects in
a viewing and listening test [. . . ] is from 6 to 40. Four is the absolute minimum for
statistical reasons, while there is rarely any point in going beyond 40”. Moreover,
ITU-R Rec. BT.500-11 advocates at least 15 subjects.

Representative
evaluation panel for the
target application

Subject demographic data (e.g., sex, age, culture, and education level) are important
and can affect the SS [29].

Expertise of the
evaluation panel

Expert users are usually in better agreement than regular users. This way, a smaller
number of people is needed for the experiment. However, their critical opinions may
bring them to lower ratings, creating a bias in the measurements [30,31].

Testing environment ITU recommendations remark that the experiment must be carried out under controlled
lab conditions, although it may not perfectly reconstruct the target application
conditions [32].
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Table 3. Characteristics of Subjective Tests for NR-IQA

Parameter Range

No. of images
compared

It can be single, double, or multi-stimulus. Multiple stimuli may be presented
simultaneously or sequentially.

No. of times an image
is presented

It could be from one to multiple times.

Presence of a reference
image

It can be shown or hidden, depending on whether the subjects know which one are
them.

Reference image rating Users may value the quality of the image alone, both the image and the reference, or the
contrast between both.

Interactivity One or more subjects may be rating the images at the same time.

Rating collection Ratings may be collected per image (time-discretely) or per time interval
(continuously). Recommendations given in [33] indicates that the total time a user
takes to fill a subjective test should not exceed 30 minutes.

Range of test images Usually, rating scales have five discrete levels (e.g., from “bad” to “excellent”), but
language dependent scales are non-linear due to different understanding of the words.
Thus, bigger ranges are also employed (e.g., 7, 9 or 11 points). Continuous scales could
be employed too. However, this option may incorporate noise to the ratings due to
limitation of humans to distinguish infinite levels of a certain quantity. Moreover,
different users can have quite several opinions about the quality range of the images
under study, so high and low anchor captures could be shown for better scale
understanding [34].

Table 4. Subjective Test Features for Dataset Labeling

TID2013 [21] LIVE [22] CSIQ [23] SIDQ [24]

Su
bj

ec
t’s

Pa
ne

l

No. Observers 971 161 25 14

Expertise in
evaluation
panel

Students, tutors,
and researchers

Male college
students

NF 22-66 years old

Testing
environment

Controlled lab
setup or Internet,
flexible viewing
distances

Controlled lab
setup, flexible
viewing
distances

Controlled lab
setup, fixed
viewing distance

Dark room

Su
bj

ec
tiv

e
Te

st

No. of images
compared

3 1 866 3

No. of times an
image is
presented

9 1 1 NF

Presence of a
reference image

Yes No No Yes

Reference
image rating

No No No No

Interactivity Indifferent Indifferent Indifferent Indifferent

Rating
collection

∼17 mins NF NF NF

Range of test
images

Pair-wise sorting
with respect to
the original

Excellent, Good,
Fair, Poor, Bad

Linear
displacement of
the images across
four calibrated
LCD monitors

Pair-wise sorting
with respect to the
original.

(0-9) (1-5) (0-1)
Ties allowed.

(0.5 to majority hit
rate)
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Before the testing, subjects are typically given training to familiarize them with the interface.
Once the test has taken place, studying the results can help removing unreliable subject responses.
However, we must be careful since it may also eliminate just valid opinions. After screening,
the SSs are transformed to mean opinion scores (MOSs) [25], which inevitably represents the
view of a majority. Over the years, MOS have become the most popular ratings for media quality.
But we must consider that the arithmetic averaging of opinions assumes homogeneity among
subjects. Thus, statistics should be applied over MOS values [25].

2.5. Objective scores (OSs)

Although we have seen that subjective quality tests are essential for image quality analysis, they
involve a lot of disadvantages (e.g., they are time-consuming to perform, biased by the user, etc.).
Thus, objective quality scores (OSs) should be employed. The following sections explain the
objective models, how they work and some applications in which they are used.

2.5.1. Edge based

Cumulative probability of blur detection (CPBD) [35] is based on the study of human blur
perception for varying contrast values. Edge pixels are firstly counted, if no edges are detected,
the area is classified as smooth block and, edge block otherwise. For the last ones, contrast and
edge width are computed. Then, the probability of finding blur at each edge is calculated and the
normalized histogram of these values give the final CPBD value.

In [36], a NR-IQA metric is presented based on edge model (EMBM). The edge model can
estimate width and contrast at the same time for each pixel. Thus, probability of belonging to a
salient edge pixel can be determined, simulating the blur assessment performed by the HVS. The
final value is obtained by adding the probability of the different pixels.

Perceptual sharpness index (PSI) [20] is calculated based on the statistical analysis of local
edge gradients. It selects the biggest edges in the image through an adaptive edge selection
procedure. Then, the edge widths of the selected edges are computed and the ones above the Just
Noticeable Blur (JNB) width are subtracted. These steps are repeated in a block-wise way to
create the local sharpness map, where the highest qth percentile average of the local sharp scores
provide the final PSI score.

2.5.2. Edge free

ARISM (autoregressive-based image sharpness metric) is a blind edge free method for focus
quantification. It calculates the sharpness score by examining the variance of the locally evaluated
autoregressive values in a pointwise way. ARISM also takes into account the color information to
assess the sharpness of the image. In [37], the authors propose ARISMc, after extending ARISM
to the YIQ space.

Maximum local variation (MLV) is defined by Bahrami et al. [38] as the higher intensity
contrast of a pixel with respect to its 8-neighbors. Sharpness is defined by high variations, thus
the pixels’ MLVs are subjected to a weighting strategy. Heavier weights are assigned to greater
MLVs, making the tail end of the MLV distribution thicker, and becoming more discriminative
for different blur degrees. At the end, the metric value is computed from the standard deviation
of the weighted MLV distribution.

2.5.3. Wavelet

The fast image sharpness (FISH) method estimates both local and global image sharpness
[39]. First, it decomposes the image in three different discrete wavelet transformations (Cohen-
daubechies-fauraue 9/7 filters [6]). Next, the log-energies of each sub-band are calculated for all
the transform levels. Finally, the sharpness score is calculated by a weighted average of these
log-energies.



Research Article Vol. 31, No. 8 / 10 Apr 2023 / Optics Express 12267

Hassen et al. [40] followed the idea that local phase coherence (LPC) structures are just
shown in sharp edges. That way, they proposed the LPC-based sharpness index (LPC-SI). The
algorithms first pass an image through 3-scale 8-orientation log-Gabor filters and then, repeat
for each orientation and spatial location. They do not use block-based computation, but an
efficient algorithm that largely simplifies the LPC calculation, making it easily usable in multiple
applications.

2.5.4. Fourier like

Blind image blur evaluation (BIBLE) method [41] starts by calculating the gradient of an image to
evaluate its shape. Afterwards, the gradient map is split into blocks and the Tchebichef moments
are computed. The sum of squared non-DC moment values defines the energy of a block. At the
end, the variance-normalized moment energy (simulating the HVS) provides the BIBLE index.

Vu et al. [42] proposed a spectral and spatial sharpness (S3) measure. The spectral measure
S1(x) is calculated by the reduction of high-frequency components in unfocused captures followed
by a rectification using the sigmoid function to follow the HVS. The spatial measure S2(x) is
obtained based on the local total variation. The sharpness map S3 is calculated by obtaining the
geometric average of S1(x) and S2(x) of each independent block. Finally, to consider the HVS,
the final blur index is calculated as the mean of the largest 1% scores of S3.

2.5.5. Shallow learning

SPARISH (NR Sparse representation-based Image Sharpness) is based on sparse representations,
representing signals with as few as possible significant coefficients [43]. Since a focused capture
is defined by the localization of edges, a dictionary (made of edge patterns) can be used to
measure the blurriness level. The sharpness score is defined as the variance-normalized energy
(relative strength of blur in an image) of a group of chosen high-variance blocks. This algorithm
is beneficial for real-world applications since it is not sensitive to training images and so, can
evaluate different images using a universal dictionary.

3. Materials and methods

3.1. Instrumentation and sample description

The instrumentation employed in this study consists of an HS camera coupled to a conventional
BF microscope (Fig. 3). The BF microscope is an Olympus BX-53 (Olympus, Tokyo, Japan).
The HS camera is a Hyperspec VNIR A-Series from HeadWall Photonics (Fitchburg, MA, USA),
which is based on an imaging spectrometer coupled to a CCD (Charge-Coupled Device) sensor,
the Adimec-1000 m (Adimec, Eindhoven, Netherlands). It has four magnification lenses: 5×,
10×, 20× and 50×. These numbers refer to the magnification achieved by the system to capture
the sample (e.g., a 4× objective lens is magnifying the sample four times its size). This HS
system works in the visual and near-infrared (VNIR) spectral range from 400 to 1000 nm with a
spectral resolution of 2.8 nm, sampling 826 spectral channels and 1004 spatial pixels per line.
The push-broom camera performs spatial scanning to acquire an HS cube with a mechanical
stage (SCAN, Märzhäuser, Germany) attached to the BF microscope, which provides accurate
movement (±3 µm accuracy) of the specimens in the 3 axes directions: [x, y, z]. The objective
lenses are from the LMPLFLN (Long working distance Plan SemiApochromat) family (Olympus,
Tokyo, Japan), which are optimized for infra-red (IR) observations. The light source is a 12 V,
100 W halogen lamp. This system was previously employed in histological HS analysis of
brain cancer samples [17], breast tumor cell detection [6] and disease biomarker identification
in plasma [44]. Furthermore, to create our DB, 125 plant and animal histology samples (rat
histology, stems, leaf structure and blood smears) from the company Brunel microscopes Ltd
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(England, UK) were employed (Fig. 3). These microscope slides are characterized by being
theoretically flat, so no roughness is expected in the specimens.

Fig. 3. Laboratory HS microscope employed in this work. (a) HS camera. (b) Eyepieces.
(c) Motorized stage. (d) Objectives. (e) Light sources. (f) Joystick to move the stage. (g)
RGB imaging software. (h) HS imaging software where a single HS frame can be visualized
for focusing purpose. (i) Example of a histology rat liver tissue sample. (j) Example of
histology cotton stem sample.

3.2. Database description

A dataset for focus analysis was obtained by capturing several images at different WDs to produce
different levels of blurriness. Samples to be captured included rat intestine (Fig. 4(a)), bird
blood (Fig. 4(b)), cotton leaf (Fig. 4(c)) and cladophores (Fig. 4(d)). However, the last ones
were the least suitable for this experiment since they have a homogeneous spatial frequency and
differences in blurriness are difficult to differentiate. Moreover, algae samples were also tested
for this experiment, but it was discovered that they were non-flat and so, they cannot be included
in these experiments (Fig. 4(d)).

Fig. 4. Focused ROI images captured at 10× of different samples: (a) Rat intestine tissue;
(b) Bird blood smear; (c) Cotton Leaf; and (d) Cladophores Algae. Scale bar: 50 µm.

Concerning the objectives lenses, in our HS acquisition system light attenuation is inversely
proportional to the magnification. Thus, the higher the magnifying power, the higher the power
of light it is needed to capture the sample. Using the default light system, it is not able to capture
clear images using 50× objective lens. So, knowing that tissue structures captured at different
magnifications can resolve different classification problems, three objective lenses (creating
different pixel sizes) were selected (5×, 10×, 20×).

To select the number of images in the database, we had to consider that they would have to
be reviewed by different users. Thus, following the ITU recommendations cited in Table 3, the
total time of the test should not exceed 30 minutes. A pair of images is evaluated in around two
seconds [45] so, it is possible to perform 900 rounds in 30 minutes. However, to be able to
include some more images, we opted to design the subjective test in two sections of 20 minutes
each, being able to perform 1200 pair comparisons in total. Following the swizz tournament,
24 pair comparisons (11 images, 2 images per round, 4 round per sample) are needed for each
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sample. In conclusion, no more than 50 samples could be tested per magnification (considering
that each magnification is performed by different subjects).

A summary of the number of reference images captured at each magnification and using each
sample is shown in Table 5. The total number of images refers to the total number of reference
images multiplied by the 11 levels of distortions selected in this work (i.e., number of images
captured at different WDs for each reference image).

Table 5. Summary of the number of images and samples included in
the HIDFA database.

No. of reference images
Total No. of images

5× 10× 20× Total

Rat histology 8 16 16 40 440

Leaf structure 5 10 6 21 231

Stems 16 10 19 45 495

Blood smears 0a 7 5 12 132

Freshwater Algae 0a 3 3 6 66

Total 29 46 49 124 1364

aNo images were captured of blood smears and freshwater algae at 5× because
they are mostly homogeneous and blur quantification algorithms could not perform
properly.

The focusing process on HS data capturing using push-broom cameras is based on the
subjective approach of the user. The HS image is focused by looking into one frame given by
the push-broom camera (Yλ frame shown in the grey image on the right at Fig. 5) and finding
the sharpest spatial frequency along the different WD from the sensor to the sample. For each
specimen, the focus point, WD0, was firstly found (Fig. 5). The procedure continued by moving
upwards a distance of ∆z (N−1)

2 . From this point, N HS images were captured distancing ∆z each
time from the previous image. N was always odd, producing the same number of slices upwards
and downwards of WD0. For each set of N HS images captured, a white and a dark reference
image were also obtained at WD0.

Fig. 5. Proposed HS DB capture procedure. Firstly, WD0 was found and then N HS images
were captured distancing ∆z from each other.

Conventional HS calibration was performed over the HS cubes [8]. This is a standard procedure
for flat field correction to transform captures to normalized transmittance. A push-broom frame
is a capture of one spatial line containing the whole spectra of each pixel (1004 pixels× 826
spectral bands using the system of this work). During the capture process, a white reference
image is recorded by capturing one push-broom frame of the light incident on the HS sensor (See
Fig. S3 on Supplement 1). Similarly, the dark reference is obtained by turning off the light from

https://doi.org/10.6084/m9.figshare.21983096
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the system. Thus, an upper and lower light range are set. Then, Eq. (2) is performed over each
push-broom frame (R) separately, to normalize the light.

I =
R − DR

WR − DR
(2)

Then, preprocessing of the images were performed to reduce noise by removing the extreme
bands as studied in [46], resulting HS cubes of 645 bands. After capturing and preprocessing the
HS cubes, monochromatic images and synthetic RGB images were extracted. Monochromatic
images were obtained by averaging the 645 bands of the preprocessed HS cubes. Synthetic RGB
images were obtained by applying the normal probability density function for each RGB channel
(R= 470± 0.04, G= 560± 0.06 and, B= 590± 0.08 nm), trying to imitate the HVS (see section
S4.2. of Supplement 1).

Summarizing, 125 samples were selected for this specific application, captured at different
WD from the focused plane and then, HS images were calibrated and preprocessed. Finally, a
total of 1,375 HS images conformed the HIDFA and were used for testing different OSs.

3.3. Metrics for blur assessment

3.3.1. Subjective WD-based score (SSWD)

This score was given to each image according to their different WDs between the specimen and
the objective lens. Thus, WD of each image can be calculated following Eq. (3), knowing that
WD0 is the point where the HS image is focused by visual inspection and, ∆z was the increment
distance between captures (0.2, 0.1 and 0.05 mm for 5×, 10× and 20×, respectively).

SSWD =
WD0 ± WD
∆z

(3)

3.3.2. Subjective MOS score (SSMOS)

This score was obtained in the form of MOS. All-play-all blurriness comparison between these
images is practically non-viable, thus, the Swiss system tournament was employed. The principle
of a Swiss competition is that each player will be pitted against another player who has performed
as well (or as poorly) as themself. The first round is either drawn at random or seeded according
to rating. The advantages of this method are twofold: it can find a clear winner between many
competitors (the one that reach to the end without a single bad result), and it has a relatively
small number of total rounds [47]. In our case, tournaments were organized between 11 different
blur versions of a reference image, where users had to select the image closest to the reference
one (Fig. 6). Ties were allowed. The first round was set randomly. Tournaments were developed
in the scope of Microsoft Access in Windows 10. Moreover, subjective tests took 45 minutes,
making a 5-minute pause in the middle of the experiment.

Fig. 6. Example of a round following the Swiss tournament system.

After all tests were completed MOS values for each single image were calculated following
Eq. (4), where Rn is the rating of a subject over such image and N the total number of subjects

https://doi.org/10.6084/m9.figshare.21983096
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that went through the subjective test.

SSMOS =

∑︁N
n=1 Rn

N
(4)

3.3.3. Objective scores

The main OSs employed for blur assessment were explained in section 2.5. In our experiments,
we are concentrated on studying learning free methods, which can be further divided as shown
in Fig. 7. From each of the four learning-free NR-IQA algorithm categories, the best available
algorithm for monochromatic images was chosen. First, these algorithms were evaluated in a
set of monochromatic images (computed from the mean of all wavelengths of the preprocessed
HS image) at different WDs, since there is dependency between WD and focus. Then, they
were applied to each band of each image, independently, to show the dependency between the
wavelength and the focus (to prove the existence of any chromatic aberration). Experiments were
carried out in MATLAB R2020a in a Windows environment (Microsoft Windows 10 Pro) with
an Intel i7-10700 K 3.80 GHz and 64 GB RAM.

Fig. 7. Summary of all scores employed in this work.

3.3.4. Results evaluation

Once all the scores employed in this project have been explained in detail, next step was to
correlate their results to test the quality of the different objective methods. To evaluate the
obtained results, the Video Quality Experts Group (VQEG) [48] proposes mapping the SS to the
OS. Since two different SSs (SSWD and SSMOS) were computed for each capture, three different
correlations were performed: 1) SSWD to SSMOS; 2) SSWD to OS; and, 3) SSMOS to OS.

VQEG performs the mapping following Eq. (5), where τ1 = max F(OS) , τ2 = min F(SS), τ3 =
mean(SS), and τ4 = std(SS)

4 .
(SS) =

τ1 − τ2

1 + e
SS−τ3
τ4

+ τ2 (5)

Afterwards, three evaluation metrics were calculated to evaluate the method’s performance: 1)
Spearman’s Rank-Order Correlation Coefficient (SRCC), which employs a monotonic function;
2) Pearson’s Linear Correlation Coefficient (PLCC), which is a measure of the linear correlation
after nonlinear mapping; 3) and Root-Mean-Square Error (RMSE), which is used to measure the
differences after the nonlinear mapping. In competitive NR-IQA algorithms, the values of SRCC
and PLCC are close to one, while the value of RMSE is close to zero.

4. Experimental results

4.1. HIDFA creation

Following the common procedures to create a database for IQA, the HIDFA database was
generated (section S3, Fig. S2, Fig. S3 and Fig. S4 from Supplement 1) and it is now publicly

https://doi.org/10.6084/m9.figshare.21983096
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available (more information in data availability). HIDFA is characterized by increasing the
number of reference images to 125 and the number of bands to 826 (Table 6). At the end, a total
of 1,375 HS images were captured. ITU recommendations, explained in Table 2, indicated that at
least 15 subjects are needed but no more than 40. Thus, a number of 24 participants was selected.
Since each magnification would need a different reviewer, only images at 10× were employed for
SSMOS calculation. Concluding, twenty-four subjects evaluated a total of 46 reference images at
11 levels of distortion (506 images), resulting in 12,144 ratings.

Table 6. Comparison between HIDFA and other NR-IQA DBs

No. reference
images

Spectral range (nm) Spatial
range

Types of
distortion

Levels of
distortion

Total No.
of images

TID2013 [21] 25 RGB Macro 24 5 3000

LIVE [22] 29 RGB Macro 5 5 779

CSIQ [23] 30 RGB Macro 6 4 o 5 ∼810

SIDQ [24] 9 410–1000 (160 bands) Macro 5 1 45

HIDFA [14]
29 at 5× 400–1000 (826 bands) Micro 1 11 1364

46 at 10×

49 at 20×

Sociodemographic data of the subjects were studied to determine if SSMOS values were
independent of the subject characteristics (Table 1 of Supplement 1). Subjects aged between
20 and 76 years (Fig. S1 of Supplement 1), being 15 men and 9 women. Two thirds of them
were qualified workers (only two did not go to university) while the rest were students. Thus, the
average intellectual activity presented medium-high values. Regarding to the clinical variables,
except for two subjects, they did not have a psychiatric history. None of the subjects presented
hypertension or type II mellitus diabetes. In terms of visual acuity, we found some variability:
two thirds had normal vision, while the rest had some vision problem, and so, wore glasses
(except for one person with astigmatism who did not wear glasses). One of the subjects with
normal vision had an eye surgery (more information on section S1. of Supplement 1).

Moreover, to determine whether sociodemographic data could be related to SSMOS results, a
statistical analysis was performed. To this aim, SSMOS scores were calculated for each categorical
value (e.g., SSMOS for men and women). Standard deviation was computed over the 11 levels of
distortions for a single reference image. The result were vectors of 46 values one per reference
image. Finally, t-test and ANOVA [49] methods were performed between the standard deviation
vectors of a feature with two or more categories, respectively. Statistical tests were employed
to evaluate, at the 5% of significance level, if the null hypothesis is rejected (each variable is
independent to the SSMOS results). None of the features presents a p<0.05, so, not statistically
significance was found. According to this statistical analysis, we can argue that SSMOS results are
independent to the sociodemographic data of the subjects.

4.2. SS analysis

SSMOS values of the images taken at 10× (46 set of images) were calculated. To this aim, synthetic
RGB images were generated by imitating the human eye spectral response [50]. Figure 8 shows
the distribution of SSMOS (from 1 to 6) along the SSWD for four sample z-stack groups. Same
results were obtained for all set of images of HIDFA. Mean correlation between SSMOS and SSWD
was measured, achieving SRCC = 0.89, PLCC = 0.8 and RMSE = 0.77.

https://doi.org/10.6084/m9.figshare.21983096
https://doi.org/10.6084/m9.figshare.21983096
https://doi.org/10.6084/m9.figshare.21983096
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Fig. 8. Results of SSMOS values for sample z-stack groups: (a) rat intestine tissue; (b) bird
blood smear; (c) cotton leaf; and (d) cladophores.

4.3. OS score analysis

OSs were calculated over the synthetic RGB images, and the results were correlated to the SSWD
and the SSMOS, as displayed in Table 7. Overall results are similar using both SSs. The best
performance was achieved employing MLV, FISHbb, LPC and S3 algorithms. Same procedure
was repeated for the monochromatic HS images obtained averaging all the bands of the HS cube
(Table 8). In these results, ARISM, BIBLE and S3 algorithms were not computed since they
only work for RGB images. The best performance was achieved employing MLV, FISHbb and
LPC algorithms. Since there is a high correlation between the results obtained for SSWD and
SSMOS, the latter was used in the next experiments to simplify the presentation of the results.

Table 7. Correlation Results for RGB Images

Method CPBDM
[35]

EMBM
[36]

PSI
[20]

ARISM
[37]

MLV
[38]

FISHbb
[39]

LPC
[40]

BIBLE
[41]

S3
[42]

SPARISH
[43]

SS
W

D

SRCC↑
Mean 0.62 0.69 0.72 0.50 0.84 0.90 0.83 0.72 0.87 0.7

Std 0.26 0.24 0.25 0.26 0.15 0.06 0.18 0.23 0.08 0.22

PLCC↑
Mean 0.63 0.64 0.70 0.51 0.81 0.84 0.82 0.76 0.81 0.76

Std 0.24 0.22 0.22 0.28 0.12 0.05 0.13 0.13 0.06 0.13

RMSE↓
Mean 2.32 2.33 2.04 2.50 1.80 1.98 1.72 2.12 2.05 2.14

Std 0.41 0.34 0.18 0.52 0.18 0.09 0.21 0.18 0.10 0.18

SS
M

O
S

SRCC↑
Mean 0.61 0.67 0.69 0.5 0.80 0.85 0.82 0.66 0.85 0.65

Std 0.27 0.27 0.28 0.26 0.25 0.21 0.23 0.28 0.19 0.28

PLCC↑
Mean 0.62 0.59 0.67 0.5 0.77 0.80 0.80 0.70 0.77 0.7

Std 0.24 0.22 0.27 0.27 0.24 0.17 0.21 0.23 0.17 0.22

RMSE↓
Mean 2.33 2.33 1.94 2.57 1.63 1.80 1.50 1.98 1.90 2

Std 0.63 0.47 0.44 0.71 0.40 0.31 0.45 0.30 0.22 0.3

4.4. OS analysis over single bands

After the evaluation of the focus OS on synthetic RGB and monochromatic images, we tested
the focus measurement on the different bands of the HS cubes independently. The OS were
computed over single band images (except for ARISM, BIBLE and S3 algorithms). Figure 9
shows the comparison of the results obtained for the monochromatic (mean over bands before
metric computation) versus single band images (mean over bands after metric computation).
Results show that methods can be divided in two: the ones with not similar means (CPBD,
EMBM, PSI and, SPARISH) and the ones with similar means (MLV, FISHbb and, LPC).

For clarification, metric values were plotted against wavelength for focus visualization (Fig. 10).
Some metrics seem to find differences between bands (CPBD, EMBM, PSI and, SPARISH),
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Table 8. Correlation Results for Monochromatic Images

Method CPBDM
[35]

EMBM
[36]

PSI
[20]

MLV
[38]

FISHbb
[39]

LPC
[40]

SPARISH
[43]

SS
W

D

SRCC↑
Mean 0.6 0.73 0.47 0.89 0.9 0.83 0.61

Std 0.31 0.13 0.27 0.09 0.07 0.14 0.25

PLCC↑
Mean 0.61 0.74 0.49 0.83 0.84 0.81 0.69

Std 0.29 0.06 0.27 0.07 0.06 0.12 0.22

RMSE↓
Mean 2.44 2.18 2.34 1.99 1.96 1.78 2.17

Std 0.54 0.18 0.47 0.09 0.09 0.18 0.2

SS
M

O
S

SRCC↑
Mean 0.6 0.72 0.45 0.85 0.85 0.8 0.56

Std 0.31 0.18 0.29 0.24 0.23 0.24 0.29

PLCC↑
Mean 0.62 0.69 0.45 0.8 0.81 0.8 0.64

Std 0.28 0.16 0.3 0.17 0.18 0.19 0.26

RMSE↓
Mean 2.46 2.11 2.45 1.8 1.76 1.57 2.06

Std 0.78 0.33 0.66 0.33 0.33 0.46 0.36

Fig. 9. Results of SSMOS values versus OS for monochromatic images (a) SRCC; (c) PLCC;
and the RMSE. Results of SSMOS values vs OS for single band images (b) SRCC; (d) PLCC;
and (f) RMSE.
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while others keep a constant focus metric over the different wavelengths (MLV, FISHbb and,
LPC). These results agree with the ones previously obtained.

Fig. 10. Results of SSMOS values versus OS for each single band image using the selected
algorithms: (a) SRCC; (b) PLCC; and (c) RMSE.

4.5. OS analysis over single sample groups

To make a reliable wavelength comparison, samples must be divided into samples groups (blood
smears, leaf structures, rat histology and stems). Figure 11 presents the results of the OS for each
sample group and their mean HS signature. Overall, it can be deduced that worst metric values
are obtained at lower information bands (HS signature lower peaks). The low blur value may be
due to the few edges found in images with almost no color in such wavelength.

4.6. OS analysis over single frames

As it is not clear which algorithms are behaving accordingly to reality, further analysis was
performed. Specific cases were studied by displaying a single band image from HS cubes for
visual examination. Figure 12 show the monochromatic picture and several single band images
of a rat histology capture at their most focused point (SSWD = 6). PSI was the method selected to
represent the ones that seem to find differences between bands, while FISHbb was representing
the ones that keep a constant focus metric over the different wavelengths. PSI values decrease
along with the loss of information in the image, while FISHbb values keep constant values. Thus,
for an image with the same SSWD for all wavelengths, FISHbb better recognizes the focus level
along all bands.

4.7. Summary of the experimental results

In this work, several results have been obtained. Firstly, in order to test different blur quantification
algorithms, the HIDFA was generated. Then a subjective test was carried out over 24 participants
in order to recollect the MOS values of each synthetic RGB image of the dataset. Using these
data, several state-of-the-art algorithms have been employed to select the most appropriate one
for HS microscopy samples. MLV, FISHbb, LPC and S3 were the algorithms that provided the
best results on synthetic RGB images. Afterwards, since HSI is intended for data collection of
data across the light spectrum, each wavelength image was analyzed independently (ARISM,
BIBLE and S3 methods could not be used because they only work over RGB images). From the
results obtained, algorithms can be divided in two groups: methods that obtain similar values for
the entire spectrum (G1: MLV, FISHbb and, LPC) and the ones that obtain different values (G2:
CPBD, EMBM, PSI and, SPARISH). Afterwards, the images were divided into their original
sample groups and the main HS signature was calculated for each one of them. In Fig. 11 it
can be appreciated that G2 algorithms behave according to the information found in each band.
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Fig. 11. SRCC correlation to SSMOS values for: (a) rat histology; (b) blood smears; and (c)
leaf structure; and (d) stems.

Fig. 12. Image of a rat intestine tissue at different wavelengths (W) and their corresponding
OS values for the PSI and FISHbb algorithms, being SSWD = 6.
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Thus, we can conclude that G1 algorithms are sample independent while G2 methods are not. An
example is found on Fig. 12, where different wavelength frames are shown next to their scores
for one algorithm of each group. It can be appreciated that, although for the chromatic image
PSI and FISHbb scores are similar, they vary along wavelengths. It is remarkable how FISHbb
remains almost constant, although the spatial information is very different in each of the frames.
Since all the spectrum of a HS cube is focused at the same WD, it would be coherent for all the
bands to have the same score, making G1 algorithms more reliable.

5. Conclusion

Histopathology is the gold standard for cancer diagnosis. HSI is a novel technique that is showing
high potential to improve the identification of tumor tissue and other diseases. High quality
images are required to obtain an accurate automatic tissue classification. However, optimal focus
is not always achieved due to the irregular surfaces of the samples. Thus, focus assessment
becomes a relevant step before classifying histology images. In this paper, the state-of-the-art
related to the existent OSs that quantify blurriness has been studied. Existing NR-IQA databases
have also been reviewed.

One relevant contribution of this work is the creation of a public HS database for focus
assessment based on 125 reference frames taken at 11 different WDs (a total of 1,375 HS cubes).
SSMOS scores were obtained by asking 24 subjects to complete a subjective test, where images
were rated following the Swiss tournament system. Afterwards, such SSs were correlated to
the previously studied OSs. The evaluation of these techniques, applied to synthetic RGB and
monochromatic images generated from the HS cubes, agreed that the algorithms with better
performance are MLV, FISHbb and LPC (SRCC>0.85, PLCC>0.8 and RMSE<1.8). Then, OSs
were also calculated over single band images, creating two groups of algorithms: the ones that
obtain similar values for all the spectrum (G1: MLV, FISHbb and, LPC) and the ones that obtain
different values (G2: CPBD, EMBM, PSI and, SPARISH). To select one group, the database was
divided in the four origin groups (blood smears, leaf structures, rat histology and stems) and the
HS signatures were compared to the values given by the algorithms. Since the entire spectrum
of a HS cube is focused to the same WD, it would be coherent for all bands to have the same
score. Thus, G1 algorithms should be selected since their score remain constant to information
change along bands. Concluding, the most important contribution of this work is the finding of
G1 algorithms to be more reliable for this application. Future work includes the use of these
algorithms in z-stacking applications. The idea is to correct the blurriness, caused by different
factors (Fig. 1) over the HS cubes. To this aim, the selected algorithms will be further studied to
select the most focused areas and spectral bands over a range of HS cubes captured within the
system’s DOF.
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