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ABSTRACT

Determining the most informative features for predicting the overall survival of patients diagnosed
with high-grade gastroenteropancreatic neuroendocrine neoplasms is crucial to improve individual
treatment plans for patients, as well as the biological understanding of the disease. Recently de-
veloped ensemble feature selectors like the Repeated Elastic Net Technique for Feature Selection
(RENT) and the User-Guided Bayesian Framework for Feature Selection (UBayFS) allow the user
to identify such features in datasets with low sample sizes. While RENT is purely data-driven,
UBayFS is capable of integrating expert knowledge a priori in the feature selection process. In this
work we compare both feature selectors on a dataset comprising of 63 patients and 134 features
from multiple sources, including basic patient characteristics, baseline blood values, tumor histol-
ogy, imaging, and treatment information. Our experiments involve data-driven and expert-driven
setups, as well as combinations of both. We use findings from clinical literature as a source of
expert knowledge. Our results demonstrate that both feature selectors allow accurate predictions,
and that expert knowledge has a stabilizing effect on the feature set, while the impact on predictive
performance is limited. The features WHO Performance Status, Albumin, Platelets, Ki-67, Tumor
Morphology, Total MTV, Total TLG, and SUVmax are the most stable and predictive features in our
study.

∗Henning Langen Stokmo is also affiliated with the Institute of Clinical Medicine, University of Oslo, Oslo, Norway
†Mona-Elisabeth Revheim is also affiliated with The Intervention Centre, Oslo University Hospital, Oslo, Norway, and the

Institute of Clinical Medicine, University of Oslo, Oslo, Norway

ar
X

iv
:2

30
2.

10
10

6v
1 

 [
cs

.L
G

] 
 2

0 
Fe

b 
20

23

https://orcid.org/0000-0002-6919-3483
https://orcid.org/0000-0002-2861-0340
https://orcid.org/0000-0003-1327-4855
https://orcid.org/0000-0003-3300-7420
https://orcid.org/0000-0003-3454-7461
https://orcid.org/0000-0003-1595-9962


Feature Selection in High-Grade Gastroenteropancreatic Neuroendocrine Neoplasms A PREPRINT

1 Introduction

Gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN) are heterogeneous types of malignancies increas-
ingly common over the last three decades [1, 2]. High-grade GEP NEN encompasses both neuroendocrine tumors
grade 3 (NET G3) and neuroendocrine carcinomas (NEC), where NEC is further subdivided into small cell (SC) and
large cell carcinomas (LC). According to the WHO 2019 Classification of Tumors: Digestive System Tumors, NET
G3 are well differentiated (WD), whilst NEC are poorly differentiated (PD), both with a Ki-67 proliferation index (Ki-
67) > 20% [3]. Although both NET G3 and NEC share features of immunohistochemical staining with chromogranin
A and synaptophysin, they are considered morphologically different [4].

The prognosis for patients with advanced GEP NEC is poor, with a median survival of less than 12 months [5,6], whilst
the prognosis for locoregional GEP NEC is higher; 20.7 months [7]. Numerous recently published studies [5, 8–14]
have shown the prognostic importance of several parameters on overall survival (OS) such as age, performance status
(PS), primary tumor site, tumor differentiation, TNM-stage, serum lactate dehydrogenase (LDH), serum platelet levels,
proliferation marker Ki-67, maximum standardized uptake value (SUVmax), total metabolic tumor volume (tMTV)
and total total lesion glycolysis (tTLG). Establishing more robust prognostic parameters and validating established
parameters is essential to provide optimal care for this patient group.

Forecasting the OS of cancer patients as a major indicator of treatment success by machine learning models is of high
relevance to offering optimal individual treatments for patients. In particular, accurate outcome prediction models
pave the way for decision support in clinical practice. Since GEP NEN are rare, however, the data basis for training
purely data-driven models is limited, leading to problems like overfitting, spurious correlations, and, consequently, to
inaccurate predictions [15–17]. Two major approaches are at hand to overcome these issues: (a) increasing the number
of samples (either by collecting more data or by artificial data augmentation) or (b) reducing the dimensionality of the
feature space. In this work, we elaborate on approach (b), where our method of choice is feature selection. While
general dimensionality reduction methods like Principal Component Analysis [18] transform the data to a new domain
and thereby make identification of influencing factors difficult, feature selection reduces the dimension by subsetting
the dataset by columns. As a result, a subset of the original features is retained, and the interpretability of the data
columns is preserved.

Beyond the obvious benefit that predictive models become tractable, feature selection has the potential to improve
the understanding of biological processes by clinical experts [19]. In particular, feature selectors point to input data
parameters, which are related to explaining the target variable by a data-driven model. This information may either
support or contradict existing hypotheses about the underlying biological processes or disclose previously unknown
relations. The evaluation and interpretation of the findings require close collaboration between clinical experts and
data scientists. However, such an application of feature selectors is still less common in machine learning, where the
focus typically lies exclusively on optimizing performance metrics.

State-of-the-art research in feature selection with applications in healthcare, such as L1 regularization [20], decision
trees [21], Laplace scores [22], or the minimum redundancy-maximum relevance (mRMR) criterion [23], are mainly
data-driven and may suffer from well-known limitations. Among these limitations is the problem that minor changes,
such as the inclusion of new or removal of old samples, may have significant effects on the set of selected features
— the property of feature sets to remain invariant under such changes to the dataset is referred to as feature selection
stability and investigated in [24]. The usage of ensemble feature selectors, which train multiple feature selectors on
subsets of the samples in a dataset, has recently been investigated extensively [25] and achieves a higher feature se-
lection stability compared to a single feature selection run, while retaining a similar predictive performance, as used
e.g., in random forest methods [26]. More recently, this fact has been exploited to introduce more stable feature se-
lection methods tailored for healthcare applications, which offer a large potential with respect to the aspects discussed
above [19, 27].

This paper aims to improve the understanding and insights into the OS in patients with high-grade GEP NEN by
applying recently developed ensemble feature selection techniques. Specifically, we evaluate the Repeated Elastic Net
Technique for Feature Selection (RENT) [27], as well as the User-Guided Bayesian Framework for Feature Selection
(UBayFS) [19] on a dataset containing 63 patients diagnosed with high-grade GEP NEN. Our experiments compare
both ensemble feature selectors in setups with and without the use of expert information. Our main goals are: (I)
to determine the most informative set of features with respect to the outcome prediction task; (II) to interpret those
selected features clinically — to evaluate the first goal, we measure the quality of the selected feature set in terms of
predictive performance and selection stability. Another aspect of interest is: (III) to determine the effect of integrating
prior expert knowledge into the feature selection process, compared to a purely data-driven pipeline. To this end, we
discuss the feature selection results with respect to their clinical relevance and potential to improve our understanding
of what influences OS of GEP NEN patients.
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Notations In the following, we denote the input data matrix by X ∈ Rm×n, where m denotes the number of
patients, and n denotes the number of features. Further, the target variable is denoted by y ∈ Rm. A feature set S is
characterized by the indices, S ⊆ {1, . . . , n}. Vectors and matrices are indicated by bold letters.

2 Materials and Methods

2.1 GEP NEN dataset

Statements of Ethics This study was done in concordance with the Declaration of Helsinki. Approval from the
regional committee for medical and health research ethics (2012/490, 2012/940, 2018/1940) and the local data protec-
tion officer was obtained. Informed consent was obtained from all patients at the time of inclusion but was waived for
the patients in terminal phase and deceased.

Patient cohort Patients were identified from a single institutional cohort at Oslo University Hospital, also included
in two multi-institutional Nordic NEC registries organized by the Nordic Neuroendocrine Tumor Group, previously
described by [8]. In short, this cohort consisted of 192 patients included between January 2000 and July 2018,
with GEP NEC classified according to the WHO 2010-classification [28]. In addition, all patients who had per-
formed a fluorine-18 labeled 2-deoxy-2-fluoroglucose ([18F]FDG) positron emission tomography/computed tomogra-
phy (PET/CT) within 90 days of their histological evaluation were eligible for inclusion. A hundred and seven patients
did not have PET/CT performed, and two patients had no metabolic active lesions available for evaluation. Seventeen
patients had more than 90 days between their biopsy and PET/CT, leaving 66 patients available for inclusion in this
study.

Histological re-evaluation As described previously in [8], the histological re-evaluation was performed on both core
biopsies and surgical specimens from GEP NEC primary tumors and metastases. These were re-classified according
to the most recent WHO 2019-classification [3] with regards to synaptophysin, chromogranin A, and the proliferation
marker Ki-67. In this study, only the re-evaluated histology features were used, while the original histology block was
discarded.

PET/CT acquisition All PET/CT scans were done according to the European Association of Nuclear Medicine
(EANM) guidelines [4, 5] as part of the clinical routine. The three PET scanners used were a 40-slice Siemens
Biograph mCT hybrid PET/CT system (Siemens Healthineers, Erlangen, Germany), a Siemens Biograph 64, and a
64-slice General Electric (GE) Discovery 690 (GE Healthcare, Waukesha, WI, USA). Both Biograph PET/CTs were
both EANM Research Ltd. (EARL)-accredited, whilst the Discovery 690 followed similar routine quality controls
harmonizing with the two Biographs for cross-calibration. All acquisitions were from the vertex or skull base to
mid-thighs. Before the PET acquisition, a low dose CT was acquired for anatomical information and attenuation
correction. Parameters from PET were extracted using the ROI Visualisation, Evaluation, and Image Registration
(ROVER) software v3.0.5 (ABX GmbH).3

Treatment All patients received treatment in the form of surgery, chemotherapy, or a combination of both. In total,
54 patients received the standard treatment of platinum-based chemotherapy. Patients could have surgery prior to or
after [18F]FDG PET/CT. Evaluation of response to chemotherapy treatment was done with CT using the Response
Evaluation Criteria in Solid Tumors (RECIST) [29].

Outcome variable Our outcome variable, or outcome target, was overall survival (OS) in months. This can be
defined as the time a patient remains alive from the time of diagnosis to death of any cause; hence, it is not disease-
specific. It is a reliable and easily available survival measure [30]. We can analyze such survival data, i.e., the time
from diagnosis to the time of death, using the Kaplan-Meier estimator. For those patients who did not experience
the event during the time of the study (or during follow-up) (i.e., death), they are said to be ’censored’ [31]. Being
’censored’ means that we do not know when this event will occur, only that it has not happened at the end of the study
(or during follow-up). Across the full dataset, the empirical distribution of the outcome variable is illustrated as a
histogram in Fig. 1.

3The detailed imaging- and extraction protocol is described in [8].
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Figure 1: Distribution of the overall survival in months.

Figure 2: Correlations between input features (features with absolute correlations ≤ 0.5 were removed).
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Figure 3: Preprocessing pipeline for the dataset.

Data blocks The data were grouped into five different blocks

(p) patient characteristics
(b) baseline blood values
(h) re-evaluated histology
(i) PET/CT imaging
(t) treatment

The data contained mainly categorical and ordinal features with very few continuous variables. An overview of the
pairwise correlations between the n = 134 features is provided in Fig. 2.

2.2 Data preprocessing

The data preprocessing consists of several chronological steps prior to applying the ensemble feature selectors, see
Fig. 3.

Data cleaning The first step in data preprocessing is to discard features known to be unimportant, such as features
with only one unique value for all patients or duplicated features. Furthermore, we remove all data columns containing
more than 25% missing values across all patients. By this criterion, we remove 16 features from block (p), one feature
from block (b), six features from block (h), 14 features from block (i), and eight features from block (t).

Further, three patients are excluded from the experiments due to a high number of missing values in at least one block.
All subsequent preprocessing steps are conducted on the remaining 63 patients and are applied by block to retain the
homogeneous block structure.

Missing values Some values were missing because the clinicians did not fill out the case registration forms (CRF)
properly or completely. Amongst other reasons, this may be because the information was missing in the patient journal,
a blood sample was not done, a parameter was forgotten registered in the patient journal, or because the patients are
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Table 1: One-hot versus ordinal encoding of a 4-level variable (levels A, B, C, D). Ordinal encoding assumes an order
of the levels (here: A<B<C<D).

level one-hot encoding ordinal encoding

A (0,0,0) (0,0,0)
B (0,0,1) (0,0,1)
C (0,1,0) (0,1,1)
D (1,0,0) (1,1,1)

referred from other hospitals. Such features, which are unavailable for a large percentage of patients, cannot be
assessed properly in a data-driven manner and were therefore excluded — an imputation of those features would be
unreliable due to the small sample size and may introduce incorrect or misleading information into the model.

As a second step, we impute the features with less than 25% missing values via an adaptation of the k-nearest neighbors
(kNN) imputation algorithm [32]. The number of features and the number of patients that have at least one missing
value for each block are: (p) (7:25), (b) (5:16), (h) (7:6), (i) (2:2), and (t) (3:3) where the first number represents the
number of features and the second number represents the number of patients.

In particular, we restrict the feature space to non-missing columns and compute a matrix of pair-wise distances between
all patients. We denote the set comprising the k-nearest neighbors of patient i by Nk(i) ⊆ {1, . . . ,m}. Assuming that
feature j is missing for patient i, we impute xi,j by ximp

i,j , representing the median (instead of the mean, as suggested
by [32]) of feature j across the patient’s k nearest neighbors where the feature value is known, i.e.

ximp
i,j ← median {xl,j : l ∈ Nk(i)} . (1)

Ordered categorical features are transformed to an integer scale before interpolation. The usage of an odd value of k
(by default, we use k = 5) guarantees that the median returns an integer, which is a clear benefit over the mean when
using the technique for ordered features.

Categorical feature encoding Categorical features require encoding in order to be processed alongside numeric
variables in predictive models. In particular, we distinguish between ordinal and nominal categorical variables: Nom-
inal variables (i.e., variables without an internal order of the feature levels), such as clinical institution, are one-hot
encoded [33]. Given a feature j with cj feature levels, the one-hot encoding produces a set of cj − 1 binary features
{e2, . . . , ecj}, given as follows:

(el)i =

{
1 if xi,j = l,
0 otherwise, (2)

for l ∈ {2, . . . , cj} indicating the feature level. The number of one-hot/ordinal categorical features is: 21/5 for block
(p), 0/3 for block (b), 10/2 for block (h), 1/0 for block (i), and 5/0 for block (t). To avoid linear dependencies between
features, the first feature level is not represented by a binary vector in the encoded space, but rather contributes to the
model intercept, see Tab. 1.

Features with an internal order among their levels (ordinal variables), such as the WHO performance status with levels
0, 1, 2, 3, and 4, require an ordinal encoding to retain the relevant information about the order. Under the assumption
that the influence of a feature increases from lower to higher levels (i.e., higher levels comprise the lower levels and
an additive effect), the following encoding is used:

(el)i =

{
1 if xi,j ≤ l,
0 otherwise. (3)

for feature level l ∈ {2, . . . , cj}. Again, the first feature level, which would be assigned a value of 1 across all samples
in the encoded space, is not assigned a binary vector in the encoded space. A comparison between one-hot and ordinal
encoding is provided in Tab. 1. In contrast to transforming to an integer scale, this binary ordinal encoding preserves
the order among the categories but does not pretend equal distances between the categories on a numerical scale.

Feature transformation and normalization During our experiments, we split the dataset into train and test sets. To
normalize the distribution of each numeric feature, we use the Yeo-Johnson power transformation along with standard-
ization [34]. The Yeo-Johnson power transformation is an extension of the well-established Box-Cox transformation
with the benefit that it enables the transformation of negative and zero values. The intention is to bring the data
closer to a normal distribution by simultaneously stabilizing data variance. For a given feature j, Yeo-Johnson’s power
transform is defined as

6
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Table 2: Encoding of the target variable ”overall survival” (OS) [months].
level encoding

OS ≤ 12 1
12 < OS ≤ 24 2
24 < OS ≤ 36 3
36 < OS ≤ 48 4
48 < OS ≤ 60 5
60 < OS 6

xYJ
i,j ←



((xi,j + 1)λj − 1)

λj
if λj 6= 0, xi,j ≥ 0

log(xi,j + 1) if λj = 0, xi,j ≥ 0

− ((−xi,j + 1)2−λj − 1)

2− λj
if λj 6= 2, xi,j < 0

− log(−xi,j + 1) if λj = 2, xi,j < 0.

(4)

Commonly, the transformation parameter λj is estimated from the data using a maximum likelihood approach. After
the Yeo-Johnson transformation, we scale the data to zero mean and variance of 1. To prevent biased train and test
data, the transformation parameter λj and the mean and variance for the standardization are estimated on the training
data in each split separately.

Encoding of the target variable Even though machine learning models for censored data are evolving, most present
predictive models cannot handle censored data [35]. To avoid the problem presented by censored data, we encode the
OS in months into an integer value (1-6). Using 60 months median follow-up time as a reference, there are no
censored patients with OS below 60 months. Considering survival on a yearly basis we use the representation of the
target variable in our experiments as in Tab. 2. Since each level in the encoded space equals one year, predictive errors
used in the remainder of this paper refer to a yearly scale.

2.3 Feature Selection Methods

In this work, we investigate two ensemble feature selection methods, which have been tailored to fit the requirements
of datasets in the life science domain: the Repeated Elastic Net Technique for Feature Selection (RENT) [27] and the
User-Guided Bayesian Framework for Feature Selection (UBayFS) [19]. Both methods build on the principle of (a)
randomly subsampling the input dataset and (b) training an elementary feature selection model on each sample. The
final feature set is determined by applying a meta-model on the feature sets selected by the elementary models, see Fig.
4. In the case of RENT, the elementary feature selector type is restricted to elastic net regularization [36] using logistic
regression models for binary classification problems or ordinary least squares linear regression models for regression
problems, while UBayFS operates on an arbitrary elementary model type.

RENT The rules to obtain a final feature set further demonstrate the distinct scopes of the methods: RENT defines
three criteria τ1, τ2 and τ3 for the selection of features based on the distribution of their weights across the elementary
models; (I) the number of times the feature weights are non-zero (τ1) is above a level specified by the user; (II) the
alternation of the sign of the feature weights does not surpass a user-defined level (τ2); (III) the size of the feature
weights deviate significantly from 0 (τ3). The hyperparameters for RENT comprise of a number M of elementary
models, an internal data split ratio, two parameters associated with the elastic net regularization in the elementary
models (C and `1), as well as one cut-off parameter for each of the three criteria τ1, τ2, τ3.

UBayFS In contrast, UBayFS combines the selection frequency of each feature across the elementary models with
prior information from domain experts, along with side constraints. In particular, the prior weighting of features
is possible, along with the definition of linear side constraints between features (and feature blocks). In practice,
weights can represent knowledge about the importance of features, which is verified from previous publications. Side
constraints enable the user to restrict the feature set’s maximum size maxs and account for the intrinsic block structure
during feature selection (e.g., in multi-source datasets). Hence, RENT implements a purely data-driven approach based
on Elastic Net, while UBayFS is a general meta-model with capabilities to integrate contextual information about the
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data generation process. In its most basic setup, UBayFS requires as hyperparameters a number of elementary models
M and an internal data split ratio, a maximum number of features maxs, and a model type to use as the elementary
feature selector.

X
input

dataset
sub-

sampling

X1 X2
. . . Xm

data
subsets

elementary
feature

selectors

δ1 δ2 . . . δm
elementary
feature sets

information from data

meta-model
RENT

selection criteria

τ1 τ2 τ3

UBayFS

posterior distribution
over δ

prior
knowledge

side
constraints

information from expert

δ?
final

feature set

Figure 4: Overall structure of both ensemble feature selection methods, RENT and UBayFS. After training elementary
feature selectors, information is combined in a meta-model. While RENT uses information from data only, UBayFS
additionally includes expert information.

2.4 Outcome prediction

Linear regression Given a set of selected features S, we make use of linear regression models [37] to model the
target variable y. In its simplest form, the linear regression model (with intercept) is given as

y = X̃β + ε, (5)

where β ∈ Rn+1 is the model parameter vector, X̃ denotes the matrix containing one column of ones, followed by
the sub-matrix of X restricted to the columns contained in S. Further, ε ∼

iid
N(0, σ2) denotes the model error with

constant error variance σ > 0. By default, parameters of linear regression models are obtained via ordinary least
squares (OLS), i.e. by minimizing the least squares error

min
β
‖y − X̃β‖22. (6)

Once the parameter vector β is estimated by optimizing Eq. 6 analytically, predictions are obtained by evaluating
ŷ = X̃β.

k-nearest neighbor (kNN) regression As an alternative to the linear regression model, a k-nearest neighbor (kNN)
regression model [37] is used to compute predictive results. In contrast to the linear regression model, the kNN model
does not assume a linear relationship between the predictors and the target variable. Similar to the kNN method used
for missing value imputation in Section 2.2, a neighborhood Nk(i) of sample i containing the k nearest training data
points with respect to a Euclidean metric on the feature space is computed for any data point xi. The prediction for
the target value yi corresponding to sample i is given by the mean of the neighbor’s target values

ŷi =
1

k

∑
l∈Nk(i)

yl. (7)

8
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Note that, the neighborhood Nk(i) is a subset of the training samples only, while ŷi may represent both, training or
test samples.

Both predictive models, linear regression as well as the kNN regression model, are known to suffer from the curse
of dimensionality — hence, we can assume that selecting a high number of features deteriorates each model. The
opposite extreme for both methods, i.e., selecting no features at all, leads to predicting the output with the mean over
the training data regardless of the input. Thus, we expect a well-performing feature selector to deliver a proper subset
S of the feature set {1, . . . , n}, which allows both predictive models to perform better than the baselines given by (a)
the overall mean of the target variable, and (b) a model including all features.

2.5 Implementation

Parts of our analyses are conducted in the programming languages R [38]; other parts are conducted in Python [39].
We use the open-source implementations for RENT [40] and UBayFS [41]. For data preparation and preprocessing,
we deploy the R package caret [42], and the Python package scikit-learn [43]. Fold indices are shared between R and
Python. Predictive models are trained and evaluated in R using the caret package for all model setups. All plots are
created using package ggplot2 [44].

All results are produced on an Intel Core i7 CPU @1.8 GHz, 32GB RAM under a Windows 11 Pro operating system.

3 Experiments

Our experimental results are structured into a pre-study, where we determine optimal hyperparameters for the feature
selection algorithms, followed by two main experiments. Experiment 1 focuses on the comparison of the two models,
RENT and UBayFS, on the dataset without accounting for additional expert knowledge. Experiment 2 is operated on
UBayFS only, as prior information and additional side constraints are included in the feature selection.

Our main focus in the experiments lies on the selected feature sets, along with the impact of the feature selection on
predictive performance. We provide feature counts from both of the investigated feature selectors, RENT and UBayFS,
across five different train-test splits of the dataset. Unless specified otherwise, all experiments are conducted using the
hyperparameters determined during the pre-study.

3.1 Experimental setup

Model parameters Both algorithms, RENT and UBayFS, are trained on M = 100 ensemble models and internal
0.75/0.25-splits for sub-sampling the dataset. The underlying elementary feature selector for RENT is, by definition,
an elastic net regularized linear regression model. Thus, RENT requires five hyperparameters to be determined during
the pre-study (2 elastic net regularization parameters, `1 and C, as well as three thresholds τ1, τ2, and τ3 for the
selection criteria). In order to make results comparable with UBayFS, we further deploy a side condition to restrict
the search space to settings, which deliver a maximum number of features maxs during validation. Thus, the number
of features selected by RENT is approximately equal to the pre-defined parameter maxs.

UBayFS uses minimum redundancy max relevance (mRMR) [23] as an elementary feature selector. The internal
number of features in each elementary model is set to maxs, i.e., each elementary model selects exactly maxs features.
For the meta-model, the same parameter maxs is used to restrict the maximum number of selected features via a max-
size side constraint (hard constraint) — while different levels of maxs are evaluated in experiment 1, the parameter is
set to the default maxs = 20 in experiment 2. Further, unless otherwise stated, prior feature weights in UBayFS are
set uniformly to 0.1 across all features, which results in a non-informative prior.

Train-test splits As the ratio between the number of patients and features is unbalanced, with 63 patients and 134
encoded features, the reliability of the feature ranking results must be validated to reduce the risk of spurious correla-
tions and overfitting. Hence, we perform a 5-fold split of the dataset. For all possible permutations, we use four folds
for training UBayFS or RENT, as well as the predictive models and the remaining fold for testing. Hyperparameters
are determined on each split separately by internally subsetting the 4-fold training set (nested split). The 5-fold splits
and hyperparameters determined in the pre-study remain the same across all experiments.

For each feature selection method, we provide the selection frequencies of each feature across the 5 folds, i.e., a feature
obtains an importance score between 0 and 5 according to the number of folds it was selected for. For predictive
performance scores, a linear regression model and a kNN regression model are trained on the same training folds,
using the features from the preceding feature selection, and evaluate the prediction error on the test set (averaged
across all folds).

9
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Table 3: Selected hyperparameters for each train/test split.

parameter fold
1 2 3 4 5

RENT

`1 0.3 0 0.3 0.3 0.3
C 1 1 1 1 1
τ1 0.3 0.5 0.3 0.35 0.35
τ2 0.3 0.5 0.4 0.35 0.35
τ3 0.975 0.975 0.975 0.975 0.975

UBayFS maxs 20 20 20 20 20

Performance metrics To assess whether a feature set contains relevant information for training predictive models,
we analyze the predictive performance in a regression setup following the feature selection step. The performance is
quantified using the root mean squared error (RMSE), which has a lower bound of 0 and shall be minimized.

Using the stability criterion introduced by [24], we further evaluate the feature selection stability across the five folds
for RENT and UBayFS. The computed score is bounded in the interval [0, 1]; a value of 1 indicates perfect stability,
i.e., the same feature set is selected in each model, while 0 indicates that selected feature sets show no overlap.

Furthermore, the redundancy rate (RED) returns an intrinsic feature set quality measure by computing the average
absolute Pearson correlation among the selected features. Small correlations are desirable as highly correlated features
represent redundant information. Equally to the absolute Pearson correlation coefficient, RED is bounded in [0, 1].

In experiment 2, we additionally assign prior weights to a subset of features — therefore, we also evaluate the per-
centage of prior-elevated features (PERC) in the selected feature sets as well. If PERC is high, features extracted
via data-driven feature selectors match the domain experts’ knowledge. However, a low PERC does not necessarily
contradict expert knowledge since the features may be highly correlated, and therefore, similar information may be
encoded in multiple distinct sets of features.

3.2 Pre-Study

The pre-study aims to determine the optimal hyperparameters for RENT. Given a 0.75/0.25 outer train-test split as
specified above, only train data are used for hyperparameter selection. For this purpose, 4-fold cross-validation is
performed on each train dataset (using the same 4 folds as in the outer train-test split). Across the resulting 4 models,
hyperparameters are selected by maximizing predictive performance in a grid search over the parameter space C ∈
{1, 10, 100, 1000}, `1 ∈ {0, 0.1, 0.2, . . . , 1}, τ1, τ2 ∈ {0, 0.05, 0.1, . . . , 1}, and τ3 = 0.975 (fixed).

The runtime for the full computation associated with the pre-study (parameter selection and final feature selection)
for RENT comprised approx. 350 sec (16 cores, 24 threads in parallel). Since UBayFS does not require parameter
selection, the runtime to evaluate the feature selection model for different levels of maxs (see Experiment 1) is shorter
(approx. 65 sec without parallelization).

Tab. 3 shows the hyperparameters identified for RENT and UBayFS in each train-test split (given by the numbers of
the test folds 1-5). Due to the restriction of the maximum number of features, the stated parameters may not represent
global maxima for the performance of RENT; however, comparability between the methods is preserved. Furthermore,
since the number of features is restricted, the selected hyperparameters are in a similar range between the folds.

3.3 Experiment 1: feature selection without prior knowledge

Having determined hyperparameters for each fold in the pre-study, RENT, and UBayFS are applied in each data split
to the training dataset to select an optimized feature set for a given maxs on a purely data-driven basis.

Selected features For each feature, selection frequencies across the five test folds are further provided in Tab. 4
(columns RENT and UBayFS, w = 0.1). In addition to the selection frequency, the table indicates whether a feature
shows a positive or negative impact on the target variable according to the coefficients in the linear model, if selected.
Thereby, ++ and −− indicate that a feature always shows the same sign across all predictive models. In contrast, +
and − indicate a majority of positive or negative coefficients across the predictive models, respectively.
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(a) kNN regression on RENT features (b) kNN regression on UBayFS features

(c) linear regression on RENT features (d) linear regression on UBayFS features

Figure 5: Predictive performances (on test set) of models trained after feature selection for different numbers of
features.

Predictive performance Further, Fig. 5 illustrates the predictive performances of kNN and linear regression models
trained after UBayFS and RENT feature selection. The plot shows the RMSE for each fold given a predefined number
of selected features maxs.

Notably, RENT performs better using the linear regression model as the predictor, while UBayFS shows a better
performance in combination with kNN. The stronger performance of RENT with linear regression may be a result of
the fact that the underlying feature selection in RENT is based on a regularized linear regression model. UBayFS,
however, is based on mRMR, which does not build upon a linear predictive model.

While linear regression results deteriorate at a higher number of features (maxs > 30), the kNN model retains a
similar performance level, which suggests that the curse of dimensionality does not yet have a strong effect on the
Euclidean distance for the given feature space dimensionalities. For the linear model, overfitting is triggered by a large
ratio between the number of features and the number of patients.

Among all compared methods, differences between the folds are obvious: for instance, fold 4 is predicted with the
least RMSE across all combinations of feature selector, predictive model, and maxs. On the other hand, fold 2 is
associated with a large RMSE in the models based on UBayFS, while fold 3 shows similar behavior for the kNN
model based on RENT features. Potentially, differences between folds may be caused by two factors (or combinations
of both):

• the cohort of patients in the training set does not represent the global distribution of the data well — e.g., the
training data do not contain a sufficient number of samples with particularly high or low target values (bad
prediction due to a bad model);

• the cohort of patients in the test set is particularly hard to estimate, e.g., due to outliers (bad prediction in
spite of an appropriate model);

Due to the low number of only 12-13 patients in each fold, even a low number of hard-to-predict outliers may deteri-
orate RMSE results significantly.
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Figure 6: Histograms of errors on the test set (predicted value by kNN - ground truth) of the folds performing best
(fold 4) and worst (fold 2) at maxs = 20 features.

Residuals In order to shed light on the dynamics leading to the differences in performance between the data folds,
histogram plots of the residuals for fold 2 (worst fold in UBayFS) and fold 4 (best fold across most setups) at maxs =
20 are provided in Fig. 6. Residuals are defined as the difference between the true value and the prediction; thus a
positive or negative residual value indicates an underestimation or overestimation of the lifetime, respectively.

In contrast to fold 4, the residuals from fold 2 are more dispersed. All histograms are symmetric and centered around
0, which indicates that all methods are able to estimate the intercept correctly. In both folds, the prediction model
was able to predict the correct lifetime category for almost half of the patients in the test set. However, the histogram
indicates that predictive models based on both feature selectors overestimate the lifetime in test fold 4 (positive errors),
while lifetimes in test fold 2 are rather slightly overestimated (negative errors). The main difference in performance
between fold 2 and fold 4 is driven by dispersion, i.e. by a minority of patients, which show a high error — due to the
small sample size, even a small number of such outliers can impact the total RMSE significantly.

When considering patients with absolute residual values > 2.5 as outliers, RENT, and UBayFS show 3 outliers in fold
2, each (RENT: 2 positive, 1 negative; UBayFS: 1 positive, 2 negative). Both methods commonly misclassify one
patient with true target value 6 and predictions 2.6 (UBayFS) and 2 (RENT), which substantiates the highest positive
outlier in both histograms. The remaining two outliers of each method refer to different patients.

Stability In addition to the performance evaluation, we further investigate qualitative aspects of the selected feature
sets, as shown in Fig. 7. The demonstrated stabilities and redundancy rates (RED) of the feature sets selected by
RENT and UBayFS across the five folds tend to increase with maxs. While RENT has a slightly lower and more
fluctuating stability (around 0.5), UBayFS shows a clear convergence at around 0.6. The RED is below 0.25 for all
possible numbers of features, indicating that both RENT and UBayFS select features with small correlations.

3.4 Experiment 2: feature selection with prior knowledge

Previous research on GEP NEN shows that some features impact the survival of patients; those are Age at diagnosis,
WHO performance status, Primary tumor location, Tumor morphology, Tumor differentiation, Lactate dehydrogenase
(LDH), Platelets, Albumin, Ki-67, SUVmax, and TNM-staging [5, 8–14]. Tumor differentiation is highly correlated
to tumor morphology, so we do not include the feature in this work. Furthermore, findings by [8] indicate a high
relevance of the features Total MTV [cm3] and Total TLG [g], which shall be investigated.

In this experiment, we focus on these features (a total number of 22 features in the encoded space) within our feature
selection and prediction pipeline. In particular, during experiment 1, the aforementioned features comprise 30% of the
final feature sets (on average across the five folds and given maxs = 20 features, each). We refer to this score as PERC
(percentage of selected features supported by literature). In the following, we deploy prior weights on these features
to investigate how UBayFS as a hybrid feature selector combining information from experts and data, performs in
comparison to the pure data-driven methods presented in experiment 1. Since RENT cannot incorporate prior feature
importances, this evaluation is restricted to UBayFS.
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(a) RENT features (b) UBayFS features

Figure 7: Stabilities and redundancy rates (RED) of feature sets selected by RENT and UBayFS (maxs = 20 features,
each).

Specifically, we increase the prior weight of the 22 features supported by literature (referred to as prior-elevated fea-
tures) to the following levels: w ∈ {0.1, 10, 20, . . . , 100, 110}— after evaluating all levels with respect to predictive
performance, we restrict to special cases w = 0.1 (non-informative prior weighting), w = 50 (mediocre prior weight-
ing), and w = 110 (strong prior weighting). After applying UBayFS with the given levels of prior information, we
examine how the feature set and the predictive performance develop. The case of 0.1 is equivalent to the uniform
case without prior knowledge (default setup for UBayFS in experiment 1). In contrast, prior weight 110 indicates that
each prior-elevated feature already is assigned a higher score than the maximum score that can be achieved throughout
the elementary models (M = 100) — as a result, the selected features are exclusively restricted to those with prior
information and elementary feature selectors in UBayFS are only used to select a feature set of maxs = 20 features
among the 22 prior-elevated features.

Predictive performance Fig. 8 shows the average performances along with the standard deviations across the 5
test folds. In general, lower levels of prior weights do not significantly impact the performance, although a minor
improvement can be observed in folds 4 (kNN) and fold 3 (linear model) up to w = 40. By increasing the prior weight
to a higher level, performance levels lead to stronger variability and an increase of RMSE in the better-performing
folds, such as fold 4. Finally, if the prior weight is set to the maximum level of 110, all folds converge to a similar
level since the data-driven feature selection hardly contributes to these setups. Thus, a potential conclusion is that
moderate levels of prior knowledge can slightly increase models’ capabilities. In contrast, strong prior knowledge
leads to a convergence towards the global mean performance across all folds — such prior setup acts as a strong
restriction of the search space exploited by the feature selector.

Stability In contrast to the minor effects of prior knowledge on predictive performance, stability increases signifi-
cantly, as shown in Fig. 8. Finally, at a maximum level of w = 110, stability converges towards an almost perfectly
stable solution. This is due to the restriction of the search space to the prior-elevated features, which results in a
selection of 20 out of only 22 features in total. As expected, the percentage of selected features supported by literature
(PERC) also increases linearly with the level of prior weights provided. The redundancy rate between the selected
features shows a slight decrease, indicating that the prior-elevated features contain only small correlations.

4 Discussion

Experiment 1 In our first experiment, we left out prior expert knowledge and let the feature selection be purely
data-driven. We know that certain features were prognostic for survival in earlier studies, as mentioned in experiment
2 below. We wanted to study whether the same prognostic features would still be selected and if there were any
currently unknown prognostic features that could be further researched. Comparing the two first columns in Tab. 4
we can see which features are selected repeatedly in different folds with RENT and UBayFS. We must keep in mind
that we cannot directly compare the importance of the features in terms of a coefficient (e.g similar to Cox regression),
just that they are repeatedly selected in each fold. Further, the correlation between features must also be considered
when comparing the importance of features which we can find in Fig. 2. Two or more features with a moderate/high
correlation contain the same information with respect to the model, and one fold may choose one over the other, whilst
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(a) Predictive performance using kNN regression (b) Predictive performance using linear regression

(c) Qualitative evaluation

Figure 8: Experiment 2: predictive performances on fold 1-5, and qualitative metrics of features sets produced by
UBayFS at different levels of prior knowledge on features with evidence from literature (maxs = 20).

another fold may choose a highly correlated one instead. This results in a lower number for both features, not reflecting
the importance of both when comparing them with a feature with a high number.

In block (p) (baseline patient characteristics) we have a few features that one would expect to be prognostic for OS.
One obvious one would be TNM-stage IV disease which does not seem to be chosen at all by RENT and UBayFS. But
looking at the correlation heatmap in Fig. 2 we see that this feature is highly correlated to several other features, among
those Metastatic Disease at Time of Diagnosis and Treatment Intention Palliative. We see that this last one gets chosen
four out of five times with RENT and five out of five times with UBayFS which probably explains why TNM-stage IV
does not seem to be important. Having a palliative treatment intention usually means you have stage IV disease. This
is also a well-known prognostic indicator from the literature [6]. Bone metastasis is usually a poor prognostic indicator
in several types of cancers [45] and it is not surprising that this is chosen all the time. We also know that WHO PS is a
prognostic indicator in these patients. This is also reflected in the number of folds it is chosen by RENT and UBayFS,
but it is only WHO level 2 that seems to be important. That said, Fig. 2 shows that WHO levels 3 and 4 are highly
correlated to some of the SUV-parameters which might contribute to those never being selected. Radical Surgery is
quite often chosen by both RENT and UBayFS and is also a predictable prognostic indicator. Having radical surgery
means that all viable tumors are removed, and that is only possible if you have a low tumor burden. This underlines
the importance of surgery in the curative intended treatment of this type of cancer.

Next, in block (b) (baseline blood values), we see that both CRP and ALP > Normal <= 3UNL get selected equally
many times by both RENT and UBayFS, and both have a high number indicating importance over the other features in
this block. A high CRP at baseline has previously been shown to be a poor prognostic feature in some studies [5,46,47],
whilst others have not replicated this [48]. This is probably not surprising as this has been shown to be a poor
prognostic indicator in advanced cancer patients in a palliative setting, and especially in GEP NEN [49–52]. ALP has
also been shown in studies to be prognostic for a shorter OS [5,53,54]. For Albumin and Platelets, RENT chose these
only half as many times as UBayFS. Both have been shown to be prognostic indicators of OS [5, 6]. Interestingly,
Haemoglobin, WBC, LDH, and Chromogranin A are barely chosen or are not chosen neither by RENT nor UBayFS.
All these features have previously been shown to be prognostic for OS [5].
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Moving on to block (h) (re-evaluated histology) we have quite a few features that are well-known prognostic indicators.
The strongest one from the literature is probably Ki-67 which is used in the classification system of NEN. The second
strongest is probably Tumor Morphology which has been shown in several studies to be prognostic for OS [5, 6].
We see that Ki-67 is chosen every time from all five folds both for RENT and UBayFS supporting this feature as a
strong prognostic indicator for OS. Further, Tumor Morphology gets chosen four out of five times with RENT and
three out of five times with UBayFS. This is also to be expected since we know that patients with NET G3 have a
better OS than those patients with NEC [55]. What is surprising is that most tumor sites, especially those patients with
unknown primary and esophagus NEN, are not chosen by RENT or UBayFS. Primary Tumor Site has been shown to
be prognostic in several studies [5, 6]. Several of the features like Stroma, Architecture, Vessel Pattern, Co-existing
neoplasm, and Geographic Necrosis are considered typical for either NET G3 or NEC [56], and one might assume
these are highly correlated with Tumor Morphology. Although this is not reflected in Fig. 2. Almost none of these
features are chosen with RENT or UBayFS except for Stroma. NET G3 typically have hyalinized stroma and NEC
have desmoplastic stroma [56].

Further, in block (i) (PET/CT imaging) the interesting features are Total MTV, Total TLG, and the SUV-parameters.
From Fig. 2 and previous literature [8] we know that these features are often (if not always) highly correlated. Hence,
the selection of SUVmax (total) instead of the other features is probably related to this. Moreover, we know from
previous studies [8, 11–13] that global measures such as Total MTV and Total TLG are poor prognostic indicators for
OS in these tumors, but we lack stronger evidence in form of larger studies. Here we see that SUVmax (total) is chosen
in all five folds both for RENT and UBayFS supporting the previous findings that PET-parameters are good prognostic
features of OS.

Finally, in block (t) (treatment) we can see a few features are selected often. Chemotherapy treatment with cis-
platin/etoposide is not surprisingly a predictor for OS, and most of the patients did indeed receive this combination. No
chemotherapy is obviously detrimental. We also see that the Chemotherapy treatment with temozolomide/everolimus
gets chosen often both by RENT and UBayFS. This is probably because this chemotherapy regimen is more often
chosen for those patients with a low Ki-67 and these are more likely to be NET G3 which already have a better OS.
Further, both Number of Courses and Progression are two features that are selected often by RENT and UBayFS. Pro-
gression and No Progression are obviously poor prognostic indicators, and one could assume that the higher Number
of Courses a patient receives the longer before they have progression and hence they live longer. This is of course only
an assumption and interpretation of the data at hand. It is a bit surprising that the response evaluation results did not
get chosen. One would assume that patients with the best response - stable disease would fare better than those with
progressive disease. Looking at Fig. 2 the features from this block have low correlation coefficients.

Experiment 2 Here we added prior expert knowledge and assigned two different weights. A weight w = 50 means
approximately 50% expert-driven and 50% data-driven. A weight w = 110 means almost purely an expert-driven ap-
proach where we effectively force the selection of features only from the subset of those from prior expert knowledge.
We concentrated on features that are well documented in several previous studies, although there exist more features
in the literature suggesting prognostic values than these. The features selected from prior expert knowledge are listed
in the first paragraph in Section 3.4 and marked by an asterisk in Tab. 4.

If we concentrate on the second, third, and fourth columns, which shows the difference between roughly 0%, 50%
and 100% expert-driven, we see that none of the marked features drops in importance as we increase the value of
expert knowledge. Some features that were never chosen with a pure data-driven model are still not chosen. One
could argue that these are probably not strong features to begin with, or that other features contain the same and/or
stronger information. A few features only get chosen when almost completely removing the data-driven part and make
a huge leap from not being chosen to being chosen five times. We argue that one should be careful to put too much
importance on these features as we expect these are more or less forced to be chosen.

A few features stand out by being stable across all values of w; WHO Performance Status, Albumin, Platelets, Ki-67,
Tumor Morphology, Total MTV, Total TLG, and SUVmax. It would be bold to assume that these features are the most
important and stable predictors of OS from the subset of expert knowledge markers, but that would probably be too
premature. Further, it is also interesting to notice that even though several parameters from PET are highly correlated,
several are still chosen very often by the model. This is in line with the results of our previous study ( [8]. Moreover,
it is a bit surprising that Primary Tumor Site, especially Unknown Primary and Esophagus, is not chosen more often
as these are well-known negative predictors of OS [5, 6].

We also notice that some of the other non-marked features drop in importance as we increase w, and this is probably
related to the fact that the features overlap in the information they add to the model. A few of these features are also
moderately or highly correlated. E.g. CRP is correlated with quite a few of the other blood markers, and this could
explain why it falls in importance when increasing w. Mets Bone (bone metastases) is not listed in the correlation
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heatmap and thus has no moderate or high correlations with other features, but still completely falls out. Bone metas-
tases usually occur late in several cancers and is a poor prognostic feature. Hence, one should assume that this feature
and similar ones like CRP, ALP, which performs well with low values of w falls of in the pure knowledge-driven
model because the model is ”forced” to select only marked features. We must remember that the w = 110 is an ex-
treme expert-driven model which is probably not clinically relevant but was added to explore and evaluate what the
model did in this extreme situation. This is a small, novel study with few patients and really the first of its kind for
exploring and evaluating RENT and UBayFS on clinical data. Using these ensemble feature selectors may be used
for validating already established features, or to find new features not previously known. Evaluation into which w is
optimal should be explored further in future studies.

5 Conclusion

In conclusion, although we cannot ascertain how important different features are compared to each other and if they
contribute to poorer or better survival, we do find similar results as several previous studies. The most stable and
predictive features in our study are WHO Performance Status, Albumin, Platelets, Ki-67, Tumor Morphology, Total
MTV, Total TLG, and SUVmax.

From a data science perspective, we demonstrated the capabilities of the ensemble feature selection techniques RENT
and UBayFS for healthcare problems — in particular, the inclusion and comparison of expert- and data-driven setups,
as well as combinations of both, allow the user to gain relevant information for clinical use.
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